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ABSTRACT:

Airborne Laser Scanning (ALS) is a widespread method for forest mapping and management purposes. While common ALS techniques
provide valuable information about the forest canopy and intermediate layers, the point density near the ground may be poor due to
dense overstory conditions. The current study highlights a new method for detecting stems of single trees in 3D point clouds obtained
from high density ALS with a density of 300 points/m2. Compared to standard ALS data, due to lower flight height (150-200 m)
this elevated point density leads to more laser reflections from tree stems. In this work, we propose a three-tiered method which
works on the point, segment and object levels. First, for each point we calculate the likelihood that it belongs to a tree stem, derived
from the radiometric and geometric features of its neighboring points. In the next step, we construct short stem segments based on
high-probability stem points, and classify the segments by considering the distribution of points around them as well as their spatial
orientation, which encodes the prior knowledge that trees are mainly vertically aligned due to gravity. Finally, we apply hierarchical
clustering on the positively classified segments to obtain point sets corresponding to single stems, and perform `1-based orthogonal
distance regression to robustly fit lines through each stem point set. The `1-based method is less sensitive to outliers compared to the
least square approaches. From the fitted lines, the planimetric tree positions can then be derived. Experiments were performed on two
plots from the Hochficht forest in Oberösterreich region located in Austria. We marked a total of 196 reference stems in the point clouds
of both plots by visual interpretation. The evaluation of the automatically detected stems showed a classification precision of 0.86 and
0.85, respectively for Plot 1 and 2, with recall values of 0.7 and 0.67.

1. INTRODUCTION

Accurate measurements of forest structure are increasingly re-
quired across large areas to support a wide range of activities re-
lated to sustainable forest management. Cost-effective and more
automated methods are needed to provide tree attribute data for
forest ecosystem services. Therefore, remote sensing tools are in-
creasingly being used to survey forest structures. However, the
spatial extent and spatial resolution of a given sensor are inversely
related.
Airborne Laser Scanning (ALS) has become a key tool for gath-
ering information on 3D structure of forests (Wulder et al.,
2012). The derived information from ALS data can grant de-
tailed estimations of forest characteristics and single tree anal-
ysis (Yao et al., 2012; Maltamo et al., 2012). Previous studies are
showed several properties of single trees such as species, height
and crown properties which can be measured with high resolution
ALS data (Maltamo et al., 2012). However, limited persistence
has been done on the stem detection of single trees. For instance,
single tree stems have been determined from the interpolated
CHM (Canopy Height Model) at the highest positions(Solberg
et al., 2006) or by using hierarchical clustering for stem reflec-
tions and reconstructions with a RANSAC-based adjustment (Re-
itberger et al., 2007). Due to the low point density and lack of
information about the reflection characteristics, minor focus has
been given to tree reconstruction using laser hits on the stems
(Reitberger et al., 2007; Polewski et al., 2016). In order to detect
∗Corresponding author

