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Research interest within membrane computing is becoming increasingly interdisciplinary.
In particular, one of the latest applications is fault diagnosis. The underlying mechanism
was conceived by bridging spiking neural P systems with fuzzy rule-based reasoning
systems. Despite having a number of publications associated with it, this research line still
lacks a proper formalization of the foundations.

1. Introduction

Spiking neural P systems (SN P systems), since first presented in 2006 [1], have proved to be versatile devices for several 
practical applications. More recently, a variant of SN P systems, the so-called Fuzzy Reasoning Spiking Neural P systems (FRSN P 
systems, for short) were defined in [2], providing interesting features that make them suitable for modeling fault diagnosis 
systems, usually including a number of elements and relations involving different types of uncertainty. These aspects imply 
the need of handling fuzzy knowledge and reasoning when dealing with fault diagnosis applications.

The mechanisms provided within FRSN P systems to aid in the study of this kind of fault diagnosis problems set a bridge 
between spiking neural P systems and fuzzy rule-based reasoning systems. However, despite the emergence of a number 
of publications about this topic [2–4], a more in-depth theoretical study was necessary to provide a proper formalization of 
the foundations.

The present work aims to provide a solid formalization of FRSN P systems. More specifically, it formalizes the first 
variant presented in [2], dealing with real numbers. Latter variants of these systems might be addressed by future works. 
The structure of the paper is as follows. First, Section 2 includes some general definitions used in the rest of the text, 
in order to make this document self-contained. Second, the formalization of FRSN P systems is given in Section 3. Third, 
Section 4 provides an explanation about the process to build an FRSN P system from a fuzzy reasoning knowledge base. 
Then, the process is illustrated in Section 5 through a practical example of fault diagnosis expert system from literature. 
Finally, Section 6 summarizes the main conclusions of this paper, while outlining some possible research lines of future 
work.
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2. Preliminaries

2.1. Fuzzy production systems

Expert systems are computer programs designed to emulate the thinking patterns of an expert. In this paper we restrict 
our attention to the so-called production systems, which employ rules of the type “IF (the data meet certain specified condi-
tions) THEN (perform the specified actions)” (see e.g. [5] for more details). The “IF” part of the rule is called the antecedent
and the “THEN” part is the consequent.

There are many sources of uncertainty in data: imprecision in numerical measurements, uncertainty with respect to 
facts, ambiguous terms, etc. One way to deal with those uncertainties is representing them by real numbers (usually, but 
not always, between 0 and 1) expressing in some sense how confident we are about the data. Such numbers are called the 
truth values associated with the data.

Rules in fuzzy production systems are expressed by means of propositions involving linguistic variables. The antecedent 
(resp. the consequent) of a rule can be formally seen as a set of linguistic terms, each of them having associated a membership 
function, allowing to derive from the values of the variables a truth value for the proposition. For example, the variable
Speed could consist of the terms slow, medium and fast. Then, these terms could have associated membership functions 
such that, for a speed of 50, the proposition Speed is slow would have a truth value of 0, the proposition Speed is 
medium a truth value of 0.6 and the proposition Speed is fast a truth value of 0.25.

Linguistic terms can be affected by hedges, which are adjectives or adverbs that modify the truth value of a proposition. 
For example, the truth value of the proposition Speed is very fast would be 0.0625, since we assume that the effect 
of the hedge very is to square the truth value.

In fuzzy logic the truth value of the classical not, and and or connectives can be computed using the Zadeh operators
as follows (note that other operators are possible):

• Truth value of NOT ϕ: 1 − truth value of ϕ .
• Truth value of ϕ AND ψ : min{truth value of ϕ, truth value of ψ}.
• Truth value of ϕ OR ψ : max{truth value of ϕ, truth value of ψ}.

In the literature, IF-THEN rules can be classified in various ways. We recall here the classification into five elementary
types given in [5].

