
P Colony Automata with LL(k)-like Conditions ⋆

Erzsébet Csuhaj-Varjú1, Kristóf Kántor2, and György Vaszil2

1 Department of Algorithms and Their Applications
Faculty of Informatics, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
csuhaj@inf.elte.hu

2 Department of Computer Science, Faculty of Informatics
University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
{kantor.kristof, vaszil.gyorgy}@inf.unideb.hu

Summary. We investigate the possibility of the deterministic parsing (that is, parsing
without backtracking) of languages characterized by (generalized) P colony automata.
We define a class of P colony automata satisfying a property which resembles the LL(k)
property of context-free grammars, and study the possibility of parsing the characterized
languages using a k symbol lookahead, as in the LL(k) parsing method for context-free
languages.

1 Introduction

The computational model called P colony is similar to tissue-like membrane sys-
tems, where multisets of objects are used to describe the contents of the cells and
environment and then are processed by the cells in the corresponding colony using
rules which enable the evolution of the objects present in the cells and the ex-
change of objects between the environment and the cells. These computing agents
have a very confined functionality: they can store a restricted amount of objects
at a given time (this is called the capacity of the system) and they can process
a restricted amount of information. The way the information processing is done
is really simple: The rules are either of the form a → b (for changing an object a
into an object b inside the cell), or a ↔ b (for exchanging an object a inside a cell
with an object b in the environment). A rule set is called a program, it consists of
exactly the same number of rules as the capacity of the system. When a program
is executed, the k (the capacity of the system) rules that it contains are applied to

⋆ Supported in part by project no. K 120558, implemented by the National Research, De-
velopment and Innovation Fund of Hungary, financed under the K 16 funding scheme.
Also supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002, a project fi-
nanced by the European Union, co-financed by the European Social Fund.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/189093368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

70 E. Csuhaj-Varjú, K. Kántor, G. Vaszil

the k objects simultaneously. During a computational step, every colony member
cell execute one of their programs in parallel. A computation ends when the sys-
tem reaches one of its the final configurations (usually given as the set of halting
configurations, that is, those situations when no programs can be applied by any
of the cells).

There are many theoretical results concerning P colonies. Despite the fact that
they are extremely simple computing systems, they are computationally complete,
even with very restricted size parameters and other syntactic or functioning re-
strictions. For these, and more topics, results, see [5, 6, 4, 3, 8, 9, 11, 12].

P colony automata were introduced in [2]. They are called automata, because
they accept string languages by assuming an initial input tape and an input string
in the environment. The available types of rules are extended by so called tape
rules. These types of rules in addition to manipulating the objects as their non-tape
counterparts, also read the processed objects from the input tape.

To overcome the difficulty that different tape rules can read different symbols
in the same computational step, generalized P colony automata were introduced
in [13] and studied further in [15, 14]. The main idea of this computational model
was to get the process of input reading closer to other kinds of membrane systems,
especially to antiport P systems and P automata. The latter, introduced in [10] (see
also [7]) are P systems using symport and antiport rules (see [16]), characterizing
string languages.

This generality is used in the generalized P colony automata theory, that is,
the idea of characterizing strings through the sequences of multisets processed
during computations. A computation in this model defines accepted multiset se-
quences, which are transformed into accepted symbol sequences / strings. In this
model there is no input string, but there are tape and non-tape rules equally for
evolution and communication rules. In a single computational step, this system is
able to read more than one symbol, thus reading a multiset. This way generalized
P colony automata are able to avoid the conflicts present in P Colony automata,
where simultaneous usage of tape rules in a single computational step can arise
problems. After getting the result of a computation, that is, the accepted sequence
of multisets, it is possible to map them to strings in a similar way as shown in P
automata.

In [13], some basic variants of the model were introduced and studied from the
point of view of their computational power. In [15, 14] we continued the investi-
gations structuring our results around the capacity of the systems, and different
types of restrictions imposed on the use of tape rules in the programs of the sys-
tems. In the present paper we study the possibility of deterministically parsing
the languages characterized by these devices. We define the so called LL(k) condi-
tion for these types of automata, which enables deterministic parsing with a one
symbol lookahead, as in the case of context-free LL(k) languages, and present an
initial result showing that using P colony automta we can deterministically parse
context-free languages that are not LL(k) in the “original” sense.

