
A Note on a New Class of APCol Systems

Lucie Ciencialová1, Erzsébet Csuhaj-Varjú2, and György Vaszil3

1 Institute of Computer Science, Silesian University in Opava, Czech Republic
lucie.ciencialova@fpf.slu.cz

2 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
csuhaj@inf.elte.hu

3 Faculty of Informatics, University of Debrecen, Hungary
vaszil.gyorgy@inf.unideb.hu

Summary. We introduce a new acceptance mode for APCol systems (Automaton-like P
colonies), variants of P colonies where the environment of the agents is given by a string
and during functioning the agents change their own states and process the string similarly
to automata. In case of the standard variant, the string is accepted if it can be reduced
to the empty word. In this paper, we define APCol systems where the agents verify their
environment, a model resembling multihead finite automata. In this case, a string of
length n is accepted if during every halting computation the length of the environmental
string in the configurations does not change and in the course of the computation every
agent applies a rule to a symbol on position i of some of the environmental strings for
every i, 1 ≤ i ≤ n at least once. We show that these verifying APCol systems simulate
one-way multihead finite automata.

1 Introduction

Automaton-like P colonies (APCol systems, for short), introduced in [1], are vari-
ants of of P colonies (introduced in [9]) - very simple membrane systems inspired
by colonies of formal grammars. The interested reader is referred to [12] for de-
tailed information on P systems (membrane systems) and to [10] and [5] for more
information to grammar systems theory; for more details on P colonies consult [8]
and [4].

An APCol system consists of a finite number of agents - finite collections of
objects in a cell - and a shared environment. The agents have programs consisting
of rules. These rules are of two types: they may change the objects of the agents and
they can be used for interacting with the joint shared environment of the agents.
While in the case of standard P colonies the environment is a multiset of objects,
in case of APCol systems it is represented by a string. The number of objects
inside each agent is set by definition and it is usually a very small number: 1, 2 or
3. The environmental string is processed by the agents and it is used as an indirect
communication channel for the agents as well, since through the string, the agents

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/189093448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

60 L. Ciencialová, E. Csuhaj-Varjú, G. Vaszil

are able to affect the behaviour of another agent. The reader may easily observe
that APCol systems resembling automata as well, the current configuration of
the system (the objects inside the agents) and the current environmental string
correspond to the current state of an automaton and the currently processed input
string.

The agents may perform rewriting, communication or checking rules [9]. A
rewriting rule a → b allows the agent to rewrite (evolve) one object a to object
b. Both objects are placed inside the agent. Communication rule c ↔ d makes
possible to exchange object c placed inside the agent with object d in the string. A
checking rule is formed from two rules r1, r2 of type rewriting or communication.
It sets a kind of priority between the two rules r1 and r2. The agent tries to apply
the first rule and if it cannot be performed, then the agent performs the second
rule. The rules are combined into programs in such a way that all objects inside
the agent are affected by execution of the rules. Thus, the number of rules in the
program is the same as the number of objects inside the agent.

The computation in APCol systems starts with the an input string, represent-
ing the initial state of the environment, and with each agents having only symbols
e inside.

A computational step means a maximally parallel action of the active agents,
i.e., agents that can apply their rules. Every symbol can be object of the action of
only one agent. The computation ends if the input string is reduced to the empty
word, there are no more applicable programs in the system, and meantime at least
one of the agents is in so-called final state. This mode of computation is called
accepting. APCol systems can also be used not only for accepting but generating
strings. For more detailed information on APCol systems we refer to [2, 3].

In this paper, we define a new variant of APCol systems, a model resembling
multihead finite automata, where the agents verify their environment. In this case,
a string of length n is accepted if during every halting computation the length of
the environmental string in the configurations does not change and in the course
of the computation every agent applies a rule to a symbol on position i of some of
the environmental strings for every i, 1 ≤ i ≤ n at least once. We show that these
verifying APCol systems simulate one-way multihead finite automata.

2 Preliminaries and Basic Notions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory and membrane computing [13, 12].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a.

For a string x ∈ Σ∗, x[i] denotes the symbol at ith position of x, i.e., if
x = x1 . . . xn, xi ∈ Σ, then x[i] = xi. For every string x ∈ Σ∗, x[0] = ε.

For every string x ∈ Σ∗, perm(x) denotes the set of all permutations of x and
pref(x) denotes the set of prefixes of x.