stem of trees, data with greater precision would be required to
allow a more accurate representation of the actual discontinuities
in the single trees (Vauhkonen, 2010).
On the other hand, Terrestrial Laser Scanning (TLS) has also been
proven to be a suitable method for obtaining very detailed infor-
mation about geometry of trees in forests (Liang and Hyyppä,
2013). Pfeifer and Winterhalder (2004) showed a method for re-
constructing the cross section of tree stems and branches from
TLS data with free-form curves. However, the study indicated
that expected cross section reconstruction works only satisfy-
ingly, if the branch is covered with points from all sides which it
is not possible due to occlusions. Liang et al. (2012) presented a
fully automatic algorithm based on single-scan TLS data for stem
detection and mapping with the overall accuracy of 73%. The
stem points are established using classification based on the lo-
cal covariance matrix features. The provided method is capa-
ble of giving good parameters only when the points are evenly
distributed on the tree trunk; however the applicability of fea-
ture estimation for a group of points has not been taken into
account. Lindberg et al. (2012) projected candidate stem points
onto a 2D plane. They applied Hough transforms to locate cir-
cles, representing the potential stems. Heinzel and Huber (2016)
used a 3D voxel grid transformation of the input TLS point clouds
to detect tree stems using morphological operations and empiri-
cal rules. They reported detection rates of 84% to 97% for the
number and location of stems depending on the tree DBH (di-
ameter at breast height). Olofsson et al. (2014) by voxelizing the
point cloud and analyzing the influence of different height layers
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could estimate tree stem positions with an average proportion of
87%. Wang et al. (2016) performed in the first step, RANSAC
based circle fitting of projected stem points, which is later fol-
lowed by RANSAC cylinder fitting in 3D space. Polewski et al.
(2017) proposed a statistical framework for detecting cylinders
based on accumulation and voting in parameter space. The size
of the accumulation cell is determined automatically using band-
width selection methods for kernel density estimators, which re-
laxes the requirement of setting this critical parameter manually
or through trial-and-error. The method is applied on a dense 3D
point cloud for mapping fallen tree stems. Based on the men-
tioned studies, the main advantage of TLS data lies in its capacity
to scan a sample plot in forest horizontally and vertically in de-
tail. However, important factors such as the occlusion effect and
relatively high cost of the instrument transportation from site to
site are negatively effecting the use of TLS data. Moreover, the
coregistration of several scans covering a study area is an essen-
tial step in the interpretation of multi-scan data acquisition. The
fully automated registration between several scans at the point
level is still challenging.
In standard operational applications of ALS, the flight heights
are usually between 400 to 800 m, resulting in point densities up
to 30 points/m2. However, an alternative scenario is also possi-
ble, where the flying altitude is significantly decreased to below
150 m, for example using a helicopter mounted system or even a
UAV with around 50 m flight height. This can be seen as a mid-
dle ground between standard ALS and TLS techniques, trading
off large area coverage for increased point density. This tradeoff
is due to the lower flight altitudes associated with this technique
compared to standard ALS campaigns, which results in smaller
footprints. Razak et al. (2011) used high resolution DEMs (Dig-
ital Elevation Models) extracted from high density ALS data to
semi-automatical recognition of morphometric landslide features
even under forest canopy. Höfle et al. (2012) provided an exam-
ple of high density ALS data potential to use for urban vegeta-
tion detection purposes. They used a high point density of 50
points/m2. Khosravipour et al. (2014) also presented an algorithm
which is able to create a pit-free CHM raster using full waveform
ALS data with 160 points/m2 density. The algorithm significantly
improves the accuracy of tree detection compared to local max-
ima based methods. The data collected by high density ALS sys-
tems is less precise in comparison with TLS. However, within
an equal time frame, the area that can be investigated by utiliz-
ing high resolution ALS is significantly larger than the area in-
vestigated with TLS. Also the aforementioned TLS based meth-
ods for stem detection are not practical for the applications us-
ing ALS data, since the curvature shape of the tree trunk in ALS
point clouds is not captured as detailed as in case of TLS. On the
other hand, the increased point density, resulting from lower flight
height can provide more details in the point clouds compared to
standard ALS, enabling the use of 3D spatial descriptors to lo-
cate individual tree stems. Therefore, an automated method for
stem mapping within high-density ALS data is interesting from
forestry application point of view.
The objectives of this study are to develop a new method for sin-
gle tree stem detection based on high density ALS data using (i)
point and object part level 3D shape descriptors, and (ii) `1 regu-
larized line fitting with a prior on orientation. A further objective
is (iii) to assess the accuracy of detected tree stems. This paper
is motivated by the successful application of high density ALS
systems for precise monitoring of vegetation and forest structure,
reported in the aforementioned studies. Also, detected tree stems
could be used to improve the 3D segmentation algorithm as prior
knowledge in terms of the detection rate and the position of trees.

The remainder of this work is structured as follows: Section 2 fo-
cuses on the details of our approach. Section 3 shows the exper-
iment results. Finally, the results are discussed with conclusions
in Sections 4 and 5.

2. METHOD

We adapt the method of Polewski et al. (2015) which is origi-
nally designed for fallen tree segmentation, to detect the stand-
ing stems of single trees from unstructured high density ALS
point clouds. The main goal is to detect linear structures in the
ALS 3D point clouds which are likely to represent single tree
stems. The output of our method is a set of 3D lines which corre-
spond to detected stems. The pipeline describing our approach is
presented in Fig. 1. Our approach is a three-tiered detection pro-
cedure at (i) point, (ii) segment and (iii) object levels. The seg-
ment term refers to the grouping of points within a fixed length
cylindrical neighborhood which are likely to represent part of a
tree stem. Objects refer to entire tree stems which are composed
from groups of similarly aligned segments. The method proceeds
as follows. First the likelihood of points belonging to a tree stem
is estimated. Second, the segments containing the highest proba-
bility stem points are detected in the 3D point clouds. Finally the
segments are merged through hierarchical clustering to produce
single tree stems. In the following, we explain the steps of our
method in detail.

