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Pedro Maŕın-Rubio

Departamento de Ecuaciones Diferenciales y Análisis Numérico
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1. Introduction. One of the main goals of the theory of dynamical systems is to
characterize the structure of global attractors. It is possible to find a wide literature
about this problem for semigroups; however, it has been recently when new results
in this direction for multivalued dynamical systems have been proved [3], [13], [14].

In this sense, the theory of Morse decomposition plays an important role. In fact,
the existence of a Lyapunov function, the property of being a dynamically gradient
semiflow and the existence of a Morse decomposition are shown to be equivalent for
multivalued dynamical systems in [9].

In this work we show under suitable assumptions that a dynamically gradient
multivalued semiflow is stable under perturbations, that is, the family of perturbed
multivalued semiflows remains dynamically gradient.

For a fixed dynamically gradient multivalued semiflow with a global attractor
we also analyze the rearrangement of a pairwise disjoint finite family of isolated
weakly invariant sets, included in the attractor, in such a way that the dynamically
gradient property is satisfied in the stronger sense of [16].

These results extend previous ones in the single-valued framework in [7, 1, 2] to
the case where uniqueness of solution does not hold. Additionally, it is worth saying
that the multivalued semiflows here are not supposed to be general dynamical sys-
tems as in [16], where a robustness theorem for Morse decompositions of multivalued
dynamical systems is also proved under a suitable continuity assumption.

We also apply this general robustness theorem in order to show that a family
of Chafee-Infante problems approximating a differential inclusion is dynamically
gradient if it is close enough to the original problem.

This paper is organized as follows.
Firstly, we introduce in Section 2 basic concepts and properties related to fixed

points, complete trajectories and global attractors. In this way we are able to
present in Section 3 the main result about robustness of dynamically gradient mul-
tivalued semiflows. Further, in Section 4 we prove a theorem which allows us to
reorder the family of weakly invariants sets, thus establishing an equivalent defini-
tion of dynamically gradient families.

Afterwards, we consider a Chafee-Infante problem in Section 5, where the equi-
valence of weak and strong solutions is established. Once the set of fixed points
is analyzed, we consider a family of Chafee-Infante equations, approximating the
differential inclusion tackled in [3]. We check that this family of Chafee-Infante
equations verifies the hypotheses of the robustness theorem in order to obtain,
therefore, that the multivalued semiflows generated by the solutions of the approx-
imating problems are dynamically gradient if this family is close enough to the
original one.

2. Preliminaries. Consider a metric space (X, d) and a family of functions R ⊂
C(R+;X). Denote by P (X) the class of nonempty subsets of X. Then, define the
multivalued map G : R+ ×X → P (X) associated with the family R as follows

G(t, u0) = {u(t) : u(·) ∈ R, u(0) = u0}. (1)

In this abstract setting, the multivalued map G is expected to satisfy some prop-
erties that fit in the framework of multivalued dynamical systems. The first concept
is given now, although a more axiomatic construction will be provided below.

Definition 1. A multivalued map G : R+ ×X → P (X) is a multivalued semiflow
(or m-semiflow) if G(0, x) = x for all x ∈ X and G(t + s, x) ⊂ G(t, G(s, x)) for all
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t, s ≥ 0 and x ∈ X.
If the above is not only an inclusion, but an equality, it is said that the m-semiflow
is strict.

In order to obtain a detailed characterization of the internal structure of a global
attractor, we introduce an axiomatic set of properties on the set R (see [4] and
[13]).

The set of axiomatic properties that we will deal with is the following.

(K1) For any x ∈ X there exists at least one element ϕ ∈ R such that ϕ(0) = x.
(K2) ϕτ (·) := ϕ(·+ τ) ∈ R for any τ ≥ 0 and ϕ ∈ R (translation property).
(K3) Let ϕ1, ϕ2 ∈ R be such that ϕ2(0) = ϕ1(s) for some s > 0. Then, the function

ϕ defined by

ϕ(t) =

{
ϕ1(t) 0 ≤ t ≤ s,
ϕ2(t− s) s ≤ t,

belongs to R (concatenation property).
(K4) For any sequence {ϕn} ⊂ R such that ϕn(0) → x0 in X, there exist a sub-

sequence {ϕnk} and ϕ ∈ R such that ϕnk(t)→ ϕ(t) for all t ≥ 0.

It is immediate to observe [6, Proposition 2] or [15, Lemma 9] that R fulfilling
(K1) and (K2) gives rise to an m-semiflow G through (1), and if besides (K3) holds,
then this m-semiflow is strict. In such a case, a global bounded attractor, supposing
that it exists, is strictly invariant [19, Remark 8].

From now on (K1)-(K2) are always satisfied and G will be the multivalued semi-
flow associated to R.

Once a multivalued semiflow is defined, we recall the concepts of invariance and
global attractor, with evident differences with respect to the single-valued case.

Definition 2. A map γ : R→ X is called a complete trajectory of R (resp. of G)
if γ(· + h) |[0,∞)∈ R for all h ∈ R (resp. if γ(t + s) ∈ G(t, γ(s)) for all s ∈ R and
t ≥ 0).

A point z ∈ X is a fixed point of R (resp. of G) if ϕ(·) ≡ z ∈ R (resp. z ∈ G(t, z)
for all t ≥ 0).

Definition 3. A set B ⊂ X is said to be negatively invariant if B ⊂ G(t, B) for all
t ≥ 0, and strictly invariant (or, simply, invariant) if the above relation is not only
an inclusion but an equality.

The set B is said to be weakly invariant if for any x ∈ B there exists a complete
trajectory γ of R contained in B such that γ(0) = x. We observe that weak
invariance implies negative invariance.

Definition 4. A set A ⊂ X is called a global attractor for an m-semiflow if
it is negatively semi-invariant and it attracts all attainable sets through the m-
semiflow starting in bounded subsets, i.e., distX(G(t, B),A)→ 0 as t→∞, where
distX(A,B) = supa∈A infb∈B d(a, b).

Remark 1. A global attractor for an m-semiflow does not have to be unique, nor a
bounded set (see [24] for a non-trivial example of an unbounded non-locally compact
attractor). However, if a global attractor is bounded and closed, it is minimal among
all closed sets that attract bounded sets [19]. In particular, a bounded and closed
global attractor is unique.

Several properties concerning fixed points, complete trajectories and global at-
tractors are summarized in the following results [13].
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Lemma 1. Let (K1)-(K2) be satisfied. Then every fixed point (resp. complete
trajectory) of R is also a fixed point (resp. complete trajectory) of G.

If R fulfills (K1)-(K4), then the fixed points of R and G coincide. Besides, a
map γ : R → X is a complete trajectory of R if and only if it is continuous and a
complete trajectory of G.

The standard well-known result in the single-valued case for describing the at-
tractor as the union of bounded complete trajectories reads in the multivalued case
as follows.

Theorem 1. Consider R satisfying (K1) and (K2), and either (K3) or (K4).
Assume also that G possesses a compact global attractor A. Then

A = {γ(0) : γ ∈ K} = ∪t∈R{γ(t) : γ ∈ K}, (2)

where K denotes the set of all bounded complete trajectories in R.

Now we recall the definitions of some important sets in the literature of dynamical
systems. Let B ⊂ X and let ϕ ∈ R. We define the ω−limit sets ω(B) and ω(ϕ) as
follows:

ω(B) ={y ∈ X : there are sequences tn →∞, yn ∈ G(tn, B) such that yn → y},
ω(ϕ) ={y ∈ X : there is a sequence tn →∞ such that ϕ(tn)→ y}.

If γ is a complete trajectory of R, then the α−limit set is defined by

α(γ) = {y ∈ X : there is a sequence tn → −∞ such that γ(tn)→ y}.

Some useful properties of these sets [4, Lemma 3.4] are summarized in the fol-
lowing lemma.

Lemma 2. Assume that (K1), (K2) and (K4) hold. Let G be asymptotically com-
pact, that is, every sequence yn ∈ G(tn, B), where tn →∞ and B ⊂ X is bounded,
is relatively compact. Then:

1. For any non-empty bounded set B,ω(B) is non-empty, compact, weakly in-
variant and

distX(G(t, B), ω(B))→ 0, as t→ +∞.

2. For any ϕ ∈ R, ω(ϕ) is non-empty, compact, weakly invariant and

distX(ϕ(t), ω(ϕ))→ 0, as t→ +∞.

3. For any γ ∈ K, α(γ) is non-empty, compact, weakly invariant and

distX(γ(t), α(γ))→ 0, as t→ −∞.

In order to give a more detailed description of the internal structure of the at-
tractor under special cases, additional concepts are required.

Definition 5. Consider the m-semiflow G assoociated to R.

1. We say that S = {Ξ1, . . . ,Ξn} is a family of isolated weakly invariant sets
if there exists δ > 0 such that Oδ(Ξi) ∩ Oδ(Ξj) = ∅ for 1 ≤ i < j ≤ n,
and each Ξi is the maximal weakly invariant subset in Oδ(Ξi) := {x ∈ X :
distX(x,Ξi) < δ}.
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2. For an m-semiflow G on (X, d) with a global attractor A and a finite number of
weakly invariant sets S, a homoclinic orbit inA is a collection {Ξp(1), . . . ,Ξp(k)}
⊂ S and a collection of complete trajectories {γi}1≤i≤k of R in A such that
(putting p(k + 1) := p(1))

lim
t→−∞

distX(γi(t),Ξp(i)) = 0, lim
t→∞

distX(γi(t),Ξp(i+1)) = 0, 1 ≤ i ≤ k,

and

for each i there exists ti ∈ R such that γi(ti) /∈ Ξp(i) ∪ Ξp(i+1).

3. We say that the m-semiflow G on (X, d) with the global attractor A is dy-
namically gradient if the following two properties hold:
(G1) there exists a finite family S = {Ξ1, . . . ,Ξn} of isolated weakly invariant
sets in A with the property that any bounded complete trajectory γ of R in
A satisfies

lim
t→−∞

distX(γ(t),Ξi) = 0, lim
t→∞

distX(γ(t),Ξj) = 0

for some 1 ≤ i, j ≤ n;
(G2) S does not contain homoclinic orbits.

Remark 2. The last definition generalizes the concept of dynamically gradient
semigroups (see [7], where they are called gradient-like semigroups) to the multival-
ued case. Observe that the above definitions are concerned with weakly invariant
families, which need not to be unitary sets. This is to deal with the more general
concept of generalized gradient-like semigroups [7], in contrast with gradient-like
semigroups (when the invariant sets are unitary).

Now, we introduce the concept of unstable manifold, that will allow us to describe
more precisely the structure of a global attractor of a dynamically gradient m-
semiflow.

