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Abstract

In this thesis we present a new take on two classic problems of game theory: the “mul-
tiarmed bandit” problem of dynamic learning, and the “Colonel Blotto” game, a multidi-
mensional contest.

In Chapters 2-4 we treat the questions of experimentation with congestion: how do
players search and learn about options when they are competing for access with other
players? We consider a bandit model in which two players choose between learning about
the quality of a risky option (modelled as a Poisson process with unknown arrival rate),
and competing for the use of a single shared safe option that can only be used by one
agent at the time.

We present the equilibria of the game when switching to the safe option is irrevocable,
and when it is not. We show that the equilibrium is always inefficient: it involves too
little experimentation when compared to the planner solution. The striking equilibrium
dynamics of the game with revocable exit are driven by a strategic option-value arising
purely from competition between the players. This constitutes a new result in the bandit
literature. Finally we present extensions to the model. In particular we assume that

players do not observe the result of their opponent’s experimentation.

In Chapter 5 we turn to the n-dimensional Blotto game and allow battlefields to have
different values. We describe a geometrical method for constructing equilibrium distri-
bution in the Colonel Blotto game with asymmetric battlefield values. It generalises the
3-dimensional construction method first described by Gross and Wagner (1950). The pro-
posed method does particularly well in instances of the Colonel Blotto game in which the
battlefield weights satisfy some clearly defined regularity conditions. The chapter also
explores the parallel between these conditions and the integer partitioning problem in

combinatorial optimisation.
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Chapter 1

Introduction

In this thesis we present a new take on two classic problems of game the-
ory: the “multiarmed bandit” problem of dynamic learning, and the “Colonel
Blotto” game, a multidimensional contest. In Chapters 2-4 we treat the ques-
tions of experimentation with congestion: how do players search and learn
about options when they are competing for access with other players? In
Chapter 5 we explore the n-dimensional Blotto game when battlefield values

can vary.

In the standard multiarmed bandit problem, a player faces several objects
delivering stochastic payoffs. Each object is associated with a distribution
that is unknown to the player, but about which he can learn by sampling.
This class of problems is commonly used to illustrate the situation faced by
a player whose information about, say, his valuation for an object is slow to
arrive. At each trial the player faces the trade-off between “exploitation”,

i.e. maximising his expected payoff based on information he already has, and



CHAPTER 1. INTRODUCTION

“exploration” | i.e. looking for information about other sources of payoff.

In this thesis we consider an extension of the multiarmed bandit problem
in which two players are simultaneously learning about their (independent)
valuation of options, and can get in each other’s way: while one player is
experimenting with one option, the other player can use any other option
but this one.

This model addresses the question of how players search and learn about
options when they are in competition with other players. Consider an agent
who searches for an option with which to be matched: a job, a spouse, a
second-hand car, a flat-share. Information about the quality of a match is
slow to arrive. In this context it is natural to think about the option as
a one-armed bandit. If there are other agents in the market engaging in
similar search and only one agent at a time can access an option, we refer to
this phenomenon as congestion. For instance to learn about the quality of a
second-hand car, you need to take it for a test-drive. While you are doing
this no other agent can.

Spending time learning about the quality of an option is costly in that it
involves the risk of losing access to other options. While you are test-driving
one car, other agents may be buying other cars without you having had
the opportunity to test these. This can be thought of as the opportunity-
cost of learning. At the same time, you may now be willing to spend more
time learning about that one car if you knew that another potential buyer is
interested in it. If you leave it, he is likely to buy it, making it henceforth
unavailable to you. There is a pressure exerted by the “second in line”.

These sorts of considerations are common in all kinds of strategic situa-



CHAPTER 1. INTRODUCTION

tions. In the race towards developing a new technology a firm’s incentive to
invest in a new research project rather than relying on some averred method
depends on the strategy of the competitor if the market can only support
one producer. The love interest of a pretender may be enhanced by the pres-
ence of a rival. When looking for a parking-space, do we take the one we
just spotted or continue driving in the hope of finding a space closer to the
cinema, but at the risk of losing the first one?

Furthermore, the fact that buyers may come to face these strategic situ-
ations has been internalised by some markets. For instance, web-sites like
Amazon or Opodo will tell you when there is only one copy of this book
left in stock, or only one seat left on that airplane, thus bringing to your
attention that browsing one more book or flight may come at the cost of
losing the one you just considered. We could also think of tips for wedding-
gown sales provided in the feminine press for so-called ’bride-runs’: during
wedding-gown sales, brides-to-be are advised to ask friends along who can
then hold on to gowns they don’t want to return to the floor, where other
potential buyers may take them.

The notion of congestion we consider bears some resemblance to the idea
of exploding offer. A buyer either has to settle for an option now, or risk
losing it to someone else, and then wait until they maybe leave the option
before he can access it. Rather than the offer expiring exogenously, it expires

because someone else has taken it.

The aim of the first chapters is to propose a simple model of experimen-

tation with congestion, in which to analyse the trade-offs from strategic in-
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teraction. We are not attempting to capture some particular market as best
we can, but rather, to offer a framework in which we can isolate the new
strategic considerations that emerge as a result of congestion. To this end,
we consider a model in which two players choose between learning about the
quality of their risky option and switching to a common option. In this mar-
ket, congestion arises if both players want to be matched with the common
option. To underline the strategic incentives around the common option, we
assume that nothing can be learned from it: it is “safe” in that it delivers a
known constant flow-payoff.

Risky options are modelled as Poisson processes whose arrival rates are
unknown to the players. We also assume that the arrival rates of the risky
options are independent so that each player can learn nothing about the
quality of his risky option from the actions or payoffs of the other player.
Each risky option is either “good” and yields a lump-sum payoff of 1 at rate
A to the player activating it, or it is “bad” and always yields zero. This
assumption makes the motion of beliefs monotonic: as long as a risky option
is activated and does not produce a success, the belief about the quality of
that option decreases. Once an option has produced a success, it is known
to be good. So in our model, the strategic interaction takes place as players
wait for the first Poisson event. During the game, players observe each other’s
actions and payoffs and so share a common belief about the qualities of the
risky options.

The safe option yields a flow payoff of 0 < a < A with certainty to the
player occupying it and this is common knowledge. A player who occupies

the safe option gains absolute priority over its use; his opponent can then
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only use the safe option if the first player leaves it and returns to his risky
option. If both simultaneously decide to move from their risky option to the
safe option, then a tie-break rule specifies the probability with which either

player gains access to the safe option.

posont | s | [pson |

A Po o A
0 (Ipo) (Irg) O

Each player has access to his risky option and to a shared safe option that can
only be occupied by one player at a time. Player i’s risky option is good with prior

probability po, player j’s with prior probability qq.

Our main result is two-fold: First, we show that strong preemption motives
arising as part of the strategic interaction mean that the equilibrium always
involves inefficiently low levels of experimentation and unraveling of the exit
decision. This was to be expected in light of the literature on preemption
games (Fudenberg and Tirole (1985)), and our model affords us a clear il-
lustration of the mechanism leading to the inefficiency. The second, more
striking result is that when the exit decision is revocable, in equilibrium a
player may strategically block the safe option temporarily in order to force
the other player to experiment. This is possible because the first player can
commit to leaving the safe option eventually, even as his opponent’s demand

for the safe option intensifies.

10
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The main finding of this part of the thesis lies in recognising that there ex-
ists a strategic option-value associated with occupying an option. This has a
number of interesting implications. First, it gives rise to behaviour excluded
in the standard bandit model, in particular the temporary interruption of
experimentation. This is because congestion may make options more attrac-
tive than they would be without. Second, it implies that preemption need

not be irreversible.

To our knowledge, this model is the first to present the disappearance of
an option from a multi-armed bandit as the result of strategic interaction.
Dayanik et al.| (2008) examine the performance of a generalised Gittins In-
dex for the case in which a player must decide at each point in time which
of N arms to activate, knowing that arms may exogenously break down, and
thereby disappear from the choice set, temporarily or permanently. In par-
ticular they observe that the potential disappearance of arms may disrupt
learning as the optimal policy is increasingly biased towards maximising one’s
payoff based on current information (“exploitation”) and away from acquir-
ing new information (“exploration”) as the probabilities of breakdown of
arms increase.

In the economic literature, multi-armed bandit models have been aug-
mented with various other strategic complications. For instance, Keller,
Rady, and Cripps| (2005) assume that all players want to learn about the same
risky arm whose payoff realisations are publicly observable so that players
have an incentive to free-ride on the experimentation of others. |Murto and

Valimaki| (2011)) assume that the qualities of different arms are correlated

11
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but their payoff realisations are private information to the players who only
observe one another’s decision to continue experimenting or stop. They find
that information aggregates in distinct burst of activity, or “exit waves”.
In particular, multi-armed bandit models have been widely used to model
job search (Jovanovic| (1979)) and more recently to describe within-firm job
allocations and trial periods for new recruits once their wage contract has
been set. The explicit modelling of prices can then be dispensed with. For
instance, Camargo and Pastorino| (2010) point out that incentive pay is not
widespread when employment happens at a probationary stage.

The bandit problem translates into the job assignment example as fol-
lows: Assuming that the productive characteristics of a new recruit are not
perfectly observable, but that information about a worker’s ability can be ac-
quired by observing the worker’s performance on a given task, the employer
trades off the profit loss he may incur if the new recruit is ill-suited to the
task with the benefit of acquiring new information about that worker’s skill.
If the worker does not know his own skill, he faces a similar problem.

In the context of our model, consider a firm in which two workers have
been recruited to perform identical jobs. Each worker does not yet know his
level of skill at that particular task, and both workers’ skills are independent.
If he discovers that he is skilled, a worker’s expected payoff is positive, if he
is unskilled, his payoff is zero. At any time, a worker can ask for the support
of a scarce management resource. In that case credit is irrevocably shared
and the worker earns less than if he were skilled and succeeded by himself,
but more than if he were unskilled and trying to work by himself. Crucially,

the manager can assist only one worker at a time.

12
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If the initiative to assist workers lies with the manager, he behaves like a
social planner. We find that he would optimally let workers try to solve the
task by themselves for longer than he would if there were only one worker.
If on the other hand, it is the worker’s decision to solicit the manager’s
assistance, workers face a strategic situation in which the trade-off between
learning and collecting a payoff is supplemented by a race to the safe option.
We find that in equilibrium, the threat of congestion makes workers act
increasingly myopically, leading to extreme inefficiencies.

More generally in the context of two-sided matching markets in which
information about the quality of a match arrives slowly, the inefficient un-
ravelling caused by the incentive to anticipate the decision of opponents is
well documented, for instance in markets for lawyers (Posner et al. (2001)))
or gastroenterologists (Niederle and Rothl (2009))). A popular example in
the economic literature is the US market for new doctors (Roth| (1984)). In
the early 1940’s hospitals would hire medical students as future interns or
residents two years in advance of their graduation, so that the matching was
done before crucial information about students (such as skills or preferences
for a particular medical specialisation) became available. The results in this
thesis may contribute to better understanding pathologies of decentralised
matching markets, in which agents only gradually learn about the quality of
their match.

To illustrate the equilibrium when the decision to switch to the common
option is assumed to be revocable, we can think of the village sweetheart
who has two suitors. Only one suitor at a time may date the sweetheart,

or they may pursue their search for a partner in the city, where there is

13
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no congestion. In equilibrium we find that the suitor who is most likely to
be successfully paired in the city will date the village sweetheart first with
the sole aim of deterring the rival, who is then forced to search in the city.
If the rival were successfully paired there, the first suitor would be able to
also search in the city or return to the village sweetheart without fear of
rivals. But in equilibrium we find that the first suitor will eventually leave
the sweetheart and search in the city even if the rival’s claim to the village

sweetheart is not dropped, but intensified.

The thesis is organised as follows: In Chapter 2 we formally model the risky
and the safe options, the evolution of beliefs about the quality of the risky
options as well as the rules of precedence for access to the congested safe op-
tion. These will constitute the building blocks for subsequent Chapters. We
then present a set of efficient benchmarks. When there is no congestion, the
planner problem reduces to a single-player two-armed bandit problem. We
define the myopic and the optimal threshold beliefs, which will be recurring
concepts throughout the thesis. When there is congestion we describe the
planner solution for the case where the decision to allocate a player to the
safe option is irrevocable and then when that decision is revocable.

In Chapter 3 we consider the two-player games in which we present the
trade-offs from strategic interaction and derive the Markov Perfect Equilib-
ria of the games, again distinguishing between the cases of irrevocable and
revocable exit, for which we have provided efficient benchmarks.

In Chapter 4 we consider extensions to the two-player games, and look in

particular at the game with irrevocable exit in which, this time, payoffs are

14
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private: a player can observe his opponent’s behaviour, but does not observe
whether he has already had a success or not. This section combines results
and conjectures, as this extension constitutes work in progress, and sets the

course for future research.

In Chapter 5 we consider the Colonel Blotto Model. Budget-constrained
multidimensional allocation problems were amongst the very first ones con-
sidered in game theory. The first version can be found in Borel and Ville 7.
This problem and similar ones later came to be known as “Colonel Blotto”
games, after Gross and Wagner’s approach to the allocation problem (Gross
and Wagner| (1950))).

In the simplest version of the Colonel Blotto game, two generals want
to capture three equally valued battlefields. Each general disposes of one
divisible unit of military resources. The generals have to simultaneously
allocate these resources among the three battlefields. A battlefield is captured
by a general if he allocates more resources there than his opponent. The goal
of each general is to maximise the number of captured battlefields.

In Chapter 5 we describe a geometrical method for constructing equilibrium
distribution in the Colonel Blotto game with asymmetric battlefield values.
The appeal of geometrical methods for constructing n-dimensional distribu-
tions subject to restrictions on their support and their margins lies in the
relative simplicity with which they describe complicated multi-dimensional
objects. The drawback is that they may fail to generate the full set of distri-

butions satisfying given restrictions on support and margins. This downside

15
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is limited when that set is well defined, as it is here, so that the exercise
becomes to generate instances of these well-defined objects.

The method presented in this chapter generalises to the n-dimensional case
a construction method first proposed by Gross and Wagner. It does partic-
ularly well in instances of the Colonel Blotto game in which the battlefield
weights satisfy some clearly defined regularity conditions. Though these con-
ditions constrain the set of games in which this method reliably generates
equilibrium strategies, they are less restrictive than the condition of sym-
metry across all battlefields (Laslier and Picard (2002))). Moreover, their
implications suggest directions for further research.

Noticing that the conditions obtained can be interpreted as the requirement
that there exists a coalition such that every battlefield is pivotal suggests a
parallel between behaviour of candidates seeking to maximise plurality and
candidates seeking to maximise probability of victory, though this chapter
leaves the exact relationship between these games an open question. We
consider the parallel with the constrained integer partitioning problem, or

“bin-packing” problem particularly exciting.

16



Chapter 2

Experimentation with
Congestion - Model and

Benchmarks

2.1 Introduction

In this part we define the main component of the congestion game. In Section
we present the model on which Chapters 2-4 of this thesis are based. It
is intended as a general and simple model of the phenomenon of congestion
described in Chapter 1, and designed to outline the new strategic consider-
ations that emerge as a result of congestion, in particular when compared

with the standard multi-armed bandit model.

In Sections [2.3] we present a set of benchmarks, starting with the single-

player problem. This is akin to the standard multi-armed bandit model in

17
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our model, and resumes the intuitions and result of that model. In partic-
ular, given the setup, there is no option-value associated with being able to
return to his Poisson process for a player occupying the safe option. Two fur-
ther benchmarks summarizing the planner solutions to the two-player games
analysed in Chapter 3 are presented: the planner solution when switching to

the safe option is irrevocable, and when it is not.

2.2 Model

In this section, we define the basic elements of the model on which further
parts of this thesis will build: the risky option and the motion of beliefs about
the quality of a risky option, the safe (potentially congested) option and the
precedence rules determining access to the safe option. In all sections, time is
continuous, p denotes the common discount rate, and each player maximises

his expected discounted payoff over an infinite time horizon.

Risky option: Each risky option is either “good” and yields a lump-sum
payoff of 1 at Poisson rate A to the player activating it, or it is “bad” and
always yields zero. The quality of each option is independently drawn at
the beginning of the game: player ¢’s risky option is good with probability
po and player j’s risky option is good with probability go. This is common
knowledge. Once a risky option has produced a success, it is known to be
good. As long as a risky option produces only unsuccessful trials, the belief

about that option being good decreases.

18
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Beliefs: Payoffs are publicly observed, so given the players’ common prior
(po, qo) about the qualities of player i and player j’s risky options respectively,
players share a common posterior at each date t > 0 denoted (py, g;). If over
the time interval [t,t + dt), dt > 0, a player, say i, activates his risky option
without it producing a success, the belief about player i’s option at t + dt is,

by Bayes’ rule,
py e

pre M +1—p

Pitdt =

This is decreasing in dt: the longer the player experiments without a success,
the less optimistic he becomes about his risky option being good. When dt

%. The law of motion followed by the

is small we obtain that p + dp =
belief when the risky option is activated over the time interval dt — 0 and

produces only unsuccessful trials is then
(2.1) dp = —p(1 — p)Adt.

Notice that this expression is maximised when p = 1/2 and that when priors
are different beliefs don’t move at the same rate. Once a risky option has
produced a success, the common belief about that option is equal to 1 and
remains there forever. At any date t > 0 the expected arrival rate on player
i’s (y’s) risky option is p A (q:\). Whenever p, # ¢, we refer to the player
with the highest expected arrival rate as the more optimistic player and to

his opponent as the more pessimistic player.

Safe option: The safe option yields a flow payoff of a with certainty to
the player occupying it and this is common knowledge. We choose a € (0, \)

with the implication that when the risky option is known to be good, it is

19
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strictly preferred to the safe option, and vice-versa when a risky option is

known to be bad.

Precedence rule: While each player has exclusive and unconstrained
access to his risky option, both players have access to the safe option, but
it can only be activated by one player at a time. A player who occupies the
safe option gains absolute priority over its use; his opponent can then only
use the safe option if the incumbent player leaves it and returns to his risky
option. If both players simultaneously switch from their risky option to the
safe option, then a tie-break rule allocates the safe option to player ¢ with

probability ¢ € (0,1).

2.3 Benchmarks

In this section we present a series of planner problems intended as efficient
benchmarks for the models of strategic interaction in Chapter 3. First we
consider the situation in which there is no congestion on the safe option (Sec-
tion . Each player then faces an identical two-armed bandit problem
with one risky and one safe arm. This problem is standard and has often
been analysed in the previous literature. We use it as a framework to intro-
duce concepts and methods that are recurrent throughout this thesis. The
socially optimal policy is to let each player experiment with his risky option
for high enough beliefs. If the risky option produces a success, the player
should never switch to the safe option. If it does not and the player becomes

sufficiently pessimistic about the quality of his risky option, he should per-

20
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manently switch to his safe option when his belief hits the threshold value
py > 0, which we refer to as the single-player optimal threshold belief.