• Type 1: simple fuzzy production rules of the form

IF ϕ THEN ψ

• Type 2: composite fuzzy conjunctive rules in the antecedent (a.k.a. AND-rules) of the form

IF ϕ1 AND · · · AND ϕn THEN ψ

• Type 3: composite fuzzy conjunctive rules in the consequent of the form

IF ψ THEN ϕ1 AND · · · AND ϕn

• Type 4: composite fuzzy disjunctive rules in the antecedent (a.k.a. OR-rules) of the form

IF ϕ1 OR · · · OR ϕn THEN ψ

• Type 5: composite fuzzy disjunctive rules in the consequent of the form

IF ψ THEN ϕ1 OR · · · OR ϕn

where each ϕi and ψ are propositions involving linguistic variables.
The initial motivation for this paper is to present a formalization for the seminal definition of FRSN P systems ([2]). This 

is a deterministic model, using real numbers to represent truth values associated with propositions. Therefore, rules of type 
5 fall out of the scope of the formalization presented here, since it is not straightforward to capture their effect in this 
context.

In what follows, for the sake of simplicity and without loss of generality, we will only refer to two kinds of fuzzy 
production rules, namely AND-rules and OR-rules. Note that, on the one hand, elementary rules of type 1 can be seen 
as a particular case of an AND-rule. On the other hand, any rule of type 3 can be replaced by a set of elementary rules 
(one for each proposition in the consequent), and the resulting system will be equivalent from a reasoning point of view.

To account for the uncertainty we may have about the correctness of the implications represented by the rules, we 
associate with them confidence factors, which are real numbers between 0 and 1. We can then make a process of inference
to derive truth values from available data as follows: given a rule with confidence factor τ and with truth value αi for each 
proposition ϕi in its antecedent,



• If the rule is an AND-rule, then the truth value derived for ψ is

min{α1, . . . ,αn} · τ
• If the rule is an OR-rule, then the truth value derived for ψ is

max{α1, . . . ,αn} · τ
Fuzzy production systems are data-driven, that is, all rules compatible with the available data are applied at the same 

time, instead of sequentially. This means that the final truth value for proposition ψ should be computed as

max{αr1 , . . . ,αrm }
where r1, . . . , rm are all the rules with consequent ψ and αr1 , . . . , αrm are the truth values for ψ derived from them.

2.2. Spiking neural P systems

In this section we briefly present a variant of computing models in Membrane Computing called Spiking neural P systems
(SN P systems, for short) introduced by Ionescu et al. [1] (for further details see also [6]). This variant incorporates ideas of 
spiking neurons, a promising research line in Neural Computing [7,8].

Spiking neural P systems mimic the way that neurons communicate with each other by means of short electrical im-
pulses, identical in shape (voltage), but emitted at precise moments of time. The underlying structure of these systems is a 
directed graph whose nodes represent neurons, and arcs represent synapses. The impulses are described by the multiplicity 
of an object a from a singleton alphabet. Object a is called spike and it abstracts a quantum of energy. Neurons can send 
spikes along its outgoing synapses according to a protocol: depending on their current number of spikes, the neurons either 
fire sending impulses (a certain number of spikes) to the neighboring neurons, or forget the spikes they have. There is a 
distinguished neuron called output neuron, whose outdegree is 0, that can send spikes to the environment. Consequently, 
in the environment we get a sequence of spikes, leaving the system at specific moments of time.

A spiking neural P system of degree q ≥ 1, is a tuple (O , syn, σ1, . . . , σq, iout), where:

• O  = {a} is the singleton alphabet;
• syn = (V , E) is a directed graph such that V = {σ1, . . . , σq} and (σi, σi) /∈ E for 1 ≤ i ≤ q;
• σi, 1 ≤ i ≤ q, is of the form σi = (ni, Ri) where ni ≥ 0 and Ri is a finite set of rules of the following two forms:

(1) E/ac → ac′ ; d, being E a regular expression over {a}, c ≥ c′ ≥ 1, and d ≥ 0 (firing rules);
(2) as → λ, for some s ≥ 1, with the restriction that for each rule E/ac → ac′ ; d of type (1) from Ri , we have as /∈ L(E)

(forgetting rules);
• iout ∈ {1, 2, . . . , q} such that outdegree(iout) = 0.

A spiking neural P system of degree q ≥ 1 can be viewed as a set of q neurons {σ1, . . . , σq} interconnected by the arcs of
a directed graph syn, called synapse graph. There is a distinguished neuron iout , called output neuron, which communicates 
with the environment.