Definition 6. The unstable manifold of a set Ξ is

Wu(Ξ) = {u0 ∈ X : there exists complete trajectory γ of R such that
γ(0) = u0 and lim

t→−∞
distX(γ(t),Ξ) = 0}.

Now the following result, relating the global attractor with unstable manifolds, is
standard. The first statement is straightforward to see. The second one, supposing
that the global attractor is compact, follows directly from the structure described
in Theorem 1 and the definition of dynamically gradient semiflows.

Lemma 3. Consider a family R ⊂ C(R+;X) satisfying (K1) and (K2). Suppose
that the associated m-semiflow has a global attractor A. Then, for any bounded set
Ξ ⊂ X,Wu(Ξ) ⊂ Ā.

Moreover, assume that R satisfies either (K3) or (K4), and that the global at-
tractor A is compact. Suppose also that the associated m-semiflow G defined in (1)
is dynamically gradient. Then

A =

n⋃
i=1

Wu(Ξi). (3)



6 R. CABALLERO, A. N. CARVALHO, P. MARÍN-RUBIO AND J. VALERO

3. Robustness of dynamically gradient m-semiflows. Our first main goal is
to prove that a dynamically gradient multivalued semiflow is stable under suitable
perturbations, that is, a family of perturbed multivalued semiflows remains dy-
namically gradient if it is close enough to the original semiflow, generalizing the
corresponding result in the single-valued case [7]. This is rigorously formulated in
the following theorem.

Theorem 2. Let η be a parameter in [0,1], Rη ⊂ C(R+;X) fulfill (K1), (K2),
(K3) and (K4), and let Gη be the corresponding m-semiflow on X having the global
compact attractor Aη. Assume that

(H1)
⋃

η∈[0,1]

Aη is compact.

(H2) G0 is a dynamically gradient m-semiflow with finitely many isolated weakly
invariant sets S0 = {Ξ0

1, . . . ,Ξ
0
n}.

(H3) Aη has a finite number of isolated weakly invariant sets Sη = {Ξη1 , . . . ,Ξηn},
η ∈ [0, 1], which satisfy

lim
η→0

sup
1≤i≤n

distX(Ξηi ,Ξ
0
i ) = 0.

(H4) Any sequence {γη} with γη ∈ Rη such that {γη(0)} converges for η → 0+

possesses a subsequence {γηp} that converges uniformly in bounded intervals
of [0,∞) to γ ∈ R0.

(H5) There exists η > 0 and neighborhoods Vi of Ξ0
i such that Ξηi is the maximal

weakly invariant set for Gη in Vi for any i = 1, . . . , n and for each 0 < η ≤ η.
Then there exists η0 > 0 such that for all η ≤ η0, {Gη} is a dynamically gradient

m-semiflow. In particular, the structure of Aη is analogous to that given in (3).

Proof. Observe that assumption (H5) concerning certain neighborhood Vi of Ξ0
i

involves a hyperbolicity condition of G0 w.r.t. each Ξ0
i , and as far as (H3) is also

assumed, there exist {η(Vi)}i=1,...,n such that Ξηi ⊂ Vi for all η ≤ η(Vi). W.l.o.g.
assume that δ > 0 is such that {x ∈ X : distX(x,Ξ0

i ) ≤ δ} ⊂ Vi for all i = 1, . . . , n.
By Theorem 1, we have thatAη is composed by all the orbits of bounded complete

trajectories of Rη, Kη.
We are going to prove by contradiction arguments that there exists η0 ∈ (0, 1]

such that {Gη}η≤η0 is dynamically gradient.
Step 1: There exists η0 > 0 such that for all η < η0, any bounded complete

trajectory ξη of Rη satisfies that there exist i ∈ {1, . . . , n} and t0 such that for all
t ≥ t0, distX(ξη(t),Ξ0

i ) ≤ δ.
After proving the above claim, we consider the sets Bη := {ξη(s) : s ≥ t0} ⊂ A =

{y : distX(y,Ξ0
i ) ≤ δ} and ω(ξη). It follows that ω(ξη) ⊂ A, since distX(ξη(t), ω(ξη))

goes to 0 as t→ +∞. On the other hand, by Lemma 2 ω(ξη) is a weakly invariant
set of Gη contained in Vi. By assumption (H5) we have that ω(ξη) ⊂ Ξηi , whence
the ‘forward part’ of property (G1) of a dynamically gradient m-semiflow will follow
immediately.

We prove this Step 1 by contradiction. Suppose it does not hold. Then, there
exist a sequence ηk → 0 (as k → ∞) and bounded complete trajectories ξk of Rηk
(therefore, from Aηk) such that

sup
t≥t0

distX(ξk(t),S0) > δ ∀t0 ∈ R. (4)
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The set {ξk(0)} ⊂ ∪η∈[0,1]Aη is relatively compact from assumption (H1). So,
there exists a converging subsequence (relabeled the same) in X. From (H4), there
exist a subsequence (relabeled the same, again) and ξ0 ∈ R0, such that {ξk|[0,∞)}
converges to ξ0 in bounded intervals of [0,∞). Actually, if we argue similarly not
for time 0, but now for times −1, −2, . . . , and use a diagonal argument, we have
that ξ0 = γ0|[0,∞) where γ0 ∈ K0, and the convergence of (a subsequence of) {ξk}
toward γ0 holds uniformly in bounded intervals [a, b] of R.

Since G0 is dynamically gradient, there exists i ∈ {1, . . . , n} such that

distX(γ0(t),Ξ0
i )→ 0 as t→∞.

Therefore, for all r ∈ N, there exist tr and kr such that distX(ξk(tr),Ξ
0
i ) < 1/r for

all k ≥ kr. Indeed, this is done as follows: distX(γ0(s),Ξ0
i ) < 1/r for all s ≥ tr (for

some tr, w.l.o.g. tr ≥ r > 1/δ); now, combining this with the uniform convergence
on [0, tr] of ξk toward γ0, the existence of kr follows.

However, from (4), there exists t′r > tr such that distX(ξkr (t),Ξ0
i ) < δ for all

t ∈ [tr, t
′
r) and distX(ξkr (t′r),Ξ

0
i ) = δ.

Now we distinguish two cases and we will arrive to the same conclusion in both
of them.

Case (1a): Suppose that t′r − tr → ∞ as r → ∞ (at least for a certain sub-
sequence).

Since {ξkr (t′r)} is also relatively compact (by (H1), again), and ξ1
kr

(·) = ξkr (t′r+·)
is a bounded complete trajectory of Rkr , from (H4) we deduce that a subsequence
(relabeled the same) is converging on bounded time-intervals of [0,∞), i.e. γ1(t) :=
limr→∞ ξkr (t+ t′r) holds for certain γ1 ∈ R0. Moreover, as before, a diagonal argu-
ment, using not t′r above, but t′r − 1, t′r − 2, . . . implies that γ1 can be extended to
the whole real line (the function will still be denoted the same; and the convergence
holds in bounded time-intervals of R), in particular, by (H1) and (H4), γ1 ∈ K0.

Moreover, by its construction, we have that distX(γ1(t),Ξ0
i ) ≤ δ for all t ≤ 0.

By Lemma 2 we have that the α-limit set α(γ1) is weakly invariant.
As long as Ξ0

i is the biggest weakly invariant set contained in Vi, we deduce that
distX(γ1(τ),Ξ0

i )→ 0 when τ → −∞.
On the other hand, from (G1) and (G2) we have that distX(γ1(t),Ξ0

j ) → 0 as
t→∞ for j 6= i.

Case (1b): Suppose that there exists C > 0 such that |t′r − tr| ≤ C as r →∞.
(W.l.o.g. we assume that t′r − tr → t∗.)

Recall that distX(ξkr (tr),Ξ
0
i ) < 1/r. By [9, Lemma 19] Ξ0

i is closed, so, up to a
subsequence ξkr (tr) → y ∈ Ξ0

i . Denote ξ1
kr

(·) = ξkr (· + tr). From (H4), there exist

a subsequence {ξ1
kr
} and ξ1 ∈ R0 with ξ1(0) = y such that ξ1

kr
converge towards

ξ1 uniformly in bounded intervals of [0,∞). In particular, ξ1
kr

(t′r − tr)→ ξ1(t∗), so

that distX(ξ1(t∗),Ξ
0
i ) ≥ δ.

Since Ξ0
i is weakly invariant, there exists γ ∈ K0 with γ(0) = ξ1(0) and γ(t) ∈ Ξ0

i

for all t ∈ R. By (K3) consider the concatenation

γ1(t) :=

{
γ(t), if t ≤ 0,
ξ1(t), if t ≥ 0.

Then by (G1)-(G2) it follows that distX(γ1(t),Ξ0
j )→ 0 as t→∞ with j 6= i. This

is exactly the same conclusion we arrived in Case (1a).
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Reasoning now with the subsequence {ξ1
kr
}, and proceeding as above, we ob-

tain the existence of γ2 ∈ K0 such that distX(γ2(t),Ξ0
j ) → 0 as t → −∞ and

distX(γ2(t),Ξ0
p)→ 0 as t→∞, with p 6∈ {i, j}.

Thus, in a finite number of steps we arrive to a contradiction, since G0 satisfies
(G2). Therefore, (4) is absurd, and Step 1 is proved.

Step 2: There exists η1 > 0 such that for all η < η1, any bounded com-
plete trajectory ξη of Rη satisfies that there exist j ∈ {1, . . . , n} and t1 such that
distX(ξη(t),Ξ0

j ) ≤ δ for all t ≤ t1.
The above claim can be proved analogously as before, and since for any bounded

complete trajectory ξη ∈ Kη, by Lemma 2, α(ξη) is weakly invariant for Gη, and
contained in some Vj , the ‘backward part’ of property (G1) of a dynamically gradient
m-semiflow will follow immediately.

Hence, for all suitable small η, {Gη(t) : t ≥ 0} satisfies (G1).
Step 3: There exists η2 > 0 such that {Gη}η≤η2 satisfies (G2).
If not, there exist a sequence ηk → 0, with Gηk having an homoclinic structure.

We may suppose that the number of elements of weakly invariant subsets connected
on each homoclinic chain in Sηk is the same. Moreover, by assumption (H3) each
Ξηkj is contained in Vj for ηk small enough and w.l.o.g. the order in the route of the
homoclinics visiting the Vj sets is the same.

Therefore, for k ≥ k0 there exist a sequence of subsets Ξηkp(1), . . . Ξηkp(l) in Sηk (with

p(l+1) = p(1)), and a sequence of complete trajectories {{ξki }li=1}k, each collection
of l elements in the corresponding attractor Aηk , with

lim
t→−∞

distX(ξki (t),Ξηkp(i)) = 0, lim
t→∞

distX(ξki (t),Ξηkp(i+1)) = 0, 1 ≤ i ≤ l.