We also define the single-player myopic threshold belief, pyy > py, below
which the immediate payoff from the safe option exceeds the immediate payoff
from the risky option. The belief p,, is the optimal threshold of an infinitely
impatient or “myopic” player. In contrast a non-myopic player finds it opti-
mal to continue playing the risky option on the interval (py, pys) in the hope
of it producing a success as long as he is able to return to the safe option
at a later date: for the patient player the available safe option generates a
positive option-value, making experimentation beyond the myopic threshold
worthwhile.

The two remaining planner problems present new results, and set the effi-
cient benchmark for the game analysed in Chapter 3. We then assume that
the safe option can be played by at most one player at a time. If a risky
option is known to be good, it is optimal never to let the player who is ac-
tivating it switch to the safe option. If neither option produces a success,
the planner will eventually allocate one player to the safe option. In Section
we assume that the decision to let one player choose the safe option
cannot be revoked, even if the other risky option should produce a success.
In Section [2.3.3] we assume that the planner can do this without restrictions.

When this is the case, the planner allocates the player with the lowest
belief, say player j, to the safe option once the belief about his risky option
being good hits a threshold. This threshold is always below the single-player
threshold, py,. This is because the safe option provides an option-value for

both players: allocating player j to the safe option costs player ¢ the option-
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value. This is internalised by the planner who therefore delays the exit of
player j. The higher the belief of the optimistic player, the lower the option-
value of the safe option for him and the closer the socially optimal exit belief
of the pessimistic player to the single-player optimum.

When exit is revocable, the planner problem is akin to a standard multi-
armed bandit problem. At each date the planner may activate two out of
three arms (two risky, one safe) over a time interval A > 0 so as to maximise
his expected discounted payoff. The planner solution is analog to the Git-
tins Index policy: he either allocates both players to their risky options or
allocates the player with the lowest expected Poisson arrival rate to the safe

option. We present the solution to the planner’s problem as A — 0.

2.3.1 No congestion - Single-player model

First assume that there are two safe options. The planner maximises the joint
payoff of both players. Since the qualities of the risky options are uncorrelated
and players cannot hinder one another’s access to the safe option, the planner
problem is equivalent to solving two single-player problems: a player, say
player 7, has access to his risky option and to the safe option as described in
Section 2.2

This single-player problem is standard, and has been analysed in a setup
very similar to ours by Keller et al.| (2005)). We do repeat this analysis so as to
introduce notation as well as concepts that will be relevant in further sections,
in which we will derive novel results. In particular, we use the framework of
the relatively straightforward single-player problem to carefully spell out (in

Appendix [2.4.1)) the method for solving ordinary differential equations that
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will be used throughout this thesis.

Formally, the single agent solves the following dynamic problem: at each
date t, he chooses which option to activate from the set {S, R}, where S and
R denote the safe and risky options respectively. The state is summarised
by the belief p;.

For p; < 1, i.e. for histories in which the risky option has not yet produced
a success let k; denote the probability with which the agent activates the
risky option during the time interval [t,¢ + dt). The player chooses a path

{kt}+>0 that maximises his expected payoff:

E [/ e [kt pA+ (1= k) a] dt | Po
0

Notice that if the player were to play myopically (p — o0), he would only
compare the immediate payoff from playing R with the immediate payoff
from playing S. We call the “myopic stopping belief”, py;, the belief at
which the myopic player finds it optimal to irreversibly switch to the safe
option:

a
pM:X-

In contrast, a more patient player (p < oo) will experiment with the risky
option in the hope of discovering that it is good. Let V(p) denote the value
function associated with this problem. By Bellman’s Principle of Optimality
the value function V(p) solves the following dynamic programme: for all
p € [0,1]

V(p) = max{L"V(p), LV (p)}
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with

LSV(p) =49
LRV (p) = pAdt(1+ (1 — pdt)2) + (1 — pAdt)(1 — pdt)V (p + dp)

where we have used the approximation e % ~ (1 — pdt). When a trial on
the risky option does not produce a success dp is defined in Equation 2.1]

We solve the agent’s problem in Appendix and obtain the threshold
belief at which the agent optimally switches to the safe option:

_ ap
bv = Mp+A—a)

Throughout this thesis, we will refer to py as the single-player optimal
threshold, and to py; as the single-player myopic threshold. Notice that py, <
pu, that both are increasing as the value of the safe option, a, increases and
that py tends to py; as p — oo. Lemma [1| describes the optimal behaviour

in the single-player game and presents the value function. The detail of the

proof can be found in Appendix [2.4.7]

Lemma 1. For p > py, playing the risky option is optimal and

P

A a — Apy IL—p pv \*

Vip)=p —+0—=p ( ;
®) p ( )P(l—Pv) p l—pv

while for p < py, playing the safe option is optimal and V (p) = %.

The first term, p%, is the payoff from activating the risky option forever.
The second term reflects the option-value of being able to switch to the safe

option. It increases as p decreases, i.e. as the player becomes more pessimistic
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about the quality of the risky option. It is equal to zero when p = 1 and
strictly positive for all p € [0,1) which is why, for beliefs p € (py,par) the
patient player continues to experiment with the risky option even though he
would be maximising his immediate payoff by switching to the safe option.
When p = py, the expected payoff from the risky option is so low, that the

player prefers switching to the safe option.

2.3.2 Planner solution - Irrevocable exit

We now consider the planner problem in a model where two players each have
access to a risky option as described in the previous section, but there is only
one safe option that can be occupied by at most one player at a time. The
social planner maximises the sum of both players’ payoffs. At each date, he
has the choice between letting both players experiment (RR) or retiring one
player to the safe option irrevocably so that the other player must continue
to experiment on his risky option forever (RS).

If there were two safe options, the planner solution would be to let each
player follow the single-player optimal policy derived in Section [2.3.1} Here,
however, the planner may only retire one player to the safe option. There
is now an additional option-value compared with the single-player game:
suppose a player’s option is good but has not yet produced a success. If the
player switches to the safe option, not only does he forego his own profit from
the good option, there is now the additional loss of his opponent’s option-
value from being able to switch to the safe option. Because such mistakes
are more costly here, there will be more experimentation than in the single-

player game. We show that it is optimal for the planner to eventually retire
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the most pessimistic player (Lemma [2)) and to make both player experiment
beyond their single-player threshold (Lemma [3).

Let p; and ¢; respectively denote the belief at ¢ that player i’s and player
7’s risky options are good. Each belief follows the laws of motion described

in Section [2.3.1l The state at t is summarised by the vector of beliefs

(pt, qt) S [0, 1]2

Lemma 2. Ifin state (p,q) the policy RS is optimal, the planner necessarily

allocates the pessimistic player to the safe option.

Proof: Assume by way of contradiction that the policy which allocates
the player with belief max(p,q) to the safe option in state (p,q) is op-
timal when p # ¢. The joint continuation utility in state (p,q) is then
min(p, q)% + % < max(p, q)% + %. So the policy which allocates the player
with belief max(p,q) to the safe option in state (p,q) is dominated by the

policy which retires the more pessimistic player in that state. [J

We now formally describe the planner’s problem. Because we have assumed
that 0 < a < A, it is by design optimal never to retire a player whose
risky option has produced a success. If only one risky option has produced
a success, the joint payoff is then maximised by letting the other player
follow the optimal single-player policy. As long as neither risky option has
produced a success, i.e. for states such that (p,q) € [0,1)2, let x; € [0,1]
denote the probability with which the planner makes both players activate
their risky options during the time interval [t,¢ + dt). Then with probability

(1 — ;) the planner irrevocably retires the pessimistic player to the safe
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option. The planner chooses a path {k;}+>0 subject to the constraint that

exit is irrevocable, so as to maximise the expected joint payoft:

E {/OOO e (ke(pe + q) A + (1 — wy)[max(py, ¢) X+ a]) dt | (po,qo)|

where (po, qo) € [0,1)? is the vector of prior beliefs. Let W(p, q) denote the
value function associated with this problem. It solves the following dynamic

program: for all (p,q) € [0,1)?,

(2.2) W(p,q) = max {/{ LW (p, q) + (1 — k) L™W(p, q)}

where, by Lemma [2 we have
A

LSW(p, q) := max(p,q)> + -
pp
The payoff to the policy RR satisfies:
LEBW(p, q, k) := pAdt g\dt 2% + (1 — pAdt)(1 — gAdt) (1 — pdt) W(p',q')

+pAdt (1 — gAdt) [222 + (1 — pdt)V (¢)]
+gAdt (1 — pAdt) [222 + (1 — pdt)V (p')]

where V' (p) denotes the value function of the single-player game (Lemma [1)
and p’ = p + dp where dp is defined in Equation

Solving the planner’s problem (Appendix, we find the set of threshold
beliefs at which the planner irrevocably allocates the player with the lowest
belief to the safe option, forcing the other player to experiment on his risky

option forever. That set of threshold beliefs is depicted in Figure 1 below.

Lemma 3. In states (p,q) such that p > q, it is optimal for the planner to
irrevocably retire the player with the lowest belief (player j) to the safe option
if and only if
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ap
Atp—a+pV(p)—pA)

where the threshold is equal to q when p = 1. Otherwise, he optimally

< <

lets both players activate their risky options. Conversely for states such that

p<4q.
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Figure 1: Threshold beliefs in the planner problem with irrevocable exit.

This planner solution offers a good insight about what is at stake in a
model of experimentation with congestion. Regardless of the prior (po, o),
the pessimistic player always experiments for longer than in the single-player
case. This is because his switching to the safe option would cancel the option-
value it affords to the optimistic player. That option-value increases when

the optimistic player’s belief falls, increasing the discrepancy between the
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pessimistic player’s exit belief and the optimal single-player threshold. That
discrepancy is maximised when py = ¢o. In contrast, when the belief of
the optimistic player tends to one, the option-value for him of being able to
switch to the safe option tends to zero and the pessimistic player’s exit belief
tends to his single-player optimal threshold belief.

We can already perceive that the externality imposed on his opponent by
the player who takes the safe option is larger when the opponent is more
pessimistic about his Poisson process. This happens when priors are closer.
From this observation we can already conjecture that the competition for the

safe option will be more intense the closer the priors.

Let us look at some typical trajectories of the state in this planner solution.
If pg = qo (trajectory 1 in Figure 1) then as long as both players play their
risky option without success we have p; = ¢;. The planner then optimally
allocates either player to the risky option when the beliefs hit the threshold

value

(2.3) pw = % [A+p— \/(A+p)2—4ap] <pv.

If he allocates, say, player ¢ to the safe option, p remains forever equal to
pw. Player 7 meanwhile is forced to experiment forever. If his risky option
is bad ¢, will gradually decrease towards zero following the law of motion
dq = —q(1 — g)Adt. If his risky option is good it will eventually produce a
success.

If po > qo (trajectory 2 in Figure 1) then as long as both players play
their risky option without success the state moves following the trajectory

depicted above. Once the state reaches the threshold described in Lemma
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(thick red boundary in Figure 1) the planner allocates player j to the safe
option. Then ¢ remains constant while p gradually decreases to zero if player
1’s risky option is bad, or jumps to one with positive probability if the option

is good.

2.3.3 Planner solution - Revocable exit

We now consider the planner’s problem when the decision to retire one player
to the safe option is revocable. The planner is de facto playing a multi-armed
bandit problem: at each date the planner chooses to activate two out of three
arms (two risky, one safe) over a time interval A > 0 so as to maximise his
expected discounted payoff. The optimal policy, following which the planner
either allocates both players to their risky options or allocates the player with
the lowest expected Poisson arrival rate to the safe option, will therefore be
the equivalent of the Gittins Index{l] policy for our setting. In light of this,
Lemma [4] the analogue to Lemma [2] in the previous section, seems trivial:
an arm with a higher expected arrival rate produces a higher Gittins index.

We present the solutionE] to the planner’s multi-armed bandit problem as

'For a good summary of Gittins’ pairwise interchange argument, see |Frostig and Weiss

(1999).
“Here we concentrate on the discrete-time approximation as the time interval tends to

zero and will use the intuition from a discrete-time problem. Notice however that because
it involves the planner alternating between two options, the existence of that solution is
problematic in continuous time. Indeed the optimum in continuous time is achieved by
mixing at each point in time. This is a well-known issue with continuous-time dynamic
problems. For a good exposition of the issue and the way to address it, see Bellman|(1957)

Chapter 8.
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A — 0. As in the previous section, the state at ¢ is summarised by the

vector of beliefs (py, ¢;) € [0, 1]°.

Lemma 4. If the policy RS is optimal in state (p,q), then the planner allo-

cates the pessimistic player to the safe option.

Proof: Trivial in view of the optimality of the Gittins Index Policy: A risky

option’s Gittins index is increasing in its expected arrival rate. [

We now formally describe the planner’s problem. For states such that
(p,q) € [0,1), let k; € [0,1] denote the probability with which the planner
makes both players activate their risky options during the time interval [¢, ¢+
dt). With probability (1 — &;) the planner lets the player with the highest
posterior belief at ¢ activate their risky option during the time interval [¢, ¢ +
dt), while the player with the lowest posterior belief activates the safe option.

The planner chooses a path {&:}+>o that maximises the expected joint payoft:

E {/000 e (Re(pe + q) A + (1 — Re)[max(pe, ;) A+ al) dt | (po,qo0)|

where (po, qo) € [0,1)? is the vector or prior beliefs. Let U(p,q) denote the
value function associated with this problem. It solves the following dynamic

program: for all (p,q) € [0,1)?,

(2.4) U(p,q) = max{ L™ U(p, q), L"U(p,q)}.

Here RR denotes the policy whereby both players play their risky option
and RS the policy where the planner allocates the player with the lowest
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belief to the safe option, while the player with the highest belief experiments

on his risky option.

We first derive the payoff from playing the policy RS forever. Consider
states p > ¢ such that player i’s risky option has a higher probability of
generating a success than player j’s option. As long as neither risky option
produces a success, the policy RS involves first making the player with the
high belief (player i) activate his risky option while player j occupies the safe
option. Then g does not evolve while p decreases towards ¢ following the law
of motion for active options: dp = —pA(1 — p)dt.

Once p = ¢, the planner alternates the players on the safe option, gen-
erating the payoff A(p) as described in Appendix 2.4.3] Then, for p > ¢,
the payoff to the policy RS is (1 — e #9) <% +p %) + e A(q), where

1

s=1ylIn [%q ﬁ] , which equals zero for p = ¢. Simplifying, we have that for

all (p, q) such that p > g,

o= (1-(50525) ) (03) - (5) o

with the corresponding expression holding for p < ¢.

To get an intuition about A(p), consider discrete-time planner problem in
the state p = ¢. As seen in the previous section, if exit is irrevocable then
once the planner follows policy RS he always allocates the same player, say
j, to the safe option. The belief p about the quality of player i’s risky option
then decreases at rate dp = —p(1—p)AA, for a positive but small time interval
A. In contrast, when exit is revocable, the planner can alternate players on

the safe option. He can therefore let the players successively play their risky
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option in state p, thus getting twice as many trials at each belief p as when
exit is irrevocable. The law of motion of beliefs is then dp = —%p(l — p)AA.
Notice that, as with irrevocable exit, when p — 0, the value of the RS policy,
A(p), tends to &, which is the value of the multi-armed bandit problem when

both risky options are known to be bad and there is only one safe option.

The payoff to the policy RR satisfies:

L™U(p, q) == pAdt grdt 2222 + (1 — pAdt) (1 — gAdt)(1 — pdt) U(p', )
+pAdt (1 — gAdt) [222 + (1 — pdt)V (¢)]
+gAdt (1 — pAdt) [222 + (1 — pdt)V (p')]

where V' (p) denotes the value function of the single-player game (Lemma |1
and p' = p + dp where dp is defined in Equation 2.1 The set of threshold
beliefs at which the planner allocates the most pessimistic player to the safe

option is depicted below.

Lemma 5. The solution to the planner problem with revocable exit is de-
picted below: For states (p,q) in the shaded area, including the boundary, the
planner optimally allocates the player with the lowest belief to the safe option
over a period A > 0. For states in the white area, the planner optimally
lets both players activate their risky option over a period A > 0. On the
boundary, the planner is indifferent between the two policies. For A — 0, the

planner solution is depicted in Figure 2.a. below.

Proof: See Appendix
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Figure 2.a: Set of states in which policy RS is optimal (shaded area) and threshold

beliefs in the planner problem with revocable exit.

In Figure 2.a, consider the portion of the graph such that p > ¢q. When
p = 1, the socially optimal threshold belief is gy, the threshold belief in the
single-player game. This is because when p = 1, player ¢ knows with cer-
tainty that his risky options is good, and so he will never threaten the safe
option, so that player j effectively plays as in the single-player game. When
p = ¢, the threshold belief p;; = g is derived in Appendix [2.4.4]

We now illustrate typical trajectories of the state in the planner solution
for the case where both Poisson processes are indeed bad. When the priors
are relatively close, as in Figure 2.b, the planner lets both players experiment
while the state is in the white region. Once the state hits the boundary, the
planner allocates the player with the lowest expected arrival rate (in this case
player j) to the safe option and lets the other player experiment until the
state hits the 45 degree line. At that point, both players’ expected arrival

rates are equalised, and the planner alternates the players on the safe option.
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If however the priors are such that one player is ex-ante much more likely
than his opponent to have a good Poisson process, as in Figure 2.c, the
planner first lets both players experiment as long as the state is in the white
region. Again, once the state hits the boundary, the optimal regime-change
requires that the planner allocate the player with the lowest expected arrival
rate (player j) to the safe option. But then the state moves back into the
white region, and the planner lets both players experiment again. As the
time-interval 0 becomes very small, this policy approximates the optimal
policy in continuous time, which for such states requires moving along the
boundary, as depicted in Figure 2.c. Eventually, the state stops moving back
into the white region and the planner allocates player j to the safe option

until the state hits the 45 degree line. The planner then alternates the players

on the safe option.
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Figures 2.b and 2.c: Typical trajectories of the state in the planner solution. Black

dots indicate the prior, (po,qo) and subsequent regime-changes.

Finally, notice the interesting discontinuity implied by the planner solution:

fix player i’s belief at py; and consider the various optimal regimes depending
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on q. When g = ¢y, the planner finds it optimal to alternate the players
on the safe option, thereby slowing down the decay in expected joint payoff.
For ¢ > ¢ however, player j is still too optimistic relative to player ¢ for
the planner to alternate the players on the safe option, and player ¢ is still
too optimistic to be assigned the safe option without alternating with player
j. Invert the reasoning for ¢ < ¢ but such that the sate falls in the white
region. When g is such that (p, ¢) belongs to the boundary - which happens
for ¢ much below the single-player threshold - the planner retires player j
to the safe option until the posteriors are equalised and the alternates the

players on the safe option.
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2.4 Appendix Chapter 2

2.4.1 Single-player - Value function

The derivation of the value-function for the single-player problem mirrors
Keller et al.| (2005). Consider states in which playing the risky option is
optimal, so that V(p) = LBV (p) > LV (p). Using V(p') = V(p + dp) =
V(p)+V'(p)dp = V(p) — p(1 — p)AV'(p)dt, we obtain the following ordinary
differential equation for the value function:

pA(1—p) V'(p) + (pA +p) V(p) = pA %

Solving, we obtain the solutions:

2
Vel =p 5+ Cvii-p) (22
P p
where CYy is the constant of integration. For all Cy, Vi (p) is continuous and
differentiable at p € [0, 1].