Figure 1. Overview of stem detection pipeline.

2.1 Point level

In the input data depending on the forest characteristics, differ-
ent objects are present such as ground vegetation, regenerations,
standing tree stems etc. The focus of this step is to obtain for ev-
ery point, an estimate of the probability that it belongs to a tree
stem. High density ALS data can provide a range of features re-
lated mainly to the 3D structure of single trees. The features de-
rived from 3D point clouds can be grouped into three categories:

1. Point feature histograms (PFH): a local 3D shape descriptor
of the neighborhood around the target point, based on the
angular relationships between adjacent surface normals. It is
useful for distinguishing between different types of surface
classes based on their shape (plane, cylindrical, spherical,
etc) (Rusu et al., 2008; Polewski et al., 2015).
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2. Covariance features: set of features derived from eigenval-
ues of local neighborhood covariance matrix around target
point (see Weinmann et al. (2015)).

3. Normalized height: the relative point heights over the Digi-
tal Terrain Model (DTM).

For the point classification level we chose Random Forest
(Breiman, 2001) as a binary classifier due to its robust ability to
estimate the class probability.

2.2 Segment level

This level focuses initially on generating segment candidates. For
each point with high probability, a cylindrical neighborhood with
constant radius rseg and height lseg is defined. Afterwards, all the
points inside the cylinder space are taken into account to perform
the least-squares Orthogonal Distance Regression (ODR) (Al-
Subaihi and Watson, 2004).This is done by eigenanalysis of the
point coordinates’ covariance matrix: the ODR line’s direction is
the eigenvector corresponding to the maximum eigenvalue, and
this line passes through the points’ centroid. The ODR line be-
comes the segment’s axis.
We classify the candidate segments generated in the previous step
into the ’positive’ and ’negative’ groups. The ’positive’ group
represents the segments which are really parts of tree stems, and
the ’negative’ contains branches, ground vegetation, and etc. The
first set of segment features are derived from a modified ver-
sion of Cylindrical 3d Shape Context (CSC) built around the seg-
ments’ axes (Polewski et al., 2015) (see Fig. 2). A spatial distri-
bution histogram of points within the cylindrical volume around
the segment axis can then be constructed. The point counts inside
the histogram bins form the features for the classification.

Figure 2. Cylindrical 3D Shape Context around a segment.

The second set of features are calculated based on the angular
deviation of the segment axes from the world Z. The segments
with the deviation larger than θthr are rejected without regard
to remaining feature values. Additionally, the point probability
statistics are extracted as another group of features for classifi-
cation. In the current study, we looked at the points inside the
segment neighborhood and we created the stem point probability
histograms quantized at 0.2 intervals, resulting in 5 features.

2.3 Object level

The goal of current level is to take the stem segments with high
probability from the previous step and merge them to reconstruct
individual tree stems. This is based on the collinearity and mutual
distances between segments.

2.3.1 Hierarchical clustering In the next step of the pipeline,
the representative ’positive’ segments are merged together. For
this purpose, first we have a combination of two distances to cal-
culate. The aggregate distance d between segments Si and Sj is
the weighted sum of angular deviation dA and the spatial distance
between point centroids dC (see Eq. 1).

d(Si, Sj) = dA(~Si, ~Sj) + w1.dC(S̄i, S̄j) (1)

In the Eq. 1, ~S refers to the axis and S̄ indicates the point centroid
of each segment. w1 is the weight component for the spatial dis-
tance dC . Fig. 3 shows the angular deviation dA and the spatial
distance dC between two segments surrounded by cylinders.

Figure 3. The aggregate distance d between two segments; the
angular deviation dA is shown with green arrow and the spatial

distance between point centroids dC with red arrow.

The following hierarchical clustering scheme (Van Der Heijden
et al., 2005) is applied to merge ’positive’ segments based on the
aggregate distance matrix d explained above.

1. Assign each point to its own cluster.
2. Find the closest pair of clusters which do not trigger the

stopping criterion and merge them into one. The number of
clusters reduces by one.