P Colony Automata with LL(k)-like Conditions 71

2 Preliminaries and Definitions

Let V be a finite alphabet, let the set of all words over V be denoted by V ∗, and
let ε be the empty word. We denote the number of occurrences of a symbol a ∈ V
in w by |w|a.

A multiset over a set V is a mapping M : V → N where N denotes the set of
non-negative integers. This mapping assigns to each object a ∈ V its multiplicity
M(a) in M . The set supp(M) = {a | M(a) ≥ 1} is the support of M . If V is a
finite set, then M is called a finite multiset. A multiset M is empty if its support
is empty, supp(M) = ∅. The set of finite multisets over the alphabet V is denoted
by M(V). A finite multiset M over V will also be represented by a string w over
the alphabet V with |w|a = M(a), a ∈ V , the empty multiset will be denoted by
∅.

We say that a ∈ M if M(a) ≥ 1, and the cardinality of M , card(M) is defined
as card(M) = Σa∈MM(a). For two multisets M1,M2 ∈ M(V), M1 ⊆ M2 holds, if
for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2 is defined as (M1 ∪M2) :
V → N with (M1∪M2)(a) = M1(a)+M2(a) for all a ∈ V , the difference is defined
for M2 ⊆ M1 as (M1 −M2) : V → N with (M1 −M2)(a) = M1(a)−M2(a) for all
a ∈ V .

A genPCol automaton of capacity k and with n cells, k, n ≥ 1, is a construct

Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F)

where

• V is an alphabet, the alphabet of the automaton, its elements are called objects;
• e ∈ V is the environmental object of the automaton, the only object which is

assumed to be available in an arbitrary, unbounded number of copies in the
environment;

• wE ∈ (V − {e})∗ is a string representing a multiset from M(V − {e}), the
multiset of objects different from e which is found in the environment initially;

• (wi, Pi), 1 ≤ i ≤ n, specifies the i-th cell where wi is (the representation of) a
multiset over V , it determines the initial contents of the cell, and its cardinality
|wi| = k is called the capacity of the system. Pi is a set of programs, each
program is formed from k rules of the following types (where a, b ∈ V):

– tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and
communication tape rules, respectively; or

– nontape rules of the form a → b, or a ↔ b, called rewriting (nontape) rules
and communication (nontape) rules, respectively.

A program is called a tape program if it contains at least one tape rule.
• F is a set of accepting configurations of the automaton which we will specify

in more detail below.

A genPCol automaton reads an input word during a computation. A part
of the input (possibly consisting of more than one symbols) is read during each

72 E. Csuhaj-Varjú, K. Kántor, G. Vaszil

configuration change: the processed part of the input corresponds to the multiset
of symbols introduced by the tape rules of the system.

A configuration of a genPCol automaton is an (n + 1)-tuple (uE , u1, . . . , un),
where uE ∈ M(V − {e}) is the multiset of objects different from e in the envi-
ronment, and ui ∈ M(V), 1 ≤ i ≤ n, are the contents of the i-th cell. The initial
configuration is given by (wE , w1, . . . , wn), the initial contents of the environment
and the cells. The elements of the set F of accepting configurations are given as
configurations of the form (vE , v1, . . . , vn), where

• vE ∈ M(V − {e}) denotes a multiset of objects different from e being in the
environment, and

• vi ∈ M(V), 1 ≤ i ≤ n, is the contents of the i-th cell.

In order to describe the functioning of genPCol automata, let us define the
following multisets. Let r be a rewriting or a communication rule (tape or nontape),
and let us denote by left(r) and right(r) the objects on the left and on the right
side of r, respectively.

Let also, for α ∈ {left, right} and for any program p, α(p) =
∪

r∈p α(r) where
the union denotes multiset union (as defined above), and for a rule r and program
p = ⟨r1, . . . , rk⟩, the notation r ∈ p denotes the fact that r is one of the rules of
the program, that is, r = rj for some j, 1 ≤ j ≤ k.