At p = 0, the risky option is known to be bad, so the expected payoff from
activating it is 0. Playing the safe option is therefore optimal at p = 0. At
p = 1, the risky option is known to be good, and playing the risky option is
optimal. So V(0) = L5V (0) and V(1) = LEV(1).

Assume there exists some belief py € (0,1) at which the player switches
from the risky to the safe option. By continuity of the value function we
then have Vo(py) = L5V (py) = % (value-matching). This regime change
is optimal if and only if V/(py) = L5V'(py) = 0 (smooth-pasting). At py,
L3V (py) then constitutes a particular solution to the differential equation

above. We obtain:
pa

pv = AMp+A—a)
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which is indeed below p,;, the myopic stopping belief. Finally, the constant
E

of integration is then Cy = %@”\ (%) ", for which Vi (p) is increasing and

convex on [py, 1].

We conclude that for p > py, playing the risky option is optimal and

P

A a — Apy IL—p pv \*

Vip)=p -+ —=p ( ;
®) p ( )P(l—pv) p l—pv

while for p < py, playing the safe option is optimal and V' (p) = %.
Notice finally that the regime switch is indeed optimal, as for p € [0, 1),

V(p) >p %, the payoff from never switching to the safe option.

2.4.2 Irrevocable Exit - Planner Solution

Let W, (p, q¢) denote the partial derivative of W(p, ¢) with respect to p. Sim-
ilarly for q. Consider the states (p,q) € [0,1]? in which having both play-
ers activate their risky option is optimal, so that W(p,q) = L**W(p,q) >
LEW(p,q). We obtain the following partial differential equation for the

value function:

(PA =+ g\ + p) W(p, q) + pA(1 —p) Wy(p, @) + g\ 1 — @) Wy(p, q)
=P\ 224V (g)| +ar 22+ V()]

(2.5)

As As

Letting W(s) = W(p(s). q(s)), where p(s) = =1 ==, q(s) = ==
and noticing that ‘{1—1;‘} = 2—7; W, + % W,, we obtain the following ordinary

differential equations in for W(s):

g VT BEOAT AN L) W) = <A 52+ Via()

~a(s)\ |22 + V (p(s))]
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Notice that when integrating terms including V'(.) on the right-hand-side,

the single-player game threshold values py = qy = ) will come to

__ap
A(A+p—a

matter. Solving, we obtain the family of solutions for the value function:

. p(s) q(s)
We(s) = H(p(s), q(s)) + H(q(s), p(s)) + Do @0 @ W
where Cy;, is a constant of integration, and

x%+xy(1%y> %(%) ) pv <y
H(z,y) = x%(yéi—‘f;‘ﬂL(l—y)Ai—iﬁ") pv >y

Ap Ao

1— A a\ A
+z (1 —y) (Ty> (o) (23 40) <1Zv) ,

\

For all Cy;,, We(s) is continuous and differentiable in s.
Let LESW(s) = L™W(p(s), q(s)) = max(p(s),q(s))% + &. Consider the
priors pg > qo both tending to 1. Then the payoff from letting both players

a+

activate their risky option tends to % > 7,

and allocating both players to
their risky option is optimal. Consider the case in which both risky options
are bad so that as long as both players experiment, Vs > 0, 1 > p(s) > q(s)
and as s — 00, both p(s) > ¢(s) tend to zero. At that point, the expected
payoff from letting both players activate their risky option tends to 0 < %
and allocating one player to the safe option is optimal.

Assume that there exists some date s;, > 0 at which the planner finds
it optimal to irrevocably allocate the player with the lowest belief to the
safe option. By the continuity of W we then have W (sy;,) = LW(sy;)

(value-matching), and the regime change is optimal if and only if Wg(sw) =
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LW (s);) (smooth-pasting). Then, at s,;,, LFSW(s,3) constitutes a par-
ticular solution to the differential equation above. The optimal switching

date sy, solves, for p(sy;) > q(sy3):

oy @0 Do) A (o Vi)~
W N O 0t 0 Vnlsw)) — plsy) A—a)

For all p(sy;) € [0,1] this equation admits solutions ¢(s;,) € [gw, gv] (where
qw is defined in Equation so that V(q(s);)) = % and we obtain the
expression in Lemma [3| The set of solutions is depicted in Section in
the belief space (p,q) . This defines a particular solution to the differential

equation, which allows us to compute a closed-form expression for W(p, q).

2.4.3 Social Planner, Revocable Exit: Payoff from im-
plementing policy RS forever when p = q.

RS denotes the policy whereby the planner always allocates the player with
the lowest belief to the safe option, while the player with the highest belief
experiments on the risky option. In the states (p,q) where the beliefs of the

two players are equal (p = q), the payoff to the policy RS satisfies:

Alp) = adt +pAdt |42 4 (1~ pdt)V(q)]
(1 — pAdt)(1 — pdt) [adt + gt [% 41— pdt)V(p’)]
(1= gAdt)(1 — pdt) A(p)|
where V(p) is the value function in the single-player game. Using p = g,
P =p—pA1—p)dt, A(p') = A(p) — pA\(1 —p)A'(p)dt and eliminating terms

€ O(dt?), we obtain the following ordinary differential equation for A(p) :
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2 9 2 A
A(p) + (pA + p) a [ +p

pA(1—p) Alp) = pA(1 —p) " (I=p) [ »p

Notice that when integrating the right-hand side, because it includes the

+ V(p)} :

function V(p), the single-player threshold py will come to matter. Assuming
that, if neither risky option ever produces a success, the policy RS is played
forever, i.e. until p — 0, at which point A(0) = %, we obtain the solution:

Ap) = e~ 1w)dp / Tl 1@ s gy gy

0

A a : x| dx
where f(p):zif\zzlfgg, g(p) == m—i_(l%p) [% + V(p)] Notice that e/ f1#1¢

0. Solving, we obtain the following expression for A:

(
pA (224+2p—Xp)

T T ) pv 2p

e

— a PA(2A+2p—Ap)
Alp) =14 (1 ~ D020 ) Pv <p

A [ (2X4+2p—Xp) A 2(a—MApy) A+
“7( oiz T ods T Q(p’pV’Tp)>

a Py A(CA—pyv A+2p) PV A pyA—2a Atp
. (n Dotz T e > (Qp,pv, 535))

2

where Q(p, q,a) = § (? %q) and py is the optimal stopping belief in the

single-player game. [
2.4.4 Social Planner, Revocable Exit

In this section we describe the steps to derive the set of threshold beliefs in the
planner problem with revocable exit, as illustrated in Figure [2 The method
resembles the one used in Appendix to derive the set of threshold beliefs
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in the planner problem with irrevocable exit. For all (p,q), the Bellman

equation ([2.4)) for the planner’s problem becomes

U(p,p) = max{ L™ U(p, p), L"*U(p, p)}
° °

where LU (p,p) = (1 - <%qﬁ> X) (% +p %) + (%%)A A(q), and
LEEY(p, p) solves the ordinary differential equation , which is the ODE
for W in the social planner problem with irrevocable exit. In Appendix
we have derived the family of solutions We to that ODE. We obtain the
boundary in Figure by assuming that there exists some date sy after
which the planner finds it optimal to follow the policy RS forever, so that
we can consider LU (p(sy), q(su)) as a particular solution to ODE (22.6).
Solving for s;; we then obtain the boundary in (p, ) space depicted in Figure
2al

As illustrated in Figure 2.c, for priors 1 > py > qo > 0, in our discrete-time
approximation to the continuous-time optimum the planner will alternate
between policies RS and RR, moving in broken horizontal and vertical lines
about the boundary. As A — 0, this approximation gets aver closer to the
continuous-time optimal policy, which involves the planner mixing so as to
make the state move “along” the boundary. Our value-matching and smooth-
pasting conditions are then in fact identifying an interval of dates over which
the planner mixes so as to be indifferent between allocating the pessimistic

player to the safe option or to his risky option over any time interval dt.
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Finally, when p = ¢, the threshold belief p;; = ¢ satisfies

2(A+p)
X

a(A+ p) A+ 2p) = (0 = NN} (e ) * =

pu 1l-pv
(2.7) PuA 200+ p = a)h + p) + puA(a + p))
Qtp)
1—
+PuAA + 20)2(a — Apy) B (Wp”—leV>
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Chapter 3

Experimentation with

congestion - Two-player Games

3.1 Introduction

We now consider the game in which there is congestion: as long as one player
plays the safe option, it is unavailable to the other player. The players now
interact strategically. They not only face the trade-off between exploration
and exploitation, as in the single-player case, they must now consider the
possibility of their opponent blocking their access to the safe option, tem-
porarily or permanently. As a consequence, players will now have preemption
motives. In section |3.2| we assume that once a player chooses to play the safe
option, he may not return to his risky option. In this way, the decision to
retire to the safe option is irrevocable. In Section [3.3] we will relax this as-
sumption. Then a player can decide to temporarily occupy the safe option,

before returning to his risky option. In each case we illustrate the equilibrium
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dynamics by considering some typical equilibrium state-trajectories.

In Section we consider the strategic situation for which the planner
problem analysed in Chapter 2 sets the efficient benchmark. We saw that
because a player irrevocably switching to the safe option cancels the option-
value it affords the other player, it is socially optimal for the pessimistic player
to experiment for longer than in the single-player game. When players act
strategically and compete for access to the safe option, to remedy the threat
of being deprived of this option-value, they both have incentives to preempt
the other player’s switch. In equilibrium, the pessimistic player switches to
the safe option in a state such that the optimistic player has no preemption
motives. When there is sufficient competition between the players this will
involve the pessimistic player switching to the safe option when the optimistic
player’s belief equals the myopic threshold.

The equilibrium will therefore be inefficient in the sense that the player cap-
turing the safe option does so too early compared with the efficient threshold.
When we intensify the degree of competition (by setting the priors closer to
one another) this inefficiency increases until, for py = ¢o, the players be-
have myopically and completely disregard the option-value associated with
experimenting on the risky option.

When exit is revocable (section , the player occupying the safe option
is able to return to his risky option if his opponent’s experimenting results
in a success. In that case, relieved from the opponent’s pressure on the safe
option, the first player can achieve the utility of the single-player game. A
player now has incentives to postpone his own experimenting and occupy

the safe option so as to force his opponent to experiment in the hope of his
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producing a success and dropping his claim to the safe option.

In equilibrium, when there is sufficient competition for the safe option, the
player with the highest expected arrival rate (the “optimist”) temporarily
occupies the safe option and forces the pessimist to experiment for a given
duration of time. That duration increases with the competition for the safe
option. Moreover it is such that the pessimist is always forced to experiment
for longer than he would have in the single-player game. That duration
is, however, finite and if the pessimist’s experimenting is unsuccessful, the
optimist eventually resumes his own experimenting, freeing up the safe option
for the pessimist. This result may be surprising in light of intuitions from the
standard multi-armed bandit problem in which, in the context of our model,

a player would never return to a risky option he has rejected in the past.

3.2 Irrevocable Exit

We now consider the game in which two players each have access to a risky
option and there is only one safe option that can be occupied by at most
one player at a time. The risky and the safe options, as well as the rules
of precedence are as described in Chapter 2. We assume that exit is once-
and-for-all: once a player occupies the safe option, he may not switch back
to his risky option. Under this condition, the assumption that the congested
option is safe is without loss of generality: it could also be a risky bandit
with expected arrival rate a.

Each player faces the trade-off between exploration and exploitation as

described in the single-player game. Additionally, a player takes into account
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the fact that he loses the option-value from being able to switch to the safe
option at a later date if his opponent occupies the safe option. As a result,
in this game, there will be preemption motives leading to the unraveling of
the exit decision.

We derive the Markov Perfect Equilibrium of this game and compare it
with the planner solution derived in Chapter 2. We find that in equilib-
rium, the pessimistic player captures the safe option, and does so when the
optimistic player’s beliefs are greater than or equal to his myopic threshold
belief. Though the pessimistic player would like to experiment until his belief
reaches py, he is better-off exiting in a state in which his opponent has no
preemption motives. The allocation of the safe option is efficient in that it
goes to the same player as in the planner solution. However, the amount
of experimentation by the pessimistic player is always inefficiently low. The
closer the priors of the players, the greater the competition for access to the

safe option, and the more inefficient the equilibrium.

Let us formally describe each player’s problem. At each date, a player
either chooses to activate his risky option over the time interval [t 4+ dt) (R)
or to irrevocably switch to the safe option (S)E| so as to maximise his expected
discounted payoff. As in previous sections, the state is summarised by the
vector of posterior beliefs (p;, ¢;) € [0, 1]

Because we have assumed that 0 < a < )\, retiring to the safe option is

I'Notice that the set of possible actions is not history dependent: we assumed that if
a player switches to the safe option when that is already occupied by the opponent, the

player “bounces” back to his risky option.
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strictly dominated for a player whose risky option has produced a success.
If only one risky option has produced a success, the other player maximised
his expected discounted payoff by following the optimal single-player pol-
icy. We define a (Markovian) strategy k%(.) for player 7 to be the mapping
k' 2 [0,1) — [0,1] from states (p,q) to ki, the probability that player
i plays his risky option at t. A (Markov-Perfect) equilibrium is a pair of
strategies (k%(.),k?(.)) such that the strategy of player ¢ maximises his ex-
pected discounted payoff conditional on the strategy of player j (subject to
the constraint that exit is irrevocable), and vice-versa.

As in the previous sections, V(.) denotes the value function in the single-
player game. Let W(.) denote the value function in the two-player game with
irrevocable exit. Given that, as long as neither player is occupying the safe
option, player j uses the Markovian strategy k’(.) and plays his risky option
in state (p,q) with probability &7(p,q), player i’s value function solves the
dynamic problem:

W(p,g: k') = max  {k(p,q) L™W(p,q; k) + (1 — k'(p,q)) L°W(p, q; K')}

ki (p,q)€[0,1]

where

(3.1)

L*W(p, q; k') == K (p.q) &+ (1=K (p,q)) T'(p,q),

LEW(p, ¢; K7) := pAdt (1 + e*pdt%>

+(1 — pAdt) ((1 — K (p,q)) e"p'3
R (p, g) e [gAEV (1) + (1 = QAW (P 1)) ),

and with p’, ¢’ as defined in Chapter 2. The corresponding expression holds

for player j. Because ties are broken in favour of player ¢ with probability ¢,
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player ¢ and j’s payoffs from a tie are respectively:

; a A , a A
T(p)ZL;Jr(l—L)p;, T”(p)Z(l—L);ﬂp;-

We now derive the uniqueﬂ equilibrium of this game. We first show that
there can be no equilibrium in mixed strategies (Lemma @ Disregarding
equilibria in weakly dominated strategies, we then present the Markov Perfect
Equilibrium in the two-player game with irrevocable exit (Theorem . This

equilibrium is inefficient, and we describe how it falls short of the planner

solution derived in Chapter 2.

Lemma 6. There exists no positive time interval [t,t+dt), dt > 0 on which

both players best-respond to one another by playing strictly mized strategies.

Proof: Suppose player j plays a strategy that lets him exit with positive
probability at two distinct dates. If in state (p,q) player j switches to the
safe option with strictly positive probability, player ¢ can only be indiffer-
ent between his two pure strategies, when his belief is p = py;. So there is
no strictly positive time-interval over which player ¢ is indifferent between
switching to the safe option and continue activating his risky option. The

detail of the proof can be found in Appendix [3.4.1} [J

As long as player j switches to the safe option with strictly positive prob-
ability, player ¢ is essentially trading off the payoff from winning a tie-break
and irrevocably switching to the safe option, a/p, with the payoff from being
stuck forever on this risky option, pA/p. In states (p,q) such that p = py,

2Up to variations in weakly dominated strategies, which do not affect the equilibrium

allocation or exit date.
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the myopic exit belief in the single-player game, these payoffs are equalised
and player ¢ is indifferent between the outcomes, while in states (p, q) such
that p # pas, player ¢ has strict preferences for either option. The remainder
of this section hinges on this observation.

From Lemma [, we conclude that the equilibrium strategies, given an ini-
tial state (po,qo), involve either player switching to the safe option with
certainty at some date ¢ > 0 when the state is (p(t),q(t)). As argued in
detail in Appendix such an instantaneous switch cannot be an equi-
librium in states (p,q) such that p < pa, ¢ < qu, as a player’s opponent
then has strict incentives to preempt the player’s switch. Over that support,
there would be unraveling of the exit decisions as players try to preempt one
another’s switch. The preemption motives only disappear once at least one
player is indifferent between switching to the safe option and staying with his
risky option. Conversely, for beliefs above the myopic threshold, irrevocably
switching to the safe option is strictly dominated by the strategy whereby

the player commits to his risky option forever.

1.0 10F

081 081

0.6+ 06+

=3 =3

04r 041

0.2+ 0.2

0.0k . 3 0.0 . . . =
0.8 10 0.0 0.2 0.4 0.6 0.8 10
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Figure 3: Equilibrium strategies of player i and player j when exit is irrevocable.
If a state (p,q) is in the green (dark) area, the player plays the safe option, if it is
in the orange (light) area, the player plays his risky option.

Theorem 1. Consider the strategy profile illustrated in Figure 3:

q <qm, P<DPum;

0 i< g=qu, p <pum,

k'(p,q) =
q>QM7p§pV7
1 else.
\
)
p<pM7 q<QM7
. 0 if ¢ p=pm, ¢<qu,
K (p,q) =

p > D, QSQV7

\ 1 else.

This constitutes the unique MPE of the game (up to variations in weakly
dominated strategies for histories in which the safe option has already been
allocated, so that they do not affect the allocation of the objects, given an

initial state).

Proof: See Appendix An intuition of the proof is given in the fol-

lowing illustrations. [J

We now illustrate the resulting allocation and compare it with the planner
solution for the case in which both risky options are in fact bad, so that

beliefs never jump to one. Notice that in moving from case 1 to case 3,
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i.e. as the discrepancy in priors increases, the equilibrium exit belief of the
pessimistic player gets closer to his single-player threshold - and also to the

socially optimal exit belief.
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Figure 4: In Case 1, the prior is pg = qo > pps- In Case 2, the priors pg > ¢ are
such that at date ¢t > 0 satisfying p; = pj; we have that ¢; > ¢y, while in Case 3

we have that ¢; < gy.