If a neuron σi contains k spikes at an instant t , and ak ∈ L(E), k ≥ c, then the rule E/ac → a; d can be applied. By the 
application of that rule c spikes are removed from neuron σi and the neuron fires producing c′ spikes after d time units. If 
d = 0, then the spikes are emitted immediately. If the rule is used in step t and d ≥ 1, then in steps t, t +1, t +2, . . . , t +d −1
the neuron is closed, so that it cannot receive new spikes. In step t + d, the neuron spikes and becomes again open, so that 
it can receive spikes (which can be used in step t + d + 1). The spikes produced by a neuron σi are received for all open
neuron σ j such that (σi, σ j) ∈ E . If σi is the output neuron then the spikes are sent to the environment.

The rules of type (2) are forgetting rules, and they are applied as follows: If neuron σi contains exactly s spikes, then the 
rule as → λ from Ri can be applied. By the application of this rule all s spikes are removed from σi .

In spiking neural P systems, a global clock is assumed, marking the time for the whole system. There exist a number 
of variants of these systems with different syntactic and semantic ingredients, but their detailed description is out of the 
scope of this paper. For those interested in their study an overview is provided at [9].

3. Formalization of FRSN P systems

Definition 1. A fuzzy reasoning spiking neural P system (FRSN P system, for short) of degree q ≥ 1 is a tuple

� = (A,σ1, . . . , σq, syn, I N, O U T , P N, RNAND, RNOR, P , C)

where:

• A = {a} is a singleton alphabet.



• (V , syn) is a directed graph being V = {σ1, . . . , σq} such that

∀σ ∈ V (indegree(σ ) > 0 ∨ outdegree(σ ) > 0)

each arc in syn has a function γ from [0, 1] onto [0, 1] associated with it.
• I N, O U T are the nonempty subsets of V : I N = {σ ∈ P N | indegree(σ ) = 0} and O U T = {σ ∈ P N | outdegree(σ ) = 0}.
• {P N, RNAND, RNOR} is a partition of the set V such that

∀(σ ,σ ′) ∈ syn [(σ ∈ P N ∧ σ ′ ∈ RN) ∨ (σ ∈ RN ∧ σ ′ ∈ P N)]
being RN = RNAND ∪ RNOR .

• P , C are tuples of real numbers: P = (p1, . . . , pq) and C = (c1, . . . , cq), with p j, c j ∈ [0, 1], 1 ≤ j ≤ q, and ci > 0 if
σi ∈ RN .

• Each node σ j ∈ V is a triple (ασ j , c j, Fσ j ) such that
– ασ j ∈ [0, 1].
– If σ j ∈ I N then Fσ j is the identity function on [0, 1].
– If indegree(σ j) = nσ j > 0 then Fσ j is the total function from [0, 1]nσ j onto [0, 1] defined as follows:

Fσ j (x1, . . . , xnσ j
) =⎧⎪⎪⎨

⎪⎪⎩
max{γ1(x1), . . . , γnσ j

(xnσ j
)}, if σ j ∈ P N

max{γ1(x1), . . . , γnσ j
(xnσ j

)} · c j, if σ j ∈ RNOR

min{γ1(x1), . . . , γnσ j
(xnσ j

)} · c j, if σ j ∈ RNAND

where γi is the function associated with the i-th incoming arc of σ j .

A fuzzy reasoning spiking neural P system of degree q ≥ 1 can be viewed as a set of q neurons σ1, . . . , σq arranged 
in a structure given by a directed graph (V , syn) (called synapse graph) such that V = {σ1, . . . , σq}. There are two types 
of neurons: proposition neurons (neurons in the set P N) and rule neurons (neurons in the set RN). Among the proposition 
neurons, some of them belong to two distinguished types: those receiving no spikes (input neurons) and those sending no 
spikes (output neurons). With respect to rule neurons, we partition them into AND-type rule neurons (neurons in the set 
RNAND) and OR-type rule neurons (neurons in the set RNOR). Each synapse (arc of the synapse graph) connects either a 
proposition neuron with a rule neuron or vice versa, and the function associated with it indicates whether the proposition 
appears in the rule as a positive or negative literal. More precisely, the associated function is γ (x) = x for the positive case, 
and γ (x) = 1 − x for the negative case. For each neuron σ we consider the sets Presyn(σ ) = {σ ′ ∈ V | (σ ′, σ) ∈ syn} and 
Postsyn(σ ) = {σ ′ ∈ V | (σ , σ ′) ∈ syn}.

