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Abstract

In this thesis we present a new take on two classic problems of game theory: the “mul-

tiarmed bandit” problem of dynamic learning, and the “Colonel Blotto” game, a multidi-

mensional contest.

In Chapters 2-4 we treat the questions of experimentation with congestion: how do

players search and learn about options when they are competing for access with other

players? We consider a bandit model in which two players choose between learning about

the quality of a risky option (modelled as a Poisson process with unknown arrival rate),

and competing for the use of a single shared safe option that can only be used by one

agent at the time.

We present the equilibria of the game when switching to the safe option is irrevocable,

and when it is not. We show that the equilibrium is always inefficient: it involves too

little experimentation when compared to the planner solution. The striking equilibrium

dynamics of the game with revocable exit are driven by a strategic option-value arising

purely from competition between the players. This constitutes a new result in the bandit

literature. Finally we present extensions to the model. In particular we assume that

players do not observe the result of their opponent’s experimentation.

In Chapter 5 we turn to the n-dimensional Blotto game and allow battlefields to have

different values. We describe a geometrical method for constructing equilibrium distri-

bution in the Colonel Blotto game with asymmetric battlefield values. It generalises the

3-dimensional construction method first described by Gross and Wagner (1950). The pro-

posed method does particularly well in instances of the Colonel Blotto game in which the

battlefield weights satisfy some clearly defined regularity conditions. The chapter also

explores the parallel between these conditions and the integer partitioning problem in

combinatorial optimisation.
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Chapter 1

Introduction

In this thesis we present a new take on two classic problems of game the-

ory: the “multiarmed bandit” problem of dynamic learning, and the “Colonel

Blotto” game, a multidimensional contest. In Chapters 2-4 we treat the ques-

tions of experimentation with congestion: how do players search and learn

about options when they are competing for access with other players? In

Chapter 5 we explore the n-dimensional Blotto game when battlefield values

can vary.

In the standard multiarmed bandit problem, a player faces several objects

delivering stochastic payoffs. Each object is associated with a distribution

that is unknown to the player, but about which he can learn by sampling.

This class of problems is commonly used to illustrate the situation faced by

a player whose information about, say, his valuation for an object is slow to

arrive. At each trial the player faces the trade-off between “exploitation”,

i.e. maximising his expected payoff based on information he already has, and
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CHAPTER 1. INTRODUCTION

“exploration”, i.e. looking for information about other sources of payoff.

In this thesis we consider an extension of the multiarmed bandit problem

in which two players are simultaneously learning about their (independent)

valuation of options, and can get in each other’s way: while one player is

experimenting with one option, the other player can use any other option

but this one.

This model addresses the question of how players search and learn about

options when they are in competition with other players. Consider an agent

who searches for an option with which to be matched: a job, a spouse, a

second-hand car, a flat-share. Information about the quality of a match is

slow to arrive. In this context it is natural to think about the option as

a one-armed bandit. If there are other agents in the market engaging in

similar search and only one agent at a time can access an option, we refer to

this phenomenon as congestion. For instance to learn about the quality of a

second-hand car, you need to take it for a test-drive. While you are doing

this no other agent can.

Spending time learning about the quality of an option is costly in that it

involves the risk of losing access to other options. While you are test-driving

one car, other agents may be buying other cars without you having had

the opportunity to test these. This can be thought of as the opportunity-

cost of learning. At the same time, you may now be willing to spend more

time learning about that one car if you knew that another potential buyer is

interested in it. If you leave it, he is likely to buy it, making it henceforth

unavailable to you. There is a pressure exerted by the “second in line”.

These sorts of considerations are common in all kinds of strategic situa-
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CHAPTER 1. INTRODUCTION

tions. In the race towards developing a new technology a firm’s incentive to

invest in a new research project rather than relying on some averred method

depends on the strategy of the competitor if the market can only support

one producer. The love interest of a pretender may be enhanced by the pres-

ence of a rival. When looking for a parking-space, do we take the one we

just spotted or continue driving in the hope of finding a space closer to the

cinema, but at the risk of losing the first one?

Furthermore, the fact that buyers may come to face these strategic situ-

ations has been internalised by some markets. For instance, web-sites like

Amazon or Opodo will tell you when there is only one copy of this book

left in stock, or only one seat left on that airplane, thus bringing to your

attention that browsing one more book or flight may come at the cost of

losing the one you just considered. We could also think of tips for wedding-

gown sales provided in the feminine press for so-called ’bride-runs’: during

wedding-gown sales, brides-to-be are advised to ask friends along who can

then hold on to gowns they don’t want to return to the floor, where other

potential buyers may take them.

The notion of congestion we consider bears some resemblance to the idea

of exploding offer. A buyer either has to settle for an option now, or risk

losing it to someone else, and then wait until they maybe leave the option

before he can access it. Rather than the offer expiring exogenously, it expires

because someone else has taken it.

The aim of the first chapters is to propose a simple model of experimen-

tation with congestion, in which to analyse the trade-offs from strategic in-
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CHAPTER 1. INTRODUCTION

teraction. We are not attempting to capture some particular market as best

we can, but rather, to offer a framework in which we can isolate the new

strategic considerations that emerge as a result of congestion. To this end,

we consider a model in which two players choose between learning about the

quality of their risky option and switching to a common option. In this mar-

ket, congestion arises if both players want to be matched with the common

option. To underline the strategic incentives around the common option, we

assume that nothing can be learned from it: it is “safe” in that it delivers a

known constant flow-payoff.

Risky options are modelled as Poisson processes whose arrival rates are

unknown to the players. We also assume that the arrival rates of the risky

options are independent so that each player can learn nothing about the

quality of his risky option from the actions or payoffs of the other player.

Each risky option is either “good” and yields a lump-sum payoff of 1 at rate

λ to the player activating it, or it is “bad” and always yields zero. This

assumption makes the motion of beliefs monotonic: as long as a risky option

is activated and does not produce a success, the belief about the quality of

that option decreases. Once an option has produced a success, it is known

to be good. So in our model, the strategic interaction takes place as players

wait for the first Poisson event. During the game, players observe each other’s

actions and payoffs and so share a common belief about the qualities of the

risky options.

The safe option yields a flow payoff of 0 < a < λ with certainty to the

player occupying it and this is common knowledge. A player who occupies

the safe option gains absolute priority over its use; his opponent can then

9



CHAPTER 1. INTRODUCTION

only use the safe option if the first player leaves it and returns to his risky

option. If both simultaneously decide to move from their risky option to the

safe option, then a tie-break rule specifies the probability with which either

player gains access to the safe option.

Player jPlayer i

a
Λ

0

Poisson i Safe Poisson j

Λ

0

   p0
(1-p0)

   q0
(1-q0)

Each player has access to his risky option and to a shared safe option that can

only be occupied by one player at a time. Player i’s risky option is good with prior

probability p0, player j’s with prior probability q0.

Our main result is two-fold: First, we show that strong preemption motives

arising as part of the strategic interaction mean that the equilibrium always

involves inefficiently low levels of experimentation and unraveling of the exit

decision. This was to be expected in light of the literature on preemption

games (Fudenberg and Tirole (1985)), and our model affords us a clear il-

lustration of the mechanism leading to the inefficiency. The second, more

striking result is that when the exit decision is revocable, in equilibrium a

player may strategically block the safe option temporarily in order to force

the other player to experiment. This is possible because the first player can

commit to leaving the safe option eventually, even as his opponent’s demand

for the safe option intensifies.
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CHAPTER 1. INTRODUCTION

The main finding of this part of the thesis lies in recognising that there ex-

ists a strategic option-value associated with occupying an option. This has a

number of interesting implications. First, it gives rise to behaviour excluded

in the standard bandit model, in particular the temporary interruption of

experimentation. This is because congestion may make options more attrac-

tive than they would be without. Second, it implies that preemption need

not be irreversible.

To our knowledge, this model is the first to present the disappearance of

an option from a multi-armed bandit as the result of strategic interaction.

Dayanik et al. (2008) examine the performance of a generalised Gittins In-

dex for the case in which a player must decide at each point in time which

of N arms to activate, knowing that arms may exogenously break down, and

thereby disappear from the choice set, temporarily or permanently. In par-

ticular they observe that the potential disappearance of arms may disrupt

learning as the optimal policy is increasingly biased towards maximising one’s

payoff based on current information (“exploitation”) and away from acquir-

ing new information (“exploration”) as the probabilities of breakdown of

arms increase.

In the economic literature, multi-armed bandit models have been aug-

mented with various other strategic complications. For instance, Keller,

Rady, and Cripps (2005) assume that all players want to learn about the same

risky arm whose payoff realisations are publicly observable so that players

have an incentive to free-ride on the experimentation of others. Murto and

Välimäki (2011) assume that the qualities of different arms are correlated
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CHAPTER 1. INTRODUCTION

but their payoff realisations are private information to the players who only

observe one another’s decision to continue experimenting or stop. They find

that information aggregates in distinct burst of activity, or “exit waves”.

In particular, multi-armed bandit models have been widely used to model

job search (Jovanovic (1979)) and more recently to describe within-firm job

allocations and trial periods for new recruits once their wage contract has

been set. The explicit modelling of prices can then be dispensed with. For

instance, Camargo and Pastorino (2010) point out that incentive pay is not

widespread when employment happens at a probationary stage.

The bandit problem translates into the job assignment example as fol-

lows: Assuming that the productive characteristics of a new recruit are not

perfectly observable, but that information about a worker’s ability can be ac-

quired by observing the worker’s performance on a given task, the employer

trades off the profit loss he may incur if the new recruit is ill-suited to the

task with the benefit of acquiring new information about that worker’s skill.

If the worker does not know his own skill, he faces a similar problem.

In the context of our model, consider a firm in which two workers have

been recruited to perform identical jobs. Each worker does not yet know his

level of skill at that particular task, and both workers’ skills are independent.

If he discovers that he is skilled, a worker’s expected payoff is positive, if he

is unskilled, his payoff is zero. At any time, a worker can ask for the support

of a scarce management resource. In that case credit is irrevocably shared

and the worker earns less than if he were skilled and succeeded by himself,

but more than if he were unskilled and trying to work by himself. Crucially,

the manager can assist only one worker at a time.
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CHAPTER 1. INTRODUCTION

If the initiative to assist workers lies with the manager, he behaves like a

social planner. We find that he would optimally let workers try to solve the

task by themselves for longer than he would if there were only one worker.

If on the other hand, it is the worker’s decision to solicit the manager’s

assistance, workers face a strategic situation in which the trade-off between

learning and collecting a payoff is supplemented by a race to the safe option.

We find that in equilibrium, the threat of congestion makes workers act

increasingly myopically, leading to extreme inefficiencies.

More generally in the context of two-sided matching markets in which

information about the quality of a match arrives slowly, the inefficient un-

ravelling caused by the incentive to anticipate the decision of opponents is

well documented, for instance in markets for lawyers (Posner et al. (2001))

or gastroenterologists (Niederle and Roth (2009)). A popular example in

the economic literature is the US market for new doctors (Roth (1984)). In

the early 1940’s hospitals would hire medical students as future interns or

residents two years in advance of their graduation, so that the matching was

done before crucial information about students (such as skills or preferences

for a particular medical specialisation) became available. The results in this

thesis may contribute to better understanding pathologies of decentralised

matching markets, in which agents only gradually learn about the quality of

their match.

To illustrate the equilibrium when the decision to switch to the common

option is assumed to be revocable, we can think of the village sweetheart

who has two suitors. Only one suitor at a time may date the sweetheart,

or they may pursue their search for a partner in the city, where there is
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CHAPTER 1. INTRODUCTION

no congestion. In equilibrium we find that the suitor who is most likely to

be successfully paired in the city will date the village sweetheart first with

the sole aim of deterring the rival, who is then forced to search in the city.

If the rival were successfully paired there, the first suitor would be able to

also search in the city or return to the village sweetheart without fear of

rivals. But in equilibrium we find that the first suitor will eventually leave

the sweetheart and search in the city even if the rival’s claim to the village

sweetheart is not dropped, but intensified.

The thesis is organised as follows: In Chapter 2 we formally model the risky

and the safe options, the evolution of beliefs about the quality of the risky

options as well as the rules of precedence for access to the congested safe op-

tion. These will constitute the building blocks for subsequent Chapters. We

then present a set of efficient benchmarks. When there is no congestion, the

planner problem reduces to a single-player two-armed bandit problem. We

define the myopic and the optimal threshold beliefs, which will be recurring

concepts throughout the thesis. When there is congestion we describe the

planner solution for the case where the decision to allocate a player to the

safe option is irrevocable and then when that decision is revocable.