3. Compute the distance D between the new cluster and each
of the old clusters.

4. Repeat steps 2 and 3 until no more clusters can be merged
under the stopping criterion.

In the current clustering process the distance D between two
clusters Ci and Cj is defined as the largest distance d from
any combination of member segments. The stopping criterion
consists of two conditions. First, when considering two clusters
Ci, Cj if the spatial distance dC between any pair of segments
Sk ∈ Ci, Sl ∈ Cj is bigger than a predefined threshold dC,max
then the merging of Ci and Cj is aborted. On the other hand, the
ODR line is fitted to the set of points belonging to segments in
Ci, Cj and the orthogonal projected distance of all points to the
ODR line is calculated. If the projected distance of any point is
greater than a set threshold dp,max or the angular deviation be-
tween the fitted line and the Z axis exceeds dA,max, this also
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terminates the merging for that cluster pair. Fig. 4 represents the
stopping criterion in the hierarchical clustering phase between
segments.

Figure 4. The stopping criterion for clustering the segments. The
green lines represent the segments in cluster Ci and the magenta
lines show the segments in cluster Cj , respectively. The red line
is the line fitted to both clusters’ points. The red points outside

the cylinder have projected distance greater than dp,max.

2.3.2 Stem line fitting In the final step, for each cluster ex-
tracted from the merging step, containing all the stem points, we
execute the line fitting procedure. For the fitting, we apply or-
thogonal distance regression with the `1 norm of residuals as the
error criterion and a prior on the line’s verticality. The problem is
formulated in terms of an energy minimization. The total energy
for a line L, Etot(L) is presented in the Eq. 2. The total energy
Etot has 2 components, the data goodness-of-fit term Ed (Eq. 3)
and the angular prior termEa (Eq. 4). The α element refers to the
balance coefficient between energy terms. The angular prior was
considered due to the prior knowledge that the tree stems grow
almost always vertically. Furthermore, the `1 norm is a more ro-
bust estimator and less sensitive to outliers available in the data
compared to the `2 norm (Al-Subaihi and Watson, 2004). In our
experiment, the `2 norm in the segment level and the `1 norm
is used in the object level, respectively. This decision is related
to the computational expenses of the `1 and `2 fittings. Usually,
the number of the segments to process is several orders of mag-
nitude higher compared to the stems obtained from hierarchical
clustering. On the other hand, the `1 version is much more com-
putationally expensive than the `2 based method, which makes it
intractable to apply for all segments.

Etot(L) = Ed(L) + αEa (2)

Ed(L) =
∑
i

‖ L(Pi)− Pi ‖2 (3)

Ea(L) = | arccos
Z.w

|Z|.|w| | (4)

In the Eq. 3, element Pi, i ∈ 1..n refers to the ith point inside the
cluster. Furthermore, Z element in the Eq. 4 represents Z axis
of world coordinate system. L(P ) term is the projection of point
P onto line L and w indicates L’s direction vector. The line L
is parametrized using 4 values a = [a1, ..., a4] (Al-Subaihi and
Watson, 2004) showed in the Eq. 5:

L(a, t) =

a1t+ a2
a3t+ a4

t

 (5)

where t is the location parameter. Note that the z component
of w is always positive with a value of 1, and therefore the an-
gle between the world Z axis and w always lies in the interval
[0; π

2
]. This allows us to drop the absolute value on the angular

prior term Ea since the arccosine is guaranteed to be positive in
the mentioned interval.
For the optimization of the orthogonal distance fitting, a two-step
method similar to Liu and Wang (2008) as well as Watson (2002)
is used. The first step for the re-parametrization computes the pro-
jection of all fitted points Pj onto the current line L(a, t) to min-
imize the distance from Pi to L:

min
tj
‖ L(a, tj)− Pj ‖, j = 1, ..., n (6)

The line positions tj corresponding to the orthogonal projection
onto L can be recovered using Eq. 7, where p0 = [a1, a3, 0]:

tj =
(Pj − p0).w

w.w
(7)

In the second step, we minimize the energy similar to Etot, but
with the projected line positions fixed at {tj}, with respect to
shape parameters only, i.e.:

min
a

∑
i

‖ L(a, ti)− Pi ‖2 +αEa(a) (8)

For minimizing the objective (Eq. 8) the BFGS quasi-Newton
method is applied (Wright and Nocedal, 1999). The derivative
of the energy’s data term with respect to any parameter ak is ex-
pressed as follows (rj = Pj − L(a, tj) is the j − th residual):

∂Ed(a)

∂ak
= −

∑
j

rj
||rj ||

{ ∂p0
∂ak

+ tj
∂w

∂ak
} (9)