Moreover, for any tape program p we also define read(p) as the multiset of
symbols (different from e) on the right side of rewriting tape rules and on the
left side of communication tape rules, that is, read(p) =

∪
r∈p,r=a

T→b,b̸=e
right(r)∪∪

r∈p,r=a
T↔b,a̸=e

left(r). If p is not a tape program, that is, p contains no tape rules,

then read(p) = ∅.
Let us also denote by export(p) and import(p) the multiset of objects that are

sent out to the environment and brought inside the cell when applying the program
p, respectively, that is, export(p) =

∪
r∈p left(r), import(p) =

∪
r∈p right(r) for

all communication rules r of the program p. Moreover, by create(p) we denote the
multiset of symbols produced by the rewriting rules of program p, thus, create(p) =∪

r∈p right(p) for the rewriting rules r of p.
Let c = (uE , u1, . . . , un) be a configuration of a genPCol automaton Π, and

let UE = uE ∪ {e, e, . . .}, thus, the multiset of objects found in the environment
(together with the infinite number of es which are always present). The set of
programs

(p1, . . . , pn) ∈ (P1 ∪ {#})× . . .× (Pn ∪ {#})

is applicable in configuration c, if the following conditions hold.

• The selected programs are applicable in the cells (the left sides of the rules
contain the same symbols that are present in the cell), that is, for each 1 ≤ i ≤
n, if pi ∈ Pi then left(pi) = ui;

• the symbols to be brought inside the cells by the programs are present in the
environment, that is,

∪
pi ̸=#,1≤i≤n import(pi) ⊆ UE ;

P Colony Automata with LL(k)-like Conditions 73

• the set of selected programs is maximal, that is, if any pi = # is replaced by
some p′i ∈ Pi, 1 ≤ i ≤ n, then the above conditions are not satisfied any more.

Let us denote by Appc be the set of all applicable sets of programs in the
configuration c = (uE , u1, . . . , un), that is,

Appc = {Pc = (p1, . . . , pn) ∈ (P1 ∪ {#})× . . .× (Pn ∪ {#}) | where Pc

is a set of applicable programs in the configuration c}.

Let c = (uE , u1, . . . , un) be a configuration of the genPCol automaton. By
applying a set of applicable programs Pc ∈ Appc , the configuration c is changed

to a configuration c′ = (u′
E , u

′
1, . . . , u

′
n), denoted by c

Pc=⇒ c′, if the following
properties hold:

• If (p1, . . . , pn) = Pc and pi ∈ Pi, then u′
i = create(pi) ∪ import(pi), otherwise,

if pi = #, then u′
i = ui, 1 ≤ i ≤ n. Moreover,

• U ′
E = UE −

∪
pi ̸=#,1≤i≤n import(pi)∪

∪
pi ̸=#,1≤i≤n export(pi) (where U

′
E again

denotes u′
E ∪ {e, e, . . .} with an infinite number of es).

Thus, in genPCol automata, we apply the programs in the maximally parallel
way, that is, in each computational step, every component cell nondeterministically
applies one of its applicable programs. Then we collect all the symbols that the
tape rules “read” (these multisets are denoted by read(p) for a program p above):
this is the multiset read by the system in the given computational step. For any
Pc, a set of applicable programs in a configuration c, let us denote by read(Pc)
the multiset of objects read by the tape rules of the programs of Pc, that is,

read(Pc) =
∪

pi ̸=#, (p1,...,pn)=Pc

read(pi).

Then we can also define the set of multisets which can be read in any configu-
ration of the genPCol automaton Π as

in(Π) = {read(Pc) | Pc ∈ Appc}.

Remark 1. Although the set of configurations of a genPCol automaton Π is infinite
(because the multiset corresponding to the contents of the environment is not
necessarily finite), the set in(Π) is finite. To see this, note that the applicability
of a program by a component cell also depends on the contents of the particular
component. Since at most one program can be applied in a component in one
computational step, and the number of programs associated to each component
is finite, the number of different sets of applicable programs in any configuration,
that is, the set Appc.

A successful computation defines this way an accepted sequence of multisets:
u1u2 . . . us, ui ∈ in(Π), for 1 ≤ i ≤ s, that is, the sequence of multisets entering
the system during the steps of the computation.

74 E. Csuhaj-Varjú, K. Kántor, G. Vaszil

Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F) be a genPCol automaton. The set
of input sequences accepted by Π is defined as

A(Π) = {u1u2 . . . us | ui ∈ in(Π), 1 ≤ i ≤ s, and there is a configuration

sequence c0, . . . , cs, with c0 = (wE , w1, . . . , wn), cs ∈ F, and

ci
Pci=⇒ ci+1 with ui+1 = read(Pci) for all 0 ≤ i ≤ s− 1}.