In Chapter 3 we consider the two-player games in which we present the

trade-offs from strategic interaction and derive the Markov Perfect Equilib-

ria of the games, again distinguishing between the cases of irrevocable and

revocable exit, for which we have provided efficient benchmarks.

In Chapter 4 we consider extensions to the two-player games, and look in

particular at the game with irrevocable exit in which, this time, payoffs are
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CHAPTER 1. INTRODUCTION

private: a player can observe his opponent’s behaviour, but does not observe

whether he has already had a success or not. This section combines results

and conjectures, as this extension constitutes work in progress, and sets the

course for future research.

In Chapter 5 we consider the Colonel Blotto Model. Budget-constrained

multidimensional allocation problems were amongst the very first ones con-

sidered in game theory. The first version can be found in Borel and Ville ?.

This problem and similar ones later came to be known as “Colonel Blotto”

games, after Gross and Wagner’s approach to the allocation problem (Gross

and Wagner (1950)).

In the simplest version of the Colonel Blotto game, two generals want

to capture three equally valued battlefields. Each general disposes of one

divisible unit of military resources. The generals have to simultaneously

allocate these resources among the three battlefields. A battlefield is captured

by a general if he allocates more resources there than his opponent. The goal

of each general is to maximise the number of captured battlefields.

In Chapter 5 we describe a geometrical method for constructing equilibrium

distribution in the Colonel Blotto game with asymmetric battlefield values.

The appeal of geometrical methods for constructing n-dimensional distribu-

tions subject to restrictions on their support and their margins lies in the

relative simplicity with which they describe complicated multi-dimensional

objects. The drawback is that they may fail to generate the full set of distri-

butions satisfying given restrictions on support and margins. This downside
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CHAPTER 1. INTRODUCTION

is limited when that set is well defined, as it is here, so that the exercise

becomes to generate instances of these well-defined objects.

The method presented in this chapter generalises to the n-dimensional case

a construction method first proposed by Gross and Wagner. It does partic-

ularly well in instances of the Colonel Blotto game in which the battlefield

weights satisfy some clearly defined regularity conditions. Though these con-

ditions constrain the set of games in which this method reliably generates

equilibrium strategies, they are less restrictive than the condition of sym-

metry across all battlefields (Laslier and Picard (2002)). Moreover, their

implications suggest directions for further research.

Noticing that the conditions obtained can be interpreted as the requirement

that there exists a coalition such that every battlefield is pivotal suggests a

parallel between behaviour of candidates seeking to maximise plurality and

candidates seeking to maximise probability of victory, though this chapter

leaves the exact relationship between these games an open question. We

consider the parallel with the constrained integer partitioning problem, or

“bin-packing” problem particularly exciting.
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Chapter 2

Experimentation with

Congestion - Model and

Benchmarks

2.1 Introduction

In this part we define the main component of the congestion game. In Section

2.2 we present the model on which Chapters 2-4 of this thesis are based. It

is intended as a general and simple model of the phenomenon of congestion

described in Chapter 1, and designed to outline the new strategic consider-

ations that emerge as a result of congestion, in particular when compared

with the standard multi-armed bandit model.

In Sections 2.3 we present a set of benchmarks, starting with the single-

player problem. This is akin to the standard multi-armed bandit model in
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2.2. MODEL CHAPTER 2. MODEL AND BENCHMARKS

our model, and resumes the intuitions and result of that model. In partic-

ular, given the setup, there is no option-value associated with being able to

return to his Poisson process for a player occupying the safe option. Two fur-

ther benchmarks summarizing the planner solutions to the two-player games

analysed in Chapter 3 are presented: the planner solution when switching to

the safe option is irrevocable, and when it is not.

2.2 Model

In this section, we define the basic elements of the model on which further

parts of this thesis will build: the risky option and the motion of beliefs about

the quality of a risky option, the safe (potentially congested) option and the

precedence rules determining access to the safe option. In all sections, time is

continuous, ρ denotes the common discount rate, and each player maximises

his expected discounted payoff over an infinite time horizon.

Risky option: Each risky option is either “good” and yields a lump-sum

payoff of 1 at Poisson rate λ to the player activating it, or it is “bad” and

always yields zero. The quality of each option is independently drawn at

the beginning of the game: player i’s risky option is good with probability

p0 and player j’s risky option is good with probability q0. This is common

knowledge. Once a risky option has produced a success, it is known to be

good. As long as a risky option produces only unsuccessful trials, the belief

about that option being good decreases.

18



2.2. MODEL CHAPTER 2. MODEL AND BENCHMARKS

Beliefs: Payoffs are publicly observed, so given the players’ common prior

(p0, q0) about the qualities of player i and player j’s risky options respectively,

players share a common posterior at each date t ≥ 0 denoted (pt, qt). If over

the time interval [t, t+ dt), dt > 0, a player, say i, activates his risky option

without it producing a success, the belief about player i’s option at t+ dt is,

by Bayes’ rule,

pt+dt =
pt e

−λdt

pt e−λdt + 1− pt
.

This is decreasing in dt: the longer the player experiments without a success,

the less optimistic he becomes about his risky option being good. When dt

is small we obtain that p+ dp = p(1−λdt)
1−pλdt . The law of motion followed by the

belief when the risky option is activated over the time interval dt → 0 and

produces only unsuccessful trials is then

(2.1) dp = −p(1− p)λdt.

Notice that this expression is maximised when p = 1/2 and that when priors

are different beliefs don’t move at the same rate. Once a risky option has

produced a success, the common belief about that option is equal to 1 and

remains there forever. At any date t ≥ 0 the expected arrival rate on player

i’s (j’s) risky option is ptλ (qtλ). Whenever pt 6= qt we refer to the player

with the highest expected arrival rate as the more optimistic player and to

his opponent as the more pessimistic player.

Safe option: The safe option yields a flow payoff of a with certainty to

the player occupying it and this is common knowledge. We choose a ∈ (0, λ)

with the implication that when the risky option is known to be good, it is
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2.3. BENCHMARKS CHAPTER 2. MODEL AND BENCHMARKS

strictly preferred to the safe option, and vice-versa when a risky option is

known to be bad.

Precedence rule: While each player has exclusive and unconstrained

access to his risky option, both players have access to the safe option, but

it can only be activated by one player at a time. A player who occupies the

safe option gains absolute priority over its use; his opponent can then only

use the safe option if the incumbent player leaves it and returns to his risky

option. If both players simultaneously switch from their risky option to the

safe option, then a tie-break rule allocates the safe option to player i with

probability ι ∈ (0, 1).

2.3 Benchmarks

In this section we present a series of planner problems intended as efficient

benchmarks for the models of strategic interaction in Chapter 3. First we

consider the situation in which there is no congestion on the safe option (Sec-

tion 2.3.1). Each player then faces an identical two-armed bandit problem

with one risky and one safe arm. This problem is standard and has often

been analysed in the previous literature. We use it as a framework to intro-

duce concepts and methods that are recurrent throughout this thesis. The

socially optimal policy is to let each player experiment with his risky option

for high enough beliefs. If the risky option produces a success, the player

should never switch to the safe option. If it does not and the player becomes

sufficiently pessimistic about the quality of his risky option, he should per-
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2.3. BENCHMARKS CHAPTER 2. MODEL AND BENCHMARKS

manently switch to his safe option when his belief hits the threshold value

pV > 0, which we refer to as the single-player optimal threshold belief.

We also define the single-player myopic threshold belief, pM > pV , below

which the immediate payoff from the safe option exceeds the immediate payoff

from the risky option. The belief pM is the optimal threshold of an infinitely

impatient or “myopic” player. In contrast a non-myopic player finds it opti-

mal to continue playing the risky option on the interval (pV , pM) in the hope

of it producing a success as long as he is able to return to the safe option

at a later date: for the patient player the available safe option generates a

positive option-value, making experimentation beyond the myopic threshold

worthwhile.

The two remaining planner problems present new results, and set the effi-

cient benchmark for the game analysed in Chapter 3. We then assume that

the safe option can be played by at most one player at a time. If a risky

option is known to be good, it is optimal never to let the player who is ac-

tivating it switch to the safe option. If neither option produces a success,

the planner will eventually allocate one player to the safe option. In Section

2.3.2 we assume that the decision to let one player choose the safe option

cannot be revoked, even if the other risky option should produce a success.

In Section 2.3.3, we assume that the planner can do this without restrictions.

When this is the case, the planner allocates the player with the lowest

belief, say player j, to the safe option once the belief about his risky option

being good hits a threshold. This threshold is always below the single-player

threshold, pV . This is because the safe option provides an option-value for

both players: allocating player j to the safe option costs player i the option-
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value. This is internalised by the planner who therefore delays the exit of

player j. The higher the belief of the optimistic player, the lower the option-

value of the safe option for him and the closer the socially optimal exit belief

of the pessimistic player to the single-player optimum.

When exit is revocable, the planner problem is akin to a standard multi-

armed bandit problem. At each date the planner may activate two out of

three arms (two risky, one safe) over a time interval ∆ > 0 so as to maximise

his expected discounted payoff. The planner solution is analog to the Git-

tins Index policy: he either allocates both players to their risky options or

allocates the player with the lowest expected Poisson arrival rate to the safe

option. We present the solution to the planner’s problem as ∆→ 0.

2.3.1 No congestion - Single-player model

First assume that there are two safe options. The planner maximises the joint

payoff of both players. Since the qualities of the risky options are uncorrelated

and players cannot hinder one another’s access to the safe option, the planner

problem is equivalent to solving two single-player problems: a player, say

player i, has access to his risky option and to the safe option as described in

Section 2.2.

This single-player problem is standard, and has been analysed in a setup

very similar to ours by Keller et al. (2005). We do repeat this analysis so as to

introduce notation as well as concepts that will be relevant in further sections,

in which we will derive novel results. In particular, we use the framework of

the relatively straightforward single-player problem to carefully spell out (in

Appendix 2.4.1) the method for solving ordinary differential equations that
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will be used throughout this thesis.

Formally, the single agent solves the following dynamic problem: at each

date t, he chooses which option to activate from the set {S,R}, where S and

R denote the safe and risky options respectively. The state is summarised

by the belief pt.

For pt < 1, i.e. for histories in which the risky option has not yet produced

a success let kt denote the probability with which the agent activates the

risky option during the time interval [t, t + dt). The player chooses a path

{kt}t≥0 that maximises his expected payoff:

E
[∫ ∞

0

e−ρt [kt ptλ+ (1− kt) a] dt | p0

]
.

Notice that if the player were to play myopically (ρ→∞), he would only

compare the immediate payoff from playing R with the immediate payoff

from playing S. We call the “myopic stopping belief”, pM , the belief at

which the myopic player finds it optimal to irreversibly switch to the safe

option:

pM =
a

λ
.

In contrast, a more patient player (ρ <∞) will experiment with the risky

option in the hope of discovering that it is good. Let V (p) denote the value

function associated with this problem. By Bellman’s Principle of Optimality

the value function V (p) solves the following dynamic programme: for all

p ∈ [0, 1]

V (p) = max{LRV (p), LSV (p)}
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with

LSV (p) := a
ρ

LRV (p) := pλdt(1 + (1− ρdt)λ
ρ
) + (1− pλdt)(1− ρdt)V (p+ dp)

where we have used the approximation e−ρdt ' (1 − ρdt). When a trial on

the risky option does not produce a success dp is defined in Equation 2.1.

We solve the agent’s problem in Appendix 2.4.1 and obtain the threshold

belief at which the agent optimally switches to the safe option:

pV =
aρ

λ(ρ+ λ− a)
.

Throughout this thesis, we will refer to pV as the single-player optimal

threshold, and to pM as the single-player myopic threshold. Notice that pV <

pM , that both are increasing as the value of the safe option, a, increases and

that pV tends to pM as ρ → ∞. Lemma 1 describes the optimal behaviour

in the single-player game and presents the value function. The detail of the

proof can be found in Appendix 2.4.1.

Lemma 1. For p > pV , playing the risky option is optimal and

V (p) = p
λ

ρ
+ (1− p) a− λpV

ρ (1− pV )

(
1− p
p

pV
1− pV

) ρ
λ

,

while for p ≤ pV , playing the safe option is optimal and V (p) = a
ρ
.

The first term, pλ
ρ
, is the payoff from activating the risky option forever.