By splitting the computation into two steps and fixing the tj val-
ues, the problem is considerably simplified, because otherwise
the terms tj in Eq. 9 would depend on ak, leading to the necessity
of calculating the derivative of the product ∂[tj(a) · w(a)]/∂a.
Therefore, the derivatives with respect to the entire parameter
vector are:

∇aEd(a) = −
∑
j

rTj
||rj ||

tj 1 0 0
0 0 tj 1
0 0 0 0

 (10)

As for the angular deviation term Ea, only the axis parameters
a1, a3 have a non-zero derivative, given by:

∇a1,a3Ea(a) =

[
a1
a3

]
1√

1− 1
||w||2 ||w||3

(11)

We iteratively execute steps 1 and 2 in sequence until conver-
gence is reached. Due to the non-convexity of the optimiza-
tion problem, local optima may exist. To remedy that, we per-
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form multiple restarts of the optimization with randomly initial-
ized starting line hypotheses, and pick the lowest-energy solu-
tion. This yields the final fitted lines representing the detected
single tree stems for all clusters.

3. EXPERIMENTS

3.1 Materials

Experiments were conducted in the Hochficht forest close to
Holzschlag in Oberösterreich region which is located in Aus-
tria. The study area is a type of mountainous forest with a
high structural complexity, dominated by Norway spruce (Picea
abies), European beech (Fagus sylvatica) and Silver fir (Abies
alba). Two sample plots with the approximate area size of 6844.7
m 2 and 17907 m2 and a mean tree density of 272 trees/ha were
selected in the mixed forest to construct the experiment. The high
density ALS data was acquired in leaf-on condition by the FMM
GmbH Company with the VUX-1 scanner integrated in the VP-
1 pod in September 2015 with an average point density of 300
points/m2. We assumed that the data is given in a georeferenced
coordinate system. The flying altitude between 150-200 m re-
sulted in an average footprint size of 88 mm. Fig. 5 shows a sam-
ple scene in the 3D point clouds associated with the visible single
tree stems.

Figure 5. A point cloud visualization of sample forest scene with
multiple visible stems (point clouds of scene colored by height

over DTM).

3.2 Training classifier

We used parts of test plots and two additional plots to train the
classifier in the point and segment levels. In the available 3D
point clouds, a significant percentage of the stems is not at all
represented (specially for the deciduous trees). For every single
tree with visible stem, the points and segments were manually
marked and assigned either the stem or the non-stem class by
visual interpretation, resulting in training sets for binary classifi-
cation. The total number of the marked points and segments were
20000 and 564, respectively. This represented about 28% of the
total number of the stem points and about 3% of the generated
segments in plots 1 and 2.

3.3 Reference data

The schematic class labels which groups individual segments into
tree stems were later obtained based on the relative segment posi-
tions and orientations using visualization. In some cases a single

tree stem was represented in the point cloud, but it was missing
from the reference data, due to the lack of evidence in the 3D
point clouds. The total number of the labeled stems were 196.

3.4 Choice of parameters

The various control parameter values that we used in our experi-
ment for each level is summarized in the Tabel1. The values were
assigned experimentally based on the forest characteristics.

Parameters symbols values
Cylinder radius rseg 0.5 m
Cylinder length lseg 2.0 m
Angular deviation θthr 30◦

Spatial distance weight w1 10
Maximum spatial distance dC,max 0.6 m
Maximum projected distance dp,max 0.6 m
Maximum angular deviation dA,max 20◦

Balance coefficient of energy terms α 0.1× np

Table 1. Control parameters for the single tree stem detection
method; np refers to the number of points inside the clusters.

3.5 Evaluation

In the current experiment we use the ”recall” and ”precision”
measures to characterize the detection performance between de-
tected and reference tree stems. The ”recall” is defined as the ratio
of the reference stem numbers which have at least one associated
detected stems to the total number of reference stems. The ”preci-
sion” expresses the count of detected stems that were successfully
connected to reference stems as a fraction of the total number
of detected tree stems. We considered the detected and reference
stems as matched if the average projected distance between them
was not more than 30 cm. This value was derived based on the
maximum DBH of trees in the target area.