The system handles information by exciting neurons which fire sending “electrical impulses” (identical in shape, called 
spikes, denoted by the symbol a of the singleton alphabet) to their post-synaptic neurons according to specific mechanisms. 
Each neuron σ j has three parameters ασ j , c j, Fσ j associated with it, where

• ασ j ∈ [0, 1] represents the fuzzy potential/pulse value of the spike contained in neuron σ j .
• c j ∈ [0, 1] represents either the fuzzy truth value (in the case σ j ∈ P N) or the confidence factor (in the case σ j ∈ RN).
• Fσ j is a function introduced in the previous definition. This function allows us to compute the pulse value of the spike

to be sent out by means of the synapses.

Definition 2. Let σ be a neuron of a FRSN P system. The state of σ at instant t ≥ 0, denoted by s(σ , t), is a tuple 
(ασ (t), fσ (t), Gσ (t)) where:

• ασ (t) is a real number in [0, 1] representing the (potential) pulse value of the spike contained in neuron σ at instant t .
• fσ (t) is a Boolean value that represents if the neuron at instant t is ready to fire.
• Gσ (t) is a real number in [0, 1] that represents the pulse value of the spike that neuron σ will send along its outgoing

synapses at instant t .

Definition 3. Let � = (A, σ1, . . . , σq, syn, I N, O U T , P N, RNAND, RNOR, P , C) be a fuzzy reasoning spiking neural P system of 
degree q ≥ 1.

• A configuration Ct of � at moment of time t ≥ 0 is the tuple (s(σ1, t), . . . , s(σq, t)), where s(σ j, t) denotes the state of
neuron σ j at instant t .

• The initial configuration of � is the tuple C0 = (s(σ1, 0), . . . , s(σq, 0)), where

s(σ j,0) =
{

(p j,1, p j), if σ j ∈ I N

(p j,0,0), if σ j ∈ V \ I N



Definition 4. For each t ≥ 0, configuration Ct yields configuration Ct+1 in one transition step if the following holds:

• If σ j ∈ I N then s(σ j, t + 1) =
{

(p j,1, p j) if t < tD

(p j,0,0) if t ≥ tD

where tD is the maximum length of a simple path from a neuron in IN to a neuron in OUT.
• If σ j ∈ V \ I N then

ασ j (t + 1) ={
max{γ ′(Gσ ′(t)) | σ ′ ∈ Presyn(σ j) ∧ fσ ′(t) = 1}, if σ j ∈ P N ∪ RNOR

min{γ ′(Gσ ′(t)) | σ ′ ∈ Presyn(σ j) ∧ fσ ′(t) = 1}, if σ j ∈ RNAND

where γ ′ denotes the function associated with the arc (σ ′, σ j), for each σ ′ ∈ Presyn(σ j).
fσ j (t + 1) = 1 if and only if σ j /∈ O U T and fσ ′ (t) = 1, for all σ ′ ∈ Presyn(σ j).

Gσ j (t + 1) =
⎧⎨
⎩

0, if fσ j (t + 1) = 0

Fσ j (Gσ 1
j
(t), . . . , G

σ
nσ j
j

(t)), if fσ j (t + 1) = 1

being Presyn(σ j) = {σ 1
j , . . . , σ

nσ j

j }.

Note that a neuron σ ∈ V \ I N cannot fire unless all neurons in Presyn(σ ) have simultaneously fired in the previous 
step. If we allow that neurons may receive inputs from branches having different depths (w.r.t. the neurons in IN), then at 
some point one of the incoming arcs will provide its spike, while another arc will remain idle, because the spike traveling 
through the corresponding branch still needs some more steps to reach such arc. Instead of making the neuron wait until 
all input spikes are collected (removing the condition of simultaneous firing), we propose an alternative: input neurons will 
keep spiking repeatedly during a number tD of steps, until we can guarantee that all neurons in the graph have the chance 
to receive their message.

A computation of a fuzzy reasoning spiking neural P system � is a (finite or infinite) sequence of configurations such 
that: (a) the first term of the sequence is the initial configuration C0 of the system; (b) each non-initial configuration 
of the sequence is obtained from the previous configuration by applying one transition step; and (c) if the sequence is 
finite with n + 1 terms (called halting computation) then the last term Cn of the sequence is a halting configuration, that is, 
a configuration such that fσ j (n) = 0, for each j, 1 ≤ j ≤ q.

In such systems, all computations start from an initial configuration and proceed as stated above; only halting computa-
tions give a result, which is encoded by the pulse values of the spikes contained in the output neurons at the last step of 
the computation (in the halting configuration).