The second term reflects the option-value of being able to switch to the safe

option. It increases as p decreases, i.e. as the player becomes more pessimistic
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about the quality of the risky option. It is equal to zero when p = 1 and

strictly positive for all p ∈ [0, 1) which is why, for beliefs p ∈ (pV , pM) the

patient player continues to experiment with the risky option even though he

would be maximising his immediate payoff by switching to the safe option.

When p = pV , the expected payoff from the risky option is so low, that the

player prefers switching to the safe option.

2.3.2 Planner solution - Irrevocable exit

We now consider the planner problem in a model where two players each have

access to a risky option as described in the previous section, but there is only

one safe option that can be occupied by at most one player at a time. The

social planner maximises the sum of both players’ payoffs. At each date, he

has the choice between letting both players experiment (RR) or retiring one

player to the safe option irrevocably so that the other player must continue

to experiment on his risky option forever (RS).

If there were two safe options, the planner solution would be to let each

player follow the single-player optimal policy derived in Section 2.3.1. Here,

however, the planner may only retire one player to the safe option. There

is now an additional option-value compared with the single-player game:

suppose a player’s option is good but has not yet produced a success. If the

player switches to the safe option, not only does he forego his own profit from

the good option, there is now the additional loss of his opponent’s option-

value from being able to switch to the safe option. Because such mistakes

are more costly here, there will be more experimentation than in the single-

player game. We show that it is optimal for the planner to eventually retire
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the most pessimistic player (Lemma 2) and to make both player experiment

beyond their single-player threshold (Lemma 3).

Let pt and qt respectively denote the belief at t that player i’s and player

j’s risky options are good. Each belief follows the laws of motion described

in Section 2.3.1. The state at t is summarised by the vector of beliefs

(pt, qt) ∈ [0, 1]2.

Lemma 2. If in state (p, q) the policy RS is optimal, the planner necessarily

allocates the pessimistic player to the safe option.

Proof: Assume by way of contradiction that the policy which allocates

the player with belief max(p, q) to the safe option in state (p, q) is op-

timal when p 6= q. The joint continuation utility in state (p, q) is then

min(p, q)λ
ρ

+ a
ρ
< max(p, q)λ

ρ
+ a

ρ
. So the policy which allocates the player

with belief max(p, q) to the safe option in state (p, q) is dominated by the

policy which retires the more pessimistic player in that state. �

We now formally describe the planner’s problem. Because we have assumed

that 0 < a < λ, it is by design optimal never to retire a player whose

risky option has produced a success. If only one risky option has produced

a success, the joint payoff is then maximised by letting the other player

follow the optimal single-player policy. As long as neither risky option has

produced a success, i.e. for states such that (p, q) ∈ [0, 1)2, let κt ∈ [0, 1]

denote the probability with which the planner makes both players activate

their risky options during the time interval [t, t+ dt). Then with probability

(1 − κt) the planner irrevocably retires the pessimistic player to the safe
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option. The planner chooses a path {κt}t≥0 subject to the constraint that

exit is irrevocable, so as to maximise the expected joint payoff:

E
[∫ ∞

0

e−ρt (κt(pt + qt)λ+ (1− κt)[max(pt, qt) λ+ a]) dt | (p0, q0)

]
,

where (p0, q0) ∈ [0, 1)2 is the vector of prior beliefs. Let W(p, q) denote the

value function associated with this problem. It solves the following dynamic

program: for all (p, q) ∈ [0, 1)2,

(2.2) W(p, q) = max
κ

{
κ LRRW(p, q) + (1− κ) LRSW(p, q)

}
where, by Lemma 2, we have

LRSW(p, q) := max(p, q)
λ

ρ
+
a

ρ
.

The payoff to the policy RR satisfies:

LRRW(p, q, κ) := pλdt qλdt 2λ+ρ
ρ

+ (1− pλdt)(1− qλdt)(1− ρdt) W(p′, q′)

+pλdt (1− qλdt)
[
λ+ρ
ρ

+ (1− ρdt)V (q′)
]

+qλdt (1− pλdt)
[
λ+ρ
ρ

+ (1− ρdt)V (p′)
]

where V (p) denotes the value function of the single-player game (Lemma 1)

and p′ = p+ dp where dp is defined in Equation 2.1.

Solving the planner’s problem (Appendix 2.4.2), we find the set of threshold

beliefs at which the planner irrevocably allocates the player with the lowest

belief to the safe option, forcing the other player to experiment on his risky

option forever. That set of threshold beliefs is depicted in Figure 1 below.

Lemma 3. In states (p, q) such that p ≥ q, it is optimal for the planner to

irrevocably retire the player with the lowest belief (player j) to the safe option

if and only if
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q ≤ a ρ

λ (λ+ ρ− a+ ρ V (p)− p λ)
≤ qV ,

where the threshold is equal to qV when p = 1. Otherwise, he optimally

lets both players activate their risky options. Conversely for states such that

p ≤ q.

pMpVp
W

qM

qV

q
W

1

2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

q

Figure 1: Threshold beliefs in the planner problem with irrevocable exit.

This planner solution offers a good insight about what is at stake in a

model of experimentation with congestion. Regardless of the prior (p0, q0),

the pessimistic player always experiments for longer than in the single-player

case. This is because his switching to the safe option would cancel the option-

value it affords to the optimistic player. That option-value increases when

the optimistic player’s belief falls, increasing the discrepancy between the
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pessimistic player’s exit belief and the optimal single-player threshold. That

discrepancy is maximised when p0 = q0. In contrast, when the belief of

the optimistic player tends to one, the option-value for him of being able to

switch to the safe option tends to zero and the pessimistic player’s exit belief

tends to his single-player optimal threshold belief.

We can already perceive that the externality imposed on his opponent by

the player who takes the safe option is larger when the opponent is more

pessimistic about his Poisson process. This happens when priors are closer.

From this observation we can already conjecture that the competition for the

safe option will be more intense the closer the priors.

Let us look at some typical trajectories of the state in this planner solution.

If p0 = q0 (trajectory 1 in Figure 1) then as long as both players play their

risky option without success we have pt = qt. The planner then optimally

allocates either player to the risky option when the beliefs hit the threshold

value

(2.3) pW :=
1

2λ

[
λ+ ρ−

√
(λ+ ρ)2 − 4aρ

]
< pV .

If he allocates, say, player i to the safe option, p remains forever equal to

pW . Player j meanwhile is forced to experiment forever. If his risky option

is bad q, will gradually decrease towards zero following the law of motion

dq = −q(1 − q)λdt. If his risky option is good it will eventually produce a

success.

If p0 > q0 (trajectory 2 in Figure 1) then as long as both players play

their risky option without success the state moves following the trajectory

depicted above. Once the state reaches the threshold described in Lemma 3
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(thick red boundary in Figure 1) the planner allocates player j to the safe

option. Then q remains constant while p gradually decreases to zero if player

i’s risky option is bad, or jumps to one with positive probability if the option

is good.

2.3.3 Planner solution - Revocable exit

We now consider the planner’s problem when the decision to retire one player

to the safe option is revocable. The planner is de facto playing a multi-armed

bandit problem: at each date the planner chooses to activate two out of three

arms (two risky, one safe) over a time interval ∆ > 0 so as to maximise his

expected discounted payoff. The optimal policy, following which the planner

either allocates both players to their risky options or allocates the player with

the lowest expected Poisson arrival rate to the safe option, will therefore be

the equivalent of the Gittins Index1 policy for our setting. In light of this,

Lemma 4, the analogue to Lemma 2 in the previous section, seems trivial:

an arm with a higher expected arrival rate produces a higher Gittins index.

We present the solution2 to the planner’s multi-armed bandit problem as

1For a good summary of Gittins’ pairwise interchange argument, see Frostig and Weiss

(1999).
2Here we concentrate on the discrete-time approximation as the time interval tends to

zero and will use the intuition from a discrete-time problem. Notice however that because

it involves the planner alternating between two options, the existence of that solution is

problematic in continuous time. Indeed the optimum in continuous time is achieved by

mixing at each point in time. This is a well-known issue with continuous-time dynamic

problems. For a good exposition of the issue and the way to address it, see Bellman (1957)

Chapter 8.
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∆ → 0. As in the previous section, the state at t is summarised by the

vector of beliefs (pt, qt) ∈ [0, 1]2.

Lemma 4. If the policy RS is optimal in state (p, q), then the planner allo-

cates the pessimistic player to the safe option.

Proof: Trivial in view of the optimality of the Gittins Index Policy: A risky

option’s Gittins index is increasing in its expected arrival rate. �

We now formally describe the planner’s problem. For states such that

(p, q) ∈ [0, 1)2, let κ̄t ∈ [0, 1] denote the probability with which the planner

makes both players activate their risky options during the time interval [t, t+

dt). With probability (1 − κ̄t) the planner lets the player with the highest

posterior belief at t activate their risky option during the time interval [t, t+

dt), while the player with the lowest posterior belief activates the safe option.

The planner chooses a path {κ̄t}t≥0 that maximises the expected joint payoff:

E
[∫ ∞

0

e−ρt (κ̄t(pt + qt)λ+ (1− κ̄t)[max(pt, qt) λ+ a]) dt | (p0, q0)

]
,

where (p0, q0) ∈ [0, 1)2 is the vector or prior beliefs. Let U(p, q) denote the

value function associated with this problem. It solves the following dynamic

program: for all (p, q) ∈ [0, 1)2,

(2.4) U(p, q) = max{LRRU(p, q), LRSU(p, q)}.

Here RR denotes the policy whereby both players play their risky option

and RS the policy where the planner allocates the player with the lowest
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belief to the safe option, while the player with the highest belief experiments

on his risky option.

We first derive the payoff from playing the policy RS forever. Consider

states p ≥ q such that player i’s risky option has a higher probability of

generating a success than player j’s option. As long as neither risky option

produces a success, the policy RS involves first making the player with the

high belief (player i) activate his risky option while player j occupies the safe

option. Then q does not evolve while p decreases towards q following the law

of motion for active options: dp = −pλ(1− p)dt.

Once p = q, the planner alternates the players on the safe option, gen-

erating the payoff A(p) as described in Appendix 2.4.3. Then, for p ≥ q,

the payoff to the policy RS is (1 − e−ρs)
(
a
ρ

+ p λ
ρ

)
+ e−ρs A(q), where

s = 1
λ

ln
[

1−q
q

p
1−p

]
, which equals zero for p = q. Simplifying, we have that for

all (p, q) such that p ≥ q,

LRSU(p, q) :=

(
1−

(
1− q
q

p

1− p

) ρ
λ

)(
a

ρ
+ p

λ

ρ

)
+

(
1− q
q

p

1− p

) ρ
λ

A(q),

with the corresponding expression holding for p ≤ q.

To get an intuition about A(p), consider discrete-time planner problem in

the state p = q. As seen in the previous section, if exit is irrevocable then

once the planner follows policy RS he always allocates the same player, say

j, to the safe option. The belief p about the quality of player i’s risky option

then decreases at rate dp = −p(1−p)λ∆, for a positive but small time interval

∆. In contrast, when exit is revocable, the planner can alternate players on

the safe option. He can therefore let the players successively play their risky
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option in state p, thus getting twice as many trials at each belief p as when

exit is irrevocable. The law of motion of beliefs is then dp = −1
2
p(1− p)λ∆.

Notice that, as with irrevocable exit, when p→ 0, the value of the RS policy,

A(p), tends to a
ρ
, which is the value of the multi-armed bandit problem when

both risky options are known to be bad and there is only one safe option.

The payoff to the policy RR satisfies:

LRRU(p, q) := pλdt qλdt 2λ+ρ
ρ

+ (1− pλdt)(1− qλdt)(1− ρdt) U(p′, q′)

+pλdt (1− qλdt)
[
λ+ρ
ρ

+ (1− ρdt)V (q′)
]

+qλdt (1− pλdt)
[
λ+ρ
ρ

+ (1− ρdt)V (p′)
]

where V (p) denotes the value function of the single-player game (Lemma 1)

and p′ = p + dp where dp is defined in Equation 2.1. The set of threshold

beliefs at which the planner allocates the most pessimistic player to the safe

option is depicted below.

Lemma 5. The solution to the planner problem with revocable exit is de-

picted below: For states (p, q) in the shaded area, including the boundary, the

planner optimally allocates the player with the lowest belief to the safe option

over a period ∆ > 0. For states in the white area, the planner optimally

lets both players activate their risky option over a period ∆ > 0. On the

boundary, the planner is indifferent between the two policies. For ∆→ 0, the

planner solution is depicted in Figure 2.a. below.

Proof : See Appendix 2.4.4.
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Figure 2.a: Set of states in which policy RS is optimal (shaded area) and threshold

beliefs in the planner problem with revocable exit.