If we argue now as in the proof of (G1), we may construct a homoclinic structure
of G0, getting a contradiction with the fact that the m-semiflow G0 is dynamically
gradient.

Remark 3. The above result also applies to the particular case of a dynamically
gradient m-semiflow when the weakly invariant families of the original and per-
turbed problems are reduced to unitary sets (Remark 2 and [7, Theorem 1.5]).

4. An equivalent definition of dynamically gradient families. We will give
an equivalent definition of dynamically gradient families. For proving the main
result in this section we will need a stronger condition than (K4). Namely, we shall
consider the following stronger condition:

(K4) For any sequence {ϕn} ⊂ R such that ϕn(0) → x0 in X, there exists a sub-
sequence {ϕn} and ϕ ∈ R such that ϕn converges to ϕ uniformly in bounded
subsets of [0,∞).

As before, let A be the global attractor of the m-semiflow G associated to R.

Remark 4. We have seen that the property of being dynamically gradient for
a disjoint family of isolated weakly invariant sets S = {Ξ1, . . . ,Ξn} ⊂ A is stable
under perturbations. We observe that in the paper [16] a slightly different definition
was used for dynamically gradients families. Namely, instead of conditions (G1)-
(G2) it is assumed that any bounded complete trajectory γ(·) of R in A satisfies
one of the following properties:

1. {γ(t) : t ∈ R} ⊂ Ξi for some i.
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2. There are i < j for which

γ(t) →
t→∞

Ξi, γ(t) →
t→−∞

Ξj .

These assumptions are clearly stronger than (G1)-(G2) and imply that the sets
Ξj are ordered. Our aim is to show that when S is a disjoint family of isolated
weakly invariant sets, these conditions are equivalent. For this we will need to
introduce the concept of local attractor and its repeller and study their properties.

We say that A ⊂ A is a local attractor in A if for some ε > 0 we have that
ω(Oε(A)∩A) = A. Let A be a local attractor in A. Then its repeller A∗ is defined
by

A∗ = {x ∈ A : ω(x)\A 6= ∅}.
Some properties about local attractors and its repeller as well as the proof of the

following three lemmas can be found in [9].

Lemma 4. Assume that (K1) − (K4) hold and that a global compact attractor A
exists. Then a local attractor A is invariant.

Remark 5. Although in [9] the stronger assumption (K4) is assumed, the proof is
valid for just (K4).

Lemma 5. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A exists. Then the repeller A∗ of a local attractor A ⊂ A is weakly invariant and
compact.

Lemma 6. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A exists. Let us consider the sequences xk ∈ A, tk → +∞ and ϕk(·) ∈ R such that
ϕk(0) = xk. Then from the sequence of maps ξk(·) : [−tk,+∞)→ A defined by

ξk(t) = ϕk(t+ tk)

one can extract a subsequence converging to some ψ(·) ∈ K uniformly on bounded
subsets of R.

In order to prove the equivalent definition of dynamically gradient families, we
have to ensure the existence of one local attractor in a family of isolated weakly
invariant sets.

Lemma 7. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A exists. Let S = {Ξ1, . . . ,Ξn} ⊂ A be a disjoint family of isolated weakly invariant
sets. If G is dynamically gradient with respect to S, then one of the sets Ξj is a
local attractor in A.

Proof. Let δ0 > 0 be such that Oδ0(Ξi) ∩ Oδ0(Ξj) = ∅ if i 6= j and Ξj be the
maximal weakly invariant set in Oδ0(Ξj) for all j. First we will prove the existence
of j ∈ {1, ..., n} such that for all δ ∈ (0, δ0) there exists δ′ ∈ (0, δ) satisfying

∪t≥0 G(t,Oδ′(Ξj) ∩ A) ⊂ Oδ(Ξj). (5)

If not, there would exist 0 < δ < δ0 and for each j sequences tjk ∈ R+, xjk ∈ A,

ϕjk ∈ R with ϕjk(0) = xjk such that

d(xjk,Ξj) <
1

k
,

d(ϕjk(tjk),Ξj) = δ,

d(ϕjk(t),Ξj) < δ for all t ∈ [0, tjk).
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We have to consider two cases: tjk → +∞ or tjk ≤ C.

Let tjk → +∞. We define the sequence

ψjk(t) = ϕjk(t+ tjk) for t ∈ [−tjk,∞).

By Lemma 6 we obtain the existence of a complete trajectory ofR, ψj(·), such that a

subsequence of ψjk satisfies ψjk(t)→ ψj(t) for every t ∈ R. Hence, d(ψj(t),Ξj) ≤ δ <
δ0 for all t ≤ 0. Therefore, as ψj ∈ K, condition (G1) implies that d(ψj(t),Ξj)→ 0
as t → −∞. On the other hand, since d(ψj(0),Ξj) = δ, conditions (G1) − (G2)
imply that d(ψj(t),Ξi)→ 0 as t→ +∞, where i 6= j.

Let now tjk ≤ C. We can assume that tjk → tj . By (K4) we obtain the existence

of ϕj ∈ R such that ϕjk converges to ϕj uniformly on bounded sets of [0,∞). It is
clear then that d(ϕj(tj),Ξj) = δ. As ϕj(0) ∈ Ξj and Ξj is weakly invariant, there
exists a complete trajectory of R, ψ−j (·), such that ψ−j (0) = ϕj(0) and ψ−j (t) ∈ Ξj
for all t ≤ 0. Concatenating ψ−j and ϕj we define

ψj(t) =

{
ψ−j (t) if t ≤ 0,

ϕj(t) if t ≥ 0,

which is a complete trajectory by (K3). Again, conditions (G1)− (G2) imply that
d(ψj(t),Ξi)→ 0 as t→ +∞, where i 6= j.

We have obtained then a connection from Ξj to a different Ξi. Since this is
true for any Ξj , we would obtain a homoclinic structure, which contradicts (G2).
Therefore, (5) holds for some j. It follows that

ω(Oδ′(Ξj) ∩ A) ⊂ Oδ(Ξj) ⊂ Oδ0(Ξj).

Since ω(Oδ′(Ξj)∩A) is weakly invariant, we obtain that ω(Oδ′(Ξj)∩A) ⊂ Ξj . But
Ξj ⊂ G(t,Ξj) ⊂ G(t,Oδ′(Ξj) ∩ A) for any t ≥ 0 implies the converse inclusion, so
that Ξj = ω(Oδ′(Ξj) ∩ A). Thus, Ξj is a local attractor in A.

Now we prove the main result of this section which allows us to establish the
equivalent definition of dynamically gradient families.

Theorem 3. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A exists. Let S = {Ξ1, . . . ,Ξn} ⊂ A be a disjoint family of isolated weakly invariant
sets. Then G is dynamically gradient with respect to S in the sense of Definition 5
if and only if S can be reordered in such a way that any bounded complete trajectory
γ(·) satisfies one of the following properties:

1. {γ(t) : t ∈ R} ⊂ Ξi for some i.
2. There are i < j for which

γ(t) →
t→∞

Ξi, γ(t) →
t→−∞

Ξj .

Proof. It is obvious that conditions 1-2 imply that G is dynamically gradient. We
shall prove the converse.

By Lemma 7 one of the sets Ξi is a local attractor. After reordering the sets, we
can say that Ξ1 is the local attractor. Let

Ξ∗1 = {x ∈ A : ω(x)\Ξ1 6= ∅}

be its repeller, which is weakly invariant by Lemma 5. Since Ξj are closed (cf. [9,
Lemma 19]), weakly invariant and disjoint, we obtain that Ξj ⊂ Ξ∗1 for j ≥ 2.
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We will consider only the dynamics inside the repeller Ξ∗1, that is, we define the
following set:

R1 = {ϕ ∈ R : ϕ(t) ∈ Ξ∗1 ∀t ≥ 0}.
Since Ξ∗1 is weakly invariant, R1 satisfies (K1). Further, let ϕτ (·) = ϕ(·+ τ), where
ϕ ∈ R1 and τ ≥ 0. Then it is clear that ϕτ (t) ∈ R1 for all t ≥ 0, and then (K2)
holds. If ϕ1(·), ϕ2(·) ∈ R1, it follows by (K3) that the concatenation belongs also
to R1. Finally, if ϕn(0) → ϕ0 with ϕn(0) ∈ Ξ∗1 and ϕn(·) ∈ R1, then ϕ0 ∈ Ξ∗1 (as
Ξ∗1 is closed) and by (K4) passing to a subsequence ϕn(tn)→ ϕ(t), for tn → t ≥ 0,
where ϕ ∈ R. Again, the closedness of Ξ∗1 implies that ϕ ∈ R1. Hence, (K4) also
holds. We can define then the multivalued semiflow G1 : R+ × Ξ∗1 → P (Ξ∗1) :

G1(t, x) = {y ∈ Ξ∗1 : y = ϕ(t) for some ϕ ∈ R1, ϕ(0) = x},

which is strict by (K3). This definition is equivalent to the following one:

G1(t, x) = G(t, x) ∩ Ξ∗1 for x ∈ Ξ∗1.

Indeed, G1(t, x) ⊂ G1(t, x) is obvious. Conversely, let y ∈ G1(t, x). Then, y =
ϕ(t), ϕ(·) ∈ R, and y ∈ Ξ∗1. We state that ϕ(s) ∈ Ξ∗1 for all 0 ≤ s ≤ t. Assume by
contradiction that ϕ(s) 6∈ Ξ∗1 for 0 < s < t. Therefore, ω(ϕ(s)) ⊂ Ξ1. But then by
(K3),

G(T, y) ⊂ G(T,G(t− s, ϕ(s))) ⊂ G(T + t− s, ϕ(s))→ Ξ1 as T →∞,

which is a contradiction with y ∈ Ξ∗1. Using again (K3) one can define a function
ψ(·) ∈ R1 such that ψ(0) = y, so that y ∈ G1(t, x).

It is clear that G1 possesses a global compact attractor, which is the union of
all bounded complete trajectories of R1, and that G1 is dynamically gradient with
respect to {Ξ2, . . . ,Ξn}. Then, again by Lemma 7 we can reorder the sets in such a
way that Ξ2 is a local attractor in Ξ∗1. Let Ξ∗2,1 be the repeller of Ξ2 in Ξ∗1. Then we
restrict as before the dynamics to the set Ξ∗2,1 and so on. Hence, we have reordered
the sets Ξj in such a way that Ξ1 is a local attractor and Ξj is a local attractor for
the dynamics restricted to the repeller of the previous local attractor Ξ∗j−1,j−2 for
j ≥ 2, and Ξi ⊂ Ξ∗j−1,j−2 if i ≥ j, where Ξ∗1,0 = Ξ∗1.