A Note on a New Class of APCol Systems 61

A multiset of objects M is a pair M = (O, f), where O is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : O → N ; f assigns to each
object in O its multiplicity in M . Any multiset of objects M with the set of
objects O = {x1, . . . xn} can be represented as a string w over alphabet O with
|w|xi

= f(xi); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent the same multiset M , and ε represents the empty
multiset.

2.1 One-way Multihead Finite Automata

We recall some basic notions concerning multi-head finite automata based on [7].
A non-deterministic one-way k-head finite automaton (a 1NFA(k), for short) is a
construct M = (Q,Σ, k, δ, ▷, ◁, q0, F), where Q is the finite set of states, Σ is the
set of input symbols, k ≥ 1 is the number of heads, ▷ /∈ Σ and ◁ /∈ Σ are the
left and the right endmarkers, respectively, q0 ∈ Q is the initial state, F ⊆ Q is
the set of accepting states, and δ is the partial transition function which maps
Q× (Σ ∪ {▷, ◁})k into subsets of Q× {0, 1}k, where 1 means that the head moves
one tape cell to the right and 0 means that it remains at the same position. We
note that the heads can never move to the left of the left endmarker and to the
right of the right endmarker.

A configuration of a 1NFA(k) M = (Q,Σ, k, δ, ▷, ◁, q0, F) is a triplet c =
(w, q, p), where w ∈ Σ∗ is the input, q ∈ Q is the current state, and p =
(p1, . . . , pk) ∈ {0, 1, . . . , |w| + 1}k gives the head positions. If a position pi is 0,
then head i is scanning the symbol ▷, if 1 ≤ pi ≤ |w|, then head i scans the pith
letter of w, and if pi = |w|+ 1, then the ith head is scanning the symbol ◁.

The initial configuration for an input w ∈ Σ∗ is (w, q0, (1, . . . , 1)), that is, a
1NFA(k) starts processing a nonempty input word with all of its heads positioned
on the first symbol of w.

In the course of the computation, M performs direct changes of its configura-
tions. Let w = a1 . . . an, be the input, a0 = ▷, an+1 = ◁. For two configurations,
c1 = (w, q, (p1, . . . , pk)) and c2 = (w, q′, (p′1, . . . , p

′
k)), we say that c2 directly follows

c1, denoted by c1 ⊢ c2, if (q
′, (d1, . . . , dk)) ∈ δ(q, (ap1

, . . . , apk
)) and p′i = pi + di,

1 ≤ i ≤ k. The reflexive transitive closure of ⊢ is denoted by ⊢∗. Note that due
to the restriction of the transition function, the heads cannot move beyond the
endmarkers.

The language L(M) accepted by a 1NFA(k) M = (Q,Σ, k, δ, ▷, ◁, q0, F) is the
set of words w such that there is a computation which starts with ▷w◁ on the
input tape and ends when M reaches an accepting state, i.e.,

L(M) = {w ∈ Σ∗ | (w, q0, (1, . . . , 1)) ⊢∗ (w, qf , (p1, . . . , pk)), qf ∈ F}.

The class of languages accepted by 1NFA(k), for k ≥ 1, is denoted by
L(1NFA(k))

According to the definition of a 1NFA(k) M = (Q,Σ, k, δ, ▷, ◁, q0, F), the heads
do not need to move away from the scanned tape cell after reading the input

62 L. Ciencialová, E. Csuhaj-Varjú, G. Vaszil

symbol. For technical reasons, we use a modified but equally powerful version of
this definition in such a way that the automaton reads the input symbols only
in the case when the head moves away from the tape cell containing the symbol.
Otherwise, it “scans” the empty word ε, that is, the symbol does not have any role
in the determination of the next configuration of the machine. For details and the
proof of the equivalence the reader is referred to [6].

Thus, we can simplify the notation for the elements of the transition relation
of one-way k-head finite automata, since we can assume that if (q′, (d1, . . . , dk)) ∈
δ(q, a1, . . . , ak), then dj = 0 if and only if aj = ε, 1 ≤ j ≤ k. As (d1, . . . , dk) ∈
{0, 1}k, we can simply denote the above transition as q′ ∈ δ(q, a1, . . . , ak): If aj ̸= ε
for some j, 1 ≤ j ≤ k, then the jth reading head is moved to the right, otherwise,
if aj = ε it remains in its current position.

2.2 APCol Systems

In the following we recall the notion of an APCol system (an automaton-like P
colony) where the environment of the agents is given in the form of a string [1].