In Figure 2.a, consider the portion of the graph such that p ≥ q. When

p = 1, the socially optimal threshold belief is qV , the threshold belief in the

single-player game. This is because when p = 1, player i knows with cer-

tainty that his risky options is good, and so he will never threaten the safe

option, so that player j effectively plays as in the single-player game. When

p = q, the threshold belief pU = qU is derived in Appendix 2.4.4.

We now illustrate typical trajectories of the state in the planner solution

for the case where both Poisson processes are indeed bad. When the priors

are relatively close, as in Figure 2.b, the planner lets both players experiment

while the state is in the white region. Once the state hits the boundary, the

planner allocates the player with the lowest expected arrival rate (in this case

player j) to the safe option and lets the other player experiment until the

state hits the 45 degree line. At that point, both players’ expected arrival

rates are equalised, and the planner alternates the players on the safe option.
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If however the priors are such that one player is ex-ante much more likely

than his opponent to have a good Poisson process, as in Figure 2.c, the

planner first lets both players experiment as long as the state is in the white

region. Again, once the state hits the boundary, the optimal regime-change

requires that the planner allocate the player with the lowest expected arrival

rate (player j) to the safe option. But then the state moves back into the

white region, and the planner lets both players experiment again. As the

time-interval δ becomes very small, this policy approximates the optimal

policy in continuous time, which for such states requires moving along the

boundary, as depicted in Figure 2.c. Eventually, the state stops moving back

into the white region and the planner allocates player j to the safe option

until the state hits the 45 degree line. The planner then alternates the players

on the safe option.
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Figures 2.b and 2.c: Typical trajectories of the state in the planner solution. Black

dots indicate the prior, (p0, q0) and subsequent regime-changes.

Finally, notice the interesting discontinuity implied by the planner solution:

fix player i’s belief at pU and consider the various optimal regimes depending
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on q. When q = qU , the planner finds it optimal to alternate the players

on the safe option, thereby slowing down the decay in expected joint payoff.

For q > qU however, player j is still too optimistic relative to player i for

the planner to alternate the players on the safe option, and player i is still

too optimistic to be assigned the safe option without alternating with player

j. Invert the reasoning for q < qU but such that the sate falls in the white

region. When q is such that (pU , q) belongs to the boundary - which happens

for q much below the single-player threshold - the planner retires player j

to the safe option until the posteriors are equalised and the alternates the

players on the safe option.
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2.4 Appendix Chapter 2

2.4.1 Single-player - Value function

The derivation of the value-function for the single-player problem mirrors

Keller et al. (2005). Consider states in which playing the risky option is

optimal, so that V (p) = LRV (p) ≥ LSV (p). Using V (p′) = V (p + dp) =

V (p) + V ′(p)dp = V (p)− p(1− p)λV ′(p)dt, we obtain the following ordinary

differential equation for the value function:

pλ(1− p) V ′(p) + (pλ+ ρ) V (p) = pλ
λ+ ρ

ρ
.

Solving, we obtain the solutions:

VC(p) = p
λ

ρ
+ CV (1− p)

(
1− p
p

) ρ
λ

where CV is the constant of integration. For all CV , VC(p) is continuous and

differentiable at p ∈ [0, 1].

At p = 0, the risky option is known to be bad, so the expected payoff from

activating it is 0. Playing the safe option is therefore optimal at p = 0. At

p = 1, the risky option is known to be good, and playing the risky option is

optimal. So V (0) = LSV (0) and V (1) = LRV (1).

Assume there exists some belief pV ∈ (0, 1) at which the player switches

from the risky to the safe option. By continuity of the value function we

then have VC(pV ) = LSV (pV ) = a
ρ

(value-matching). This regime change

is optimal if and only if V ′C(pV ) = LSV ′(pV ) = 0 (smooth-pasting). At pV ,

LSV (pV ) then constitutes a particular solution to the differential equation

above. We obtain:

pV =
ρa

λ(ρ+ λ− a)
,
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which is indeed below pM , the myopic stopping belief. Finally, the constant

of integration is then CV = a−pV λ
ρpV

(
pV

1−pV

) ρ
λ
, for which VC(p) is increasing and

convex on [pV , 1].

We conclude that for p > pV , playing the risky option is optimal and

V (p) = p
λ

ρ
+ (1− p) a− λpV

ρ (1− pV )

(
1− p
p

pV
1− pV

) ρ
λ

,

while for p ≤ pV , playing the safe option is optimal and V (p) = a
ρ
.

Notice finally that the regime switch is indeed optimal, as for p ∈ [0, 1),

V (p) > p λ
ρ
, the payoff from never switching to the safe option.

2.4.2 Irrevocable Exit - Planner Solution

Let Wp(p, q) denote the partial derivative of W(p, q) with respect to p. Sim-

ilarly for q. Consider the states (p, q) ∈ [0, 1]2 in which having both play-

ers activate their risky option is optimal, so that W(p, q) = LRRW(p, q) ≥

LRSW(p, q). We obtain the following partial differential equation for the

value function:

(2.5)
(pλ+ qλ+ ρ) W(p, q) + pλ(1− p) Wp(p, q) + qλ(1− q) Wq(p, q)

= pλ
[
λ+ρ
ρ

+ V (q)
]

+ qλ
[
λ+ρ
ρ

+ V (p)
]
.

Letting W̃(s) ≡ W(p(s), q(s)), where p(s) = p0e−λs

1−p0+p0e−λs
, q(s) = q0e−λs

1−q0+q0e−λs

and noticing that dW̃
ds

= dp
ds
Wp + dq

ds
Wq, we obtain the following ordinary

differential equations in for W̃(s):

(2.6)
W̃ ′(s)− (p(s)λ+ q(s)λ+ ρ) W̃(s) = −p(s)λ

[
λ+ρ
ρ

+ V (q(s))
]

−q(s)λ
[
λ+ρ
ρ

+ V (p(s))
]
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Notice that when integrating terms including V (.) on the right-hand-side,

the single-player game threshold values pV = qV = aρ
λ(λ+ρ−a)

will come to

matter. Solving, we obtain the family of solutions for the value function:

W̃C(s) = H(p(s), q(s)) +H(q(s), p(s)) +
p(s) q(s)

p0 q0 e(2λ+ρ)s
CW̃

where CW̃ is a constant of integration, and

H(x, y) =



x λ
ρ

+ x y
(

1−y
y

)λ+ρ
λ a−λpV

ρpV

(
pV

1−pV

)λ+ρ
λ
, pV ≤ y

x λ
ρ

(
y λ+ρ+a

2λ+ρ
+ (1− y) λ+ρ+a

λ+ρ

)
pV ≥ y.

+x (1− y)
(

1−y
y

)λ+ρ
λ aλ

(λ+ρ)(2λ+ρ)

(
pV

1−pV

)λ+ρ
λ
,

For all CW̃ , W̃C(s) is continuous and differentiable in s.

Let LRSW̃(s) ≡ LRSW(p(s), q(s)) = max(p(s), q(s))λ
ρ

+ a
ρ
. Consider the

priors p0 ≥ q0 both tending to 1. Then the payoff from letting both players

activate their risky option tends to 2λ
ρ
> a+λ

ρ
, and allocating both players to

their risky option is optimal. Consider the case in which both risky options

are bad so that as long as both players experiment, ∀s ≥ 0, 1 > p(s) ≥ q(s)

and as s → ∞, both p(s) ≥ q(s) tend to zero. At that point, the expected

payoff from letting both players activate their risky option tends to 0 < a
ρ

and allocating one player to the safe option is optimal.

Assume that there exists some date sW̃ ≥ 0 at which the planner finds

it optimal to irrevocably allocate the player with the lowest belief to the

safe option. By the continuity of W̃ we then have W̃C(sW̃) = LRSW̃(sW̃)

(value-matching), and the regime change is optimal if and only if W̃ ′C(sW̃) =
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LRSW̃ ′(sW̃) (smooth-pasting). Then, at sW̃ , LRSW̃(sW̃) constitutes a par-

ticular solution to the differential equation above. The optimal switching

date sW̃ solves, for p(sW̃) ≥ q(sW̃):

q(sW̃) =
a ρ− p(sW̃) λ (ρ V (q(sW̃))− a)

λ (λ+ ρ+ ρ V (p(sW̃))− p(sW̃) λ− a)
.

For all p(sW̃) ∈ [0, 1] this equation admits solutions q(sW̃) ∈ [qW , qV ] (where

qW is defined in Equation 2.3) so that V (q(sW̃)) = a
ρ

and we obtain the

expression in Lemma 3. The set of solutions is depicted in Section 2.3.2 in

the belief space (p, q) . This defines a particular solution to the differential

equation, which allows us to compute a closed-form expression for W(p, q).

2.4.3 Social Planner, Revocable Exit: Payoff from im-

plementing policy RS forever when p = q.

RS denotes the policy whereby the planner always allocates the player with

the lowest belief to the safe option, while the player with the highest belief

experiments on the risky option. In the states (p, q) where the beliefs of the

two players are equal (p = q), the payoff to the policy RS satisfies:

A(p) = adt+ pλdt
[
λ+ρ
ρ

+ (1− ρdt)V (q)
]

+(1− pλdt)(1− ρdt)
[
adt+ qλdt

[
λ+ρ
ρ

+ (1− ρdt)V (p′)
]

+(1− qλdt)(1− ρdt)A(p′)
]

where V (p) is the value function in the single-player game. Using p = q,

p′ = p− pλ(1− p)dt, A(p′) = A(p)− pλ(1− p)A′(p)dt and eliminating terms

∈ O(dt2), we obtain the following ordinary differential equation for A(p) :
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A′(p) +
2(pλ+ ρ)

pλ(1− p)
A(p) =

2a

pλ(1− p)
+

2

(1− p)

[
λ+ ρ

ρ
+ V (p)

]
.

Notice that when integrating the right-hand side, because it includes the

function V (p), the single-player threshold pV will come to matter. Assuming

that, if neither risky option ever produces a success, the policy RS is played

forever, i.e. until p→ 0, at which point A(0) = a
ρ
, we obtain the solution:

A(p) = e−
∫
f(p) dp

∫ p

0

e
∫
f(x) dx g(x) dx

where f(p):=2(pλ+ρ)
pλ(1−p) , g(p) := 2a

pλ(1−p)+
2

(1−p)

[
λ+ρ
ρ

+ V (p)
]
. Notice that e

∫
f [x] dx

∣∣
x=0

=

0. Solving, we obtain the following expression for A:

A(p) =



a
ρ

+ pλ
ρ

(2λ+2ρ−λp)
(λ+2ρ)

pV ≥ p

a
ρ

(
1− pλ(2λ+2ρ−λp)

(λ+ρ)(λ+2ρ)

)
pV ≤ p

+pλ
ρ

(
(2λ+2ρ−λp)

(λ+2ρ)
+ pλ

(λ+ρ)
+ 2(a−λpV )

(λ+ρ)
Ω(p, pV ,

λ+ρ
λ

)
)

+
(
a
ρ
pV λ(2λ−pV λ+2ρ)

(λ+ρ)(λ+2ρ)
+ pV λ

ρ
pV λ−2a
(λ+ρ)

) (
Ω(p, pV ,

λ+ρ
λ

)
)2

where Ω(p, q, α) = p
q

(
1−p
p

q
1−q

)α
and pV is the optimal stopping belief in the

single-player game. �

2.4.4 Social Planner, Revocable Exit

In this section we describe the steps to derive the set of threshold beliefs in the

planner problem with revocable exit, as illustrated in Figure 2. The method

resembles the one used in Appendix 2.4.2 to derive the set of threshold beliefs
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in the planner problem with irrevocable exit. For all (p, q), the Bellman

equation (2.4) for the planner’s problem becomes

U(p, p) = max{LRRU(p, p), LRSU(p, p)}

where LRSU(p, p) =

(
1−

(
1−q
q

p
1−p

) ρ
λ

)(
a
ρ

+ p λ
ρ

)
+
(

1−q
q

p
1−p

) ρ
λ A(q), and

LRRU(p, p) solves the ordinary differential equation (2.6), which is the ODE

forW in the social planner problem with irrevocable exit. In Appendix 2.4.2

we have derived the family of solutions WC to that ODE. We obtain the

boundary in Figure 2.a by assuming that there exists some date sU after

which the planner finds it optimal to follow the policy RS forever, so that

we can consider LRSU(p(sU), q(sU)) as a particular solution to ODE (2.6).

Solving for sU we then obtain the boundary in (p, q) space depicted in Figure

2.a.