Case 1:  If the prior is pg = qo > pas, then in equilibrium both players
switch to the safe option when beliefs reach the single-player myopic threshold
belief, py; = § and the safe option is allocated in a tie break (illustrated for
player ¢ winning the tie-break). At that point, both players are indifferent
between activating their risky option and switching to the safe option, as long

as their opponent switches with strictly positive probability. Because players
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cannot be indifferent between switching when beliefs are p,; and switching
at a later date, both players switch at p,; with probability 1. Switching at
an earlier date is strictly dominated.

In the planner solution, both players would only have switched to the safe
option at pyy < py. The extreme inefficiency here comes from the fact that
competition from the other player is most intense when py = qo. As we will
see in the next two cases, when one player is more pessimistic than the other,

the inefficiency is mitigated.

Case 2: Here in equilibrium, player ¢ uses the strategy whereby he con-
tinues activating his risky option for all p > py; and player j switches to the
safe option with certainty when p = py;. As long as player j switches with
positive probability when p = pjs, player ¢ is indifferent between playing R
and S in that state, and has no incentive to preempt player j’s exit.

Notice that player j, who is more pessimistic than player i, is allocated
the safe option with certainty, and the belief about his risky option remains
constant forever, while the belief about player i’s risky option gradually de-
creases according to the law of motion for active options: dp = —pA(1 — p)dt.

The more pessimistic player j is relative to player ¢ , the closer the exit
belief of player j becomes to gy, and the less inefficient the equilibrium. This
is intuitive: if a player is more optimistic that another, he poses less of a
threat to his opponent, who is then under less pressure to secure the safe

option, and can experiment for longer.

Case 3:  Here player ¢ is so optimistic relative to player j that even when

the belief about player j’s risky option reaches the single-player threshold
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qv, the belief about player i’s risky option is still above the myopic threshold
belief pys, and player i strictly prefers activating his risky option to switching
to the safe option regardless of player j’s action.

Player j then effectively plays a single-player game and switches to the safe
option when ¢ = qy. The inefficiency is even lower than in the previous two
cases, and as py — 1, the equilibrium tends to the planner solution.

Even though all equilibria described above are inefficient in the sense that
there is less experimenting than in the planner solution, they are efficient
in the sense that the safe option is always allocated to the most pessimistic
player. The inefficiency of the level of experimentation is maximised when
Po = qo. In that case, the lost option-value to the optimist is the highest
conditional on the exit date of the pessimist. In the two-player game, this
intensifies competition and makes the pessimist exit earlier, while in the
planner solution, the loss of the option-value is internalised by the planner

who then postpones the exit of the pessimistic player.

3.3 Revocable Exit

In this section we assume that a player who is occupying the safe option may
later return to the risky option. That is, the decision to switch to the safe
option is revocable. We have seen in the previous section that when exit is
irrevocable, the more pessimistic player, say player j, is the first to switch to
the safe option in equilibrium and player ¢ is forced to experiment with his
risky option forever. If player i’s experimenting results in a success, then for

him switching to the safe option is dominated. Player j is then relieved of
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the threat of congestion and is de facto facing the single-player problem. If
the state is such that ¢ > gy, player j would then like to return to his risky
option and resume his experimenting.

While this is not possible with irrevocable exit, when exit is revocable this
is the most desirable outcome for a player. So much so that in equilibrium
players have incentives to temporarily interrupt their own experimentation
and force their opponent to experiment with the sole aim of eliminating the
threat of congestion. Let it be noted that there are no informational exter-
nalities to an opponent’s success as the qualities of the players’ risky options

are independent.

Let us formally describe each player’s problem. At each date, a player
either chooses to activate his risky option (R) or the safe option (S) over the
time interval [t + dt). We assume that if a player switches to the safe option
when it is already occupied by the opponent, the player “bounces” back to his
risky option. Each player tries to maximise his expected discounted payoff.
As in previous sections, the state at date ¢ is summarised by the vector of
posterior beliefs (py, ¢;) € [0, 1]2.

As before, once a risky option has produced a success, the player occu-
pying it never finds it optimal to switch to the safe option and the other
player optimally plays as in the single-player game. We define a (Markovian)
strategy k‘(.) for player i to be the mapping k° : [0,1)2 — [0, 1] from states
(ps, ¢;) to ki, the probability that player i plays his risky option at ¢ over the
time interval [t + dt). A (Markov-Perfect) equilibrium is a pair of strategies

(K*(.),k7(.)) such that the strategy of player i maximises his expected dis-
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counted payoff conditional on the strategy of player j, and vice-versa.

Let U(.) denote the value function in the two-player game with revocable
exit. Conditional on player j using the Markovian strategy &7(.) player i’s
value function solves the dynamic problem:

U(p,g; k) = max  {k'(p,q) L"U(p,q:K) + (1 = k'(p,q)) L*U(p,q; K)}

k*(p,q)€[0,1]
where
(3.2)
LoVU(p, g F) == [1 = (1=K (p,q)(1 — )]
(adt + e~ [gAdt V (p) + (1 — gAdt) U(p, ¢; k7)])
+(1 =K (p, ) (1 — 1)
(p)\dt (1 + e"’dt%> + (1 = pAdt)e=r U(p, g l;;j)>

LU (p, g; ) 1= pAde (1+e70i2)
+(1 = pdt) (1= B (p, ) e UG )
+Ri(p, ) e [gAdt V(p!) + (1 = ghdt) U ¢ 1)) ).

and with p/, ¢’ as defined in Chapter 2. The corresponding expressions hold
for player j. Notice that for &/ = 1, L®U(p, ¢; 1) solves the same differential

equation as LW (p, ¢; 1) in the previous section.

We derive the Markov Perfect Equilibrium of this game (Theorem [2).
Disregarding equilibria in weakly dominated strategies, this equilibrium is

unique in the two-player game with revocable exit. All proofs are relegated

o6



3.3. REVOCABLE EXIT CHAPTER 3. TWO-PLAYER GAMES

to the appendix and we concentrate on describing the equilibrium dynamics,
drawing parallels with the equilibrium in Section when pertinent. To
this end, we first define some notation (Section |3.3.1]) that will then serve

to define the equilibrium strategies and illustrate the equilibrium dynamics

(Section [3.3.2)).

3.3.1 Notation

Let us first define the functions S(.,.), Ro(.,.) and Ry(.,.,.). For each func-
tion, the first argument is the current belief about the quality of the risky
option of the player to whom the payoff accrues. The second argument

is the current belief about the quality of his opponent’s risky option. For

(p,q) € (0,172,

A

Ri(z,y,0) =2 = (1—e ) 1 L emro(1 — g 4 ge 7).
p

p
The function S(.,.) denotes the utility of occupying the safe option until

the opponent’s experimenting produces a success and then to play as in
the single-player game, collecting payoff V(z). The first term, %, is the
utility of having to play the safe option forever. The second term reflects
the option-value of being able to adopt the optimal single-player behaviour
should the opponent’s experimenting prove successful. This is decreasing in
y, the probability of the opponent’s risky option being good.

There are two channels through which that option-value can be nullified.

The first obtains if y — 0 so that the opponent’s experimenting never pro-
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duces a success and the player occupying the safe option never gets the
opportunity to behave as a single-player. The second obtains if x is below
the single-player threshold belief, so that V(z) = %. In this case, even if the
opponent’s experimenting produces a success the player occupying the safe
option does not return to his risky option.

The function Ry(.,.) denotes the utility of being forced to experiment for-
ever. This is the payoff accruing to a player if his opponent occupies the
safe option forever or until the first player’s experimenting is successful. The
function R;(.,., o) denotes the utility of being forced to experiment for a du-
ration of time o before regaining access to the safe option and occupying it
forever. This is the payoff accruing to a player if his opponent occupies the
safe option and leaves it after a duration of time o. In all cases, the belief
about the quality of the risky option which is not being activated remains
constant over time. It will become clear as we construct the equilibrium why
those are the only payoffs we need to consider.

We now define boundaries in [0, 1]? that will be relevant in describing the
equilibrium strategies and illustrating the equilibrium dynamics. Let By(.)

denote the function that satisfies, for all (x,y) € [0, 1%,

The set of states {(p,q) : p = By(g)} is illustrated for ¢ < g in Figure [j]
Notice that By(g) is increasing in ¢ and that By(0) = pyy.

In states (p,q) such that ¢ = By(p), player i is indifferent between be-
ing forced to experiment until successful, achieving the payoff Ry(p,q), and

forcing his opponent to experiment until successful, and achieving the payoff

S(p,q). We show in Appendix that when ¢ < gy, if player j occupies
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the safe option, he never leaves it unless player i’s experimenting produces a
success. Player i therefore indeed faces the choice above when ¢ < ¢y, and

trades off the payoffs Ry(p, q) and S(p,q).

At this point, let us highlight one striking feature of the equilibrium dy-
namics by making the naive assumption that a player never returns to his
risky option unless his opponent’s experimentation produces a success. Such
a strategy seems in line with intuitions from the standard bandit model: once
a player leaves his risky option, he never returns to it. Moreover, why would
a player have stronger incentives to leave the safe option if his opponent’s
experimenting is unsuccessful? As the opponent becomes more pessimistic
about the quality of his risky option, his demand for the safe option inten-
sifies. The first player would then be more likely to permanently lose access
to the safe option if he were to leave it than when he occupied it in the first
place.

We find however, that in equilibrium, there are states in which the player
occupying the safe option will eventually leave it even if he is certain that
his opponent will then occupy it permanently. For ¢ < g5, consider any state
(p, ) such that S(p,q) > Ro(p,q), and assume that player i is occupying
the safe option - his preferred choice. As player j experiments unsuccessfully
the common belief about the quality of his risky option decreases, while
the belief about player ¢’s risky option remains constant. In Figure |5 the
state evolves towards the p-axis along a vertical trajectory. If the initial
state (p, q) is such that p < py, then the subsequent states never leave the

set {(p,q) : S(p,q) > Ro(p,q)} and player i indeed never leaves the safe
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otpion. If instead the initial state is such that p > pj,, the subsequent states
eventually fall into the set {(p,q) : S(p,q) < Ro(p,q)}, and player i prefers
returning to his risky option, even if that means losing access to the safe
option forever.

The crucial point is that p > p,s. Recall that for these beliefs we have that
p% > %, and player ¢ prefers occupying his risky option forever to occupying
the safe option forever. The ability to proceed as in the single-player game
if the opponent is successful augments the payoff to choosing the safe option
by ¢ A%p [V(p) — %} > 0, making the safe option more attractive relative to
the risky option than with irrevocable exit. For ¢ sufficiently high, player
1 may therefore be willing to occupy the safe option in states in which he
would prefer the risky option once and for all when exit is irrevocable. The
additional term however decreases with ¢, the likelihood of the opponent’s
risky option being good, and eventually player ¢ switches back to his risky
option, and our naive assumption proves incorrect.

In states such that ¢ € [0, qn] and p € [By(0), Bo(qar)], therefore, player j
knows that player ¢ will only temporarily force him to experiment. More pre-
cisely, if player i occupies the safe option in state (p, q) such that ¢ € [0, gu/]
and p € [By(0), Bo(q)], he will leave it after a time span of of unsuccessful

experimenting by player j, where o] satisfies

q 6—)\0;
= B .
P 0(qe*°3+1—q)

Therefore in state (p, q) player j’s expected payoff from being forced to ex-

periment for the duration o} before being able to switch to the safe option

1s RI(Q7p7 Ug)
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Notice that the payoff to player ¢ from forcing player j to experiment for

the duration ag is :

(1 —q+ qe o) ((1 - e“’gp)% + e7owP p%)

91— e +q 21— e ) (V(p) - 2).

which simplifies to

A a

%+q s [V(p) — ;} = 5(p,q),

the utility to player ¢ of forcing j to experiment until he produces a success
and then playing as in the single-player game. The intuition is simple: when
in state (p, By ' (p)) player i switches back to his risky option, he is indifferent
between doing so and keeping the safe option, so his continuation utility at
that date is equal to S(p, By (p)).

As before, the subscripts M and V respectively denote the single-player
myopic threshold and optimal threshold. Let B;(.) denote the function that

satisfies, for all (z,y) € [0, 1] X [y, Bo(x )],
(3.4) r<Bi(y) & Ri(v,y,0,)<S(z,y).

The set of states {(p,q) : p = Bi(q)} is illustrated for gy < ¢ < By(py) in
Figure

Notice that for = \, x5, where xy; = % denotes the myopic threshold of
the player being forced to experiment, the duration for which he is forced to

experiment ¥ ~— oo and Ry(xar,y,0Y,,) — Ro(zar,y) so that the function

Ro(z,y), if o < ayy,

R1<x7y70-1z/) if x Z XM,

61



3.3. REVOCABLE EXIT CHAPTER 3. TWO-PLAYER GAMES

1S continuous in x.

We are now ready to define, for y < By(zy),

Bo(y) if 0 <z <y,
(3.5) B(y) = _
Bi(y) if zp < < Bolyy).

The role B(.) plays in the proof of theorem 2] is analogous to the one the
myopic threshold belief plays when exit is revocable: in equilibrium, one
player switches to the safe option in a state where his opponent is indifferent

between also switching and pursuing his experimentation.
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Bo( Q)
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Figure 5: Illustration of the boundary B(q):

For g < qur, player i is better-off on the safe option than being forced to experiment
until he produces a success whenever: S(p,q) > Ro(p,q) < p < Bo(q).

For qur < g < Bo(pv), player i is better-off on the safe option than being forced to
experiment temporarily whenever: S(p,q) > Ri1(p,q) < p < B1(q).
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3.3.2 Equilibrium and Dynamics

We now derive the Markov Perfect Equilibrium of the two-player game with
revocable exit (Theorem . Disregarding equilibria in weakly dominated
strategies, this equilibrium is unique. All proofs are relegated to the ap-
pendix and we concentrate on describing the mechanics of the equilibrium,

drawing parallels with the equilibrium in Section when pertinent.

As a first step, (Appendix we show that for the set of states (p,q)
such that p < B(q) and ¢ < B(p) both players have incentives to preempt
one another’s exit (B(.) is defined in equation[3.5). This is relatively straight-
forward: for states in the above set, each player prefers occupying the safe
option to being forced by his opponent to experiment, temporarily or perma-
nently. Moreover, when his belief reaches the single-player threshold a player
attempts to capture the safe option, at which point his opponent is better-off

preempting his switch and the process unravels.
Theorem [2| describes the equilibrium strategies, illustrated below. The

proof is relegated to the appendix, though we will illustrate it in this section

by presenting typical equilibrium trajectories of the beliefs.
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Figure 6: Equilibrium strategies of player i and player j when exit is revocable. If
a state (p,q) is in the green (dark) area, the player plays the safe option, if it is in
the orange (light) area, the player plays his risky option.

Theorem 2. Consider the strategy profile illustrated above:

)
pSva
. 0 if S p>pv, p<B(qg), ¢ < B(p),
E'(p,q) = <
P =DPu,q4=qu
1 else.
\
4
q S qv,
N 0 i< q¢>qv, ¢<B(p), p< Blq),
K (p,q) = 4
q=dqu,P =DPu
1 else.
\

where qu = py satisfy By(py) = Bi(qu) This constitutes the unique MPE
of the game (up to variations in weakly dominated strategies for histories in
which the safe option has already been allocated, so that they do not affect

the allocation of the objects, given an initial state).
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Proof: See Appendix O

We now illustrate the resulting equilibrium dynamics. The duration for
which one player can force the other to experiment in equilibrium increases
as competition intensifies (as priors get closer). In cases where priors are very
different so that one player’s risky option is much more likely to be of good
quality, competition for the safe option is so low that the pessimistic player
can play as in the single-player game. In all equilibria, if the player whose
risky option is initially (at ¢ = 0) least likely to be of good quality does not

experiment successfully, he eventually gains access to the safe option.
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Figure 7: In Case 1, the prior is pg = qo > pp- In Case 2, the priors py > g are
such that at date ¢t > 0 satisfying ¢; = B1(p:) we have ¢; > gy. In Case 3, the

priors pp > qo are such that at date ¢ > 0 satisfying ¢ = qv we have g > B1(pt).
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a

Case 1: pg = qo > o In equilibrium both players switch to the safe
option when beliefs reach the state py = qu satisfying B;(py) = Bi(qu). At
that point, both players are indifferent between being forced temporarily to
activate their risky option and switching to the safe option, as long as their
opponent switches to the safe option. Notice that py > pys, and that the
player who is not allocated the safe option in the tie-break (here illustrated
to be player j) will be forced to experiment unsuccessfully for longer than in

any equilibrium with asymmetric priors.

Case 2: py > qo are such that at ¢t > 0 satisfying ¢, = Bi(p;) we
have ¢, > qy. Here in equilibrium, player j uses the right-continuous (in
p) strategy whereby he continues activating his risky option for all ¢ > B;(p)
and player i switches to the safe option with certainty when ¢ = By(p). As
long as player i switches with positive probability when ¢ = B;(p), player j
is indifferent between playing R and S in that state.

Notice that it is player 7, the player most likely to experiment successfully,
who is the first to capture the safe option, thus forcing player j to experiment.
This is feasible because player 7 finds it optimal to eventually let player j
occupy the safe option if his experimentation does not result in a success: If
q; falls too low, the prospect for player i of being able to achieve the single-
player value vanishes, and he prefers resuming his own experimenting as his
belief p is above the myopic threshold py;. Notice also that in this equilibrium
the player with the lowest prior is forced to experiment until his belief falls

below the single-player optimal threshold.
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Case 3: py > qo are such that at t > 0 satisfying ¢, = ¢y we have
q: > Bi(p:). Here player i is so optimistic relative to player j that even when
the belief about player j’s risky option reaches the single-player threshold gy,
the belief about player i’s risky option is still above the boundary B(qy) and
player ¢ strictly prefers activating his risky option to switching to the safe
option. Player j then effectively plays a single-player game and switches to
the safe option when ¢ = ¢y. In this equilibrium, because of insufficient
competition for the safe option, there is no alternating and it is the initially

pessimistic player who captures the safe option once and for all.
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3.4 Appendix Chapter 3

3.4.1 Lemma

Assume by way of contradiction that there exists and interval of time [t, ¢ +
dt), dt > 0, on which player j plays S and R both with positive probability,
and player ¢ is indifferent between S and R. Then

L®*W(p,q,k (p,q)) =
—pdt A
pAdt (1 + e’ ;)
+(1 = pAdt) (1= K (p,q)) e 2
+k (p, q) e [gAdtV (p') + (1 — gAdt) LW (P, ¢7 (¢, ¢))] ).

For dt — 0 this condition becomes

L*W(p,q, K (p,q)) = (1 — K (p,q)) p % + K (p,q) L™W(p,q. ¥ (p, q))

For k%(p,q) # 1 this holds if and only if L®W(p, q,k’(p,q)) = p %. Then

a

LW (p, q, k" (p, q)) = L°W(p, ¢,k (p,q)) < p = 3

The player is then only indifferent between his two actions when his belief is
equal to he myopic belief, i.e. at one particular date, but not over an interval

of time dt > 0. I

3.4.2 Proof of Theorem (1

In what follows, fix an arbitrary initial state (po,qo) such that py > qo,

pv < po < 1, gqu < q < 1. We will now derive an expression for the
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expected discounted utility of player ¢ when both player ¢ and j play their
risky options from date ¢ = 0 to date ¢ = 7 and player j exits at 7.