As standard P colonies, agents of the APCol systems contain objects, each of
them is an element of a finite alphabet. Every agent is associated with a set of
programs, every program consists of two rules that can be one of the following two
types. The first one, called an evolution rule, is of the form a → b. This means
that object a inside of the agent is rewritten to object b. The second type, called
a communication rule, is of the form c ↔ d. When this rule is applied, object c
inside the agent and a symbol d in the string representing the environment (the
input string) are exchanged. If c = e, then the agent erases d from the input string
and if d = e, symbol c is inserted into the string.

The computation in APCol systems starts with an input string, representing
the environment, and with each agent having only symbols e inside.

A computational step means a maximally parallel action of the active agents,
i.e., agents that can apply their rules. Every symbol can be object of the action of
only one agent. The computation ends if the input string is reduced to the empty
word, there are no more applicable programs in the system, and meantime at least
one of the agents is in so-called final state.

An APCol system, for is a construct
Π = (O, e,A1, . . . , An), where

• O is an alphabet; its elements are called the objects,
• e ∈ O, called the basic object,
• Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

– ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

– Pi = {pi,1, . . . , pi,ki
} is a finite set of programs associated with the agent,

where each program is a pair of rules. Each rule is in one of the following
forms:
· a → b, where a, b ∈ O, called an evolution rule,

A Note on a New Class of APCol Systems 63

· c ↔ d, where c, d ∈ O, called a communication rule,
– Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

In the following we explain the work of an APCol system.
During the work of the APCol system, the agents perform programs. Since

both rules in a program can be communication rules, an agent can work with
two objects in the string in one step of the computation. In the case of program
⟨a ↔ b; c ↔ d⟩, a substring bd of the input string is replaced by string ac. Notice
that although the order of rules in the programs is usually irrelevant, here it is
significant, since it expresses context-dependence. If the program is of the form
⟨c ↔ d; a ↔ b⟩, then a substring db of the input string is replaced by string ca.
Thus, the agent is allowed to act only at one position of the string in the one step
of the computation and the result of its action to the string depends both on the
order of the rules in the program and on the interacting objects. In particular, we
have the following types of programs with two communication rules:

• ⟨a ↔ b; c ↔ e⟩ - b in the string is replaced by ac,
• ⟨c ↔ e; a ↔ b⟩ - b in the string is replaced by ca,
• ⟨a ↔ e; c ↔ e⟩ - ac is inserted in a non-deterministically chosen place in the

string,
• ⟨e ↔ b; e ↔ d⟩ - bd is erased from the string,
• ⟨e ↔ d; e ↔ b⟩ - db is erased from the string,
• ⟨e ↔ e; e ↔ d⟩; ⟨e ↔ e; c ↔ d⟩, . . . - these programs can be replaced by pro-

grams of type ⟨e → e; c ↔ d⟩.

At the beginning of the work of the APCol system (at the beginning of the
computation), the environment is given by a string ω of objects which are different
from e. This string represents the initial state of the environment. Consequently,
an initial configuration of the APCol system is an (n+1)-tuple c = (ω;ω1, . . . , ωn)
where w is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states the of
agents.

A configuration of an APCol systemΠ is given by (w;w1, . . . , wn), where |wi| =
2, 1 ≤ i ≤ n, wi represents all the objects inside the ith agent and w ∈ (O−{e})∗
is the string to be processed.

At each step of the computation every agent attempts to find one of its pro-
grams to use. If the number of applicable programs is higher than one, then the
agent non-deterministically chooses one of them. At one step of computation, the
maximal possible number of agents have to be active, i.e., have to perform a pro-
gram.

By applying programs, the APCol system passes from one configuration to
another configuration. A sequence of configurations started from the initial con-
figuration is called a computation. A configuration is halting if the APCol system
has no applicable program.

The result of computation depends on the mode in which the APCol system
works. In the case of accepting mode a computation is called accepting if and only

64 L. Ciencialová, E. Csuhaj-Varjú, G. Vaszil

if at least one agent is in final state and the string to be processed is ε. Hence, the
string ω is accepted by the APCol system Π if there exists a computation by Π
such that it starts in the initial configuration (ω;ω1, . . . , ωn) and the computation
ends by halting in the configuration (ε;w1, . . . , wn), where at least one of wi ∈ Fi

for 1 ≤ i ≤ n.
In [1] it was shown that the family of languages accepted by jumping finite

automata (introduced in [11]) is properly included in the family of languages ac-
cepted by APCol systems with one agent, and it was proved that any recursively
enumerable language can be obtained as a projection of a language accepted by
an APCol system with two agents.