As illustrated in Figure 2.c, for priors 1 > p0 � q0 > 0, in our discrete-time

approximation to the continuous-time optimum the planner will alternate

between policies RS and RR, moving in broken horizontal and vertical lines

about the boundary. As ∆ → 0, this approximation gets aver closer to the

continuous-time optimal policy, which involves the planner mixing so as to

make the state move “along” the boundary. Our value-matching and smooth-

pasting conditions are then in fact identifying an interval of dates over which

the planner mixes so as to be indifferent between allocating the pessimistic

player to the safe option or to his risky option over any time interval dt.
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Finally, when p = q, the threshold belief pU = qU satisfies

(2.7)

a(λ+ ρ)(λ+ 2ρ)− (a− λ)λ2p2
U

(
1−pU
pU

pV
1−pV

) 2(λ+ρ)
λ

=

pUλ (2(λ+ ρ− a)(λ+ ρ) + pUλ(a+ ρ))

+pUλ(λ+ 2ρ)2(a− λpV ) pU
pV

(
1−pU
pU

pV
1−pV

) (λ+ρ)
λ

.
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Chapter 3

Experimentation with

congestion - Two-player Games

3.1 Introduction

We now consider the game in which there is congestion: as long as one player

plays the safe option, it is unavailable to the other player. The players now

interact strategically. They not only face the trade-off between exploration

and exploitation, as in the single-player case, they must now consider the

possibility of their opponent blocking their access to the safe option, tem-

porarily or permanently. As a consequence, players will now have preemption

motives. In section 3.2 we assume that once a player chooses to play the safe

option, he may not return to his risky option. In this way, the decision to

retire to the safe option is irrevocable. In Section 3.3, we will relax this as-

sumption. Then a player can decide to temporarily occupy the safe option,

before returning to his risky option. In each case we illustrate the equilibrium
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dynamics by considering some typical equilibrium state-trajectories.

In Section 3.2 we consider the strategic situation for which the planner

problem analysed in Chapter 2 sets the efficient benchmark. We saw that

because a player irrevocably switching to the safe option cancels the option-

value it affords the other player, it is socially optimal for the pessimistic player

to experiment for longer than in the single-player game. When players act

strategically and compete for access to the safe option, to remedy the threat

of being deprived of this option-value, they both have incentives to preempt

the other player’s switch. In equilibrium, the pessimistic player switches to

the safe option in a state such that the optimistic player has no preemption

motives. When there is sufficient competition between the players this will

involve the pessimistic player switching to the safe option when the optimistic

player’s belief equals the myopic threshold.

The equilibrium will therefore be inefficient in the sense that the player cap-

turing the safe option does so too early compared with the efficient threshold.

When we intensify the degree of competition (by setting the priors closer to

one another) this inefficiency increases until, for p0 = q0, the players be-

have myopically and completely disregard the option-value associated with

experimenting on the risky option.

When exit is revocable (section 3.3), the player occupying the safe option

is able to return to his risky option if his opponent’s experimenting results

in a success. In that case, relieved from the opponent’s pressure on the safe

option, the first player can achieve the utility of the single-player game. A

player now has incentives to postpone his own experimenting and occupy

the safe option so as to force his opponent to experiment in the hope of his
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producing a success and dropping his claim to the safe option.

In equilibrium, when there is sufficient competition for the safe option, the

player with the highest expected arrival rate (the “optimist”) temporarily

occupies the safe option and forces the pessimist to experiment for a given

duration of time. That duration increases with the competition for the safe

option. Moreover it is such that the pessimist is always forced to experiment

for longer than he would have in the single-player game. That duration

is, however, finite and if the pessimist’s experimenting is unsuccessful, the

optimist eventually resumes his own experimenting, freeing up the safe option

for the pessimist. This result may be surprising in light of intuitions from the

standard multi-armed bandit problem in which, in the context of our model,

a player would never return to a risky option he has rejected in the past.

3.2 Irrevocable Exit

We now consider the game in which two players each have access to a risky

option and there is only one safe option that can be occupied by at most

one player at a time. The risky and the safe options, as well as the rules

of precedence are as described in Chapter 2. We assume that exit is once-

and-for-all: once a player occupies the safe option, he may not switch back

to his risky option. Under this condition, the assumption that the congested

option is safe is without loss of generality: it could also be a risky bandit

with expected arrival rate a.

Each player faces the trade-off between exploration and exploitation as

described in the single-player game. Additionally, a player takes into account
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the fact that he loses the option-value from being able to switch to the safe

option at a later date if his opponent occupies the safe option. As a result,

in this game, there will be preemption motives leading to the unraveling of

the exit decision.

We derive the Markov Perfect Equilibrium of this game and compare it

with the planner solution derived in Chapter 2. We find that in equilib-

rium, the pessimistic player captures the safe option, and does so when the

optimistic player’s beliefs are greater than or equal to his myopic threshold

belief. Though the pessimistic player would like to experiment until his belief

reaches pV , he is better-off exiting in a state in which his opponent has no

preemption motives. The allocation of the safe option is efficient in that it

goes to the same player as in the planner solution. However, the amount

of experimentation by the pessimistic player is always inefficiently low. The

closer the priors of the players, the greater the competition for access to the

safe option, and the more inefficient the equilibrium.

Let us formally describe each player’s problem. At each date, a player

either chooses to activate his risky option over the time interval [t+ dt) (R)

or to irrevocably switch to the safe option (S)1 so as to maximise his expected

discounted payoff. As in previous sections, the state is summarised by the

vector of posterior beliefs (pt, qt) ∈ [0, 1]2.

Because we have assumed that 0 < a < λ, retiring to the safe option is

1Notice that the set of possible actions is not history dependent: we assumed that if

a player switches to the safe option when that is already occupied by the opponent, the

player “bounces” back to his risky option.
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strictly dominated for a player whose risky option has produced a success.

If only one risky option has produced a success, the other player maximised

his expected discounted payoff by following the optimal single-player pol-

icy. We define a (Markovian) strategy ki(.) for player i to be the mapping

ki : [0, 1)2 → [0, 1] from states (pt, qt) to kit, the probability that player

i plays his risky option at t. A (Markov-Perfect) equilibrium is a pair of

strategies (ki(.), kj(.)) such that the strategy of player i maximises his ex-

pected discounted payoff conditional on the strategy of player j (subject to

the constraint that exit is irrevocable), and vice-versa.

As in the previous sections, V (.) denotes the value function in the single-

player game. Let W(.) denote the value function in the two-player game with

irrevocable exit. Given that, as long as neither player is occupying the safe

option, player j uses the Markovian strategy kj(.) and plays his risky option

in state (p, q) with probability kj(p, q), player i’s value function solves the

dynamic problem:

W(p, q; kj) = max
ki(p,q)∈[0,1]

{ki(p, q) LRW(p, q; kj) + (1− ki(p, q)) LSW(p, q; kj)}

where

(3.1)

LSW(p, q; kj) := kj(p, q) a
ρ

+ (1− kj(p, q)) T i(p, q),

LRW(p, q; kj) := pλdt
(

1 + e−ρdt λ
ρ

)
+(1− pλdt)

(
(1− kj(p, q)) e−ρdtp′ λ

ρ

+kj(p, q) e−ρdt [qλdtV (p′) + (1− qλdt)W(p′, q′; kj)]
)
,

and with p′, q′ as defined in Chapter 2. The corresponding expression holds

for player j. Because ties are broken in favour of player i with probability ι,
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player i and j’s payoffs from a tie are respectively:

T i(p) = ι
a

ρ
+ (1− ι) p λ

ρ
, T j(p) = (1− ι)a

ρ
+ ι p

λ

ρ
.

We now derive the unique2 equilibrium of this game. We first show that

there can be no equilibrium in mixed strategies (Lemma 6). Disregarding

equilibria in weakly dominated strategies, we then present the Markov Perfect

Equilibrium in the two-player game with irrevocable exit (Theorem 1). This

equilibrium is inefficient, and we describe how it falls short of the planner

solution derived in Chapter 2.

Lemma 6. There exists no positive time interval [t, t+ dt), dt > 0 on which

both players best-respond to one another by playing strictly mixed strategies.

Proof : Suppose player j plays a strategy that lets him exit with positive

probability at two distinct dates. If in state (p, q) player j switches to the

safe option with strictly positive probability, player i can only be indiffer-

ent between his two pure strategies, when his belief is p = pM . So there is

no strictly positive time-interval over which player i is indifferent between

switching to the safe option and continue activating his risky option. The

detail of the proof can be found in Appendix 3.4.1. �

As long as player j switches to the safe option with strictly positive prob-

ability, player i is essentially trading off the payoff from winning a tie-break

and irrevocably switching to the safe option, a/ρ, with the payoff from being

stuck forever on this risky option, pλ/ρ. In states (p, q) such that p = pM ,

2Up to variations in weakly dominated strategies, which do not affect the equilibrium

allocation or exit date.
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the myopic exit belief in the single-player game, these payoffs are equalised

and player i is indifferent between the outcomes, while in states (p, q) such

that p 6= pM , player i has strict preferences for either option. The remainder

of this section hinges on this observation.

From Lemma 6, we conclude that the equilibrium strategies, given an ini-

tial state (p0, q0), involve either player switching to the safe option with

certainty at some date t ≥ 0 when the state is (p(t), q(t)). As argued in

detail in Appendix 3.4.2 such an instantaneous switch cannot be an equi-

librium in states (p, q) such that p < pM , q < qM , as a player’s opponent

then has strict incentives to preempt the player’s switch. Over that support,

there would be unraveling of the exit decisions as players try to preempt one

another’s switch. The preemption motives only disappear once at least one

player is indifferent between switching to the safe option and staying with his

risky option. Conversely, for beliefs above the myopic threshold, irrevocably

switching to the safe option is strictly dominated by the strategy whereby

the player commits to his risky option forever.
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Figure 3: Equilibrium strategies of player i and player j when exit is irrevocable.

If a state (p, q) is in the green (dark) area, the player plays the safe option, if it is

in the orange (light) area, the player plays his risky option.

Theorem 1. Consider the strategy profile illustrated in Figure 3:

ki(p, q) =


0 if


q < qM , p < pM ,

q = qM , p ≤ pM ,

q > qM , p ≤ pV ,

1 else.

kj(p, q) =


0 if


p < pM , q < qM ,

p = pM , q ≤ qM ,

p > pM , q ≤ qV ,

1 else.

This constitutes the unique MPE of the game (up to variations in weakly

dominated strategies for histories in which the safe option has already been

allocated, so that they do not affect the allocation of the objects, given an

initial state).

Proof : See Appendix 3.4.2. An intuition of the proof is given in the fol-

lowing illustrations. �

We now illustrate the resulting allocation and compare it with the planner

solution for the case in which both risky options are in fact bad, so that

beliefs never jump to one. Notice that in moving from case 1 to case 3,
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i.e. as the discrepancy in priors increases, the equilibrium exit belief of the

pessimistic player gets closer to his single-player threshold - and also to the

socially optimal exit belief.
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Figure 4: In Case 1, the prior is p0 = q0 > pM . In Case 2, the priors p0 > q0 are

such that at date t > 0 satisfying pt = pM we have that qt > qV , while in Case 3

we have that qt ≤ qV .

Case 1: If the prior is p0 = q0 > pM , then in equilibrium both players

switch to the safe option when beliefs reach the single-player myopic threshold

belief, pM = a
λ

and the safe option is allocated in a tie break (illustrated for

player i winning the tie-break). At that point, both players are indifferent

between activating their risky option and switching to the safe option, as long

as their opponent switches with strictly positive probability. Because players
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cannot be indifferent between switching when beliefs are pM and switching

at a later date, both players switch at pM with probability 1. Switching at

an earlier date is strictly dominated.

In the planner solution, both players would only have switched to the safe

option at pW < pV . The extreme inefficiency here comes from the fact that

competition from the other player is most intense when p0 = q0. As we will

see in the next two cases, when one player is more pessimistic than the other,

the inefficiency is mitigated.

Case 2: Here in equilibrium, player i uses the strategy whereby he con-

tinues activating his risky option for all p ≥ pM and player j switches to the

safe option with certainty when p = pM . As long as player j switches with

positive probability when p = pM , player i is indifferent between playing R

and S in that state, and has no incentive to preempt player j’s exit.

Notice that player j, who is more pessimistic than player i, is allocated

the safe option with certainty, and the belief about his risky option remains

constant forever, while the belief about player i’s risky option gradually de-

creases according to the law of motion for active options: dp = −pλ(1−p)dt.