When both players play their risky options (ki = k/ = 1), let w(p, q)
denote L®W(p, g, 1), player i’s utility from playing R, and w,(p, q), w,(p, q)
its partial derivatives with respect to p and ¢ respectively. V(.) denotes the

single-player value function. Simplifying Equation w(p, q) satisfies:

(PA + g\ + p) w(p, q) + pA(1 —p) wy(p, q) + g\ (1 — q) we(p, q)
= pA 22+ g\ V(p).

Letting w(s) := w(p(s), ¢(s)), and noticing that %2 = B+ %wq, we obtain

ds
the following ODE for w(s):

() + f(s)id(s) = g(s)
with
f(s) = =(pA+ A +p),
g(s) == —pA 22 — g\ V(p).
Solving this ODE using definite integration, for 7 > 0, we obtain the solu-

tions:

w(0;7) = w(r) el J(T)dr —/ el 1(s)ds g(s) ds.
0
Solving explicitly, we obtain:

wW(0;7) = e P (poe™™ + 1 —po)(goe™™ + 1 — qo)

Ap

|:U~J(T) —pr5 = K pra; <1;f_’*) " }
Ap

_ A
+p0%+KPOCI0 (1 po) ,

Po

with K = ¢=22v (p—‘/) %% and py denoting the single-player optimal exit

pve 1-py
belief.
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Because we assumed that pyy < po < 1, qu < qo < 1, w(0) is a strictly
increasing function of w(7). If player j exits at date 7, then for some arbitrary

A >0,
e if player ¢ exits at 7 + A, then w(7) = pT%,

e if player ¢ exits at 7, then w(7) = 2+ (1—1) pT%,

e if player i exits at 7— A, then w(7 —A) = % and in the limit, as A — 0,
w(r) — 2

For « € (0,1), the order of magnitude of these terms depends solely on
the position of p, relative to the myopic exit belief, py;. Player ¢ is only
indifferent between these three options when p, = py,.

When p, > par, player ¢ strictly prefers letting player j occupy the safe
option and being stuck on his risky option forever, to occupying the safe
option himself. So there can be no equilibrium in which player ¢ switches to
the safe option with certainty at 7’ such that p,» > pyy.

When p, < pur, player i is strictly better-off anticipating player j’s move
to the safe option, and letting the other player switch to the safe option is
never a best response for player i on that support. There can therefore be no
equilibriumﬂ in which a player switches to the safe option with certainty in
state (p, q) such that p < par, ¢ < qur, since the other player would respond

by “undercutting” him.

3Unless the other player exits at a date such that player i is indifferent, or strictly
prefers staying on his risky option. In that case, regardless of the exit date prescribed by
his strategy, he never gains access to the safe option, so the allocation is not sensitive to
his exit date. Having noticed this kind of multiplicity of equilibria, we henceforth only

consider equilibria in strategies that are not weakly dominated.
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Notice furthermore that the term

Atp
—pT —AT A\ a A 1—pT X
e " (poe M + 1 — po)(qoe ™ + 1 — qo) [;—pTg—Kpqu< ) ]

and therefore w(0), are strictly increasing in 7 for p, > py (they are max-
imised when p, = py), i.e. for p, > py, players gain from experimenting for
longer.

One implication is that, conditional on exiting before player j, player @
then maximises his utility with respect to his exit date. If p, < py, player
i optimally switches to the safe option at date 7/ < 7 such that p, = py.
If on the other hand py; > p, > py, then player ¢ would like to exit at the
latest possible date preceding player j’s exit. In discrete time, this strategy
would be unambiguous: player ¢ would exit at date 7 — 1. In continuous
time however, it only exists if player j's strategy is right—continuouﬁ in
p (left-continuous in time) so that an optimal exit date for player i does
exist: max{t € R : 0 < ¢t < 7} = 7. If player j's strategy is left-
continuousﬂ in p (right-continuous in time), then player i always benefits
from postponing his exit by some infinitesimal dt, and his optimal exit date,

max{t € R: 0 <t < 7}, does not exist.

For the remainder of the argument we consider the three generic cases

illustrated in the in section 3.2 and reproduced here.

, 1 ifp>p,
4k’(p,q){ 0 i
if p<p-

) 1 ifp>p,
k' (p,q) = {

0 ifp<ps
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Case 1: py = qp. Following the arguments above, the only equilibrium is
for both players to play their risky option when p > p,; and to switch to the
safe option in state p = py.

1 ifp>pu 1 ifg>qu

) kj(pa Q)CASEI -
0 ifp<pwm 0 ifg<qm

ki(]?a q)CASE 1=

They then face a tie-break in which either player is allocated the safe option
with positive probability. If player ¢ gains access to the safe option, the belief
about his risky option remains p,; forever, while the belief about player j’s

risky option gradually decreases (all the way to zero, if the option is bad.)

Case 2: py > qo and such that when p, = py, ¢ > qy. Following

the arguments above, player ¢ will only optimally move to the safe option if
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his belief is pys, and he is indifferent between being allocated either option
forever. As noted above, for player j to have a best response, player ’s
strategy must be right-continuous in p.

Assume this were not the case and player ¢ played S, then anticipating
player ¢’s switch by some positive time-interval A > 0 would be a profitable
deviation for player j. There would, however, be no best response (in contin-
uous time), as player j would prefer anticipating player i’s exit by % rather
than A. In equilibrium, player ¢ plays R when p = pj; and player j is
best-responding by switching to the safe option at p = py.

We therefore have that
1 ifp>pu 1 ifp>pu

) kj(pa Q)CASEQ ==
0 ifp<pwm 0 ifp<pu

E'(p, q)cass 2 =

In that case, player j, who is more pessimistic than player ¢, is allocated
the safe option with certainty, and the belief about his risky option remains
constant forever, while the belief about player ¢’s risky option gradually de-

creases (all the way to zero, if the option is bad.)

Case 3: py > qo and such that when p; = py/, ¢; < qy. Asin Case 2, and
excluding strategies that are weakly dominated, player ¢ will only optimally
move to the safe option if his belief is py;. This means that in states (p, q)
such that p > puy, ¢ > qv, player j essentially plays a single-player game,
and he optimally switches to the safe option when ¢ = qy,. Because the belief

about player i’s risky option is above the myopic player’s exit belief, player ¢

73



3.4. APPENDIX CHAPTER 3. TWO-PLAYER GAMES

finds it optimal to let player j occupy the safe option, and the equilibrium is

1 ifp>opy , 1 ifg>qy
) k](p7 Q>CASE3 =
0 ifp<pwm 0 ifg<gqy

ki(pa q)CASE 3 =

Arguing similarly for states py > qg, we complete the equilibrium strategies

of both players, and establish the result of Theorem [I O

3.4.3 Proof of Theorem

We derive the MPE of the game with revocable exit. The proof will proceed
as follows: we first derive an expression for the utility to player ¢ from playing
his risky option until some date 7 at which player j exits. It is increasing
in the continuation utility at date 7. We then show as a first step that to
maximise this continuation utility agents will have incentives to preempt one
another’s exit for a set of states which we define in Section [3.4.3 below. As a
second step we then fully characterise the agents’ equilibrium best-response
correspondences.

We will first derive an expression for the expected discounted utility of
player ¢ when both player ¢ and j play their risky options from date ¢t = 0 to
date t = 7 and player j exits at 7. Fix an arbitrary initial state (po, go) such
that po > qo, par < po < 1, qur < qo < 1. Notice that for &7 = 1, LRU(p, ¢; 1)
solves the same differential equation as LW (p, ¢; 1) in the previous appendix.

We let u(p,q) denote LU(p,q;1) and @(s) := u(p(s),q(s)). Replicating the
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solution from Appendix we obtain:

w(0;7) = e " (poe + 1 —po)(goe" + 1 — qo)

Atp
[’&(T) —pry — K prgs (1;’_”) ’ }

Ap

_ A
+p0%+KPOQO<1 pO) ,

Po

with K = % (%) 3 and py denoting the single-player optimal exit
belief.

Because we assumed that py; < pg < 1, g < qo < 1, the utility to player
1 of staying on his risky option until player j switches to the safe option,
u(0,7), is a strictly increasing function of @(7), the continuation utility at

date 7.

Unraveling

As a first step, we compare continuation utilities to show that in states (p, q)
such that p < B(q) and ¢ < B(p) where B is defined in equation 3.5, Players
will have incentives to preempt one another’s exit and there will be unraveling

of the exit decision. That set of states is depicted below.
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We now compare continuation utilities to show that in states (p,q) such
that p < B(g) and ¢ < B(p) players will have incentives to preempt one
another’s exit, and there will be unraveling of the exit decision. If player j

exits at date 7, then for some arbitrary A > 0,

e if player i exits at date 7+ A, then a(7) = R.(p(7),q(7)) where z takes

the value 0 or 1 when ¢(7) < gar or > qps respectively.

e if player 7 exits at date 7 — A, then a(7 — A) = S(p(t — A),q(7 — A))
and in the limit, as A — 0, @(r) — S(p(1), (7)),

e if player ¢ exits a 7 he faces a tie-break.

Similarly for player j when 7 is player ¢’s exit date. So a player is better-off
anticipating his opponent’s exit whenever S(p(7),q(7)) > R.(p(7),q(7)). In
the following, we drop the exit date 7 and just concentrate on the states
(p, q) to show that there will be unraveling of the exit decision.

In states {(p, ¢)|p < pv} switching to the safe option is (weakly) dominant
for player 7. This trivially follows from the single-player game. Similarly for
player j in states {(p,q)|q < qv }.

Consider the states {(p,q)|q¢ < qv,p > py}. If player i occupies his risky
option, player j will occupy the safe option and stay on it forever, so the
payoff to player i of occupying his risky option is Ry(p, q) := p%. If player
occupies the safe option until player j’s option produces a success, player i’s
payoff is S(p,q) == ¢ +q 33 [V(p) - %} :

Player i’s continuation utility is then maximised by also switching to the
safe option as long as S(p,q) > Ro(p,q) < p < Bo(q). Otherwise player i

prefers being forced to experiment forever.
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Consider the states {(p,q)lpv < p < pu,qv < ¢ < qur}. Here the un-
raveling of the exit decision will start as players have incentives to preempt
one another’s exit: If player i switches to the safe option in state (p, q) with
p \( pv, player j’s continuation payoff from staying on his risky option is
Ro(q,p) while his payoff from preempting player i’s exit by some A > 0
tends to S(q,p) as A — 0 so that player j prefers preempting as long as
S(q,p) > Ro(q,p) < q < Bo(p). The converse argument holds for player i,
establishing the unraveling in that set of states.

Consider the states {(p,q)|pv < p < par,qu < ¢ < Bo(py)}. Player j has
an incentive to preempt player i’s exit as long as S(q,p) > Ro(q,p) < ¢ <
By(p) even though, since ¢ > ¢, player j will eventually return to his risky
option if player i’s belief falls too low. In that case player ¢ has an incentive
to preempt player j’s exit as long as S(p,q) > Ri(p,q) < p < Bi(q).

Similarly for player j in states {(p,q)|pm < p < Bolgv),qv < q < qu}-

Finally consider the states {(p,q)|lpm < p < Bolqv),qu < ¢ < Bo(py)}.
Here any player who occupies the safe option eventually leaves it if his oppo-
nent only produces unsuccessful trials. There is unraveling of the exit decision
as long as S(p,q) > Ri(p,q) < p < Bi(q) and S(q,p) > Ri(q,p) & ¢ <
Bi(p).

Equilibrium

This series of steps in Section |3.4.3| establishes that there can be no equilib-

rium in which a player exits with certainty at date 7 such that (p(7),q(7))
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satisfy p(7) < B(q(7)) and ¢(7) < B(p(7)). We now argue that in equilib-
rium, there can be no exit at date 7 such that p(7) > max(pv, Bo(¢q(7))) and
q(7) > max(qv, Bo(p(7))): if player i exits at date 7 satisfying the conditions
above, then player j prefers letting 7 occupy the safe option than facing him
in a tie-break or preempting him.

Notice furthermore that the term

Ao
—pT —AT —\T A 1 — Dr kS
e " (poe M +1—po)(q0e " +1—q0) | S(pr, q-) —pT; — K prqr ( ) ]

and therefore @(0 : 7), are strictly increasing in 7 for p, > py (they are
maximised when p, = py). Then because if player j were not preempting
player ¢ at date 7, player ¢+ would have an incentive to postpone his exit by
some dt.

In fact, conditional on exiting before player j, player ¢ aims to maximise his
utility with respect to his exit date. If p, < py, player ¢ optimally switches
to the safe option at date 7/ < 7 such that p,» = py. If on the other hand
pr > pv, player i tries to exit as shortly as possible before player j. This
maximisation only has a solution if player j’s strategy is right-continuous in
p, as explained in the previous appendix.

For the remainder of the argument we consider the three generic cases

illustrated in the in Section 3.3.2, and reproduced here.
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In all cases, following the argument in Section [3.4.3]

1 ifp<py
1 ifg<gqy, p< Bolg) K (pq) =

k(p,q) =

0 ifg<gqv, p> Boy(q)

Case 1: py = qp.

for both players to play their risky option when p > py and to switch to the

Following the arguments above, the only equilibrium is

safe option in state p = py.

K’ (p7 q)CASE 1

if p> py _
) kj(pa Q)CASE 1=

0 ifp<py
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They then face a tie-break in which either player is allocated the safe option
with positive probability. If player ¢ gains access to the safe option, the belief
about his risky option remains py. If player j’s experimenting produces a
success, player ¢ immediately reverts to the single-player optimal strategy
and achieves utility V(py). If player j’s experimenting remains unsuccessful
after oV periods player ¢ prefers returning to his risky option, thus freeing

the safe option of player 7 who then occupies it forever.

Case 2: py > qo are such that at ¢t > 0 satisfying ¢ = B;(p;) we have
q: > qv. Following the arguments above, player ¢ moves to the safe option
in a state such that player j is indifferent between facing him in a tie-break
or staying on his risky option and being forced to experiment temporarily.
As noted above, for player i to have a best response, player j’s strategy must

be right-continuous in p. We therefore have that

1 if p> Bi(q) F(p. @y 1 if p > Bi(q)

l;;i(pu Q>CASE2 = ) )
0 if p < Bi(q) 0 if p < Bi(q)

In that case, player i, who is more optimistic than player 7, is allocated the

safe option with certainty. Then the game proceeds as in Case 1.

Case 3: py > qo are such that at t > 0 satisfying ¢, = ¢y we have
q@ > Bi(p:). Here as long as ¢ > qv, pr > B(g) and player ¢ has no
incentive to occupy the safe option. Player j then essentially plays a single-
player game and he optimally switches to the safe option when ¢ = ¢y

and player 7 finds it optimal to let player j occupy the safe option. The
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equilibrium, excluding weakly dominated strategies, requires

L ifp> Bolg) , K (p,q)cass s = bita=a

/%i(pa Q)CASE 3= ) .
0 if p < By(q) 0 ifqg<qv

Then player 7 occupies the safe option with certainty and never switches
back to his risky option. Arguing similarly for states py > qo, we complete
the equilibrium strategies of both players, and establish the result of Theo-
rem 2l O
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Chapter 4

Privately Observed Payofls and

Other Extensions

4.1 Introduction

The extension considered extensively in this chapter and the object of imme-
diate future research addresses the concern that the assumption of publicly
observed payoffs may be too strong. The following sections present some
preliminary results on this issue. We concentrate on the stopping game (“ir-
revocable exit”), and hope to solve the game in which exit can be revoked in
further research. In relaxing the assumption that payoffs are publicly observ-
able, we need to re-define the Markov state to take into account that players
now hold beliefs about whether the opponent’s experimentation has as yet
resulted in a success.

At the beginning of the game, neither player has had a chance to experiment

yet, and the prior probabilities of either Poisson process having a positive
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arrival rate are common knowledge. As the game proceeds, a players may
learn that his Poisson process has a positive arrival rate. He then has a
dominant strategy which amounts to the single-player optimal behaviour
described in Chapter [2l We attempt to solve for the equilibrium behaviour
of a player who has yet to observe a Poisson event.

For any priors the players hold about the quality of their Poisson process,
there only exists Markov-perfect equilibrium in pure strategies when their
priors are so different that players never compete for the safe option, in the
sense that playing his Poisson process is strictly dominant for one player
when the other players switches to the safe option. When the priors are
closer, and there is more intense competition for the safe option, we find that
there is no pure strategy equilibrium.

We then set up the conditions for the existence of a mixed strategy equilib-
rium assuming that the randomising takes place over a connected support.
We consider the case of players with equal priors about their Poisson pro-
cesses and derive preliminary results about the form of the equilibrium. Fully
characterising the equilibrium of the game remains the subject of ongoing
research on our part. Let us point out that there is little existing work on
experimentation with private monitoring. A few notable exceptions include

Murto and Valimaki| (2011) or Bonatti and Horner| (2011)).

4.2 Private Payoffs

Consider the game with irrevocable exit from Chapter 3. Assume now that

while players observe their opponent’s actions, the outcome of their experi-
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menting is private. In the previous sections, we assumed that this information
was public. This meant that players held common posterior beliefs about the
quality of both Poisson processes. Now, while a player sees whether his oppo-
nent is activating his Poisson process or not, he does not know whether this
the Poisson process has already produced a success. So each player either
faces an opponent whose Poisson process has already produced a Poisson
event (we call this the “informed” type of opponent) or an opponent whose
Poisson process has not yet produced a Poisson even (the “uninformed” type

of opponent).

Each player now holds three beliefs:

1. A belief about the likelihood of his own Poisson process having a posi-

tive arrival rate. Let p and ¢ denote player i and j’s beliefs respectively.

2. A belief about the likelihood of his opponent’s Poisson process having a
positive arrival rate, conditional on the opponent not having observed
a Poisson event yet. Let ¢ and p denote player ¢ and j’s beliefs respec-

tively.

3. A belief about the likelihood of his opponent’s experimentation already
having produced a Poisson event. Let # and 7 denote player ¢ and j’s
beliefs respectively. From the point of view of player i, player j’s belief
about his own Poisson process is 1 with probability # and p with prob-

ability 1 — 6.

The vector of beliefs held by players i and j respectively at any date t
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are (py, Gi, 0¢) and (qg, pr, 7). The vector of beliefs characterising the Markov
state at any date ¢ is
(Pt s, Or; Gty Pt 1)

Recall that a denotes the flow payoff from playing the safe option, and
each Poisson process has arrival rate A > 0 or 0. Since we have assumed
that 0 < a < A, the informed type has a dominant strategy, which is to
always play his Poisson process. To complete the characterisation of the
Markov Perfect Equilibrium in this game, we need to derive the equilibrium
strategy of the uninformed type. Since in equilibrium the true belief p of the

uninformed type is the same as his opponent’s belief p, the vector

(p,0:q,7)
with p < 1 and ¢ < 1 is a sufficient summary statistic for the state when
describing the uninformed player’s problem. Without loss of generality we
can think of a state as proceeding from an initial state (po, o; o, m0). We
limit our analysis to Markov states proceeding from some initial state such
that 6y = mo = 0 and the vector of priors (pg, go) is common knowledge.