Let Π be a genPCol automaton, and let f : in(Π) → 2Σ
∗
be a mapping, such

that f(u) = {ε} if and only if u is the empty multiset.
The language accepted by Π with respect to f is defined as

L(Π, f) = {f(u1)f(u2) . . . f(us) ∈ Σ∗ | u1u2 . . . us ∈ A(Π)}.

Let us denote the class of languages accepted by generalized PCol automata
with capacity l and with mappings from the class F

• by L(genPCol,F , com-tape(l)) when all the communication rules are tape rules,
• by L(genPCol,F , all-tape(l)) when all the programs must have at least one

tape rule, and
• by L(genPCol,F , ∗(l)) when programs with any kinds of rules are allowed.

Let V and Σ be two alphabets, and let MFIN (V) ⊆ M(V) denote the set of
finite subsets of the set of finite multisets over an alphabet V . Consider a mapping
f : D → 2Σ

∗
for some D ∈ MFIN (V). We say that f ∈ FTRANS, if for any

v ∈ D, we have |f(v)| = 1, and we can obtain f(v) = {w}, w ∈ Σ∗ by applying
a deterministic finite transducer to any string representation of the multiset v,
(as w is unique, the transducer must be constructed in such a way that all string
representations of the multiset v as input result in the same w ∈ Σ∗ as output,
and moreover, as f should be nonerasing, the transducer produces a result with
w ̸= ε for any nonempty input).

Besides the above defined class of mappings, we also use the so called permu-
tation mapping. Let fperm : M(V) → 2Σ

∗
where V = Σ be defined as follows. For

all v ∈ M(V), we have

f(v) = {a1a2 . . . as | |v| = s, a1a2 . . . as is a permutation of the elements of v}.

We denote the language classes that can be characterized with these types
of input mappings as LX(genPCol, Y (k)), where X ∈ {fperm,TRANS}, Y ∈
{com-tape, all-tape, ∗}.

Now we recall an example from [14] to demonstrate the above defined notions.

Example 1. Let Π = ({a, b, c}, e, ∅, (ea, P), F) be a genPCol automaton where

P = {⟨e → a, a
T↔ e⟩, ⟨e → b, a

T↔ e⟩, ⟨e → b, b
T↔ a⟩, ⟨e → c, b

T↔ a⟩,

⟨a → b, b
T↔ a⟩, ⟨a → c, b

T↔ a⟩}

P Colony Automata with LL(k)-like Conditions 75

with all the communication rules being tape rules. Let also F = {(v, ca) | a ̸∈ v}
be the set of final configurations.

A possible computation of this system is the following:

(∅, ea) ⇒ (a, ea) ⇒ (aa, ea) ⇒ (aaa, eb) ⇒ (aab, ba) ⇒ (bba, ba) ⇒ (bbb, ac)

where the first three computational steps read the multiset containing an a, the
last three steps read a multiset containing a b, thus the accepted multiset sequence
of this computation is (a)(a)(a)(b)(b)(b).

It is not difficult to see that similarly to the one above, the computations which
end in a final configuration (a configuration which does not contain the object a
in the environment) accept the set of multiset sequences

A(Π) = {(a)n(b)n | n ≥ 1}.

The set of multisets which can be read by Π is in(Π) = {a, b} (where a and b
denote the multisets containing one copy of the object a and b, respectively).

If we consider fperm as the input mapping, we have

L(Π, fperm) = {anbn | n ≥ 1}.

On the other hand, if we consider the mapping f1 ∈ FTRANS where f1 :
in(Π) → 2Σ

∗
with Σ = {c, d, e, f} and f1(a) = {cd}, f1(b) = {ef}, we get

the language
L(Π, f1) = {(cd)n(ef)n | n ≥ 1}.

The computational capacity of genPCol automata was investigated in [13, 15,
14]. It was shown that with unrestricted programs systems of capacity one generate
any recursively enumerable language, that is,

LX(genPCol, ∗(k)) = L(RE), k ≥ 1, X ∈ {perm, TRANS}.

A similar result holds for all-tape systems with capacity at least two.

LX(genPCol, all-tape(k)) = L(RE) for k ≥ 2, X ∈ {perm, TRANS}.

.