The more pessimistic player j is relative to player i , the closer the exit

belief of player j becomes to qV , and the less inefficient the equilibrium. This

is intuitive: if a player is more optimistic that another, he poses less of a

threat to his opponent, who is then under less pressure to secure the safe

option, and can experiment for longer.

Case 3: Here player i is so optimistic relative to player j that even when

the belief about player j’s risky option reaches the single-player threshold
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qV , the belief about player i’s risky option is still above the myopic threshold

belief pM , and player i strictly prefers activating his risky option to switching

to the safe option regardless of player j’s action.

Player j then effectively plays a single-player game and switches to the safe

option when q = qV . The inefficiency is even lower than in the previous two

cases, and as p0 → 1, the equilibrium tends to the planner solution.

Even though all equilibria described above are inefficient in the sense that

there is less experimenting than in the planner solution, they are efficient

in the sense that the safe option is always allocated to the most pessimistic

player. The inefficiency of the level of experimentation is maximised when

p0 = q0. In that case, the lost option-value to the optimist is the highest

conditional on the exit date of the pessimist. In the two-player game, this

intensifies competition and makes the pessimist exit earlier, while in the

planner solution, the loss of the option-value is internalised by the planner

who then postpones the exit of the pessimistic player.

3.3 Revocable Exit

In this section we assume that a player who is occupying the safe option may

later return to the risky option. That is, the decision to switch to the safe

option is revocable. We have seen in the previous section that when exit is

irrevocable, the more pessimistic player, say player j, is the first to switch to

the safe option in equilibrium and player i is forced to experiment with his

risky option forever. If player i’s experimenting results in a success, then for

him switching to the safe option is dominated. Player j is then relieved of
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the threat of congestion and is de facto facing the single-player problem. If

the state is such that q > qV , player j would then like to return to his risky

option and resume his experimenting.

While this is not possible with irrevocable exit, when exit is revocable this

is the most desirable outcome for a player. So much so that in equilibrium

players have incentives to temporarily interrupt their own experimentation

and force their opponent to experiment with the sole aim of eliminating the

threat of congestion. Let it be noted that there are no informational exter-

nalities to an opponent’s success as the qualities of the players’ risky options

are independent.

Let us formally describe each player’s problem. At each date, a player

either chooses to activate his risky option (R) or the safe option (S) over the

time interval [t+ dt). We assume that if a player switches to the safe option

when it is already occupied by the opponent, the player “bounces” back to his

risky option. Each player tries to maximise his expected discounted payoff.

As in previous sections, the state at date t is summarised by the vector of

posterior beliefs (pt, qt) ∈ [0, 1]2.

As before, once a risky option has produced a success, the player occu-

pying it never finds it optimal to switch to the safe option and the other

player optimally plays as in the single-player game. We define a (Markovian)

strategy k̄i(.) for player i to be the mapping k̄i : [0, 1)2 → [0, 1] from states

(pt, qt) to k̄it, the probability that player i plays his risky option at t over the

time interval [t+ dt). A (Markov-Perfect) equilibrium is a pair of strategies

(k̄i(.), k̄j(.)) such that the strategy of player i maximises his expected dis-
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counted payoff conditional on the strategy of player j, and vice-versa.

Let U(.) denote the value function in the two-player game with revocable

exit. Conditional on player j using the Markovian strategy k̄j(.) player i’s

value function solves the dynamic problem:

U(p, q; k̄j) = max
k̄i(p,q)∈[0,1]

{k̄i(p, q) LRU(p, q; k̄j) + (1− k̄i(p, q)) LSU(p, q; k̄j)}

where

(3.2)

LSU(p, q; k̄j) :=
[
1− (1− k̄j(p, q))(1− ι)

](
adt+ e−ρdt[qλdt V (p) + (1− qλdt) U(p, q′; k̄j)]

)
+(1− k̄j(p, q))(1− ι)(
pλdt

(
1 + e−ρdt λ

ρ

)
+ (1− pλdt)e−ρdt U(p′, q; k̄j)

)

LRU(p, q; k̄j) := pλdt
(

1 + e−ρdt λ
ρ

)
+(1− pλdt)

(
(1− k̄j(p, q)) e−ρdt U(p′, q; k̄j)

+k̄j(p, q) e−ρdt
[
qλdt V (p′) + (1− qλdt) U(p′, q′; k̄j)

] )
,

and with p′, q′ as defined in Chapter 2. The corresponding expressions hold

for player j. Notice that for k̄j = 1, LRU(p, q; 1) solves the same differential

equation as LRW(p, q; 1) in the previous section.

We derive the Markov Perfect Equilibrium of this game (Theorem 2).

Disregarding equilibria in weakly dominated strategies, this equilibrium is

unique in the two-player game with revocable exit. All proofs are relegated
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to the appendix and we concentrate on describing the equilibrium dynamics,

drawing parallels with the equilibrium in Section 3.2 when pertinent. To

this end, we first define some notation (Section 3.3.1) that will then serve

to define the equilibrium strategies and illustrate the equilibrium dynamics

(Section 3.3.2).

3.3.1 Notation

Let us first define the functions S(., .), R0(., .) and R1(., ., .). For each func-

tion, the first argument is the current belief about the quality of the risky

option of the player to whom the payoff accrues. The second argument

is the current belief about the quality of his opponent’s risky option. For

(p, q) ∈ [0, 1]2,

S(x, y) :=
a

ρ
+ y

λ

λ+ ρ

[
V (x)− a

ρ

]
,

R0(x, y) := x
λ

ρ
,

R1(x, y, σ) := x
λ

ρ
(1− e−(λ+ρ)σ) +

a

ρ
e−ρσ(1− x+ xe−λσ).

The function S(., .) denotes the utility of occupying the safe option until

the opponent’s experimenting produces a success and then to play as in

the single-player game, collecting payoff V (x). The first term, a
ρ
, is the

utility of having to play the safe option forever. The second term reflects

the option-value of being able to adopt the optimal single-player behaviour

should the opponent’s experimenting prove successful. This is decreasing in

y, the probability of the opponent’s risky option being good.

There are two channels through which that option-value can be nullified.

The first obtains if y → 0 so that the opponent’s experimenting never pro-
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duces a success and the player occupying the safe option never gets the

opportunity to behave as a single-player. The second obtains if x is below

the single-player threshold belief, so that V (x) = a
ρ
. In this case, even if the

opponent’s experimenting produces a success the player occupying the safe

option does not return to his risky option.

The function R0(., .) denotes the utility of being forced to experiment for-

ever. This is the payoff accruing to a player if his opponent occupies the

safe option forever or until the first player’s experimenting is successful. The

function R1(., ., σ) denotes the utility of being forced to experiment for a du-

ration of time σ before regaining access to the safe option and occupying it

forever. This is the payoff accruing to a player if his opponent occupies the

safe option and leaves it after a duration of time σ. In all cases, the belief

about the quality of the risky option which is not being activated remains

constant over time. It will become clear as we construct the equilibrium why

those are the only payoffs we need to consider.

We now define boundaries in [0, 1]2 that will be relevant in describing the

equilibrium strategies and illustrating the equilibrium dynamics. Let B0(.)

denote the function that satisfies, for all (x, y) ∈ [0, 1]2,

(3.3) x ≤ B0(y) ⇔ R0(x, y) ≤ S(x, y).

The set of states {(p, q) : p = B0(q)} is illustrated for q ≤ qM in Figure 5.

Notice that B0(q) is increasing in q and that B0(0) = pM .

In states (p, q) such that q = B0(p), player i is indifferent between be-

ing forced to experiment until successful, achieving the payoff R0(p, q), and

forcing his opponent to experiment until successful, and achieving the payoff

S(p, q). We show in Appendix 3.4.3 that when q ≤ qM , if player j occupies
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the safe option, he never leaves it unless player i’s experimenting produces a

success. Player i therefore indeed faces the choice above when q ≤ qM and

trades off the payoffs R0(p, q) and S(p, q).

At this point, let us highlight one striking feature of the equilibrium dy-

namics by making the naive assumption that a player never returns to his

risky option unless his opponent’s experimentation produces a success. Such

a strategy seems in line with intuitions from the standard bandit model: once

a player leaves his risky option, he never returns to it. Moreover, why would

a player have stronger incentives to leave the safe option if his opponent’s

experimenting is unsuccessful? As the opponent becomes more pessimistic

about the quality of his risky option, his demand for the safe option inten-

sifies. The first player would then be more likely to permanently lose access

to the safe option if he were to leave it than when he occupied it in the first

place.

We find however, that in equilibrium, there are states in which the player

occupying the safe option will eventually leave it even if he is certain that

his opponent will then occupy it permanently. For q ≤ qM consider any state

(p̂, q̂) such that S(p̂, q̂) > R0(p̂, q̂), and assume that player i is occupying

the safe option - his preferred choice. As player j experiments unsuccessfully

the common belief about the quality of his risky option decreases, while

the belief about player i’s risky option remains constant. In Figure 5, the

state evolves towards the p-axis along a vertical trajectory. If the initial

state (p̂, q̂) is such that p̂ ≤ pM , then the subsequent states never leave the

set {(p, q) : S(p, q) ≥ R0(p, q)} and player i indeed never leaves the safe
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otpion. If instead the initial state is such that p̂ > pM , the subsequent states

eventually fall into the set {(p, q) : S(p, q) < R0(p, q)}, and player i prefers

returning to his risky option, even if that means losing access to the safe

option forever.

The crucial point is that p > pM . Recall that for these beliefs we have that

pλ
ρ
> a

ρ
, and player i prefers occupying his risky option forever to occupying

the safe option forever. The ability to proceed as in the single-player game

if the opponent is successful augments the payoff to choosing the safe option

by q λ
λ+ρ

[
V (p)− a

ρ

]
≥ 0, making the safe option more attractive relative to

the risky option than with irrevocable exit. For q sufficiently high, player

i may therefore be willing to occupy the safe option in states in which he

would prefer the risky option once and for all when exit is irrevocable. The

additional term however decreases with q, the likelihood of the opponent’s

risky option being good, and eventually player i switches back to his risky

option, and our naive assumption proves incorrect.

In states such that q ∈ [0, qM ] and p ∈ [B0(0), B0(qM)], therefore, player j

knows that player i will only temporarily force him to experiment. More pre-

cisely, if player i occupies the safe option in state (p, q) such that q ∈ [0, qM ]

and p ∈ [B0(0), B0(q)], he will leave it after a time span σqp of unsuccessful

experimenting by player j, where σqp satisfies

p = B0

(
q e−λσ

q
p

q e−λσ
q
p + 1− q

)
.

Therefore in state (p, q) player j’s expected payoff from being forced to ex-

periment for the duration σqp before being able to switch to the safe option

is R1(q, p, σqp).
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Notice that the payoff to player i from forcing player j to experiment for

the duration σqp is :

(1− q + qe−σ
q
pλ)
(

(1− e−σ
q
pρ)a

ρ
+ e−σ

q
pρ pλ

ρ

)
+q(1− e−σ

q
pλ)a

ρ
+ q λ

λ+ρ
(1− e−σ

q
p(ρ+λ))

(
V (p)− a

ρ

)
,

which simplifies to

a

ρ
+ q

λ

λ+ ρ

[
V (p)− a

ρ

]
= S(p, q),

the utility to player i of forcing j to experiment until he produces a success

and then playing as in the single-player game. The intuition is simple: when

in state (p,B−1
0 (p)) player i switches back to his risky option, he is indifferent

between doing so and keeping the safe option, so his continuation utility at

that date is equal to S(p,B−1
0 (p)).

As before, the subscripts M and V respectively denote the single-player

myopic threshold and optimal threshold. Let B1(.) denote the function that

satisfies, for all (x, y) ∈ [0, 1]× [yM , B0(xM)],

(3.4) x ≤ B1(y) ⇔ R1(x, y, σxy ) ≤ S(x, y).

The set of states {(p, q) : p = B1(q)} is illustrated for qM ≤ q ≤ B0(pV ) in

Figure 5.

Notice that for x ↘ xM , where xM = a
ρ

denotes the myopic threshold of

the player being forced to experiment, the duration for which he is forced to

experiment σyxM →∞ and R1(xM , y, σ
y
xM

)→ R0(xM , y) so that the function R0(x, y), if x ≤ xM ,

R1(x, y, σyx) if x ≥ xM ,
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is continuous in x.

We are now ready to define, for y ≤ B0(xV ),

(3.5) B(y) =

 B0(y) if 0 ≤ x ≤ xM ,

B1(y) if xM ≤ x ≤ B0(yV ).