A Markovian strategy u' for player 7 maps the beliefs (p,q) about the
Poisson processes conditional on neither of them having produced a Poisson
event, as well as his belief # about the type of opponent he is facing, into
u'(p, q,0), the probability that player i switches to the safe option in state
(p,0; q, ). Similarly for player j’s strategy p’(q,p, 7). The pair of strategies
(u?, ) for the uninformed types, together with the dominant strategies of
the informed types, constitute a MPE if and only if the strategy of each
uninformed type maximises his expected discounted utility in each state,

given the strategies of both types of opponent.
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Let V;(.) denote player i’s value function in this game. It solves the dynamic

problem:
Vi(p, q,0; 117) = max,i(p q 00ei0.1) { (1 — 1 (p, 4. 0)) L™Vi(p, ¢, 0; 1)
+1i(p, q,0)L5Vi(p, q.0; 1) }
where
L*Vi(p,q,0; 1) = (1= 0)/ (¢, p, 7) (L% +(1 - L)p%)
+ (1 - (1 - e)luj(qapa W)) %
L™i(p,q,0;1/7) = pAdt (1 +(1- pdt)%)
+(1 — pAdt) (1 — pdt) (1 —0) (g, p,7) p'3

p
+(1 = pAdt)(1 = pdt) (1 —(1—0)(q,p,m) Vi(p,q',0"s 117).
subject to p’ = p+dp and #' = 0 + df, and where ¢ denotes the probability

with which a tie is broken in favour of player i. Player j’s value function is

defined similarly.

4.2.1 Evolution of Beliefs

The state evolves in the following way:

1. The belief of the uninformed type of player ¢ about his Poisson process

having a positive arrival rate follows the law of motion:

(4.1) Pt +dp; = pr — pi(1 — pe)Adt
Similarly for ¢;.

2. Let 6, be player i’s belief at ¢t about his opponent being the informed

type conditional on player 7 never having switched to the safe option.
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After a short time interval dt, player ¢ updates this belief through two
channels: he observes his opponent’s action and draws inference based
on his opponent’s strategy 7/ which prescribes that player j exits with
probability ,u{ at date t. Moreover, he knows that his opponent could
have observed a Poisson event during the short interval dt. By exiting
the opponent reveals that he is uninformed and 6, 4 jumps to zero. As
long as he does not exit, 6; follows the law of motion:

L —0,)(1 — pydt)
1— (1 —6,)udt

Solving for df, and eliminating terms in O(dt*) we obtain

Notice that if over the time interval [t,t + s) the strategy p; prescribes
that player j’s uninformed type never exits, then

(1— e = 4t — Qi+s

9t+s:CIt =7 “ .
— igs

4.2.2 No Pure Strategy Equilibrium

In this section we show that when there is sufficient competition between
players (as defined in a precise sense) this game admits no pure strategy
equilibrium. First we show that outside certain threshold beliefs, players
have strictly dominant strategies (Lemma [7)). We define initial states such
that in all following states, playing his Poisson process is a strictly dominant
strategy for one player, at least until switching to the safe option becomes
strictly dominant for his opponent. In these states, there is a unique Markov

Perfect Equilibrium in which the informed type of the player whose Poisson
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process is ex-ante least likely to have a positive arrival rate adopts the single-
player optimal behaviour.

We further show that outside these states, players cannot exit one after the
other in equilibrium (Lemma : one player always has strict incentives to
deviate. The player meant to exit first can increase his payoff by inducing his
opponent to believe that he is the informed type, simply by postponing his
exit. The player meant to exit second may increase his payoff by preempting
his opponent’s exit. We finally show that there cannot be a pure strategy
equilibrium in which players exit simultaneously either (Lemma: the safe
option is then always allocated in a tie-break (with the unique tie-break rule
defined in Lemma E[), and both players have an incentive to preempt their

opponent’s exit.

If in state (p, 6; ¢, 7), the uninformed type of player j switches to the safe
option, player i’s continuation payoff from staying on his Poisson process in

response is

» A
(4.4) L™;(p,q,0;1 =1) =0 V(p)+(1—6) p o

If instead player i also switches to the safe option, he faces player j in a
tie, and the tie-break rule allocates the option to player ¢ with probability
¢ € [0,1]. His payoff is

4 A
(4.5) L*V(p,q,0; 1 = 1) = 0 %+(1—9) (L%—i—(l—L)p ;>.

Finally, player ¢ could preempt player j’s switch, in which case, in the limit,

his continuation payoff is %.
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Denote by p*(,¢) the belief solving
p > p*(ea L) A LRVZ'(?%Q?&H{ = 1) > LSVi(pa%e;,Ug = 1)

This means that for p > p*(0,.), switching to the safe option is a strictly
dominated strategy for player ¢, when the tie-break rule is . We notice that
p*(0,¢) = pa, and p*(1,¢) = py. For 8 > 0, p*(6,¢) solves

Atp Adp

1—-9 a—p/\< P )* a—pv)\< ju% )A
4.6 1+ = .
(4.6) [ 0 ] pp I—p pvp L —pv

The right-hand side of Equation (4.6)) is a constant. The left-hand side is

decreasing in p on [py, 1), increasing in ¢ and decreasing in . Therefore,
p*(0,¢) is unique, % > 0 and % < 0.

Assume that player j switches to the safe option in state (p,d;q, 7). For
beliefs strictly above p*(0,¢), player i strictly prefers letting the opponent
occupy the safe option, while for beliefs strictly below this cutoff player ¢
strictly prefers facing his opponent in a tie. The higher 6, the more opti-
mistic player ¢ is about player j being the informed type, and the lower his
chances of losing access to the safe option if he decides not to switch when
the uninformed type of player j does: the relative value of experimenting
increases with #. Similarly, the relative value of switching to the safe option
and facing his opponent in a tie increases with ¢ for player i.

We define ¢*(m,¢) in a similar fashion and notice that ¢*(0,¢) = qu,
7 (1,¢) = qv, % < 0 and % < 0 (recall that ¢ is the probability that
player i wins a tie).

We now show that for beliefs outside [p*(1, ), p*(6, 1)], player ¢ has a strictly

dominant strategy.
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Lemma 7. In any state such that p > p*(0,1), player i has a dominant
strategy which is to play his Poisson process. In any state such that p < py,

player i has a dominant strategy which is to switch to the safe option.

Proof: In every state (p,0;q, ), player i’s continuation payoff is bounded
from below by V;(p, q, 6; ug = 1) (a player always prefers having access to the
safe option to being forced to experiment by his opponent), and from above by
V(p), the single-player value-function. When p > p*(6,1), L%Vi(p, q, 6; 1] =
1) > L3Vi(p, q,6; 1)) for all 1, even when L5V,(p, q,6; i) is maximised by
the tie-break rule allocating the safe option to player ¢ with certainty (v = 1).
This establishes the first statement.

The second statement follows from the definition of py, the single-player
optimal threshold belief introduced in Chapter 2. For beliefs p < py, the
player has become too pessimistic about his Poisson process and sees no
more value in experimenting.

The equivalent statements for player j are that: in any state such that
q > ¢*(m,0), player i has a dominant strategy which is to play his Poisson
process, and in any state such that ¢ < gy, player j has a dominant strategy

which is to switch to the safe option. [J

We conclude that in states (py, 0¢; g¢, m) such that ¢; = gy and p; > p* (04, 1),
player j switching to the safe option and player ¢ continuing to activate
his Poisson process are best-responses to one another. Furthermore, neither

player has an incentive to deviate by switching at an earlier date since Vs < t,

ps > e > p (6, 1) and g5 > ¢ — qv.
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We would like to describe in terms of the initial state (pog, 0; go, 0) the states
for which this strategy profile constitutes an equilibrium. To this end, notice
that prior to the switching date ¢ of player j, both players continuously
activate their Poisson process. Therefore, by Equation describing the
law of motion of 6,

— qo Po — Pt
1—e M =2 )
( ) po 1 —py

0 = qo

Using this expression for ¢ in Equation (4.6)), we can express the threshold
belief at which player ¢ is indifferent between facing his opponent in a tie and

keep experimenting, in terms of (po, ¢o) and denote it p*(po, qo, ¢). It solves

Atp Atp
P (1 pol—p)}a—pA( p )* a—pwk(zw )*
— 0 - — )
qo po—p pp I—p pvp 1—py

For a given vector (po,qo,t), P*(Po,qo,t) is unique, increasing in ¢ and de-

creasing in py and qo . We define ¢*(po, qo, ¢) in a similar fashion.

Finally notice that as long as p and ¢ follow the law of motion described
in Equation the ratio of their likelihood ratios is constant. Let the
function (z) = % for x € (0,1) denote the likelihood ratio. We are now
ready to define the set of states for which the equilibrium described above

exists.

Corrolary 1. Given an initial state (po,0;qo,0) such that

Q(po) > Q(p*(po, q0, 1))

4.7 > )
(47) Q(qo0) Q(qv)
the strategy profile
; 0 fp>p0,1), : 0 ifq>qv,
1'(p,q.0) = , W (g,p,m) =
1 else. 1 else.
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constitutes the unique Markov Perfect equilibrium (up to variations in weakly
dominated strategies). Similarly for states proceeding from an initial state

(po, 0; qo, 0) such that

Q Q
(4.8) Q(Po) < ST (pv) :
(QO) (q (QO7p07 0))
and the strateqy profile
i 0 pr>pV; : 0 qu>q*(ﬂ-70)7
w(p,q,0) = , 1 (g, p,m) =
1 else. 1 else.

For the remainder of this section we concentrate on states proceeding from

any initial state (po, 0; go, 0) such that:

Qpo) ( Q(pv) Q(p* (po, 90, 1)
Q(qo) Q(Cj*(po,%,o)’ Qqv)

i.e. conditions (4.7) and (4.8) are not satisfied. Intuitively, these are states

) = E(p0> qO)v

in which there is sufficient competition in the sense that the priors py and ¢q
are relatively close. We will show that in these states there is no equilibrium

in pure strategies.

Lemma 8. Given an initial state (po,0;qo,0) such that gggg € Z(po, o),

there exists no equilibrium in pure strategies such that one player exits after

the other.

Proof: Assume there exists an equilibrium such that the uninformed type
of player 7 exits at date ¢, and the uninformed type of player j exits at date

s > t. The continuation payoff at date ¢ to player ¢ is 5 If the informed

type of player i deviates and does not exit at date ¢, then by equation (4.3|)
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player j concludes that he is facing the informed type of player ¢, and reverts
to playing the single-player optimal strategy: he will continue experimenting
until his belief hits ¢y, the single-player threshold. Player ¢ can then just

preempt that switch, and his payoff from this deviation is

YR

qt e~ AT

e = v As long as = > 0 this deviation is strictly

where x solves
profitable. This requires that ¢s > ¢qy. By Lemma [7] ¢s must belong to the
interval [qv, qu]. If gs = qv then player i’s best response is to exit at ¢ just

prior to s, so that ¢ \, qy. U

So our candidate equilibrium strategies are such that players exit simulta-
neously. We show that for every initial state, there exists a unique tie-break
rule such that players are simultaneously indifferent between switching to
the safe option or not. We then show that players always have profitable

deviations, and conclude that there are no equilibria in pure strategies.

Lemma 9. Given an initial state (po,0;qo,0) there exists a unique tie-break

rule t*(po, qo) such that both players are simultaneously indifferent.

Proof: Fix an initial state (po,0;qo,0). For every ¢ € (0, 1) there exists a
unique pair (p*(po, go, t), G*(qo, Po, t)) satisfying the indifference conditions of
both players. For these beliefs to be held by both players simultaneously, the
ratio of their likelihood ratios must equal that of the priors. (Recall that the

ratio of likelihood ratios remains constant over time.) Since %]5* (po, qo,t) > 0

Q(p* (po,qo0,t))

. .
and 54" (po; qo; ¢) < 0, the ratio g s,

is a strictly increasing function
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QF* (0,00,0)) Q5" (po,q0,1 - _
of ¢ on (92%83,33,0537 Qg*gzg’g&l;;) = Z(po, qo). We conclude that there exists

a unique ¢*(po, o) € (0,1) such that

Q
o

" (Po, 9o, " (Po, ) _ 2po)
7*(pos qos t*(Po; @0)))  Qqo)

The existence of a unique tie-break rule such that both players are si-
multaneously indifferent between switching or not is evocative of Simon
and Zame’s inclusion of the tie-break rule into the equilibrium in games
with payoff-discontinuities (Simon and Zame (1990))) - such as Bertand or
Hotelling games. Whereas with public payoffs (cf. previous chapters) we
could solve this difficulty by letting one player have a left-continuous, the
other a right-continuous strategy, here this does not work because of discon-
tinuities between payoffs when players exit together, or when players exit one
after the other. Indeed, the proposed pure strategy equilibrium breaks down
altogether.

Lemma 10. Preempting opponent’s switch is profitable deviation from switch-

ing stmultaneously and facing tie-break.

Proof: For t*(po, q0) € (0,1), p*(po, o, t*(Po, q0)) < P*(Po, qo, 1) and so

a

LSVi(p* (po, 90, t* (0, 0))> ¢ (Po, @0, t* (0, @), 11 = 1) < 3

The payoff from exiting simultaneously with his opponent is lower than the
payoff from anticipating the opponent’s switch by some small time interval

dt - 0. O

We conclude that for states proceeding from initial states (pg, 0; g, 0) such

that % € Z(po, qo), there exists no pure strategy equilibrium.
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4.2.3 Mixed Strategy

As a first step in exploring the existence of mixed strategy equilibria, consider
games in which players have the same prior probability of having a Poisson
process with positive arrival rate. The initial state (po, 0; pg,0) is then sum-
marised by pg and given an initial state and a strategy for his opponent, a
player’s belief about his opponent’s type is given by Equation , so that
the posterior belief p < 1 is a sufficient summary statistic for each state in
which neither player has observed a Poisson event yet.

Consider the symmetric strategy profile p1;(p) = p;(p) where p;(p) denotes
the probability with which player i’s uninformed type switches to the safe
option in state p. Player i’s value function V(p; ;) then solves the following
dynamic problem :

V(p; pj) = m{;%?fé,u {(1 — wi(p)) LV (p; i) + 1:(p) LV (p; Mj)}

LVap) = (1= 0)s(0) (12 + (1= 0p2) + (1= (1= 0)ps(p)) &

L™ (ps py(p) = pAdt (1+ (1= pdt)?)
+(1 = pAdt)(1 — pdt) (1 —0)u;(p) p'2
+(1 = pAdt)(1 = pdt) (1 —(1—=0)u;(p)) V(s n(p)),
where p’ = —pA(1 — p)dt.

Conjecture 1. There is a symmetric equilibrium in mized strategies in which

players exit with positive probability over some time interval [s, 8] such that

py < ps < ps <p*0,1) .
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Let h(p;) denote the hazard rate at which an uninformed player switches
to the safe option over the time interval [t, ¢ + dt) conditional on not having
switched yet. If we assume that h(p,) is continuous over the support [p, p| =

[ps, ps] C [pv,p*(0,1)], then ties occur with zero probability. Hence h(p;)dt =

w(py) solves

e

— pdl (1 +(1- pdt)%)
+(1 = pAdt) (1 — pdt) (1= 0(pe))h(pe)dt pevac,
+(1 = pAdt)(1 = pdt) (1= (1—=0(p:))h(pe)dt) .
Eliminating terms € O(dt) and simplifying, we obtain that a player is indif-
ferent between switching to the safe option and activating his Poisson process

over the short time interval [t,t + dt) whenever the expected hazard rate of

exit by his opponent in state p(t) satisfies

(4.9) (1= 0(p)h(p) = PETERERL = (A + p— a) B2

a—pA PM—P

Expressing the law of motion of 6; described in Equation (4.3) as a function
of the state p rather than of time, we obtain the following ODE for the belief
0:

do(p
110) == = 0p) [(1- 000 — P+
Combining the two ODEs gives us the trajectory of beliefs when players
randomise:
db(p) PAA+p—a)—ap
4.11 —pA1—p)——= =146 —pA A
(4.11) pA(L = p) 0 () [ Y pAl+p

Solving this ODE gives a functional form for 6(p). Given this functional
form, we could use Equation (4.9)) and solve explicitly for h(p), the hazard

rate at which an uninformed player switches to the safe option.
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4.3 Other Extensions

In this section we present other possible extensions to the model which we
deem useful and of economic interest, though they are not analysed as part
of this thesis. Although the results from Chapter 3, especially for the case
where exit is revocable, can seem intuitive, it may be difficult to think of a
great number of ‘real-world’ illustrations of the equilibrium behaviour. While
examples of preemption abound, we may have to engage in loose interpreta-
tion when trying to think of situations in which the player currently forcing
his opponent to experiment returns to his own experimentation and leaves
the safe option for his opponent to take, after having exhausted the strategic
option-value from occupying the safe option.

Certainly the assumption that the contested option is “safe” exacerbates
the exciting result that preemption need not be irreversible. We could under-
stand the notion of “occupying the safe option” as the protracted contract
negotiation of a job-candidate aware that his competitor, who is himself hop-
ing for an offer from that employer, might seek a job elsewhere. Recognising
that there may be a strategic option-value associated with occupying an op-
tion also raises a question of identification.

Consider the situation along the equilibrium path in which one player oc-
cupies the safe option and forces his opponent to experiment. The player
occupying the safe option does so in the hope of his opponent’s experimenta-
tion producing a success, and even though his belief is close to the the myopic
threshold: absent the opponent, the player would rather experiment with his
own Poisson process. Similarly for the player being forced to experiment,

whose belief may be below the myopic threshold: he prefers the safe option.
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An outside observer who is not aware that the players are competing for
access to the safe option and who does not know the players’ beliefs might
wrongly conclude that the player occupying the safe option prefers it to his
Poisson process, and that the player occupying his Poisson process prefers
it to the safe option. The outside observer would erroneously ignore the
strategic option-value attached to occupying the safe option, and miss the
possibility that the player occupying the safe option is currently forcing the
opponent to experiment.

With view to approaching a more “realistic” setup, several extensions might
be worth pursuing. Allowing for the options to be priced is one such example.
Notice that the Planner Solution when exit is revocable could be implemented
by the planner renting out access to the safe option over some short time-
interval dt — 0 by means of a second-price auction. Players then bid the
difference in their continuation utilities with or without the option for that
time interval, and the safe option would always be allocated to the player
with the lowest expected arrival-rate.