Now, if γ(·) is a bounded complete trajectory such that

γ(t) →
t→∞

Ξi, γ(t) →
t→−∞

Ξj ,

then we shall prove that i ≤ j. Moreover, if γ(·) is not completely contained in
some Ξk, then i < j.

If i = 1, then it is clear that j ≥ 1. Also, if there exists γ(t0) 6∈ Ξ1, then j > 1,
as Ξ1 is a local attractor.

Let i = 2. Then γ(t) ∈ Ξ∗1 for all t ∈ R, and then γ(t) →
t→−∞

Ξ1 is forbidden.

Hence, j ≥ 2. Again, if there exists γ(t0) 6∈ Ξ2, then the fact that Ξ2 is a local
attractor in Ξ∗1 implies that j > 2.

Further, note that if i ≥ 3, then γ(t) ∈ Ξ∗1 for all t ∈ R. Also, by induction, it
follows that γ(t) ∈ Ξ∗k,k−1 for all t ∈ R and 2 ≤ k ≤ i−1. Indeed, let γ(t) ∈ Ξ∗k−1,k−2

for all t ∈ R with 2 ≤ k ≤ i−1. Then γ(t) →
t→∞

Ξi implies clearly that γ(t) ∈ Ξ∗k,k−1

for all t ∈ R. In particular, γ(t) ∈ Ξ∗i−1,i−2 for all t ∈ R. Hence, Ξj ∈ Ξ∗i−1,i−2, so
that j ≥ i. Finally, if there exists γ(t0) 6∈ Ξi, then j > i as Ξi is a local attractor in
Ξ∗i−1,i−2.
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To finish this section, we recall that the disjoint family of isolated weakly invariant
sets S = {Ξ1, . . . ,Ξn} ⊂ A is a Morse decomposition of the global compact attractor
A if there is a sequence of local attractors ∅ = A0 ⊂ A1 ⊂ . . . ⊂ An = A such that
for every k ∈ {1, . . . , n} it holds

Ξk = Ak ∩A∗k−1.

It is well known [16] that for general dynamical systems conditions 1-2 in Theorem
3 are equivalent to the fact that S generates a Morse decomposition. This fact can
be proved also under conditions (K1)-(K3), (K4) [9].

Thus, Theorem 3 implies that under conditions (K1)-(K3),(K4) the family S
generates a Morse decomposition if and only if G is dynamically gradient.

5. Application to a reaction-diffusion equation. We will consider the Chafee-
Infante problem 

∂u

∂t
− ∂2u

∂x2
= f(u), t > 0, x ∈ (0, 1) ,

u(t, 0) = 0, u(t, 1) = 0,
u(0, x) = u0(x),

(6)

where f satisfies

(A1) f ∈ C(R);
(A2) f(0) = 0;
(A3) f ′ (0) > 0 exists and is finite;
(A4) f is strictly concave if u > 0 and strictly convex if u < 0;
(A5) Growth condition:

|f(u)| ≤ C1 + C2|u|p−1,

where p ≥ 2, C1, C2 > 0;
(A6) Dissipation condition:

(a) If p > 2:

f(u)u ≤ C3 − C4|u|p, C3, C4 > 0.

(b) If p = 2:

lim sup
u→±∞

f(u)

u
≤ 0.

Remark 6. Note that as a consequence of condition (A6)(b), we have that f(u)u ≤
(λ1−C5)u2+C6, where C5, C6 > 0 and λ1 = π2 is the first eigenvalue of the operator

−∂
2u
∂x2 with Dirichlet boundary conditions.

Let Ω = (0, 1) and 1/p+ 1/q = 1. Denote by (·, ·) and ‖ · ‖L2 the scalar product
and norm in L2(Ω), by ‖ · ‖H1

0
the norm in H1

0 (Ω) associated to the scalar product

of gradients in L2(Ω) thanks to Poincaré’s inequality. As usual, let H−1(Ω) be the
dual space to H1

0 (Ω). Denote by 〈·, ·〉 pairing between the space Lp(Ω)∩H1
0 (Ω) and

its dual Lq(Ω) ∩H−1(Ω).

Definition 7. The function u(·) ∈ C([0, T ], L2(Ω)) is called a strong solution of (6)
on [0, T ] if:

1. u(0) = u0;
2. u(·) is absolutely continuous on compact subsets of (0, T );
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3. u(t) ∈ H2(Ω) ∩H1
0 (Ω), f(u(t)) ∈ L2(Ω) for a.e. t ∈ (0, T ) and

du(t)

dt
−∆u = f(u(t)), a.e. t ∈ (0, T );

where the equality is understood in the sense of the space L2(Ω).

Definition 8. The function u(·) ∈ C([0, T ], L2(Ω)) is called a weak solution of (6)
on [0, T ] if:

1. u ∈ L∞(0, T ;L2(Ω));
2. u ∈ L2(0, T ;H1

0 (Ω)) ∩ Lp(0, T ;Lp(Ω));
3. The equality in (6) is understood in the weak sense, i.e.

d

dt
〈u(t), v〉 − 〈∆u, v〉 = 〈f(u(t)), v〉, ∀v ∈ H1

0 (Ω) ∩ Lp(Ω),

where the equality is understood in the sense of distributions.

Let us make some comments on the natural relation among the above two defin-
itions. Let u(·) be a strong solution such that f(u(·)) ∈ L2(0, T ;L2(Ω)). In view of
[3, Proposition 2.2] we have that u ∈ L2(0, T ;H1

0 (Ω)), so ∆u ∈ L2(0, T ;H−1(Ω))
and then du

dt ∈ L
2(0, T ;H−1(Ω)). Hence, by [20, Lemma 7.4] we get

〈du
dt
, v〉 − 〈∆u, v〉 = 〈f(u(t)), v〉, ∀v ∈ H1

0 (Ω).

Using [22, p.250] we obtain

d

dt
〈u, v〉 − 〈∆u, v〉 = 〈f(u(t)), v〉, ∀v ∈ H1

0 (Ω),

so point 3 of Definition 8 is satisfied.
Finally, if p > 2 by condition (A6)(a) we have

|u(t, x)|p ≤ C3

C4
− f(u(t, x))u(t, x)

C4

Thus, f(u)u ∈ L1((0, T ) × Ω) implies that u ∈ Lp((0, T ) × Ω) = Lp(0, T ;Lp(Ω)).
Hence, u(·) is a weak solution as well.

In view of [8, p.283], for any u0 ∈ L2(Ω) there exists at least one weak solution.
Moreover, if f(u(·)) ∈ L2(0, T ;L2(Ω)), then putting g(·) = f(u(·)) we obtain by [5,
p.189] that the problem {

dv

dt
−∆v = g(t),

v(0) = u0,

possesses a unique strong solution v(·). Since this problem has also a unique weak
solution ṽ(·) and the strong solution is a weak solution as well, then v(·) = ṽ(·) =
u(·). Hence u(·) is also a strong solution of problem (6).

Therefore, we have checked that the sets of weak and strong solutions satisfying
f(u(·)) ∈ L2(0, T ;L2(Ω)) coincide.

5.1. Stationary points. We now focus on the properties of the stationary points.
To this end, we have followed the classic procedure from [11] and [12]. Moreover,
we have also taken some ideas from [18].

Properties (K1) − (K4) are satisfied (cf. [13]). In view of (K3) every weak
solution can be extended for any t ≥ 0, that is, to a globally defined one. Let
R ⊂ C([0,∞), L2(Ω)) be the set of all globally defined weak solutions of problem
(6) and let G be the associated multivalued semiflow (see Section 2). It is shown
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in [13, Lemma 12] that v is a fixed point of R (equivalently, of G) if and only if
v ∈ H1

0 (Ω) and

∂2v

∂x2
+ f(v) = 0, in H−1(Ω). (7)

The inclusion H1
0 (Ω) ⊂ L∞(Ω) implies that f(v) ∈ L∞(Ω), so that v ∈ H2(Ω) ∩

H1
0 (Ω). Therefore, v(·) is a strong solution as well.
Let consider the function F : R→ R defined by

F (s) =

∫ s

0

f(r)dr, s ∈ R.

We define

a− = inf{s < 0 : sgn f(x) = sgn x, ∀x; s < x < 0}
and

a+ = sup{s > 0 : sgn f(x) = sgn x, ∀x; 0 < x < s}.
If follows from conditions (A2) and (A3) of f that −∞ ≤ a− < 0 < a+ ≤ +∞.

Since f is positive on (0, a+) and negative on (a−, 0), we have that F is strictly
increasing on [0, a+), strictly decreasing on (a−, 0] and F (0) = 0. We consider
E+, E− ∈ [0,∞] defined by

E+ = lim
s→a+

F (s),

E− = lim
s→a−

F (s).

Then, F has the inverse functions U+ : [0, E+)→ [0, a+), U− : [0, E−)→ (a−, 0].
We also define the following functions with domains (0, E+) and (0, E−), respect-

ively, with values on [0,∞):

τ+(E) =

∫ U+(E)

0

(E − F (u))−1/2 du, 0 < E < E+,

τ−(E) =

∫ 0

U−(E)

(E − F (u))−1/2 du, 0 < E < E−.

Let us consider v0 ∈ R and a solution u of{
∂2u
∂x2 + f(u) = 0,

u(0) = 0, u′(0) = v0.
(8)

Note that the solution of the problem (8) is unique, since f is convex for u < 0
and concave for u > 0, so it is Lipschitz on compact intervals (see [28, p.4] or [10,
p.8]).

If we define E = v2
0/2, then:

(u′(x))2

2
+ F (u(x)) = E.

On the other hand, the functions τ+, τ− evaluated in E = v2
0/2 give us

√
2 the

x-time necessary to go from the initial condition u(0) = 0, with initial velocity
v0,−v0 respectively, to the point where u′(T+(E)) = 0. Indeed, u(x) satisfies
(u′(x))2

2 + F (u(x)) = E, so dx
du = 1√

2
1√

E−F (u)
. Since u′(T+(E)) = 0 for u = U+(E),

then
√

2

∫ T+(E)

0

1 dx =

∫ U+(E)

0

1√
E − F (u)

du = τ+(E).
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By symmetry with respect to the u axis, the x−time it takes for u(x) to go from
(U+(E), 0) to (0,−v0) is T+(E). By this way, if 2T+(E) = 1, that is, τ+(E) = 1√

2
,

then u(·) is a solution satisfying the boundary conditions u(0) = u(1) = 0. Applying
a similar reasoning for τ−(E), we obtain that u satisfies the boundary conditions
if, and only if, E satisfies for some k ∈ N only one of the following conditions:

kτ+(E) + (k − 1)τ−(E) =
1√
2
, (9)

kτ−(E) + (k − 1)τ+(E) =
1√
2
, (10)

kτ+(E) + kτ−(E) =
1√
2
. (11)

Remark 7. Note that if E satisfies (9) or (10) for a certain k, then u has 2k zeros
and if E satisfies (11), then u has 2k+ 1 zeros. Our goal is to solve these equations
for E as a function of f ′(0). To this end, we study the properties of τ±.