The role B(.) plays in the proof of theorem 2 is analogous to the one the

myopic threshold belief plays when exit is revocable: in equilibrium, one

player switches to the safe option in a state where his opponent is indifferent

between also switching and pursuing his experimentation.

qM

qV

pV pM

B0(q)

B1(q)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

q

Figure 5: Illustration of the boundary B(q):

For q < qM , player i is better-off on the safe option than being forced to experiment

until he produces a success whenever: S(p, q) ≥ R0(p, q) ⇔ p ≤ B0(q).

For qM ≤ q ≤ B0(pV ), player i is better-off on the safe option than being forced to

experiment temporarily whenever: S(p, q) ≥ R1(p, q) ⇔ p ≤ B1(q).
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3.3.2 Equilibrium and Dynamics

We now derive the Markov Perfect Equilibrium of the two-player game with

revocable exit (Theorem 2). Disregarding equilibria in weakly dominated

strategies, this equilibrium is unique. All proofs are relegated to the ap-

pendix and we concentrate on describing the mechanics of the equilibrium,

drawing parallels with the equilibrium in Section 3.2 when pertinent.

As a first step, (Appendix 3.4.3) we show that for the set of states (p, q)

such that p ≤ B(q) and q ≤ B(p) both players have incentives to preempt

one another’s exit (B(.) is defined in equation 3.5). This is relatively straight-

forward: for states in the above set, each player prefers occupying the safe

option to being forced by his opponent to experiment, temporarily or perma-

nently. Moreover, when his belief reaches the single-player threshold a player

attempts to capture the safe option, at which point his opponent is better-off

preempting his switch and the process unravels.

Theorem 2 describes the equilibrium strategies, illustrated below. The

proof is relegated to the appendix, though we will illustrate it in this section

by presenting typical equilibrium trajectories of the beliefs.
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Figure 6: Equilibrium strategies of player i and player j when exit is revocable. If

a state (p, q) is in the green (dark) area, the player plays the safe option, if it is in

the orange (light) area, the player plays his risky option.

Theorem 2. Consider the strategy profile illustrated above:

k̄i(p, q) =


0 if


p ≤ pV ,

p > pV , p < B(q), q ≤ B(p),

p = pU, q = qU

1 else.

k̄j(p, q) =


0 if


q ≤ qV ,

q > qV , q < B(p), p ≤ B(q),

q = qU, p = pU

1 else.

where qU = pU satisfy B1(pU) = B1(qU) This constitutes the unique MPE

of the game (up to variations in weakly dominated strategies for histories in

which the safe option has already been allocated, so that they do not affect

the allocation of the objects, given an initial state).
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Proof : See Appendix 3.4.3.�

We now illustrate the resulting equilibrium dynamics. The duration for

which one player can force the other to experiment in equilibrium increases

as competition intensifies (as priors get closer). In cases where priors are very

different so that one player’s risky option is much more likely to be of good

quality, competition for the safe option is so low that the pessimistic player

can play as in the single-player game. In all equilibria, if the player whose

risky option is initially (at t = 0) least likely to be of good quality does not

experiment successfully, he eventually gains access to the safe option.
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Figure 7: In Case 1, the prior is p0 = q0 > pM . In Case 2, the priors p0 > q0 are

such that at date t > 0 satisfying qt = B1(pt) we have qt > qV . In Case 3, the

priors p0 > q0 are such that at date t > 0 satisfying qt = qV we have qt ≥ B1(pt).
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Case 1: p0 = q0 > a
ρ
. In equilibrium both players switch to the safe

option when beliefs reach the state pU = qU satisfying B1(pU) = B1(qU). At

that point, both players are indifferent between being forced temporarily to

activate their risky option and switching to the safe option, as long as their

opponent switches to the safe option. Notice that pU > pM , and that the

player who is not allocated the safe option in the tie-break (here illustrated

to be player j) will be forced to experiment unsuccessfully for longer than in

any equilibrium with asymmetric priors.

Case 2: p0 > q0 are such that at t > 0 satisfying qt = B1(pt) we

have qt > qV . Here in equilibrium, player j uses the right-continuous (in

p) strategy whereby he continues activating his risky option for all q ≥ B1(p)

and player i switches to the safe option with certainty when q = B1(p). As

long as player i switches with positive probability when q = B1(p), player j

is indifferent between playing R and S in that state.

Notice that it is player i, the player most likely to experiment successfully,

who is the first to capture the safe option, thus forcing player j to experiment.

This is feasible because player i finds it optimal to eventually let player j

occupy the safe option if his experimentation does not result in a success: If

qt falls too low, the prospect for player i of being able to achieve the single-

player value vanishes, and he prefers resuming his own experimenting as his

belief p is above the myopic threshold pM . Notice also that in this equilibrium

the player with the lowest prior is forced to experiment until his belief falls

below the single-player optimal threshold.
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Case 3: p0 > q0 are such that at t > 0 satisfying qt = qV we have

qt ≥ B1(pt). Here player i is so optimistic relative to player j that even when

the belief about player j’s risky option reaches the single-player threshold qV ,

the belief about player i’s risky option is still above the boundary B(qV ) and

player i strictly prefers activating his risky option to switching to the safe

option. Player j then effectively plays a single-player game and switches to

the safe option when q = qV . In this equilibrium, because of insufficient

competition for the safe option, there is no alternating and it is the initially

pessimistic player who captures the safe option once and for all.
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3.4 Appendix Chapter 3

3.4.1 Lemma 6

Assume by way of contradiction that there exists and interval of time [t, t+

dt), dt > 0, on which player j plays S and R both with positive probability,

and player i is indifferent between S and R. Then

LRW(p, q, kj(p, q)) =

pλdt
(

1 + e−ρdt λ
ρ

)
+(1− pλdt)

(
(1− kj(p, q)) p′e−ρdt λ

ρ

+kj(p, q) e−ρdt
[
qλdtV (p′) + (1− qλdt)LRW(p′, q′j(p′, q′))

] )
.

For dt→ 0 this condition becomes

LRW(p, q, kj(p, q)) = (1− kj(p, q)) p λ
ρ

+ kj(p, q) LRW(p, q, kj(p, q))

For kj(p, q) 6= 1 this holds if and only if LRW(p, q, kj(p, q)) = p λ
ρ
. Then

LRW(p, q, kj(p, q)) = LSW(p, q, kj(p, q))⇔ p =
a

λ

The player is then only indifferent between his two actions when his belief is

equal to he myopic belief, i.e. at one particular date, but not over an interval

of time dt > 0. �

3.4.2 Proof of Theorem 1

In what follows, fix an arbitrary initial state (p0, q0) such that p0 ≥ q0,

pM < p0 < 1, qM < q0 < 1. We will now derive an expression for the
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expected discounted utility of player i when both player i and j play their

risky options from date t = 0 to date t = τ and player j exits at τ .

When both players play their risky options (kit = kjt = 1), let w(p, q)

denote LRW(p, q, 1), player i’s utility from playing R, and wp(p, q), wq(p, q)

its partial derivatives with respect to p and q respectively. V (.) denotes the

single-player value function. Simplifying Equation 3.1, w(p, q) satisfies:

(pλ+ qλ+ ρ) w(p, q) + pλ(1− p) wp(p, q) + qλ(1− q) wq(p, q)

= pλ λ+ρ
λ

+ qλ V (p).

Letting w̃(s) := w(p(s), q(s)), and noticing that dw̃
ds

= dp
ds
wp+ dq

ds
wq, we obtain

the following ODE for w̃(s):

w̃′(s) + f(s)w̃(s) = g(s),

with

f(s) := −(pλ+ qλ+ ρ),

g(s) := −pλ λ+ρ
λ
− qλ V (p).

Solving this ODE using definite integration, for τ ≥ 0, we obtain the solu-

tions:

w̃(0; τ) = w̃(τ) e
∫
f(τ)dτ −

∫ τ

0

e
∫
f(s)ds g(s) ds.

Solving explicitly, we obtain:

w̃(0; τ) = e−ρτ (p0e
−λτ + 1− p0)(q0e

−λτ + 1− q0)[
w̃(τ)− pτ λρ −K pτqτ

(
1−pτ
pτ

)λ+ρ
λ

]
+ p0

λ
ρ

+K p0q0

(
1−p0
p0

)λ+ρ
λ
,

with K = a−λpV
pV ρ

(
pV

1−pV

)
λ+ρ
λ and pV denoting the single-player optimal exit

belief.
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Because we assumed that pM < p0 < 1, qM < q0 < 1, w̃(0) is a strictly

increasing function of w̃(τ). If player j exits at date τ , then for some arbitrary

∆ > 0,

• if player i exits at τ + ∆, then w̃(τ) = pτ
λ
ρ
,

• if player i exits at τ , then w̃(τ) = ι a
ρ

+ (1− ι) pτ λρ ,

• if player i exits at τ−∆, then w̃(τ−∆) = a
ρ

and in the limit, as ∆→ 0,

w̃(τ)→ a
ρ

For ι ∈ (0, 1), the order of magnitude of these terms depends solely on

the position of pτ relative to the myopic exit belief, pM . Player i is only

indifferent between these three options when pτ = pM .

When pτ > pM , player i strictly prefers letting player j occupy the safe

option and being stuck on his risky option forever, to occupying the safe

option himself. So there can be no equilibrium in which player i switches to

the safe option with certainty at τ ′ such that pτ ′ > pM .

When pτ < pM , player i is strictly better-off anticipating player j’s move

to the safe option, and letting the other player switch to the safe option is

never a best response for player i on that support. There can therefore be no

equilibrium3 in which a player switches to the safe option with certainty in

state (p, q) such that p < pM , q < qM , since the other player would respond

by “undercutting” him.

3Unless the other player exits at a date such that player i is indifferent, or strictly

prefers staying on his risky option. In that case, regardless of the exit date prescribed by

his strategy, he never gains access to the safe option, so the allocation is not sensitive to

his exit date. Having noticed this kind of multiplicity of equilibria, we henceforth only

consider equilibria in strategies that are not weakly dominated.
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Notice furthermore that the term

e−ρτ (p0e
−λτ + 1− p0)(q0e

−λτ + 1− q0)

[
a

ρ
− pτ

λ

ρ
−K pτqτ

(
1− pτ
pτ

)λ+ρ
λ

]
,

and therefore w̃(0), are strictly increasing in τ for pτ > pV (they are max-

imised when pτ = pV ), i.e. for pτ > pV , players gain from experimenting for

longer.

One implication is that, conditional on exiting before player j, player i

then maximises his utility with respect to his exit date. If pτ < pV , player

i optimally switches to the safe option at date τ ′ < τ such that pτ ′ = pV .

If on the other hand pM > pτ ≥ pV , then player i would like to exit at the

latest possible date preceding player j’s exit. In discrete time, this strategy

would be unambiguous: player i would exit at date τ − 1. In continuous

time however, it only exists if player j’s strategy is right-continuous4 in

p (left-continuous in time) so that an optimal exit date for player i does

exist: max{t ∈ R : 0 ≤ t ≤ τ} = τ . If player j’s strategy is left-

continuous5 in p (right-continuous in time), then player i always benefits

from postponing his exit by some infinitesimal dt, and his optimal exit date,

max{t ∈ R : 0 ≤ t < τ}, does not exist.

For the remainder of the argument we consider the three generic cases

illustrated in the figures in section 3.2, and reproduced here.

4 ki(p, q) =

 1 if p ≥ pτ
0 if p < pτ

.

5ki(p, q) =

 1 if p > pτ

0 if p ≤ pτ
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Case 1: p0 = q0. Following the arguments above, the only equilibrium is

for both players to play their risky option when p > pM and to switch to the

safe option in state p = pM .

ki(p, q)Case 1 =

 1 if p > pM

0 if p ≤ pM
, kj(p, q)Case 1 =

 1 if q > qM

0 if q ≤ qM

They then face a tie-break in which either player is allocated the safe option

with positive probability. If player i gains access to the safe option, the belief

about his risky option remains pM forever, while the belief about player j’s

risky option gradually decreases (all the way to zero, if the option is bad.)

Case 2: p0 ≥ q0 and such that when pt = pM , qt > qV . Following

the arguments above, player i will only optimally move to the safe option if
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his belief is pM , and he is indifferent between being allocated either option

forever. As noted above, for player j to have a best response, player i’s

strategy must be right-continuous in p.

Assume this were not the case and player i played S, then anticipating

player i’s switch by some positive time-interval ∆ > 0 would be a profitable

deviation for player j. There would, however, be no best response (in contin-

uous time), as player j would prefer anticipating player i’s exit by ∆
2

rather

than ∆. In equilibrium, player i plays R when p = pM and player j is

best-responding by switching to the safe option at p = pM .