Thinking of the options as employers setting wages at which they hire
workers, it is also clear that a success by his opponent makes a player the
monopolist vis-a-vis the safe option. How such a sudden shift in bargaining-
power would affect the worker’s wage is not clear: the firm could wait until the
player has experimented and risk him never wanting the safe job should his
experimentation result in a success. If however the player’s Poisson process
never produces a Poisson event, the firm can now hire the worker very cheaply.

Even without prices, we can think of options as strategic players deriving

utility from being activated by a player and so get closer to a two-sided
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matching setup. It is clear from the results in Chapter 3 that an option
benefits from competition, since players have incentives to occupy an option
that they would not occupy in the absence of competition, so as to block
the other player. From the point of view of an option, it might therefore be
optimal to be the “second choice” for many players rather than the “first
choice” for a few players.

With view to deriving the model’s implications in a larger economy, one
further extension one could consider would be to increase the number of
players. In this case, even though players still benefit from an opponent
being forced to experiment, each player would like another player to block
the safe option, rather than occupying the safe option himself: there is an
incentive to free-ride. At the same time, occupying the single safe option
forces several players to experiment, making the strategy more appealing.
Depending on how the two effects trade each other off, the set of beliefs
for which players switch to the safe option in equilibrium could increase or
decrease, although we conjecture that the first effect will dominate. Even if a
player forces several players to experiment, the probability of them all having
a success, and the player achieving the single-player value, is minute. The
equilibrium behaviour in the game with revocable exit would gradually evolve
towards the equilibrium behaviour in the game with irrevocable exit, with
the relevant threshold beliefs gradually approaching the myopic threshold.

However, in letting the number of players increase, one must beware not
to run into a motivational conflict: recall that we are assuming that payoffs
are public, and players are aware of their competition. When the number of

players increases, these assumptions may become indefensible.
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Chapter 5

N-dimensional Blotto Game
with Asymmetric Battlefield

Values

5.1 Introduction

Budget-constrained multidimensional allocation problems were amongst the
very first ones considered in game theory. The first version can be found
in [Borel and Ville (1938). This problem and similar ones later came to be
known as “Colonel Blotto” games, after Gross and Wagner| (1950))’s approach
to the allocation problem.

In the simplest version of the Colonel Blotto game, two generals want
to capture three equally valued battlefields. Each general disposes of one
divisible unit of military resources. The generals have to simultaneously

allocate these resources among the three battlefields. A battlefield is captured
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by a general if he allocates more resources there than his opponent. The goal
of each general is to maximise the number of captured battlefields.

In that game, a pure strategy for player i is a 3-dimensional allocation
vector x; = (z}, b, z%) where 2% is the amount of resources allocated to the
kth battlefield. The set of all pure strategies is the 2-dimensional simplex
A?. A mixed strategy is a trivariate distributions function F': A* — [0, 1].

This version of the game was considered in Borel’s course on probability
Borel and Ville (1938) at the university of Paris in 1936-37. The solutions
given by Borel reappear in Gross’s and Wagner’s unpublished research mem-
orandum (1950).

They state that a mixed strategy F' constitutes a symmetric equilibrium
of the game if all one-dimensional margins of F' are uniform over [0, %] One
geometrical approach to building such a distribution F' consist of projecting
a sphere, together with a uniform generic point belonging to its surface, onto
the disc inscribed in an equilateral triangle.

Gross and Wagner conjecture that this geometrical method of generating
the equilibrium distribution extends to Colonel Blotto games with more than
three equally valued battlefields. This extension is formalised in [Laslier and
Picard| (2002). It is worth noting that Weinstein| (2005) presents a different
geometric approach for case of n > 3 equally valued battlefields.

Roberson| (2006) addresses the question of whether the univariate marginal
distributions of the equilibrium strategies (n-variate distributions) are nec-
essarily uniform for symmetric battlefield weights but possibly asymmetric
budgets, and finds that they indeed have to be. That paper does not, how-

ever, solve the Blotto Game with asymmetric battlefield values. Another
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related paper is Kvasov (2007)). It looks at a variation of the Blotto Game
in which the allocation of resources is costly, and there too, battlefields are
symmetric.

The present chapter generalises Gross and Wagner’s geometric approach
to construct equilibrium distributions of the n-dimensional Colonel Blotto
game with asymmetric battlefield weights. The difficulty lies in inscribing
a circle within an irregular n-gon. The necessary and sufficient conditions
for this relate to the integer partitioning problem, a well-known problem of

combinatorial optimisation.

The next section describes the model, then generalises the proofs of the
existing literature to describe known equilibria of this game. Section
presents geometrical methods of constructing equilibrium distributions. It
describes Borel’s solutions as formulated in Gross and Wagner (1950), then
Laslier and Picard’s geometric construction method. Section [5.4] constitutes
the main contribution of this chapter. It shows how, and under which condi-
tions, this method can be extended to asymmetric n-dimensional cases. The
conditions are related to a constrained version of the NP-complete “integer
partitioning problem”.

We end this chapter (Section by illustrating the construction method
using the example of US presidential elections. We argue that given the
motivations of presidential candidates, the Colonel Blotto game is an apt
model. Moreover, it turns out that in that example and given the actual
distributions of electoral votes across US states, the construction method

suggested performs very well at generating equilibrium distributions. The
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final section concludes.

5.2 Model and Equilibrium

Two players with identical budget normalised to one decide how to allocate
their resources across n battlefields indexed by k € {1,...,n}. The absolute
value of battlefield k is the positive integelﬂ Ey. For all k, denote e, =
Ey/ > r_, E) the relative value of battlefield k£ and note that Y ;_, e, = 1.
To make the game non-trivial, assume that 0 < e, < 1/2, or equivalently
that 0 < By <> . By, forall k=1, n.

Player i € {1,2} chooses a nonnegative vector of allocations x; = (z, ..., 2%,
where 7} is the amount of resources allocated to battlefield k. Player ¢ wins
in battlefield k if his resources in that battlefield, %, exceeds the resources
xfc of the other player. Ties are resolved by flipping a coin. Both players
are budget-constrained so the sum of a player’s resources allocated across all
battlefields cannot exceed that player’s budget of 1.

A pure strategy of player ¢ is an n-dimensional vector x satisfying the

budget constraint. Denote S the set of pure strategies of player i:
S'={xel0,1]": Zxk <1}
k=1

Both players seek to maximise the aggregate value of captured battlefields.

The function g : 8¢ x &7 — R measures the excess aggregate value of bat-

!'Notice that we could choose battlefield weights in R. But because we will relate
this problem to the integer partitioning problem (and for real numbers, condition (P1E’)
introduced in Section 5.4.3 holds with zero probability), we restrict attention to integers

from the outset.
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tlefields captured by player i if he plays the pure strategy x* while player j
plays x/:

n

g(x',x) =Y ey sgn(y — ),
k=1

with sgn(u) =1if u >0, 0if u =0 and —1 if u < 0.

A mixed strategy of player ¢ is an n-variate joint distribution function
F': 8" —[0,1]. Denote F} the kth one-dimensional margin of F*, i.e. the
unconditional distribution of z%. For each k = 1,...,n, F} maps [0, 1] into
itself. Define the payoff to a mixed strategy as the mathematical expectation

of g(x%,x7) with respect to the strategy profile (F*, F7).

The following proposition generalises existing results on the form of equi-

libria in Blotto games to the case of asymmetric battlefield weights. The

proof is relegated to Appendix [5.7.1}

Theorem 3. Consider the Colonel Blotto Game with asymmetric battlefield
weights.

(i) This game has no pure strategy Nash equilibrium

(i1) Both players meet their resource constraint in equilibrium.

(iii) Let F* be a probability distribution of x € A" such that each vector
coordinate xy (k = 1,...,n) is uniformly distributed on [0,2eg]. Then (F*,

F*) constitutes a symmetric Nash equilibrium.

The first point implies that an equilibrium, if it exists, must be in mixed
strategies. The second point guarantees that the support of any equilib-
rium strategy is the (n — 1)-dimensional simplex. Point three states that

having univariate margins that are uniform on [0, 2¢;] is a sufficient condi-
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tion for a mixed strategy with support A”~! to constitute a symmetric Nash
equilibrium. [Roberson| (2006) shows that for homogeneous battlefield values
(Vk er = 1/n) uniform univariate margins are also a necessary condition for

equilibrium.

Is it always possible to build a joint distribution satisfying the proper-
ties of F*?7 We cannot answer this question in general, but we provide one
method for building these equilibrium distributions. We then present con-
ditions under which this method works, and address the question of when
these conditions are likely to be satisfied. To this end we note a parallel to
the constrained integer partitioning problem.

The following section describes the geometric construction method of Gross
and Wagner, and later Laslier and Picard, while section generalises it to
accommodate asymmetric battlefield values. We obtain conditions under
which this construction method always produces a joint distribution satisfy-

ing the properties of F™.

5.3 Multivariate Distributions - Known Cases

The aim is to construct a n-variate distribution function F* from given one-
dimensional margins and given the equilibrium restrictions on the support
of F*. Indeed, in equilibrium candidates only use strategies in the (n — 1)-
dimensional simplex, A"~! which does not include the whole of x%_,[0, 2¢y].
Were it otherwise, it would be possible to construct a joint distribution with

any correlation properties.
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So the restriction of the support of F* given its margins limits the number
of possible interactions between resource allocations to different battlefields.
So far, I have not been able to fully characterise the set of possible correlations
satisfying the restrictions on F™.

This section presents a geometrical method of constructing F* that we
will refer to as the generalised disk solution, in reference to the disk solution
presented in Gross and Wagner| (1950) and later with some modifications in
Laslier and Picard| (2002).

Note that because this is not the only way to construct multivariate dis-
tributions satisfying the restrictions above, this method might not describe

the entire set of F*s even in cases where the method is applicable.

5.3.1 Triangle Solution - Gross and Wagner (1950)

First, consider the case presented in |Gross and Wagner (1950) for n = 3
asymmetric battlefield weights. The following process generates three di-
mensional vectors x = (x1, Ty, 23) in the two dimensional simplex A? such
that each zy, is distributed uniformly over [0, 2ey].

Think of the triangle of sidesﬂ ey, €2, ez, as belonging to the plane with
z-coordinate zero in the three-dimensional space (z,v, z). Inscribe a disk of
centre O and radius r within that triangle. This disk is the projection (onto
the plane (x,y,0)) of the sphere S of centre O and radius r belonging to

the three dimensional space (x,y, z). Finally, let R be a generic point that

2For simplicity we identify a side of the triangle with its length. So we use ey to

refer both to a segment and to its length. Note also that this triangle always exists since

en < 1/2 Vk.
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is uniformly distributed on the surface of the sphere &, and let P be the

orthogonal projection of R onto the plane.

N

Figure 1: The Triangle Solution.

'|\ 1

€1

For all k, hy is the distance of P from the side e;. In the three-dimensional
space, it is also the distance of R from Py, the vertical plane tangent to the
sphere of centre O and which projects onto the side ey.

If R is uniformly distributed on the surface of the sphere, what is the
distribution of hy? For all ¢t € [0,2r], the spherical cap of height t is the
region of the sphere S that lies between the vertical plane Py, and the vertical
plane parallel to P;, and at a distance t away from it. Then, for all ¢ € [0, 2r],
Pr(hy < t) = Pr(R € cap of height t), and since R is uniformly distributed

on the surface of the sphere, this probability equals the surface area of the
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capE| of height ¢, ¢t € [0, 2r], divided by the total surface area of the sphere:

or [T da t
PI‘(hk < t) = —fgr = 5
2 fo rdx 2r

and so hy, is distributed uniformly on [0, 2r].

Back in the two-dimensional plane, call A the area of the triangle of height
hi, and side e, subtended by P. For all k, Ay = eihy/2. Since hy, ~ UJ0, 2r],
it must be that Ay ~ U|0, 2rex /2] = U|0, reg].

Letting A = Ay + As + A3 = (e1 + ex + e3)r/2 = /2 be the total area
of the triangle, we assimilate the fractions z, xs, x3, which are assumed to
belong to the two dimensional simplex, to the fractions A;/A, As/A, A3/A,
which belong to the two dimensional simplex by construction. So for all
k, xxy=Ay/A = 2A;/r. Then finally, since Ay ~ UJ0,rex], it must be that
x ~ U|0, 2re /7], i.e. xp ~ U[0,2¢;]. O

Note that this construction is unique as there is only one cyclical permu-
tation of 3 objects, if we account for the orientation of the cycle (i.e. treat

{z,y,z} and {z,y,x} as equivalent).

3 Note that the result of this sub-section is largely

driven by the following property of spheres: Con- A
sider the spherical segment of height h. Its surface m Ih

(excluding the bases) is called a zone. Its mathe- w
matical expression is 27 f:r dxr = 27rh. Note that
this area is independent of the wvertical position of

the zone.
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5.3.2 Regular n-gon - the disk solution - Laslier and

Picard 2002

As n increases beyond three, note that different orderings of the e;’s create
different supports for the equilibrium strategy. Moreover for n > 4 it is not
possible to inscribe a circle in any n-gon. Irregular n-gons are the object of
the next section.

Let us first consider the case of regular n-gons, which is the result presented
in |Laslier and Picard| (2002). As supported by the disk solution, it is possible
to construct a multivariate distribution F™* for the case in which all states
carry the same value: e, = 1/n for all k. Then, regardless of n, it is possible
to inscribe a circle within the n-gon; and following the same method as in
the triangle case, the process generates n-dimensional vectors x = (1, ..., Z,,)
belonging to the (n—1)-dimensional simplex, such that each zy, is distributed
uniformly over [0,2/n].

In the two-dimensional, oriented plane, consider the regular n-gon { Py, ..., P,—1}

centered at zero such that
. . (2k—1)7
Pk — (p oS (21921)“”0 Sln@k:gl)w) = i
The disk that is inscribed within this n-gon is centered at zero and has

radius r such that

4
= g 2(1 +cos%) =r.

P+ P
2

This disk is the projection onto the plane of the sphere centered at zero of
radius r. To generate the n-dimensional vector x, use the method corre-

sponding to the three-dimensional case described above.

109



5.4. IRREGULAR N-GON CHAPTER 5. BLOTTO GAME

Figure 2: Regular n-gon

Note that there are as many disk solutions as there are ways to order n
objects in a circle without taking into account the orientation of the circle,
i.e. (n—1)!/2. Even though all sides have the same length, meaning that the
n-gons {ey, ey, e3,e4} and {es, s, €1, €4} say, look identical, the correlations
of vector coordinates deriving from the resulting joint distributions will be

different.

5.4 Multivariate Distributions - Irregular n-
gon

In this section, we present a novel construction method for the case where
battlefield values differ. Note that if there exists an n-gon with sides of
lengths corresponding to the battlefield values and that admits an inscribed

circle, we can use the method for constructing F* described above. But as
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noted in the previous section, for n > 4 it is not possible to inscribe a circle
in any n-gon. Roughly, the figure needs to be sufficiently regular. Indeed,
for some {ex}7_;, it may never be possible to inscribe a circle in an n-gon of
sides e, regardless of the ordering. This is the case for instance if one ey, is

much larger than all the others.

Figure 3: Ill-behaved n-gons

The next sub-section describes how to construct an irregular n-gon admit-
ting an incircle, assuming this is possible. Then, sub-section [5.4.2] presents
the necessary and sufficient conditions on battlefield weights guaranteeing it

is possible to construct an irregular n-gon admitting an incircle.

5.4.1 Irregular n-gon - the modified disk solution

Consider the n-vector e = (eq, ..., €,) of battlefield weights, and define the n-
vector v = (71, ..., Yn) t0 be a reordering of e satisfying conditions described
in section [5.4.2] Let k, the index of the coordinates of -, be congruent
modulo n.

Given ~, consider the following method of constructing an irregular n-gon
of ordered sides 71, 79, etc, such that a circle is inscribed in it.

For £ = 1,...,n, let T be a string of n connected segments [Py_1, Py] of

length v, with the following equidistance property: let Ty be a point of the
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segment [Py_1, Py such that, for each k, the distances ||} Py|| and || PyTy+1]|
are the same, denoted t;. The points T}, will be the tangency points between

the n-gon and the circle inscribed in it.

Figure 4: The set T.

Consider the disk (O,r) and two connected segments [AB] and [BC]. Let
both segments be tangent to the circle, and let K and L be the points of
tangency of [AB] and [BC] respectively. It is a well known result that the
distances ||K — B|| and ||B — L|| are then necessarily equal.

i
Sl Y
| by |
\ |

C

Figure 5: Equidistance

Accordingly, if a sequence of connected segments can be wrapped around a
circle (regardless of the number of times the sequence goes around the circle)
in such a way that all segments are tangent to that circle, then the points of
tangency of two consecutive segments are equidistant from the point common

to both segments.
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Figure 6: Wrapping Gamma around a circle.

This equidistance property is, by construction, satisfied by the set I'. So
[' can be wrapped around any circle (O,r). The number of times we can
wrap this set of connected segments around a circle depends on r. Theorem
[] states that there is only one value of r for which we can wrap a given T
around a circle, such that P, = F,, closing the n-gon. Denote 6, the angle

(Pkfla Oapk)

Theorem 4. For a given T, >} _, 0 = f(r) where f is a continuous, strictly

monotone function. Therefore, r* satisfying f(r*) = 2w is unique.

Proof. Denote ay, the angle (T},0, P;). Then Y, 0, =2>")_, a;. The
function sin™! is defined (and monotonically increasing) on [—1, 1], and since
forall z € R™, 0 < z/vVa? + 1?2 <z/Va? =1, so

Ly,

t
—r & gqy=sin! {—k},
Vit +r? Vit +r?

sinay, =
and
n n ‘ B tk
0, =2 sml[—}: r),
kz_; K ; o f(r)
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which is strictly decreasing, and hence invertible in r for all n. The propo-

sition follows. O

Note that r* depends on the particular choice of t; so that any vector e

may be associated with several r*.

We now present the conditions on v that are necessary and sufficient for
the existence of a set I', and hence for the existence of an n-gon of sides given

by v and admitting an inscribed circle.

5.4.2 Necessary and sufficient conditions

When the n-gon is regular, it is always possible to inscribe a circle within
it. As we deviate from the regular n-gon, what are sufficient conditions on
{ex}7_, and on the ordering of the sides of the irregular n-gon that need to
be satisfied to ensure that a circle can be inscribed within it?

First note that the restriction e, < 1/2 Vk guarantees that a convex n-gon
with sides of lengths given by {e;}}_; exists.

This section describes conditions for reordering the coordinates of the n-
vector € = (eq, ..., e,) to form the n-vector v = (71, ...,7,). Recall that k,
the index of the coordinates of 7, is congruent modulo n. The conditions are
necessary and sufficient to be able to inscribe a circle in the irregular convex
n-gon with ordered sides given by ~, and from there, to build an equilibrium
strategy F™.

It will be shown that some vectors e will not admit any reordering ~y sat-

isfying these conditions so that it will not be possible to build a distribution
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with the properties of F* using the geometric method.