In order to obtain solutions of the equations (9), (10) and (11) it is necessary to
make a change of variable for the functions τ±. Given E ∈ (0, E±), we put

Ey2 = F (u), 0 ≤ y ≤ 1, 0 ≤ u ≤ U+(E)

and

Ey2 = F (u), −1 ≤ y ≤ 0, U−(E) ≤ u ≤ 0.

Hence, du = (2yE/f(u))dy and E − F (u) = E(1− y2). By this change, we obtain

τ+(E) = 2
√
E

∫ 1

0

(1− y2)−1/2 y

f(u)
dy, 0 < E < E+; u = U+(Ey2), 0 ≤ y ≤ 1;

τ−(E) = 2
√
E

∫ 0

−1

(1− y2)−1/2 y

f(u)
dy, 0 < E < E−;u = U−(Ey2),−1 ≤ y ≤ 0.

The next results show some properties of these functions.

Theorem 4. The functions τ± satisfy

lim
E→0+

τ±(E) =
π

(2f ′(0))1/2
.

Proof. Since f ′(0) > 0 and f(0) = 0, given ε ∈ (0, 1), there exists δ > 0 such that

f ′(0)(1− ε)u ≤ f(u) ≤ f ′(0)(1 + ε)u, 0 ≤ u ≤ δ.
1

f ′(0)(1 + ε)
≤ u

f(u)
≤ 1

f ′(0)(1− ε)
, 0 ≤ u ≤ δ. (12)

Moreover, as U+(E) is continuous at 0, given δ > 0, there exists η > 0 such that
for 0 < E ≤ η, U+(E) ≤ δ. Now, if we integrate (12) between 0 and u we obtain
the following inequality

f ′(0)

2
(1− ε)u2 ≤ F (u) ≤ f ′(0)

2
(1 + ε)u2, 0 ≤ u ≤ δ.

Using the change of variable Ey2 = F (u), we have(
f ′(0)(1− ε)

2E

)1/2

u ≤ y ≤
(
f ′(0)(1 + ε)

2E

)1/2

u, for 0 < E ≤ η, 0 ≤ y ≤ 1.
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Dividing the previous expression by f(u) and using (12) we obtain(
1− ε

2Ef ′(0)(1 + ε)2

)1/2

≤ y

f(u)
≤
(

1 + ε

2Ef ′(0)(1− ε)2

)1/2

, for 0 < E ≤ η, 0 ≤ y ≤ 1.

Now if we multiply by 2
√
E(1− y2)−

1
2 and integrate from 0 to 1, we get

π

(
1− ε

2f ′(0)(1 + ε)2

)1/2

≤ τ+(E) ≤ π
(

1 + ε

2f ′(0)(1− ε)2

)1/2

, for 0 < E ≤ η.

Finally, taking ε→ 0, the theorem follows. The proof for τ− is analogous.

Theorem 5. The functions τ± are strictly increasing on their domains.

Proof. Let consider the expression of τ+ and 0 < E1 < E2 < E+. Then,

τ+(E2)− τ+(E1) =

∫ 1

0

2y√
1− y2

[ √
E2

f(U+(E2y2))
−

√
E1

f(U+(E1y2))

]
dy.

From [10, p.8] we have that the function f is differentiable almost everywhere in

R, so α(E) =

√
E

f(U+(Ey2))
is differentiable as well. Hence,

α′(E) =
f2(U+(Ey2))− 2y2Ef ′(U+(Ey2))

2
√
Ef3(U+(Ey2))

.

Recall the change of variable F (u) = Ey2. Consider the numerator of α′, that is,
β(u) = f2(u)− 2F (u)f ′(u). Then we obtain

β(u) = 2

∫ u

0

f(s)(f ′(s)− f ′(u))ds, 0 < s < u.

Since f is strictly concave, if s < u, then f ′(s) > f ′(u) (cf. [28, p.5]). As a result,
β(u) > 0.

In order to finish the proof rigorously, we have to justify the previous calculations.
Indeed, from [10, p.5], we have that the function f is absolutely continuous and from
[5, p.16], f ′ ∈ L1

loc. Therefore, α′ ∈ L1
loc and α′ > 0 a.e., which implies that α(E)

is strictly increasing and the proof is finished.
The claim for τ−(E) follows analogously.

Theorem 6. The functions τ± satisfy

lim
E→E±

τ±(E) =∞

Then, τ± : (0, E±)→
(

π

(2f ′(0))1/2
,∞
)

.

Proof. Case a+ < ∞. Then, we have f(a+) = 0 and ū(x) = a+ is a constant

solution to the problem ∂2u
∂x2 + f(u) = 0. Let us consider E+ = F (a+) and the

solution u to this problem satisfying the conditions u(0) = 0, u′(0) = v0, E = 1
2v

2
0 .

As a+ is a constant solution, by uniqueness τ+(E+) =∞. Therefore, given T > 0,
there exists δ > 0 such that if E > E+− δ, then τ+(E) > T , which follows from the
continuity of u with respect to its initial conditions.
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Case a+ =∞. Note that if p > 2, then a+ <∞. Therefore, p = 2. In this case,
f(u) > 0 for all u ∈ (0,∞). From condition (A5), there exist α, β > 0 such that
f(u) ≤ α+ βu. For u > 0 we have

f(u)

u2
≤ α

u2
+
β

u
.

Hence, f(u)/u2 → 0, as u→∞.
On the other hand,

∫ u
0
f(s)ds ≤

∫ u
0

(α+βs) ds. Thus, we have F (u) ≤ αu+βu2/2
and

0 ≤ F (u)

u3
≤ α

u2
+
β

2

1

u
.

Hence, F (u)/u3 → 0, as u→∞.
We claim that lim

u→0+
f(u)/u2 = ∞. Indeed, since f ′(0) exists, for any ε ∈

(0, f ′(0)), there exists δ > 0 such that |f ′(0) − f(u)/u| < ε, for any |u| < δ.
Thus, dividing by u2, we obtain

u(f ′(0)− ε)
u2

<
f(u)

u2
<
u(ε+ f ′(0))

u2

and the result follows.
Since f(u)/u2 → 0, as u → ∞, and f(u)/u2 → ∞, as u → 0+, for any ε > 0,

there exists a first value u0 ∈ (0,∞) where f(u0)/u2
0 = ε. Hence,

f(u)

u2
> ε, 0 < u < u0.

From the above expression, we have
∫ u

0
f(s)ds >

∫ u
0
εs2ds and εu3/3 < F (u).

Then, F (u)/u3 > ε/3, if 0 < u ≤ u0. Since F (u)/u3 → 0, as u → ∞, we deduce
that there exists a first u > u0 such that F (u)/u3 = ε/3. Hence, we have

F (u)

u3
>
ε

3
, 0 < u < u,

with F (u) = ε
3u

3.

Now, computing τ+ in E = F (u), we have

τ+(E) =

∫ U+(E)

0

1√
E − F (u)

du =

∫ u

0

1√
ε
3u

3 − F (u)
du

≥
∫ u

0

1√
ε
3u

3 − ε
3u

3
du =

√
3√
ε

∫ u

0

1√
u3 − u3

du

=

√
3√
ε

∫ 1

0

u√
u3 − u3t3

dt =

√
3√
ε

u√
u3

∫ 1

0

(
1− t3

)− 1
2 dt

=

√
3√
ε

u√
u3

1

3

∫ 1

0

s
1
3−1 (1− s)

1
2−1

ds

=
1

u
1
2

1√
ε

√
3

3
B
(

1

2
,

1

3

)
.
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Recall that εu3 = 3F (u). Then,

εu = 3
F (u)

u2 .

Taking ε→ 0, by construction u→∞. Therefore, from condition (A6)(b) we have
that limu→∞ f(u)/u ≤ 0, so the last expression tends to 0 and τ+(E)→∞.

Theorem 7. Consider
λn = n2π2.

Then, for each n ≥ 1, there exist two continuous functions E±n : [λn,∞)→ [0, E±)
with the following properties:

1. For each integer k ≥ 1 and for f ′(0) ∈ [λ2k−1,∞) the only solution of the
equation (9) (resp. 10) is the value E+

2k−1(f ′(0)) (resp. E−2k−1(f ′(0)));
2. For each integer k ≥ 1 and for f ′(0) ∈ [λ2k,∞) the only solution of the

equation (11) is the value E−2k(f ′(0)) = E+
2k(f ′(0)) = E2k;

3. For each integer n ≥ 1, E±n (f ′(0)) = 0, if f ′(0) = λn.

Proof. Let be n ≥ 1. If n is odd, then n = 2k − 1 for k ≥ 1. First, we prove that
we can define the function

E±n : [λn,∞) −→ [0, E±)

by putting E±n (f ′(0)) = E, where E satisfies kτ±(E) + (k − 1)τ∓(E) = 1/
√

2.
Consider the function

hn± : (0, E±) −→ (nπ/
√

2f ′(0),∞),

defined by hn±(E) := kτ±(E) + (k− 1)τ∓(E). If f ′(0) > λn then, as h± is a strictly

increasing function, there exists a unique E±2k−1 ∈ (0, E±) such that hn±(E±2k−1) =

1/
√

2.

Since h± has inverse, E±2k−1 = (hn±)−1(1/
√

2) is the solution of the expressions

(9) and (10). Moreover, E±2k−1(λn) = 0 by construction.
Second, if n is even, then n = 2k for k ≥ 1. As before, we consider hn±(E) :=

kτ±(E) + kτ∓(E). Since it is an increasing function, for f ′(0) > λn, there exists

a unique E2k ∈ (0, E±) such that hn±(E2k) = 1/
√

2. Analogously, we obtain the

solution of the expression (11), E±2k = (hn±)−1(1/
√

2), and E±2k−1(λn) = 0.

Theorem 8. For each n ≥ 1 and f ′(0) ∈ [λn,∞), the equation (7) has two new
more solutions v±n with the following properties:

1. a− < u±n (x) < a+ for all x ∈ [0, 1];
2. If f ′(0) = λn, then v±n = 0;
3. For f ′(0) ∈ (λn,∞), v±n has n + 1 zeros in [0, 1]. Denoting these zeros by

x±q , q = 0, 1, . . . , n with 0 = x±0 < x±1 < x±2 < . . . < x±n = 1, we have

(−1)qv+
n (x) > 0 for x+

q < x < x+
q+1, q = 0, 1, . . . , n − 1 and (−1)qv−n (x) < 0

for x−q < x < x−q+1, q = 0, 1, . . . , n− 1. Also, v+
n = −v−n , if f is odd;

Proof. The first point follows from F (u±n (x)) ≤ E < E±.
The second point follows from the third one of Theorem 7. Indeed, for each n ≥ 1

and f ′(0) ∈ [λn,∞) we have the values E±n (f ′(0)) by the above theorem. Also, we
have a solution of the equation (7) which is denoted by v±n . If f ′(0) = λn, then
E±n (λn) = 0 and v0 = 0, so v±n = 0.