3 Verifying APCol Systems

In this section we introduce a new variant of acceptance for APCol systems, mo-
tivated by the behaviour of multihead finite automata. In case of standard APCol
systems acceptance means identifying and erasing symbols of the current environ-
mental string. In case of verifying APCol systems, the agents only indicate that
they ”visit” a certain position in the current environmental string, i.e., rewrite the
symbol at that position to some symbol but not to the empty word. A string is
verified if the computation process is halting and for every i, 1 ≤ i ≤ n - supposed
that the length of the input string is n -, each agent rewrites a symbol at posi-
tion i in some of the environmental strings occurring in the computation process.
This means that the agents ”visit” each position (of the input string or that of its
descendant), i.e., they verify that the environment. To perform a transition, the
APCol systems work with the maximally parallel mode.

Definition 1. Let Π = (O, e,A1, . . . , An), n ≥ 1, be and APCol system working
with the maximally parallel mode. We say that Π verifies input string ω if the
following conditions hold.

• There exists a halting computation c in Π where

c = (ω;ω1, . . . , ωn) =⇒
(
ω(1);ω

(1)
1 , . . . , ω

(1)
n

)
=⇒ . . .

(
ω(s);w

(s)
1 , . . . , w

(s)
n

)
,

s ≥ 1, such that |ω| = |ω(j)| for 1 ≤ j ≤ s.
• Computation c satisfies the following property. Let ω(0) = ω. For every agent

Ak, 1 ≤ k ≤ n and for every i, 1 ≤ i ≤ m where |ω| = m, there exists j,
1 ≤ j ≤ s such that the symbol at the ith position of ω(j−1) is letter b and Ak

applies a rule a ↔ b to this position of ω(j−1).
Computation c is called a verification or a verifying computation.

The set of all words that can be verified by Π is called the language verified by
Π. We call a word, resp. a language strongly verified if every computation of the
word, resp. of every word in the language is verifying.

In the following we show that verifying APCol systems simulate one-way mul-
tihead finite automata.

A Note on a New Class of APCol Systems 65

Theorem 1. Let M = (Q,Σ, n, δ, ▷, ◁, q0, F), n ≥ 1, be an n-head finite automa-
ton. Then we can construct an APCol system Π with n+ 2 agents such that any
word w that can be accepted by M can strongly be verified by Π.

Proof. To prove the statement, we construct an APCol system Π = (O, e,Aini,
A1, . . . , An, Afin) such that each agent Aj , 1 ≤ j ≤ n simulates the work of
the jth reading head of M and only that. Agent Aini serves for initializing the
simulation and agent Afin checks whether the agents visited every position in
the environmental string. The verifying process in Π corresponds to an accepting
process in M : if a symbol a was scanned by reading heads {i1, . . . , ir} ⊆ {1, . . . , n},
then this fact will be indicated by a symbol a(x) in the environmental string of Π,
where x ∈ perm(i1 . . . ır); i1, . . . , ir are the numbers of reading heads that scanned
symbol a. Every computation step in M is simulated by a sequence of computation
steps performed by agents A1, . . . An.

The input word for Π is of the form ▷w.
To help the easier reading, we will present only the agents together with their

programs.
Π has agent Aini for initializing the simulation and also for assisting the check-

ing whether every position has been visited or not.
It has the following programs:
(1) ⟨e → q0,1, e → e⟩ ,
(2) ⟨q0,1 ↔ ▷, e → e⟩ ,
(3)

⟨
e → e, ā(x) → a′

(x)
⟩
,

where q0 is the initial state and x ∈ perm(1 . . . n), a ∈ Σ.
Programs (1) and (2) are for initializing the simulation, programs of type (3)

are for checking whether or not all positions have been visited.
Every agent Aj simulates the work of the reading head j, 1 ≤ j ≤ n.
For every transition relation

s ∈ δ(q, a1, . . . , an)

of M , where a1, . . . , an ∈ Σ ∪ {ε}, agent Aj , 1 ≤ j ≤ n − 1 has the following
programs.

(We recall that if aj ̸= ε for some j, 1 ≤ j ≤ k, then the jth reading head is
moved to the right, otherwise, if aj = ε it remains in its current position.)