To be able to build such a set I', the vector v needs to satisfy the follow-

ing restrictions |(P1) and (P2)| that are divided in sub-cases depending on

whether n, the number of battlefields, is odd or even.

(P1E) If n is even, then

n

Z(—l)i%ﬂ' = 0.

i=1
(P2E) If n is even, then for any k, there exists a constant ¢ > 0 such that
forv=1,2,..,3,

2v+1

mEX{Z(—l)i%H} <c< mjn{Z(—l)i%ﬂ}

(P10) If n is odd, then for any k,

(P20) If n is odd, then for any k,

n—1
Ve > H Z(_l)iﬂ%ﬂ‘
i=1

These restrictions are all derived from the fact that by definition, v, =

tx + tga1, and from the two following requirements:

1) Congruence Vk, tyy, = ty.
2) Fit \V/k, 0 <tr <.

|((P1) and (P2)| hold if and only if congruence and fit are satisfied. The
details can be found in appendix [5.7.2]
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Congruence and fit are necessary and sufficient conditions for v to generate
a set [' as defined in section [5.4.1 It follows that these properties of ~
are necessary and sufficient for the resulting I to generate at least one n-
gon admitting an incircle. Of course, they are all satisfied when all the
coordinates of v are the same - corresponding to the case of Laslier’s and
Picard’s regular n-gon. The following theorem is the main result of this

section:

Theorem 5. If for a vector e of battlefield weights we can find a reordering

v satisfying |(P1) and (P2), then we can construct an irreqular n-gon with

an inscribed circle of radius r*.

The radius 7* is defined in theorem [ In the remainder of this section, we
provide some insight into these properties and in particular (section ,
ask how easy they are to satisfy.

Conditions and , relate to the tangency points of the in-
scribed circle with the n-gon. They ensure that if ¢, belongs to the interval
(0,7%), then ¢, which is equal to vy — tx, belongs to the following interval,
(Vk, Ye+1). We can see that while for n odd, the conditions on the length ¢
are very strict (equality), for n even it will be sufficient for ¢; to belong to
the interval defined in [(P2E)}

(P2E)’ If n is even, then for all k,

2v+1

I € <m3X{Z(_1)i’Yk+i} amjn{i(_l)i%ﬂ})

So for a given 7, if n is even, it is possible to build an infinity of sets I'
as long as |(P2E)’| is satisfied, while for n odd, there exists a unique I with
distances t;, satisfying |(P1O)|
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The remaining two conditions, [((P1E)| and |(P20)| are discussed in the

next sub-section.

5.4.3 The constrained integer partitioning problem

It is clear that while some vectors e may admit several corresponding vectors
v, others may admit none. Indeed, the properties are all regularity restric-
tions on the ordering of the coordinates of v and impose some balance. Notice

that |(P1E)| can be rewritten as:
(P1E)’ If n is even, then

l Bl

1
E V(k+2i) = E V(k+2i—-1) = 57
i=1 =1

and that [(P20)| can be rewritten as:
(P20)’ If n is odd, then for any k,

n—1
h 7

Tk > H ZV(H%) - 27(k+2i—1) H
i=1 1

So the two conditions are similar in requiring that the n-gon generated
by ~ is balanced in the sense that the summed length of odd sides and the
summed length of even sides are equal (for n even) or close in a precise sense
(for n odd).

As a brief digression, note that they also can be interpreted as the re-
quirement that there exists a coalition of states such that each state in that
coalition and each state in the complement coalition is pivotal. Pivotality
is not a very apt concept here, as players are maximising their plurality. It
would be more fitting in a context where players maximise their probability

of winning.
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More can be said about when [(P1E)| and [(P20)| may be satisfied by not-

ing that these conditions are related to the constrained integer partitioning
problem, a classic problem of combinatorial optimisation. The exercise con-
sists in partitioning n integers into two subsets of given cardinalities such
that the discrepancy, the absolute value of the difference of their sums, is
minimized.

corresponds to the constrained partitioning problem in which the
cardinality of the two resulting subsets is n/2 and the discrepancy is equal
to zero. A partition with a discrepancy of zero is called a perfect partition.
corresponds to m instances of a more relaxed version of the con-
strained partitioning problem just described: for each k = 1,...,n, the aim
is to partition n — 1 integers into two subsets of equal cardinality, such that
the discrepancy is less than ;.

These are computationally difficult problems. The unconstrained parti-
tioning problem is NP-complete, and while some algorithms deliver good
approximations of the optimal partition (the partition with the lowest possi-
ble discrepancy), the brute force algorithms that compares the discrepancies
of all possible partitions is still the best known solution to the problem.

Borgs et al.| (2003)) identify two phases of the constrained problem depend-
ing on its computational difficulty. They study the typical behaviour of the
optimal partition when the n integers are i.i.d. random variables chosen
uniformly from the set {1,...,2™} for some integer m.

They find that, for m and n tending to infinity keeping the ratio m/n
constant, with probability tending to one there exists a perfect partition

when m/n < 1. They call this the perfect phase of the problem. In the hard
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phase of the problem, for m/n > 1, the probability of a perfect partition
tends to zero and the optimal partition is unique, making computation of
the optimal partition more difficult there. Still, the minimum discrepancy,
i.e. the discrepancy of the optimal partition, can be bounded from above
and below.

While in the limiting case, the phase transition is sharp at 1, in finite cases,
the phase transition happens within a specified interval containing 1, and it
is not clear whether the transition is sharp. Finally, the number of perfect
partitions in the perfect phase is lower than in the limiting case by about
twenty percent for a given ratio m/n.

For the purpose of this chapter, the results of Borgs et al. allow the con-
clusion that (P1E) and (P20) are likely to be more easily satisfied for
m/n < 1 than for m/n > 1, and that while (P20) may be satisfied for
m/n > 1, (P1E) never is.

m/n<1| m/n>1

(P1E) easy | impossible
(P20) easy hard

Finally note the importance of the assumption that battlefield values are
integers. Indeed, were battlefield values drawn from R, the condition for n

even would hold with probability zero.

5.5 Application

One compelling illustration of this model is the election of US presidents by

electoral college: first, during primaries, two candidates, one Democrat, the
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other Republican, are chosen to represent their party in the general election,
which is then held simultaneously in all 51 US states (50 + D.C). Each state
is allocated a number of electoral votes depending on its populationﬂ There
are 538 electoral votes in total. A candidate gains all electoral votes of a
given state if he receives more than half the votes cast in that state. To win
the election, a candidate must win at least 270 electoral votes.

This situation can be modeled as an asymmetric Colonel Blotto game under
the following three assumptions: (i) presidential candidates face identical
budget constraints, (ii) the probability of winning the election in a given
state increases with campaigning resource allocated to that state, and (iii)
candidates wish to maximise their plurality, rather than the probability of
winning the election.

The first two assumptions are the least controversial. In fact assumption
(i) is trivially satisfied if we think of the campaigning resource as time spent
campaigning in each state.

What if we think of money as the resource? In practice, candidates can
choose whether to self-finance their general election campaign, or (since 1976)
can accept public fundingﬂ To be eligible to receive the public funds, a
candidate must limit spending to the donationﬁ. So if both candidates are

4For details, see Appendix [5.7.3
SFor information on the Public Matching Fund scheme, visit the Federal Election Com-

mission at http://www.fec.gov/.
6In essence. More precisely, the candidate may not accept private contributions for

the campaign. Private contributions may, however, be accepted for a special account
maintained exclusively to pay for legal and accounting expenses associated with complying
with the campaign finance law. These legal and accounting expenses are not subject to

the expenditure limit. For more detail, see the FEC brochure for Public Funding of
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publicly funded, it makes sense to assume that they both face the same
resource constraint.

The assumption of equal budgets becomes more trying if at least one of
the candidates is self-funded. Indeed, there is considerable evidence that in
these cases, budgets differ; as seen in the latest US presidential elections.

The positive relationship between campaign effort and votes is well doc-
umented, whether campaigning effort is understood to be time spent cam-
paigning in a state (Herr (2008))) or financial campaign expenditures in that
state (Chapman and Paldal (1984)). So assumption (ii) is also pretty unprob-
lematic.

This is not so for the last assumption. In general, one would assume that
candidates maximise the probability of their winning the election. Neverthe-
less one could argue that because presidential elections coincide with Senate
and House of representative elections, presidential candidates do campaign
so as to maximise the plurality of votes in they favour, not only so as to win
the presidential election. This is more believable in cases where one candi-
date already expects to win with a significant plurality, but surely not when
elections are close. Either way, it is fair to say that maximising the plurality
in his favour is at least a candidate’s secondary objective.

One strong argument supporting the claim that candidates care at least
a little about plurality is that they do indeed campaign in all states, while
ignoring small states (states with few electoral votes, that have little chance
of being pivotal) would be consistent with the strategy of a candidate solely

trying to maximise his probability of winning the election.

Presidential Elections at http://www.fec.gov/pages/brochures/pubfund.shtml.
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So we can think of the US general election game as a Colonel Blotto game.
In both cases candidates choose how to allocate a fixed amount of resources
across states. Strategic considerations arise because of the positive relation-
ship between campaign effort and votes. By spending more in a state than

his opponent, a candidate increases his chances of winning that state.

In this section we look for a solution to a Colonel Blotto game in which
each state has a value corresponding to its relative number of electoral votes.
The distribution of electoral votes across states is shown in Appendix [5.7.3]

Two candidates with budgets X4 = Xp = X decide how to allocate their
campaigning funds across n = 51 states indexed by k£ € 1, ...,n. The value of
state k is e, which corresponds to the number of electoral votes allocated to
state k as a fraction of the total number of electoral votes, 538. For instance,
the state of Alabama has 9 electoral votes, so for that state, e = 9/538.
Accordingly e, < 1 for all k and Y ,_, e, = L.

Candidate 7’s plurality, i.e. the number of electoral votes won minus the
number of electoral votes lost, is measured by the function ¢; : S; X §; - R
defined in section (.2

Since this matches the setup of section the results of all following
sections hold, including the existence of one equilibrium distribution. In-
deed, consider the vector ~, presented in Appendix [5.7.4l It is such that
each e, corresponds to the number of electoral votes allocated to state k as a
fraction of the total number of electoral votes, 538. For clarity, we multiply
all numbers back by 538. Note that this solution uses the current distribu-
tion of electoral votes (i.e. the third column in table [5.7.3)), but that the
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construction method works equally well for the other two distributions.

This vector satisfies the conditions [(P1) and (P2)| for n odd (n = 51).

Note that within the framework of section [5.4.3] the 51 partitioning problems
corresponding to this exercise are in the perfect phase. Here, the greatest
of the n = 51 integers is 55, the number of electoral votes for the state
of California. So we can treat the electoral votes as n i.i.d integers chosen
uniformly from the set {1, ..., 2™} with m = 6, in which case m/n = 6/51 < 1
(perfect phase) so that the partitioning problem should be relatively easy
to solve. Indeed, a solution can be easily found heuristically, as shown in
Appendix [5.7.4] This illustrates one possible equilibrium of the US general

elections game.

5.6 Conclusion and Open Questions

This chapter describes a geometrical method for constructing equilibrium
distribution in the Colonel Blotto game with asymmetric battlefield values.
The appeal of geometrical methods for constructing n-dimensional distribu-
tions subject to restrictions on their support and their margins lies in the
relative simplicity with which they describe complicated multi-dimensional
objects. The drawback is that they may fail to generate the full set of distri-
butions satisfying given restrictions on support and margins. This downside
is limited when that set is well defined, as it is here, so that the exercise
becomes to generate instances of these well-defined objects.

The method presented in this chapter generalises to the n-dimensional case

a construction method first proposed by Gross and Wagner. It does partic-
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ularly well in instances of the Colonel Blotto game in which the battlefield
weights satisfy some clearly defined regularity conditions (Section .
Though these conditions constrain the set of games in which this method
reliably generates equilibrium strategies, they are less restrictive than the
condition of symmetry across all battlefields (Laslier and Picard). Moreover,
their implications suggest directions for further research.

Noticing that the conditions on the reordering v can be interpreted as the
requirement that there exists a coalition such that every battlefield is pivotal
suggests a parallel between behaviour of candidates seeking to maximise plu-
rality and candidates seeking to maximise probability of victory, though this
work leaves the exact relationship between these games an open question.

Finally, the restrictions on the support of equilibrium distributions limit
the number of possible correlations across x;’s. This captures the idea that
even though it is intuitive that more resources are likely to be allocated
to battlefields with greater weight, the solution suggests that allocations to
different battlefields interact in a particular way. Looking more carefully at
possible correlations across x;’s could be interesting from the empirical point

of view.
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5.7 Appendix Chapter 5

5.7.1 Proof of Proposition 1

Proof of (i) and (ii): Straightforward.

Proof of (iii): To prove this point, it is sufficient to show that the payoff
to any pure strategy y € 8¢ against F™* is non-positive. First we show that
the expected payoff to player ¢ from playing ™ against F™ is zero. Let
x' = (2%, ...,21) and x/ = (2], ...,27) be generated by F*. Accordingly, for

all k = 1,...,n, 2}, and 2] are drawn from the uniform distribution over

[0, 2¢x] and Pr(z], < i) = Ff(x}) = % So given x', for all k = 1,...,n,

Elsgn(z, — ad)|x;] = 2F"(x}) — 1 = % —
€k

And hence, for all k =1, ..., n,

Blsgntel— ) = [ (L -1) arzcy

€k

1 [ [t
_ L (_ - 1) i
26k 0 CL

which is zero for all £k =1, ...,n so that:

n

Elg(F*,F*)] = e - E[sgn(z} — x})] = 0.
k=1

Now consider the payoff to player ¢ of playing an arbitrary pure strategy
y € 8t = A"l against F*. Since for all k = 1,...,n, e, < % and F} is
the uniform distribution on [0, 2ex], Fy(yx) = yi/2ex if yr € [0,2¢;] and

F]:(yk) =1if Yg > 2ep. So

E[sgn(y, — =)|y] = 2F}; (ys) — 1
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—2min{1 ﬂ}—l.

2€k

lg9(y, F)] Zek mln{l —k—l}
<Zek(__1)

The last term equals Y ;_, yx — Y _p_, ex which is zero since y € A" and
> r_; ex = 1 by construction. So g(y, F*) <0=g(F*, F*) forally € S;. W

Hence:

5.7.2 Restrictions on v, the reordering of e

In this appendix, I illustrate how to derive the conditions [(P1) and (P2)

from the property t + tx11 = Vi, and the requirements:

1) Congruence Vk, tpi, =t
2) Fit Vk‘, 0 <tr <y

First, let’s develop the first requirement. For n even:

thn =t
€t = Vedno1 — Vetn—2 T Vetn—s — - — W + b
& D (=) =0
& (P1E)
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For n odd:
tk+n =ty
< U = Vetn—1 — Vhtn—2 + Vetn—3 — - + % — Ui
< 2tk = Vian-1 — Vetn-2 t Vetn-3 — - T Yk
& 2= E?:l(_l)i+17k+i
< |(P10)

Now, let’s develop the second requirement.
For n odd, from (P10) we know that ¢, = %(’yk = Vi1 F+Vhr2 — oo F Vhtn—1)-
So

0<ty < Vi
< Y < Vel T Vet2 = o T Ven—1 < Vk
n—1
< > H Z(—l)iH%ﬂ’
i=1
~[(P20)

For n even, the fit requirement, Vk, 0 < t; < 7, gives us n restrictions:

(1) 0 < & < %

(2) 0 < tp1 < Mt
(3) 0 <tz < Ves2
(n) 0 < fryn-1 < Yrtn-1
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They can all be simplified to n restrictions on t:

(2) Ve — Ver1 < bt < M

(3) Ve — Ve+1 < bt < Ve — Vel T Vet

(n) Ve — Vet T oo T Vogn—2 — Vean—1 < T < Yo — Vi1 + oo + Vitn—2

Notice that ¢ faces n/2 upper bounds and n/2 lower bounds. All n con-

ditions are satisfied if:

2v+1

2v
max{ > (-} < < min{d(~1) e}
i=0 1=0

and for this to be possible, v needs to satisfy |(P2E)|

128



5.7. APPENDIX

CHAPTER 5. BLOTTO GAME

5.7.3 Distribution of Electoral Votes (Source: FEC
www.fec.gov)

State 1981-1990 | 1991-2000 | 2001-2010 State 1981-1990 | 1991-2000 | 2001-2010
Alabama 9 9 9 Missouri 11 11 11
Alaska 3 3 3 Montana 4 3 3
Arizona 7 8 10 Nebraska 5 5 5
Arkansas 6 6 6 Nevada 4 4 5
California 47 54 55 New Hampshire 4 4 4
Colorado 8 8 9 New Jersey 16 15 15
Connecticut 8 8 7 New Mexico 5 5 5
Delaware 3 3 3 New York 36 33 31
D.C 3 3 3 North Carolina 13 14 15
Florida 21 25 27 North Dakota 3 3 3
Georgia 12 13 15 Ohio 23 21 20
Hawaii 4 Oklahoma 8 7
Idaho 4 4 4 Oregon 7 7 7
Ilinois 24 22 21 Pennsylvania 25 23 21
Indiana 12 12 11 Rhode Island 4 4 4

Towa 8 7 7 South Carolina 8

Kansas 7 6 6 South Dakota 3 3 3
Kentucky 9 8 8 Tennessee 11 11 11
Louisiana 10 9 9 Texas 29 32 34
Maine 4 4 4 Utah 5 5 5
Maryland 10 10 10 Vermont 3 3 3
Massachusetts 13 12 12 Virginia 12 13 13
Michigan 20 18 17 Washington 10 11 11
Minnesota 10 10 10 West Virginia 6 5 5
Mississippi 7 7 6 Wisconsin 11 11 10
‘Wyoming 3 3 3
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5.7.4 One possible support of the modified disk solu-
tion applied to US data.

For clarity, all numbers are multiplied by 538.

k Jew | e | fegt | B | en | te |t
1j3|2] 8 |5 31 2
218 6 2 || 3| 2 |
1/]9]13 6 |E| 3|1 2
djm| T E || 4] 3 1
5|11] 4 T |41 3
G|1r|18] 4 || 4| 3 |
T|H|T]| 13 |2]4]1 3
BlM|a] T |8 5| 4 1
9 T|13] 14 |3d]| 5 | 1 1
021 8] 13 |85 ) 4 1
1njis| T E || 6| 2 |
12|15 & T |37 6] 4 |
13j15| | B |3E| ¥ | 3 i
|| 3 T |38/ T4 ¥
15| 7| 4 3 || E| 4 |
16| 7| 3 i njo| s 1
T|6 1] 3 I |&aj0]d 5
18| 5| 2 3 2| 6 |
19| 53] 2 |#&|1D)] 4 fi
0| 4]1 3 | 1|7 |
201 3| 2 1 |11 4 T
213]1 2 |4V |
nla|2 1 IE|12] 5 T
M3l 2 |49 13| 8 5
213] 2 1 |5D|34]|2%)]| B
||| W
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