3 P Colony Automata and the LL(k) Condition

Let U ⊂ Σ∗ be a finite set of strings over some alphabet Σ. Let us denote by
FIRSTk(U) for some k ≥ 1, the set of length k prefixes of the elements of U , that
is, let

FIRSTk(U) = {prefk(u) ∈ Σ∗ | u ∈ U}

where prefk(u) denotes the string of the first k symbols of u if |u| ≥ k, or
prefk(u) = u otherwise.

76 E. Csuhaj-Varjú, K. Kántor, G. Vaszil

Definition 1. Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F) be a genPCol automa-
ton, let f : in(Π) → 2Σ

∗
be a mapping as above, and let c0, c1, . . . , cs be a sequence

of configurations with ci =⇒ ci+1 for all 0 ≤ i ≤ s− 1.
We say that the P colony Π is LL(k) for some k ≥ 1 with respect to the

mapping f , if for any two distinct sets of programs applicable in configuration
cs, P1, P2 ∈ Acccs with P1 ̸= P2, if u1 = read(P1) and u2 = read(P2), then
FIRSTk(f(u1)) ∩ FIRSTk(f(u2)) = ∅.

The class of context-free LL(k) languages will be denoted by L(CF,LL(k)) (see for
example the monograph [1] for more details), while the the languages characterized
by genPCol automata satisfying the above defined condition, with input mapping
of type fperm or f ∈ TRANS, will be denoted by LX(genPCol,LL(k)), X ∈
{perm, TRANS}.

Let us illustrate the above definition with an example.

Example 2. Let Π = ({a, b, c, d, f, g, e}, e, ∅, (ea, P1), F) where

P1 = {⟨e → b, a
T↔ e⟩, ⟨e → e, b

T↔ a⟩, ⟨e → c, a
T↔ e⟩, ⟨e → f, a

T↔ e⟩,

⟨e → d, c
T↔ b⟩, ⟨b → c, d

T↔ e⟩, ⟨e → g, f
T↔ b⟩, ⟨b → f, g

T↔ e⟩} and

F = {(v, ce), (v, fe) | v ∈ V ∗, b ̸∈ v}.

The language characterized by Π is

L(Π, fperm) = {a} ∪ {(ab)na(cd)n | n ≥ 1} ∪ {(ab)na(fg)n | n ≥ 1}.

To see this, consider the possible computations of Π. The initial configuration
is (∅, ea) and there are three possible configurations that can be reached, namely
(we denote by ⇒u a configuration change during which the multiset of symbols u
was read by the automaton)

1. (∅, ea) ⇒a (a, ce),
2. (∅, ea) ⇒a (a, fe),
3. (∅, ea) ⇒a (a, be).

The first two cases are non-accepting states, but the derivations cannot be contin-
ued, so let us consider the third one.

(a, be) ⇒b (b, ea) ⇒a (ba, be) ⇒b (bb, ea) ⇒a . . . ⇒b (b
i, ea).

At this point, the computation can follow two different paths again, either

(bi, ae) ⇒a (bia, ec) ⇒c (b
i−1ac, db) ⇒d (bi−1acd, ce) ⇒c . . . ⇒d (acidi, ce),

or

(bi, ae) ⇒a (bia, ef) ⇒f (bi−1af, gb) ⇒g (bi−1afg, fe) ⇒f . . . ⇒g (af igi, fe).

P Colony Automata with LL(k)-like Conditions 77

In the first phase of the computation, the system produces bs and sends them to
the environment, then in the second phase these bs are exchanged to cds or fgs.
The system can reach an accepting state when all the bs are used, that is, when
an equal number of abs and either cds or fgs were produced.

Note that the system satisfies the LL(1) property, the symbol that has to be
read, in order to accept a desired input word, determines the set of programs that
has to be used in the next computational step.

As a consequence of the above example, we can state the following.

Theorem 1. There are context-free languages in LX(genPCol,LL(1)), X ∈ {perm,
TRANS}, which are not in L(CF,LL(k)) for any k ≥ 1.

Proof. The language L(Π, fperm) ∈ Lperm(genPCol,LL(1)) from Example 2 is
not in L(CF,LL(k)) for any k ≥ 1. If we consider the mapping f1 ∈ TRANS,
f1 : {a, b, c, d, f, g} → {a, b, c, d, f, g} with f1(x) = x for all x ∈ {a, b, c, d, f, g},
then L(Π, f1) = L(Π, fperm), thus, LTRANS(genPCol,LL(1)) also contains the
non-LL(k) context-free language.