4. FRSN P systems based on fuzzy production systems

This section is devoted to explain how to build an FRSN P system for a given fuzzy reasoning case study, assuming
we already have a fuzzy production system designed for it. Let {r1, . . . , rnr } be the set of rules of the production system 
(composed of AND-rules and OR-rules), and let {ϕ1, . . . , ϕnp } be the set of propositions present in the production 
system (i.e. at either the antecedent or the consequent of any rule).

We shall describe next how to build the corresponding FRSN P system of degree q = np +nr , � = (A, σ1, . . . , σq, syn, I N,

O U T , P N, RNAND, RNOR, P , C).

• The symbol representing the spike is defined as usual, A = {a}.
• We include the following neurons in �:

– One neuron σ j for each proposition ϕ j , 1 ≤ j ≤ np .
– One neuron σnp+i associated with each rule ri of the production system, 1 ≤ i ≤ nr .

• We include the following arcs in syn, for each rule ri :
– (σ j, σnp+i), for each proposition ϕ j included in the antecedent.
– (σnp+i, σk), for the proposition ϕk included in the consequent.

• P N = {σ1, . . . , σnp }, RNAND = {σnp+ j | r j is an AND-rule} and RNOR = {σnp+ j | r j is an OR-rule}.
• The sets I N and O U T are defined according to the arcs in syn. I N = {σ ∈ P N | indegree(σ ) = 0} and O U T = {σ ∈ P N |

outdegree(σ ) = 0}. Note that, by definition, every proposition in {ϕ1, . . . , ϕnp } appears in at least one rule. Therefore,
the condition ∀σ ∈ V (indegree(σ ) > 0 ∨ outdegree(σ ) > 0) is satisfied.

• P is defined as follows:
– p j is the initial truth value of proposition ϕ j , for 1 ≤ j ≤ np .
– pi = 0, for every i > np .



• C is defined as follows:
– c j = p j , for 1 ≤ j ≤ np .
– cnp+i is the confidence factor associated with rule ri .

Let us illustrate the above described method with a simple example.

Example 1. Consider a fuzzy production rule, R , of the form

IF ϕ1 AND . . . AND ϕk THEN ϕk+1(CF = τ )

where τ ∈ [0, 1] is its confidence factor, ϕ1, . . . , ϕk+1 are propositions. Suppose that the truth value of proposition ϕi is pi , 
for 1 ≤ i ≤ k, then the truth value of proposition ϕk+1 is evaluated as min{p1, . . . , pk} · τ . Such a rule can be modeled by 
the following FRSN P system of degree k + 2

�R = (A,σ1, . . . , σk,σk+1,σR , syn, I N, O U T , P N, RNAND, RNOR, P , C)

where

• A = {a}.
• syn = {(σi, σR)) | 1 ≤ i ≤ k} ∪ {(σR , σk+1}.
• I N = {σi | 1 ≤ i ≤ k} and O U T = {σk+1}.
• P N = {σi | 1 ≤ i ≤ k + 1}, RNAND = {σR} and RNOR = ∅.
• P = (p1, . . . , pk, 0, 0) and C = (0, . . . , 0, τ ).

It is easy to check that the system is defined according to Definition 1. The maximum length of a path is tD = 2.
The initial configuration of � is the tuple

C0 = ((p1,1, p1), . . . , (pk,1, pk), (0,0,0), (0,0,0))

At t = 1 configuration C0 yields configuration

C1 = ((p1,1, p1), . . . , (pk,1, pk), (0,0,0), (ασR ,1,ασR · τ ))

where ασR = min{p1, . . . , pk}.
Computation proceeds as follows

C2 = ((p1,1, p1), . . . , (pk,1, pk), (ασR · τ ,0,0), (ασR ,1,ασR · τ ))

C3 = ((p1,0,0), . . . , (pk,0,0), (ασR · τ ,0,0), (ασR ,1,ασR · τ ))

C4 = ((p1,0,0), . . . , (pk,0,0), (ασR · τ ,0,0), (ασR ,0,0))

being the last one a halting configuration. The result obtained by the system is ασR · τ = min{p1, . . . , pk} · τ , the value of 
the spike in the output neuron, as expected.

5. Application on fault diagnosis

This section illustrates with an example how the method given above can be generalized in order to obtain a FRSN
P system to model a general fault diagnosis expert system.