The third point follows by Remark 7. If f is odd, then −U−(E) = U+(E),
τ+(E) = τ−(E), so we have v+

n = −v−n .
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Corollary 1. If n2π2 < f ′(0) ≤ (n + 1)2π2, n ∈ N, then there are 2n + 1 fixed
points: 0, v±1 , ..., v

±
n , where v±j possesses j + 1 zeros in [0, 1].

5.2. Approximations. From now on, we shall consider the following family of
Chafee-Infante equations

∂u

∂t
− ∂2u

∂x2
= fε(u), t > 0, x ∈ (0, 1) ,

u(t, 0) = 0, u(t, 1) = 0,
u(0, x) = u0(x),

(13)

where ε ∈ (0, 1] is a small parameter and fε satisfies

(Ã1) fε ∈ C(R) and is non-decreasing;

(Ã2) fε(0) = 0;

(Ã3) f ′ε (0) > 0 exists, is finite, monotone in ε and f ′ε (0)→∞, as ε→ 0+;

(Ã4) fε is strictly concave if u > 0 and strictly convex if u < 0;

(Ã5) −1 < fε (s) < 1, for all s, and

|fε(s)−H0(s)| < ε, if |s| > ε, (14)

where

H0(u) =

 −1, if u < 0,
[−1, 1] , if u = 0,
1, if u > 0,

is the Heaviside function.

Conditions (A1)-(A6) are satisfied with p = 2, so problem (13) is a particular
case of (6).

Our aim now is to prove that for ε sufficiently small the multivalued semiflow
Gε generated by the weak solutions of problem (13) is dynamically gradient. Prob-
lem (13) is an approximation of the following problem, governed by a differential
inclusion 

∂u

∂t
− ∂2u

∂x2
∈ H0(u), on Ω× (0, T ),

u|∂Ω = 0,
u(0, x) = u0(x).

(15)

We say that the function u ∈ C([0, T ], L2(Ω)) is a strong solution of (15) if

1. u(0) = u0;
2. u(·) is absolutely continuous on (0, T ) and u(t) ∈ H2(Ω) ∩ H1

0 (Ω) for a.e.
t ∈ (0, T );

3. There exists a function g(·) such that g(t) ∈ L2(Ω), a.e. on (0, T ), g(t, x) ∈
H0(u(t, x)), for a.e. (t, x) ∈ (0, T )× Ω, and

du

dt
− ∂2u

∂x2
− g(t) = 0, a.e. t ∈ (0, T ).

In this case we put R as the set of all strong solutions such that the map g
belongs to L2(0, T ;L2(Ω)). Conditions (K1)-(K4) are satisfied (cf. [9]) and the
map G : R+ × L2(Ω) → P (L2(Ω)) defined by (1) is a strict multivalued semiflow
possessing a global compact attractor A0 (cf. [25]) in L2(Ω), which is connected
(cf. [26]). The structure of this attractor is studied in [3]. It is shown that there
exists an infinite (but countable) number of fixed points

v0 = 0, v+
1 , v

−
1 , . . . , v

+
n , v

−
n , . . . ,
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and that A0 consists of these fixed points and all bounded complete trajectories
ψ(·), which always connect two fixed points, that is,

ψ(t)→ z1 as t→∞,
ψ(t)→ z2 as t→ −∞, (16)

where zi = 0, zi = v+
n or zi = v−n for some n ≥ 1. Moreover, if ψ is not a fixed

point, then either z2 = 0 and z1 = v±n , for some n ≥ 1, or z2 = v±k , z1 = v±n with
k > n.

We fix some N0 ∈ N. Denote

ZN0 =
(
∪k≥N0{v±k }

)
∪ {v0}

and define the sets

Ξ0
k = {v+

k , v
−
k }, 1 ≤ k ≤ N0 − 1,

Ξ0
N0

=

{
y : ∃ψ ∈ K such that (16) holds with zj ∈ ZN0

,
j = 1, 2 and y = ψ(t) for some t ∈ R

}
,

where K stands for the set of all bounded complete trajectories. We note that
set Ξ0

N0
contains the fixed points in ZN0 and all bounded complete trajectories

connecting them.

Remark 8. It is known [9] that the familyM = {Ξ0
1, . . . ,Ξ

0
N0
} is a disjoint family

of isolated weakly invariant sets and that G0 is dynamically gradient with respect
to M in the sense of Remark 4. Hence, G0 is dynamically gradient with respect to
M in the sense of Definition 5.

Now our purpose is to adapt some lemmas from [3, p.2979] to problem (13). In
view of Theorems 7 and 8 and the third condition on fε, there exists a sequence
εk → 0, as k → ∞, such that for every ε ∈ (εk, εk+1] and any k ≥ 1 problem (13)
has exactly 2k + 1 fixed points {vε0 = 0, {v+

ε,j}kj=1} such that for each 1 ≤ n ≤ k

v±ε,n has n+ 1 zeros in [0, 1].
Let us consider a sequence {εm} converging to zero.

Lemma 8. Let n ∈ N be fixed. Then, v+
εm,n (resp. v−εm,n) do not converge to 0 in

H1
0 (0, 1) as εm → 0.

Proof. Suppose that v+
εm,n → 0 in H1

0 (0, 1). Then v+
εm,n → 0 in C([0, 1]). By Remark

7, v+
εm,n has a unique maximum in a ∈ (0, x+

1 ) and by the properties of τ+ described

before a =
x+
1

2 . We may assume that x+
1 does not converge to 0. Let x0(εm) be the

first point where v+
εm,n(x0) = εm or x0 = a if such a point does not exist. We claim

that x0(εm) → 0, as εm → 0. It is clear that ∂2v+
εm,n/∂x

2 = −fεm(v+
εm,n) < 0 in

(0, x+
1 ), and then

v+
εm,n(x0)

x0
x ≤ v+

εm,n(x) ≤ εm, ∀x ∈ [0, x0], (17)

by concavity. Hence, integrating first on (s, a) and then on (0, x) with x ≤ x0, we
have

d

dx
v+
εm,n(s) =

∫ a

s

fεm(v+
εm,n(τ))dτ, (18)

v+
εm,n(x) =

∫ x

0

∫ a

x0

fεm(v+
εm,n(τ))dτds+

∫ x

0

∫ x0

s

fεm(v+
εm,n(τ))dτds.
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Since fε(u) is concave, we have that fε(u)/u ≥ fε(ε)/ε, ∀ 0 < u ≤ ε. Moreover,

by assumption (Ã5) of fε we get fε(u) ≥ 1−ε
ε u, for all 0 < u ≤ ε. Hence, using (17)

we have

v+
εm,n(x) ≥

∫ x

0

∫ x0

s

1− εm
εm

v+
εm,n(τ)dτds ≥ 1− εm

εm

v+
εm,n(x0)

x0

∫ x

0

∫ x0

s

τdτds.

Thus,

1 ≥ 1− εm
εm

(
xx0

2
− x3

6x0

)
,

so it follows that x0 → 0, as εm → 0.
Let δ1 < 0 < δ2 be such that x0(εm) ≤ δ1 < δ2 ≤ a(εm). Since v+

εm,n(x) ≥
εm ∀x ∈ [x0, a], if we intregate (18) over (δ1, x) with δ1 < x ≤ δ2, we have

v+
εm,n(x)− v+

εm,n(δ1) =

∫ x

δ1

∫ a

s

f(v+
εm,n(τ))dτds ≥ (1− εm)

∫ x

δ1

∫ a

s

dτds,

which implies a contradiction if v+
εm,n → 0 in C([0, 1]).

The proof is similar for v−εm,n.

Lemma 9. v+
εm,k

(resp. v−εm,k) converges to v+
k (resp. v−k ) in H1

0 (Ω) as m → ∞
for any k ≥ 1.

Proof. It is easy to see that v+
εmk

is bounded in H2(Ω)∩H1
0 (Ω), so v+

εmk
→ v strongly

in H1
0 (Ω) and C([0, 1]) up to a subsequence. The proof will be finished if we prove

that v = v+
k . We observe that since in such a case every subsequence would have

the same limit, the whole sequence would converge to v+
k

It is clear that the functions gεm = fεn(v+
εmk

) are bounded in L∞(0, 1).
Passing to a subsequence we can then assume that gεn converges to some g weakly

in L2(0, 1). It is clear that −(∂2v/∂x2) = g and v is a fixed point if we prove the
inclusion g(x) ∈ H0(v(x)) for a.e. x ∈ (0, 1). By Masur’s theorem [29, p.120] there
exist zm ∈ Vm = conv(∪∞k≥mgεk) such that zm → g, as m→∞, strongly in L2(0, 1).

Taking a subsequence we have zm(x)→ g(x), a.e. in (0, 1). Since zm ∈ Vm, we get

zm =
∑Nm

i=1 λigεki
, where λi ∈ [0, 1],

∑Nm

i=1 λi = 1 and ki ≥ m, for all i.

Now (14) implies that |gεk(x)−H0(v(x))| → 0, as k →∞, for a.e. x. Indeed, if
v(x) = 0, then gεk(x) ∈ [−1, 1] = H0(v(x)). If v(x) > 0, then |gεk(x)−H0(v(x))| =
|fεk(vεk(x))− 1| → 0, as k →∞. If v(x) < 0, we apply a similar argument.

Thus, for any δ > 0 and a.e. x there exists m(x, δ) such that gεk(x) ⊂ [a(x) −
δ, b(x) + δ], for all k ≥ m, where [a(x), b(x)] = H0(v(x)). Hence, zm(x) ⊂ [a(x) −
δ, b(x) + δ], as well. Passing to the limit we obtain g(x) ∈ [a(x), b(x)], a.e. on (0, 1).

To conclude the proof, we have to prove that v = v+
k . By Lemma 8 v 6= 0. Hence,

as v+
εmk

(x) > 0 for all x ∈ (0, x+
1 (εm)), v = v+

n for some n ∈ N. Since v+
n has n+ 1

zeros, the convergence v+
εmk
→ v+

n implies that v+
εmk

has n + 1 zeros for m ≥ N .

But v+
εmk

possesses k + 1 zeros. Thus, k = n.

For the sequence v−εmk the proof is analogous.