(0)
⟨
e → ▷j , e → ▷′j

⟩
,

(1)
⟨
▷′j ↔ sj , e → e

⟩
,

(1a)
⟨
▷′j ↔ sj , ▷j ↔ e

⟩
,

(1b) ⟨▷′1 ↔ q1, e → e⟩ ,
(1c) ⟨▷′1 ↔ q1, ▷1 ↔ e⟩ ,

66 L. Ciencialová, E. Csuhaj-Varjú, G. Vaszil

(2)
⟨
sj → s′j , e → a

(xj)
j

⟩
,

(2a)
⟨
sj → s′j , e → a

(x)
j

⟩
,

(2b)
⟨
q1 → s′j , e → a

(xj)
j

⟩
,

(2c)
⟨
q1 → s′j , e → a

(x)
j

⟩
,

(3)
⟨
axjj ↔ ▷j , s

′
j ↔ a

(x)
j

⟩
,

(3a)
⟨
s′j ↔ ▷j , a

x
j ↔ a

(x)
j

⟩
,

(4)
⟨
▷j ↔ s′j , a

(x)
j → sj+1

⟩
,

(4a)
⟨
▷j ↔ s′j , a

(xj)
j → sj+1

⟩
,

(5)
⟨
sj+1 ↔ ▷′j , s

′
j → e

⟩
,

where x ∈ pref(perm(1 . . . n)), |x|j = 0, if aj ̸= ε and x ∈ pref(perm(1 . . . n))
and |x|j = 1 if aj = ε. Furthermore, y ∈ pref(perm(1 . . . n)) and |y|j = 1.

For j = n and s = (q′, p1, . . . , pn), agent Aj has the same programs (0)-(3a),
and programs (4),(4a) and (5) are changed as follows:

(5) ⟨▷n → p′1, e → e⟩ ,
(6) ⟨p′1 ↔ ▷n, e → e⟩ ,
We present a brief explanation of the programs. The first program, (0) is used

for initialization. it generates two symbols of ▷j - the first to mark the position of
reading head and the second to exchange for symbol of the simulated transition.
The simulation of the move of the jth reading head starts with program (1). If it
is simulation of the first step and the first head, then program (1c) is used. For the
first use of other heads the program (1a) is used. The program (1b) is executed
when the system simulates not the first step of computation. The input string
has the form qjα, where q is the state in transition relation s ∈ δ(q, a1, . . . , an),
its subscript j refers to the jth reading head, and α ∈ Σ∗ such that |α| = |w|
(w is the input word). Then qj is changed for ▷j in the environmental string,
implying that no action of some other agent can be performed. Meantime, Aj

changes sj for s′j and makes a guess whether symbol aj is to be scanned or the

reading head will remain at the same position. This is done by introducing a
(xj)
j

or a
(x)
j , programs (2) or (2a). Superscript xj refers to that letter aj has not been

scanned by reading head j (x is the sequence of the number of reading heads
that already scanned this symbol). When agent A1 does the same thing (uses
one of programs (2b), (2c)), it also nondeterministically chooses transition s from
the possible transitions δ(q, a1, . . . , an) for given q ∈ Q and arbitrary sequence of
symbols a1, . . . , an. After then, programs (3) or (3a) perform the corresponding

action, namely change ▷ja
(x)
j to a

(xj)
j s′j or leave the two letters unchanged. (Notice

that the order of rules in this type of programs is important). In the first case we
simulate that the jth reading head scanned aj , in the second case it remained at
the same position. Note that if the reading head is in the position of cell with

A Note on a New Class of APCol Systems 67

symbol a, the symbol a is not marked as read in this moment. The symbol a is
read when head is leaving the cell with this symbol. After then, by programs (4),
(5), agent Aj will return to state (▷′j , e) and the simulation of the move of the next
reading head in transition s starts, i.e., the environmental string will have sj+1 as
first letter. If j = n, then the first letter in the environmental string is changed to
q′1, meaning that M entered state q′ and the simulation of the first reading head
starts.

The computation is successful if it is halting and all positions have been visited
by each agents. This is checked by agent Afin and then Ainit. The programs of
Afin are as follows.