Let us consider the expert system given in [10] which is composed by the following propositions. For some of them the 
corresponding initial truth value is known.

ϕ1: Cross section area of turbine’s path is too large, p1 = 0.6.
ϕ2: Efficiency of assembling unit is too low, p2 = 1.
ϕ3: Ventilation side of the guider’s blade of turbine wears and tears.
ϕ4: Inlet gas temperature of turbine is too low, p4 = 0.
ϕ5: Pressurization ratio of the compressor is too low, p5 = 0.2.
ϕ6: Flow path of the combustor wears and tears.
ϕ7: Flow rate of the fuel in the combustor is too high, p7 = 0.
ϕ8: Higher pressure level’s spray head of the turbine is broken.
ϕ9: Outlet gas temperature of turbine is too high, p9 = 0.2.

ϕ10: Efficiency of turbine is too low, p10 = 0.9.
ϕ11: Flow coefficient of turbine is too low, p11 = 0.
ϕ12: Blade of the turbine scales.
ϕ13: Power of assembling unit is too low, p13 = 0.8.
ϕ14: Blade of the turbine wears and tears.
ϕ15: Inlet gas temperature of turbine is too high, p15 = 0.2.



Fig. 1. Example of an FRSN P system. The initial available truth values associated with the propositions are indicated inside the corresponding I N neurons
while the rest of neurons are shown empty. Arcs marked in bold have γ (x) = 1 − x as their associated function, i.e. they correspond to negative literals.

ϕ16: Blade of the turbine burns down.
ϕ17: Flow path of compressor wears and tears.
ϕ18: Compressor is in turbulence.
ϕ19: Blade of compressor breaks down, p19 = 0.
ϕ20: Conversion flow of the compressor is too low, p20 = 0.
ϕ21: Fuel consumption of assembling unit is too high, p21 = 0.3.
ϕ22: Inlet of compressor freezes.
ϕ23: Uniform entropy compression efficiency of compressor is too low, p23 = 0.
ϕ24: Compressor has a problem.
ϕ25: Spray head of turbine is broken.

In order to estimate the unknown truth values the expert system relies on the following fuzzy production rules, given 
with their corresponding confidence factors.

R1: IF ϕ1 AND ϕ2 THEN ϕ3, τ1 = 0.8.
R2: IF ϕ25 AND ¬ϕ7 THEN ϕ6, τ2 = 0.8.
R3: IF ϕ25 AND ϕ7 THEN ϕ8, τ3 = 0.8.
R4: IF ϕ9 AND ϕ10 AND ϕ11 THEN ϕ12, τ4 = 0.8.
R5: IF ϕ10 AND ϕ13 AND ϕ2 THEN ϕ14, τ5 = 0.8.



Fig. 2. Initial steps of the computation. Nodes marked in gray are those having fσ (t) = 1. The value of ασ (t) is shown inside each neuron.

R6: IF ϕ2 AND ϕ15 THEN ϕ16, τ6 = 0.8.
R7: IF ϕ17 THEN ϕ18, τ7 = 0.9.
R8: IF ϕ19 THEN ϕ18, τ8 = 1.
R9: IF ϕ20 AND ϕ5 AND ϕ24 THEN ϕ22, τ9 = 0.8.

R10: IF ϕ2 AND ϕ21 AND ϕ15 THEN ϕ24, τ10 = 1.
R11: IF ϕ5 AND ϕ23 THEN ϕ12, τ11 = 0.9.
R12: IF ¬ϕ20 AND ¬ϕ5 AND ϕ24 THEN ϕ17, τ12 = 0.8.
R13: IF ϕ4 AND ϕ2 AND ϕ5 THEN ϕ25, τ13 = 0.8.



Fig. 3. Configuration at instant t = 6.

This fuzzy production system can be modeled by the following FRSN P system of degree 38:

� = (A,σ1, . . . , σ38, syn, I N, O U T , P N, RNAND, RNOR, P , C)

• A = {a}.
• The neurons of the system are:

– σ1, . . . , σ25 associated with propositions ϕ1, . . . , ϕ25.
– σ26, . . . , σ38 associated with rules R1, . . . , R13.

• The arcs in syn are depicted in Fig. 1.
• P N = {σ1, . . . , σ25}, RNAND = {σ26, . . . , σ38} and RNOR = ∅.