Lemma 10. Let εm → 0, km → ∞ as m → ∞. Then v+
εm,km

(resp. v−εm,km)
converges to 0 as m→∞.

Proof. In the same way as in the proof of Lemma 9 we obtain that up to a sub-
sequence v+

εm,km
→ v in H1

0 (Ω) and C([0, 1]), where v is a fixed point of problem

(15). We will prove that v = 0 by contradiction. If not, then v = v±n for some
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n ∈ N. However, since v±n has exactly n + 1 zeros and v+
εm,km

→ v in C([0, 1]),

we have that v+
εm,km

has n + 1 zeros for any m ≥ M with M big enough. This

contradicts the fact that v+
εm,km

possesses km + 1 zeros and km →∞. As the limit
is 0 for every converging subsequence, the whole sequence converges to 0.

For the sequence v−εmk the proof is analogous.

Once we have described the preliminary properties, we are now ready to check
that (13) satisfies the conditions given in Theorem 2 for certain families Mε. We
recall that [27, Theorem 10] guarantees the existence of the global compact invariant
attractors Aε, where each Aε is the union of all bounded complete trajectories.

Let us check assumptions (H1)-(H5) of Theorem 2.
As we have seen before, condition (H2) follows from Remark 8. Therefore, we

prove now condition (H1).
Multiplying the equation in (13) by u, we obtain

1

2

d

dt
‖u‖2L2 + ‖u‖2H1

0
≤
∫

Ω

|u|dx

≤ 1

2
‖u‖2H1

0
+ C, (19)

where we have used Poincaré’s inequality. Denoting by λ1 the first eigenvalue of
the operator −∆ in H1

0 (Ω), we have

d

dt
‖u‖2L2 ≤ −λ1‖u‖2L2 +K.

Gronwall’s lemma gives

‖u(t)‖2L2 ≤ e−λ1t‖u(0)‖2L2 +
K

λ1
, t ≥ 0. (20)

Integrating (19) over (t, t+ r) with r > 0 we have

‖u(t+ r)‖2L2 +

∫ t+r

t

‖u‖2H1
0
ds ≤ ‖u(t)‖2L2 + rK

Then by (20), ∫ t+r

t

‖u‖2H1
0
ds ≤ ‖u(0)‖2L2e−λ1t +

(
1

λ1
+ r

)
K. (21)

On the other hand, multiplying (13) by −∆u and using Young’s inequality we
obtain

d

dt
‖u‖2H1

0
+ 2‖∆u‖2L2 ≤ ‖fε(u)‖2L2 + ‖∆u‖2L2 (22)

Since fε(u(·)) ∈ L2(0, T ;L2(Ω)),∀T > 0, we obtain by [5, p.189] that

u ∈ L∞(η, T ;H1
0 (Ω)),

du

dt
∈ L2(η, T ;L2(Ω)), ∀ 0 < η < T.

This regularity guarantees that the equality

1

2

d

dt
‖u‖2H1

0
= 〈du

dt
,−∆u〉, for a.e. t, (23)

is correct [21, p.102]. Then

d

dt
‖u‖2H1

0
≤ K + ‖u‖2H1

0
.
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We apply the uniform Gronwall lemma [22, p. 91] with y(s) = ‖u(s)‖2
H1

0
, g(s) = 1

and w(s) = K. Also, using (21) we obtain

‖u(t+ r)‖2H1
0
≤

(
‖u(0)‖2L2e−λ1t + ( 1

λ1
+ r)K

r
+Kr

)
er. (24)

It follows from (20) that ‖y‖L2 ≤ K
λ1

for any y ∈ Aε, 0 < ε ≤ 1. Hence, ∪0<ε≤1Aε
is bounded in L2(Ω). Since Aε ⊂ Gε(t,Aε) for any t ≥ 0, for any y ∈ Aε there
exists z ∈ Aε such that y ∈ Gε(1, z). Then using (24) with r = 1 and t = 0 we
obtain that

‖y‖2H1
0
≤
(
‖z‖2L2 +

(
1

λ1
+ 1

)
K +K

)
e,

so ∪0<ε≤1Aε is bounded inH1
0 (Ω). The compact embeddingH1

0 (Ω) ⊂ L2(Ω) implies
that ∪0<ε≤1Aε is relatively compact in L2(Ω). As the global attractor A0 of the

differential inclusion (15) is compact, the set ∪0≤ε≤1Aε is compact in L2(Ω).
In order to establish that (13) satisfies the rest of conditions given in Theorem

2, we need to proof two previous results related to the convergence of solutions of
the approximations and the connections between fixed points.

Theorem 9. If uεn0 → u0 in L2(Ω) as εn → 0, then for any sequence of solutions
of (13) uεn(·) with uεn(0) = uεn0 there exists a subsequence of εn such that uεn
converges to some strong solution u of (15) in the space C([0, T ], L2(Ω)), for any
T > 0.

Proof. We define gn(t) = fεn(uεn(t)) and un(t) = uεn(t). From (20) we have that
‖un(t)‖L2 ≤ C0, for all t ≥ 0, so that ‖gn(t)‖L2 ≤ C1, for a.e. t ≥ 0. Hence, there
exists a subsequence such that un → u weakly in L2(0, T ;L2(Ω)). It follows from

(22) and ‖gn(t)‖L2 ≤ C1 that
∫ T
r
‖∆u‖2L2ds ≤ C2

1 (T − r) + ‖un(r)‖2
H1

0
. Using (24)

we obtain that
∫ T
r
‖∆un‖2L2ds ≤ C(r). Hence, dun

dt is bounded in L2(r, T ;L2(Ω)) for

any 0 < r < T, so passing to a subsequence dun

dt →
du
dt weakly in L2(r, T ;L2(Ω)).

Moreover, Ascoli-Arzelà theorem implies that for any fixed r > 0 we have un → u
in C([r, T ], L2(Ω)) and u is absolutely continuous on [r, T ].

Also, gn converges to some g ∈ L∞(0, T ;L2(Ω)) weakly star in L∞(0, T ;L2(Ω))
and weakly in L2(0, T ;L2(Ω)). On the other hand, since −∆un = −dun

dt +gn, −∆un
converges to l(t) = −(dudt )+g weakly in L2(r, T ;L2(Ω)). Hence, we find at once that
u satisfies

du

dt
−∆u(t) = g(t), a.e. on (0, T ).

We need to prove that u(·) is a strong solution of (15). Now, we show that
g(t) ∈ H0(u(t)), a.e. in (0, T ). For this, we shall prove first that for a.e. x ∈ Ω and
s ∈ (0, T )

|gn(s, x)−H0(u(s, x))| → 0, as n→∞.
Indeed, if u(s, x) = 0, then gn(s, x) = fεn(un(s, x)) = 0 ∈ [−1, 1] = H0(u(s, x)),

for all n, so that the result is evident. If u(s, x) < 0, then

|gn(s, x)−H0(u(s, x))| = |fεn(un(s, x)) + 1| → 0, as n→∞.

Finally, if u(s, x) > 0, then

|gn(s, x)− f0(u(s, x))| = |fεn(un(s, x))− 1| → 0, as n→∞.
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Now, by [23, Proposition 1.1] we have that for a.e. t ∈ (0, T )

g(t) ∈
⋂
n≥0

co
⋃
k≥n

gk(t).

Then g(t) = lim
n→∞

yn(t) strongly in L2(Ω), where

yn(t) =

M∑
i=1

λigki(t),

M∑
i=1

λi = 1, ki ≥ n.

We note that for any t ∈ [0, T ] and a.e. x ∈ Ω we can find n(ε, x, t) such that if
k ≥ n, then |gk(t, x)−H0(u(t, x))| ≤ ε. Therefore,

|yn(t, x)−H0(u(t, x))| ≤
M∑
i=1

λi|gki(t, x)−H0(u(t, x))| ≤ ε.

Hence, since we can assume that for a.e. (t, x) ∈ (0, T ) × Ω, yn(t, x) → g(t, x), it
follows that g(t, x) ∈ H0(u(t, x)).

It remains to check that u is continuous as t→ 0+. Let û be the unique solution
of 

du

dt
−∆u = 0,

u|∂Ω = 0,
u(0) = u0,

and let vn(t) = un(t)− û(t). Multiplying by vn the equation

dvn
dt
−∆vn = fεn(un),

we obtain

1

2

d

dt
‖vn‖2L2 + ‖vn‖2H1

0
≤ (fεn(un(t)), vn) (25)

≤ 1

2
‖fεn(un)‖2L2 +

1

2
‖vn‖2L2 , (26)

so that

‖vn(t)‖2L2 ≤ ‖vn(0)‖2L2 +Kt.

Hence, ‖u(t)− û(t)‖2L2 = limn→∞ ‖vn(t)‖2L2 ≤ Kt, for t > 0, and

‖u(t)− u0‖L2 ≤ ‖u(t)− û(t)‖L2 + ‖û(t)− u0‖L2 < δ,

as soon as t < ε(δ). Therefore, u(·) is a strong solution.
Finally, if tn → 0, then

‖un(tn)− u0‖L2 ≤ ‖vn(tn)‖L2 + ‖û(tn)− u0‖L2

≤
√
‖vn(0)‖2L2 +Ktn + ‖û(tn)− u0‖L2 → 0.

Hence, un → u in C([0, T ], L2(Ω)). By a diagonal argument we obtain that the
result is true for every T > 0.

As a consequence of the last theorem, condition (H4) follows.

Remark 9. Let be uεn(·) a bounded complete trajectory of (13). Fix T > 0.
Since

⋃
0<ε≤ε0 Aε is precompact in L2(Ω), uεn(−T )→ y in L2 up to a subsequence.

Theorem 9 implies that uεn converges in C([0, T ], L2(Ω)) to some solution u of (15).
If we choose successive subsequences for −2T,−3T, . . . , and apply the standard
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diagonal procedure, we obtain that a subsequence uεn converges to a complete
trajectory u of (15) in C([−T, T ], L2(Ω)) for any T > 0. Since ∪0<ε≤1Aε is bounded
in L2(Ω) (in fact in H1

0 (Ω)), it is clear that u is a bounded complete trajectory of
problem (15).

Now, we need to prove a previous lemma to obtain the convergence of solutions
of the approximations in the space C([0, T ], H1

0 ).

Lemma 11. Any sequence ξn ∈ Aεn with εn → 0 is relatively compact in H1
0 (Ω).

Proof. There exists a bounded complete trajectory ψεn of (13) with ψεn(0) = ξn.
Denote un(·) = ψεn(−T+·) and choose some T > 0. Then ξn = un(T ), un(0) =
ψεn(−T ). In view of Remark 9 up to a subsequence un → u in C([0, T ], L2(Ω)),
where u is a strong solution of (15). On top of that, by (24) and the argument in
the proof of Theorem 9 we obtain that for r > 0,

un → u weakly star in L∞(r, T ;H1
0 (Ω)),

dun
dt
→ du

dt
weakly in L2(r, T ;L2(Ω)),

un → u weakly in L2(r, T ;H2(Ω)).