(0) ⟨e → e, e → h⟩ ,
(1) ⟨e ↔ qf,1, e → h⟩ ,
(2)

⟨
h ↔ c(z), e → e

⟩
,

(3)
⟨
c(x) → c̄(x), e → e

⟩
,

(4)
⟨
c̄(x) ↔ h, e → e

⟩
,

(5)
⟨
c(y) ↔ #, e → e

⟩
,

(6) ⟨h ↔ ▷j , e → e⟩ ,
(7) ⟨▷j → e, e ↔ h⟩ ,
(8) ⟨# → #, e → e, ⟩ ,

where 1 ≤ j ≤ n, c ∈ Σ, z = pref(perm(1 . . . n)), x = perm(1 . . . n), and
y ̸= perm(1 . . . n).

Agent Afin nondeterministically consumes all symbols in the environmental
string. It checks if each of them has been visited by every agent. This is done by
introducing symbol h in the environmental string. Then, programs of the form (3)
and (4), indicates that the symbol was visited by all agents. If there is a symbol
which does not satisfy this property (program (5)), then symbol # is introduced
which implies that the system will never stop (program (8)). Suppose that this
is not the case, then after a while Afin will not be able to perform any of its
programs. It is easy to see that Afin visited all letters in the environmental word.
To complete the proof, Ainit has to visit all symbols as well. This is done by its
programs of type (3). Since Afin visited all symbols, Ainit will do that too, thus,
the computation halts.

The reader my observe that the agents simulate the transitions of M and
that no agent can work simultaneously. Furthermore, programs of different agents
cannot interfere. Thus, the language accepted by M can be verified by Π. Fur-
thermore, every accepting computation of a word in Π is a verifying computation,
thus Π strongly verifies the language accepted by Π.

4 Conclusions

In this paper we demonstrated a further connection between APCol systems and
automata, as we proved that verifying APCol systems simulate one-way multi-
head finite automata. The new concept, the verifying computation opens further
research directions: describing two-way multihead finite automata, jumping mul-
tihead finite automata in terms of APCol systems. We plan investigations in these
topics in the future.

68 L. Ciencialová, E. Csuhaj-Varjú, G. Vaszil

Acknowledgments.

This work was supported by The Ministry of Education, Youth and Sports from the
National Programme of Sustainability (NPU II) project IT4Innovations excellence
in science - LQ1602, by SGS/13/2016 and by Grant No. 120558 of the National
Research, Development, and Innovation Office, Hungary.

References

1. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: Towards P Colonies Processing
Strings. In: Proc. BWMC 2014, Sevilla, 2014. pp. 103–118. Fénix Editora, Sevilla,
Spain (2014)

2. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: P colonies processing strings. Fun-
damenta Informaticae 134(1-2), 51–65 (2014)

3. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: A Class of Restricted P Colonies
with String Environment. Natural Computing 15(4), 541–549 (2016)

4. L. Ciencialová, E. Csuhaj-Varjú, L. Cienciala, and P. Sośık. P colonies. Bulletin of
the International Membrane Computing Society 1(2):119–156 (2016).

5. Csuhaj-Varjú, E., Kelemen, J., Păun, Gh., Dassow, J.(eds.): Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach Science
Publishers, Inc., Newark, NJ, USA (1994)

6. Csuhaj-Varjú, E., Vaszil, G.: Finite dP Automata versus Multi-head Finite Automata
In: Gheorghe, M. et. al. (eds.) CMC 2011, LNCS, vol. 7184, pp. 120-138. Springer-
Verlag, Berlin Heidelberg (2012)

7. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Ori-
gins and directions, Theoretical Computer Science 412, 83–96 (2011)

8. Kelemenová, A.: P Colonies. Chapter 23.1, In: Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) The Oxford Handbook of Membrane Computing, pp. 584–593. Oxford Uni-
versity Press (2010)

9. Kelemen, J., Kelemenová, A., Păun, G.: Preview of P Colonies: A Biochemically
Inspired Computing Model. In: Workshop and Tutorial Proceedings. Ninth Interna-
tional Conference on the Simulation and Synthesis of Living Systems (Alife IX). pp.
82–86. Boston, Mass (2004)

10. Kelemen, J., Kelemenová, A.: A Grammar-Theoretic Treatment of Multiagent Sys-
tems. Cybern. Syst. 23(6), 621–633 (1992),

11. Meduna, A., Zemek, P.: Jumping Finite Automata. Int. J. Found. Comput. Sci. 23(7),
1555–1578 (2012)

12. Păun, Gh., Rozenberg, G., Salomaa, A.(eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Inc., New York, NY, USA (2010)

13. Rozenberg, G., Salomaa, A.(eds.): Handbook of Formal Languages I-III. Springer
Verlag., Berin-Heidelberg-New York (1997)