4. RESULTS AND DISCUSSION

The procedure for stem detection was applied to the both
plots. The output of the single tree stem detection consists
of a number of point sets which correspond to the individual
stems. The method takes the advantage of the increased point
density, which makes more laser reflections available underneath
the canopy for regions of test plots dominated by conifers, due
to the smaller footprint size compared to the standard ALS. In
contrast, the deciduous tree stems are missing in the point clouds
due to the dense canopy cover in leaf-on state, and no benefit was
achieved despite the lower footprint size. In case that only sparse
understory is below the tree base height, stem points are success-
fully detected by the expressed classifier training and stem line
fitting method.
Fig. 6 shows the stem detection results for a sample plot (mixed
with deciduous and coniferous trees) in three main levels of point,
segment and object. The sample plot contains deciduous and
coniferous trees. In Fig. 6a the classification results at the point
level based on the high and low point probability on the tree
stems are presented. The ”positive” and ”negative” groups of seg-
ments are classified using shape context, angular deviation from
the world Z and point probability statistics in the Fig. 6b. Finally,
at the object level stems with the fitted ODR line (orthogonal dis-
tance regression with the `1 norm) after merging are indicated in
the Fig. 6c. In the current figure, we used the minimum stem point
probability threshold of 0.6 to remove low probability points from
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Figure 6. The detection results for a sample plot:(a), (b) and (c) correspond to point, segment and object levels, respectively (see
Sections 2.1-2.3). At point level in (a), the red color shows low and blue high probability. The solid green bars in (b) indicate tree

stems classified as positive and red bars refer to unmatched tree stems with references. The points which do not belong to the detected
stems are removed from analysis and colored as cyan. Orange ellipses outline examples of the false alarms. The fitted magenta lines in

(c) represent the reference tree stems which overlap with colored detected stems (ODR with the `1 norm).

the analysis.
The detection performance of the proposed method is presented
by Fig. 7. Note that in the current test plots, due to the point den-
sity and forest characteristics (particularly deciduous trees) up to
30% of the visible tree stems could not be detected. Specifically,
in the lower canopy layer limited number of tree stems can be
found since most of them are covered by taller tree stems and un-
derstory vegetation. Therefore, the majority of the detected stems
are located in the upper and intermediate layer of the forest.
Here, we focus on the detection accuracy of tree stems that are
derived from the 3D point clouds. In the plot 1, the good trade off
results between recall and false positive rate are 0.84 and 0.25,
respectively. Also, for the plot 2, the results are 0.63 for the re-
call and 0.13 for the false positive rate is achieved. By increasing
the precision rate, the recall rate is decreased. The average rate of
false detected tree stems in the plot 1 and 2 amount to 0.25 and
0.21, respectively. However, no improvement is achieved in the
lower layer and deciduous trees since (i) laser hits at the stem of
small trees rarely happen, (ii) the stem points are missing for the
trees with compact canopy.
The restrictions of the approach are that only trees in visible stem
in the 3D point cloud visualization can be detected. This prob-
lem could be alleviated by acquiring an even denser point cloud
e.g. by using UAV-based laser scanning, where more stem hits
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Figure 7. Single tree stem detection performance with
probability threshold of 0.4 to 0.6 for the test plots.

are to be expected. As mentioned before, the method fails in the
regions with high concentration of deciduous trees where stem
hits are rare and stems points cannot be clearly clustered. In case
of deciduous trees, it is not clear if an increase of the nomi-
nal point density of a ALS data with reducing flight height can
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provide more visible stems. Perhaps conducting the data acqui-
sition in leaf-off state could remedy this problem. The current
point density, did not allow to reconstruct the cylindrical shape
of stems. Therefore the stem diameter estimation requires higher
point density which is left for the future work. From the applica-
tion point of view, the processing of large areas requires imple-
menting a tiling scheme due to the memory usage of the spatial
index structures as well as the large number of generated segment
candidates. Moreover, the transferability of 3D descriptors is not
perfect, in the sense that in our experiment we had to train and
test our method on the same area. Another limitation is related to
the optimization problem of the line fitting step. Due to the non-
convexity, which does not guarantee global optimality, it might
happen that the fitted line converage to local optimum.

5. CONCLUSIONS

The study presents a novel method for detecting stems of single
trees based on the high density ALS data. Our results demon-
strate that the classification precision is achieved to 0.86 and 0.85,
respectively for two sample plot 1 and 2, with recall values of
0.7 and 0.67. In future work, we would like to utilize the stems
obtained from the proposed method to enhance the segmenta-
tion and delineation of single trees by providing prior knowledge
about tree locations. Additionally, higher point density could lead
to more precise reconstruction of the stems.
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