Therefore, by the Compactness Theorem [17, p.58] we have

un → u strongly in L2(r, T,H1
0 (Ω)),

un(t)→ u (t) in H1
0 (Ω) for a.a. t ∈ (r, T ).

In addition, by standard results [21, p.102] we have that un, u ∈ C([r, T ], H1
0 (Ω)).

Multiplying (13) by dun

dt and using (23), we obtain∥∥∥∥dundt
∥∥∥∥2

L2

+
d

dt
‖un‖2H1

0
≤ ‖fε(un)‖2L2 .

Thus,
‖un(t)‖2H1

0
≤ ‖un(s)‖2H1

0
+ C(t− s), C > 0, t ≥ s ≥ r.

The same inequality is valid for the limit function u(·). Hence, the functions Jn(t) =
‖un(t)‖2

H1
0
− Ct, J(t) = ‖u(t)‖2

H1
0
− Ct, are continuous and non-increasing in [r, T ].

Moreover, Jn(t)→ J(t) for a.e. t ∈ (r, T ). Take r < tm < T such that tm → T and
Jn(tm)→ J(tm) for all m. Then

Jn(T )− J(T ) ≤ Jn(tm)− J(T ) ≤ |Jn(tm)− J(tm)|+ |J(tm)− J(T )|.
For any ε > 0 there exist m(ε) and N(ε) such that Jn(T ) − J(T ) ≤ ε if n ≥ N.
Then lim sup Jn(T ) ≤ J(T ), so lim sup ‖un(T )‖2

H1
0
≤ ‖u(T )‖2

H1
0
. As un(T ) → u(T )

weakly in H1
0 implies lim inf ‖un(T )‖2

H1
0
≥ ‖u(T )‖2

H1
0
, we obtain

‖un(T )‖2H1
0
→ ‖u(T )‖2H1

0
,

so that un(T )→ u(T ) strongly in H1
0 (Ω). Hence, the result follows.

Corollary 2. If uε0 → u0 in L2(Ω), where uε0 ∈ Aε, u0 ∈ A0, then for any T > 0
there exists a subsequence εn such that uεn converges to some strong solution u of
(15) in C([0, T ], H1

0 (Ω)).

Proof. We know from Theorem 9 that there exists a subsequence such that uεn
converges to some strong solution u of (15) in C([0, T ], L2(Ω)). Then the statement
follows from the invariance of Aε and Lemma 11.
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Remark 10. Let uεn(·) be a bounded complete trajectory of (13). Fix T > 0. By
Lemma 11 uεn(−T ) → y in H1

0 (Ω) up to a subsequence. Corollary 2 implies then
that uεn converges in C([0, T ], H1

0 (Ω)) to some solution u of (15). If we choose suc-
cessive subsequences for −2T,−3T . . . and apply the standard diagonal procedure
we obtain that a subsequence uεn converges to a complete trajectory u of (15) in
C([−T, T ], H1

0 (Ω)) for any T > 0. By Remark 9 this trajectory is bounded.

Lemma 12. distH1
0
(Aε,A0)→ 0, as ε→ 0.

Proof. By contradiction let there exist δ > 0 and a sequence yεn ∈ Aεn such that

distH1
0
(yεn ,A0) > δ.

Hence, as yεn = uεn(0), where uεn is a bounded complete trajectory of problem
(13), using Remark 10 we obtain that up to a sequence uεn converges to a bounded
complete trajectory u of the problem (15) in the spaces C([−T, T ], H1

0 (Ω)) for every
T > 0. Thus, u(t) ∈ A0 for any t ∈ R. We infer then that

yεn = uεn(0)→ u(0) ∈ A0,

which is a contradiction.

We choose some δ > 0 such that

Oδ(Ξ0
i ) ∩ Oδ(Ξ0

j ) = ∅ if i 6= j

and Ξ0
i are maximal weakly invariant.

For problem (13) let us define the sets

Mε
i = {v+

ε,i, v
−
ε,i} for 1 ≤ i < N0,

ZεN0
=
(
∪k≥N0

{v±ε,k}
)
∪{0},

Mε
N0

=

{
y : ∃ψ ∈ Kε such that (16) holds with zj ∈ ZεN0

,
j = 1, 2 and y = ψ(t) for some t ∈ R

}
,

where Kε is the set of all bounded complete trajectories of (13).
In view of Lemma 9 we have

distH1
0
(Mε

i ,Ξ
0
i )→ 0, as ε→ 0, 1 ≤ i < N0

Lemma 13. distH1
0
(Mε

N0
,Ξ0

N0
)→ 0, as ε→ 0.

Proof. Suppose the opposite, that is, there exists δ > 0 and a sequence yεk ∈M
εk
N0

such that

distH1
0
(yεk ,Ξ

0
N0

) > δ for all k. (27)

Let ξεk be a sequence of bounded complete trajectories of problem (13) such that
ξεk(0) = yεk and

ξεk(t)→ zk−1 as t→ −∞,

ξεk(t)→ zk0 as t→∞,
where zk−1, z

k
0 ∈ Z

εk
N0

. By Lemmas 9 and 10, passing to a subsequence we have that

zki → zi ∈ ZN0 , i = −1, 0.

By Remark 10 we obtain that up to a subsequence ξεk converges to a complete
trajectory ψ0 of problem (15) in the spaces C([−T, T ], H1

0 (Ω)) for every T > 0, so
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yεk → ψ0(0) in H1
0 (Ω). Thus, either ψ0 is equal to a fixed point z0 6= 0 or there

exist two fixed points of problem (15), denoted by z−1, z0 such that

E(z−1) > E(z0),

ψ0(t)→ z−1 as t→ −∞,
ψ0(t)→ z0 as t→∞.

If z0 = z0, then z−1, z0 ∈ ZN0 , which means that ψ0(0) ∈ Ξ0
N0
. This would imply

a contradiction with (27). Therefore, we assume that z0 6= z0. Also, it is clear that
z0 = v±m 6= 0, for some m ∈ N.

Let r0 > 0 be such that Or0(z0) ∩ Or0(z0) 6= ∅ and O2r0(z0) does not contain
any other fixed point of problem (15). The previous convergences imply that for
each r ≤ r0 there exist a moment of time tr and kr such that ξεk(tr) ∈ Or(z0) for
all k ≥ kr. On the other hand, since ξεk(t) → zk0 , as t → ∞, and zk0 → z0, there
exists t′r > tr such that

ξεkr
(t) ∈ Or0(z0) for all t ∈ [tr, t

′
r),

‖ξεkr
(t′r)− z0‖L2 = r0.

Let us consider two cases: 1) t′r − tr → ∞; 2)|t′r − tr| ≤ C. We begin with the
first case. We define the sequence of bounded complete trajectories of problem (13)
given by

ξ1
kr (t) = ξεkr

(t+ t′r).

By Remark 10 we can extract a subsequence of this sequence converging to a
bounded complete trajectory ψ1 of problem (15). Since t′r−tr →∞, we obtain that
ψ1(t) ∈ Or0(z0) for all t ≤ 0. Since O2r0(z0) does not contain any other fixed point
of problem (15), it follows that ψ1(t)→ z0 as t→ −∞. But ‖ψ1(0)−z0‖L2 = r0, so
ψ1 is not a fixed point. Therefore, ψ1(t)→ z1 as t→∞, where z1 is a fixed point
such that E(z1) < E(z0).

In the second case we define the sequence

ξ1
kr (t) = ξεkr

(t+ tr).

Passing to a subsequence we have that

ξ1
kr (0)→ z0,

t′r − tr → t′.

As ξ1
kr

converges to a solution ξ1 of problem (15) uniformly in bounded subsets

from [0,∞) such that ξ1(0) = z0, ξ1
kr

(t′r− tr)→ ξ1(t′), so that ‖ξ1(t′)− z0‖L2 = r0.
We put

ψ1(t) =

{
z0 if t ≤ 0,
ξ1(t) if t ≥ 0.

Then ψ1 is a bounded complete trajectory of problem (15) such that ψ1(t)→ z1 as
t→∞, where z1 is a fixed point satisfying E(z1) < E(z0).

Now, if z1 = z0, then we have the chain of connections

ψ0(t)→ z−1 as t→ −∞, ψ0(t)→ z0 as t→ +∞,
ψ1(t)→ z0 as t→ −∞, ψ1(t)→ z1 as t→ +∞,

which implies that z−1, z0, z1 ∈ Zn, an then ψ0(0) ∈ Ξ0
n. This would imply a

contradiction with (27).
However, if z1 6= z0, then we proceed in the same way and obtain a new connec-

tion from the point z1 to another fixed point with less energy. Since the number of



28 R. CABALLERO, A. N. CARVALHO, P. MARÍN-RUBIO AND J. VALERO

fixed points with energy less than or equal to E(z0) is finite, we will finally obtain
a chain of connections of the form

ψ0(t)→ z−1 as t→ −∞, ψ0(t)→ z0 as t→ +∞,
ψ1(t)→ z0 as t→ −∞, ψ1(t)→ z1 as t→ +∞,

...

ψn(t)→ zm−1 as t→ −∞, ψn(t)→ zm = z0 as t→ +∞.
And again, this implies a contradiction with (27).

These convergences imply the existence of ε0 such that if ε ≤ ε0, then

Mε
i ⊂ Oδ(Ξ0

i ) for any 1 ≤ i ≤ N0.

Further, let

Ξεi =

{
y : ∃ψ ∈ Kε such that ψ(0) = y
and ψ(t) ∈ Oδ(Ξ0

i ) for all t ∈ R

}
.

These sets are clearly maximal weakly invariant for Gε in Oδ(Ξ0
i ), so condition

(H5) is satisfied for Vi = Oδ(Ξ0
i ). As a consequence of Lemmas 9, 13, Remark 9

and the definition of δ we have

distL2(Ξεi ,Ξ
0
i )→ 0, as ε→ 0, for 1 ≤ i ≤ N0.

Therefore, condition (H3) is satisfied.
We also get by Remark 10 and the definition of δ that

distH1
0
(Ξεi ,Ξ

0
i )→ 0, as ε→ 0, for 1 ≤ i ≤ N0.

Moreover, Mε = {Ξε1, . . . ,ΞεN0
} is a disjoint family of isolated weakly invariant

sets.
Applying Theorem 2 we obtain the following result.

Theorem 10. There exists ε1 > 0 such that for all 0 < ε ≤ ε1 the multivalued
semiflow Gε is dynamically gradient with respect to the family Mε.
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