In Fig. 1, P N nodes are labeled with their corresponding proposition and RN nodes are labeled with their corresponding
rule.

• I N = {σ1, σ2, σ4, σ5, σ7, σ9, σ10, σ11, σ13, σ15, σ19, σ20, σ21, σ23} and O U T = {σ3, σ6, σ8, σ12, σ14, σ16, σ22}.
• P = (p1, . . . , p38) where pi is the initial known truth value (if available) and 0 otherwise. C = (0, . . . , 0, τ1, . . . , τ13).

The initial steps of the computation are illustrated in Fig. 2. After 6 steps (see configuration C6 in Fig. 3), all neurons 
have processed all their inputs, and the estimation of the truth values of all propositions in O U T have been updated. Since 
tD = 6 for this graph, in the next step I N neurons will stop spiking, and the system will halt in four more steps, when all 
neurons get their fσ (t) = 0. However, ασ (t) values will not change anymore.

In the last configuration, the output neuron σ with the highest ασ value is σ14 (ασ14 = 0.64), so its corresponding 
proposition ϕ14 ≡ ‘Blade of the turbine wears and tears’ is the most likely fault.



6. Conclusions

This work has provided a complete formalization of FRSN P systems, as initially presented in [2], and illustrated its use
through a practical application to a fault diagnosis system.

The chosen example presented in Section 5 includes several interesting features:

• Some propositions appear as negative literals on the rules.
• There exist paths of different lengths connecting I N and O U T neurons.
• Initial truth values 0.0 are allowed for neurons in I N .

Future studies could be conducted to properly formalize other variants of FRSN P systems possibly dealing with different
approaches, as trapezoidal numbers instead of real numbers or additional ingredients as weights, among others. We believe 
that this can be achieved by adjusting the functions F (associated with each neuron) and γ (associated with each arc). 
Hence, no major change to the formalization presented in this paper seems to be required.
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[6] Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), The Oxford Handbook of Membrane Computing, Oxford University Press, 2010.
[7] W. Gerstner, W. Kistler, Spiking Neuron Models. Single Neurons, Populations, Plasticity, Cambridge University Press, 2002.
[8] W. Maass, Computing with spikes, in: Special Issue on Foundations of Information Processing, TELEMATIK 8 (1) (2002) 32–36.
[9] H. Adorna, F. Cabarle, L. Macías-Ramos, L. Pan, M.J. Pérez-Jiménez, B. Song, T. Song, L. Valencia-Cabrera, Taking the pulse of SN P systems: a quick

survey, in: M. Gheorghe, I. Petre, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa (Eds.), Multidisciplinary Creativity, Spandugino, 2015, pp. 3–16.
[10] M. Gao, M. Zhou, X. Huang, Z. Wu, Fuzzy reasoning Petri nets, IEEE Trans. Syst. Man Cybern. Syst. 33 (3) (2003) 314–324, http://dx.doi.org/10.1109/

TSMCA.2002.804362.

http://refhub.elsevier.com/S0304-3975(17)30457-7/bib736E70s1
http://dx.doi.org/10.1016/j.ins.2012.07.015
http://dx.doi.org/10.1166/jctn.2015.3857
http://dx.doi.org/10.15837/ijccc.2015.6.2080
http://refhub.elsevier.com/S0304-3975(17)30457-7/bib53696C65722D46757A7A79s1
http://refhub.elsevier.com/S0304-3975(17)30457-7/bib6D656D2D68616E64s1
http://refhub.elsevier.com/S0304-3975(17)30457-7/bib70726576696F2D31s1
http://refhub.elsevier.com/S0304-3975(17)30457-7/bib70726576696F2D32s1
http://refhub.elsevier.com/S0304-3975(17)30457-7/bib736E70737572766579s1
http://refhub.elsevier.com/S0304-3975(17)30457-7/bib736E70737572766579s1
http://dx.doi.org/10.1109/TSMCA.2002.804362
http://dx.doi.org/10.1109/TSMCA.2002.804362

	Fuzzy reasoning spiking neural P systems revisited: A formalization
	1 Introduction
	2 Preliminaries
	2.1 Fuzzy production systems
	2.2 Spiking neural P systems

	3 Formalization of FRSN P systems
	4 FRSN P systems based on fuzzy production systems
	5 Application on fault diagnosis
	6 Conclusions
	Acknowledgements
	References