4 Conclusions

We have investigated the possibility of deterministically parsing languages char-
acterized by P colony automata. We have given the definition of an LL(k)-like
property for (generalized) P colony automata, and shown that languages which
are not LL(k) in the “original” context-free sense for any k ≥ 1 can be character-
ized by LL(1) P colony automata with different types of input mappings.

The properties of these language classes for different ks and different types of
input mappings are open to further investigations.

References

1. Aho, A.V., Ulmann, J.D.: The Theory of Parsing, Translation, and Compiling, vol. 1.
Prentice-Hall, Englewood Cliffs, N.J. (1973)

2. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E., Vaszil, G.: Pcol automata: Recogniz-
ing strings with P colonies. In: Mart́ınez del Amor, M.A., Păun, G., Pérez Hurtado,
I., Riscos Núñez, A. (eds.) Eighth Brainstorming Week on Membrane Computing,
Sevilla, February 1-5, 2010, pp. 65–76. Fénix Editora (2010)

3. Cienciala, L., Ciencialová, L., Kelemenová, A.: On the number of agents in P colonies.
In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing, 8th International Workshop, WMC 2007, Thessaloniki, Greece,
June 25-28, 2007 Revised Selected and Invited Papers. Lecture Notes in Computer
Science, vol. 4860, pp. 193–208. Springer (2007)

4. Cienciala, L., Ciencialová, L., Kelemenová, A.: Homogeneous P colonies. Computing
and Informatics 27(3+), 481–496 (2008)

78 E. Csuhaj-Varjú, K. Kántor, G. Vaszil

5. Ciencialová, L., Cienciala, L.: Variation on the theme: P colonies. In: Kolăr, D.,
Meduna, A. (eds.) Proc. 1st Intern. Workshop on Formal Models. pp. 27–34. Ostrava
(2006)

6. Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., Vaszil, G.: Variants of P colonies
with very simple cell structure. International Journal of Computers, Communication
and Control 4(3), 224–233 (2009)

7. Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: P automata. In: Păun, G., Rozenberg,
G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing. Oxford
University Press, Inc. (2010)

8. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A.: Computing with cells in environ-
ment: P colonies. Multiple-Valued Logic and Soft Computing 12(3-4), 201–215 (2006)

9. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G.: P colonies with a bounded number
of cells and programs. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A.
(eds.) Membrane Computing, 7th International Workshop, WMC 2006, Leiden, The
Netherlands, July 17-21, 2006, Revised, Selected, and Invited Papers. Lecture Notes
in Computer Science, vol. 4361, pp. 352–366. Springer (2006)

10. Csuhaj-Varjú, E., Vaszil, G.: P automata or purely communicating accepting P sys-
tems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Com-
puting, International Workshop, WMC-CdeA 2002, Curtea de Arges, Romania, Au-
gust 19-23, 2002, Revised Papers. Lecture Notes in Computer Science, vol. 2597, pp.
219–233. Springer (2002)

11. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the
sequential mode. In: Zaharie, D., Petcu, D., Negru, V., Jebelean, T., Ciobanu, G.,
Cicortas, A., Abraham, A., Paprzycki, M. (eds.) Seventh International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005),
25-29 September 2005, Timisoara, Romania. pp. 419–426. IEEE Computer Society
(2005)

12. Freund, R., Oswald, M.: P colonies and prescribed teams. Int. J. Comput. Math.
83(7), 569–592 (2006)

13. Kántor, K., Vaszil, G.: Generalized P colony automata. Journal of Automata, Lan-
guages and Combinatorics 19(1-4), 145–156 (2014)

14. Kántor, K., Vaszil, G.: Generalized P colony automata and their relation to P au-
tomata. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane
Computing - 18th International Conference, CMC 2017, Bradford, UK, July 25-28,
2017, Revised Selected Papers. Lecture Notes in Computer Science, vol. 10725, pp.
167–182. Springer (2017)

15. Kántor, K., Vaszil, G.: On the classes of languages characterized by generalized P
colony automata. Theor. Comput. Sci. 724, 35–44 (2018)

16. Păun, A., Păun, G.: The power of communication: P systems with symport/antiport.
New Generation Comput. 20(3), 295–306 (2002)