We therefore have that

ki(p, q)Case 2 =

 1 if p ≥ pM

0 if p < pM
, kj(p, q)Case 2 =

 1 if p > pM

0 if p ≤ pM

In that case, player j, who is more pessimistic than player i, is allocated

the safe option with certainty, and the belief about his risky option remains

constant forever, while the belief about player i’s risky option gradually de-

creases (all the way to zero, if the option is bad.)

Case 3: p0 ≥ q0 and such that when pt = pM , qt ≤ qV . As in Case 2, and

excluding strategies that are weakly dominated, player i will only optimally

move to the safe option if his belief is pM . This means that in states (p, q)

such that p ≥ pM , q ≥ qV , player j essentially plays a single-player game,

and he optimally switches to the safe option when q = qV . Because the belief

about player i’s risky option is above the myopic player’s exit belief, player i
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finds it optimal to let player j occupy the safe option, and the equilibrium is

ki(p, q)Case 3 =

 1 if p > pM

0 if p ≤ pM
, kj(p, q)Case 3 =

 1 if q > qV

0 if q ≤ qV
.

Arguing similarly for states p0 > q0, we complete the equilibrium strategies

of both players, and establish the result of Theorem 1. �

3.4.3 Proof of Theorem 2

We derive the MPE of the game with revocable exit. The proof will proceed

as follows: we first derive an expression for the utility to player i from playing

his risky option until some date τ at which player j exits. It is increasing

in the continuation utility at date τ . We then show as a first step that to

maximise this continuation utility agents will have incentives to preempt one

another’s exit for a set of states which we define in Section 3.4.3 below. As a

second step we then fully characterise the agents’ equilibrium best-response

correspondences.

We will first derive an expression for the expected discounted utility of

player i when both player i and j play their risky options from date t = 0 to

date t = τ and player j exits at τ . Fix an arbitrary initial state (p0, q0) such

that p0 ≥ q0, pM � p0 < 1, qM � q0 < 1. Notice that for k̄j = 1, LRU(p, q; 1)

solves the same differential equation as LRW(p, q; 1) in the previous appendix.

We let u(p, q) denote LRU(p, q; 1) and ũ(s) := u(p(s), q(s)). Replicating the
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solution from Appendix 3.4.2 we obtain:

ũ(0; τ) = e−ρτ (p0e
−λτ + 1− p0)(q0e

−λτ + 1− q0)[
ũ(τ)− pτ λρ −K pτqτ

(
1−pτ
pτ

)λ+ρ
λ

]
+ p0

λ
ρ

+K p0q0

(
1−p0
p0

)λ+ρ
λ
,

with K = a−λpV
pV ρ

(
pV

1−pV

)
λ+ρ
λ and pV denoting the single-player optimal exit

belief.

Because we assumed that pM < p0 < 1, qM < q0 < 1, the utility to player

i of staying on his risky option until player j switches to the safe option,

ũ(0, τ), is a strictly increasing function of ũ(τ), the continuation utility at

date τ .

Unraveling

As a first step, we compare continuation utilities to show that in states (p, q)

such that p < B(q) and q < B(p) where B is defined in equation 3.5. Players

will have incentives to preempt one another’s exit and there will be unraveling

of the exit decision. That set of states is depicted below.
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We now compare continuation utilities to show that in states (p, q) such

that p < B(q) and q < B(p) players will have incentives to preempt one

another’s exit, and there will be unraveling of the exit decision. If player j

exits at date τ , then for some arbitrary ∆ > 0,

• if player i exits at date τ+∆, then ũ(τ) = Rx(p(τ), q(τ)) where x takes

the value 0 or 1 when q(τ) ≤ qM or ≥ qM respectively.

• if player i exits at date τ −∆, then ũ(τ −∆) = S(p(τ −∆), q(τ −∆))

and in the limit, as ∆→ 0, ũ(τ)→ S(p(τ), q(τ)),

• if player i exits a τ he faces a tie-break.

Similarly for player j when τ is player i’s exit date. So a player is better-off

anticipating his opponent’s exit whenever S(p(τ), q(τ)) > Rx(p(τ), q(τ)). In

the following, we drop the exit date τ and just concentrate on the states

(p, q) to show that there will be unraveling of the exit decision.

In states {(p, q)|p ≤ pV } switching to the safe option is (weakly) dominant

for player i. This trivially follows from the single-player game. Similarly for

player j in states {(p, q)|q ≤ qV }.

Consider the states {(p, q)|q ≤ qV , p ≥ pV }. If player i occupies his risky

option, player j will occupy the safe option and stay on it forever, so the

payoff to player i of occupying his risky option is R0(p, q) := pλ
ρ
. If player i

occupies the safe option until player j’s option produces a success, player i’s

payoff is S(p, q) := a
ρ

+ q λ
λ+ρ

[
V (p)− a

ρ

]
.

Player i’s continuation utility is then maximised by also switching to the

safe option as long as S(p, q) > R0(p, q) ⇔ p < B0(q). Otherwise player i

prefers being forced to experiment forever.
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Consider the states {(p, q)|pV ≤ p ≤ pM , qV ≤ q ≤ qM}. Here the un-

raveling of the exit decision will start as players have incentives to preempt

one another’s exit: If player i switches to the safe option in state (p, q) with

p ↘ pV , player j’s continuation payoff from staying on his risky option is

R0(q, p) while his payoff from preempting player i’s exit by some ∆ > 0

tends to S(q, p) as ∆ → 0 so that player j prefers preempting as long as

S(q, p) > R0(q, p) ⇔ q < B0(p). The converse argument holds for player i,

establishing the unraveling in that set of states.

Consider the states {(p, q)|pV ≤ p ≤ pM , qM ≤ q ≤ B0(pV )}. Player j has

an incentive to preempt player i’s exit as long as S(q, p) > R0(q, p) ⇔ q <

B0(p) even though, since q ≥ qM , player j will eventually return to his risky

option if player i’s belief falls too low. In that case player i has an incentive

to preempt player j’s exit as long as S(p, q) > R1(p, q) ⇔ p < B1(q).

Similarly for player j in states {(p, q)|pM ≤ p ≤ B0(qV ), qV ≤ q ≤ qM}.

Finally consider the states {(p, q)|pM ≤ p ≤ B0(qV ), qM ≤ q ≤ B0(pV )}.

Here any player who occupies the safe option eventually leaves it if his oppo-

nent only produces unsuccessful trials. There is unraveling of the exit decision

as long as S(p, q) > R1(p, q) ⇔ p < B1(q) and S(q, p) > R1(q, p) ⇔ q <

B1(p).

Equilibrium

This series of steps in Section 3.4.3 establishes that there can be no equilib-

rium in which a player exits with certainty at date τ such that (p(τ), q(τ))
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satisfy p(τ) < B(q(τ)) and q(τ) < B(p(τ)). We now argue that in equilib-

rium, there can be no exit at date τ such that p(τ) > max(pV , B0(q(τ))) and

q(τ) > max(qV , B0(p(τ))): if player i exits at date τ satisfying the conditions

above, then player j prefers letting i occupy the safe option than facing him

in a tie-break or preempting him.

Notice furthermore that the term

e−ρτ (p0e
−λτ+1−p0)(q0e

−λτ+1−q0)

[
S(pτ , qτ )− pτ

λ

ρ
−K pτqτ

(
1− pτ
pτ

)λ+ρ
λ

]
,

and therefore ũ(0 : τ), are strictly increasing in τ for pτ > pV (they are

maximised when pτ = pV ). Then because if player j were not preempting

player i at date τ , player i would have an incentive to postpone his exit by

some dt.

In fact, conditional on exiting before player j, player i aims to maximise his

utility with respect to his exit date. If pτ < pV , player i optimally switches

to the safe option at date τ ′ < τ such that pτ ′ = pV . If on the other hand

pτ ≥ pV , player i tries to exit as shortly as possible before player j. This

maximisation only has a solution if player j’s strategy is right-continuous in

p, as explained in the previous appendix.

For the remainder of the argument we consider the three generic cases

illustrated in the figures in Section 3.3.2, and reproduced here.
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In all cases, following the argument in Section 3.4.3,

k̄i(p, q) =


1 if p ≤ pV

1 if q ≤ qV , p ≤ B0(q)

0 if q ≤ qV , p ≥ B0(q)

, k̄j(p, q) =


1 if q ≤ qV

1 if p ≤ pV , q ≤ B0(p)

0 if p ≤ pV , q ≥ B0(p)

Case 1: p0 = q0. Following the arguments above, the only equilibrium is

for both players to play their risky option when p > pU and to switch to the

safe option in state p = pU.

k̄i(p, q)Case 1 =

 1 if p > pU

0 if p ≤ pU
, k̄j(p, q)Case 1 =

 1 if q > qU

0 if q ≤ qU
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They then face a tie-break in which either player is allocated the safe option

with positive probability. If player i gains access to the safe option, the belief

about his risky option remains pU. If player j’s experimenting produces a

success, player i immediately reverts to the single-player optimal strategy

and achieves utility V (pU). If player j’s experimenting remains unsuccessful

after σqUpU periods player i prefers returning to his risky option, thus freeing

the safe option of player j who then occupies it forever.

Case 2: p0 > q0 are such that at t > 0 satisfying qt = B1(pt) we have

qt > qV . Following the arguments above, player i moves to the safe option

in a state such that player j is indifferent between facing him in a tie-break

or staying on his risky option and being forced to experiment temporarily.

As noted above, for player i to have a best response, player j’s strategy must

be right-continuous in p. We therefore have that

k̄i(p, q)Case 2 =

 1 if p > B1(q)

0 if p ≤ B1(q)
, k̄j(p, q)Case 2 =

 1 if p ≥ B1(q)

0 if p < B1(q)

In that case, player i, who is more optimistic than player j, is allocated the

safe option with certainty. Then the game proceeds as in Case 1.

Case 3: p0 > q0 are such that at t > 0 satisfying qt = qV we have

qt ≥ B1(pt). Here as long as qt ≥ qV , pt ≥ B(qt) and player i has no

incentive to occupy the safe option. Player j then essentially plays a single-

player game and he optimally switches to the safe option when q = qV

and player i finds it optimal to let player j occupy the safe option. The
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equilibrium, excluding weakly dominated strategies, requires

k̄i(p, q)Case 3 =

 1 if p > B0(q)

0 if p ≤ B0(q)
, k̄j(p, q)Case 3 =

 1 if q > qV

0 if q ≤ qV
.

Then player j occupies the safe option with certainty and never switches

back to his risky option. Arguing similarly for states p0 > q0, we complete

the equilibrium strategies of both players, and establish the result of Theo-

rem 2. �
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Chapter 4

Privately Observed Payoffs and

Other Extensions

4.1 Introduction

The extension considered extensively in this chapter and the object of imme-

diate future research addresses the concern that the assumption of publicly

observed payoffs may be too strong. The following sections present some

preliminary results on this issue. We concentrate on the stopping game (“ir-

revocable exit”), and hope to solve the game in which exit can be revoked in

further research. In relaxing the assumption that payoffs are publicly observ-

able, we need to re-define the Markov state to take into account that players

now hold beliefs about whether the opponent’s experimentation has as yet

resulted in a success.

At the beginning of the game, neither player has had a chance to experiment

yet, and the prior probabilities of either Poisson process having a positive
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arrival rate are common knowledge. As the game proceeds, a players may

learn that his Poisson process has a positive arrival rate. He then has a

dominant strategy which amounts to the single-player optimal behaviour

described in Chapter 2. We attempt to solve for the equilibrium behaviour

of a player who has yet to observe a Poisson event.

For any priors the players hold about the quality of their Poisson process,

there only exists Markov-perfect equilibrium in pure strategies when their

priors are so different that players never compete for the safe option, in the

sense that playing his Poisson process is strictly dominant for one player

when the other players switches to the safe option. When the priors are

closer, and there is more intense competition for the safe option, we find that

there is no pure strategy equilibrium.

We then set up the conditions for the existence of a mixed strategy equilib-

rium assuming that the randomising takes place over a connected support.

We consider the case of players with equal priors about their Poisson pro-

cesses and derive preliminary results about the form of the equilibrium. Fully

characterising the equilibrium of the game remains the subject of ongoing

research on our part. Let us point out that there is little existing work on

experimentation with private monitoring. A few notable exceptions include

Murto and Välimäki (2011) or Bonatti and Hörner (2011).

4.2 Private Payoffs

Consider the game with irrevocable exit from Chapter 3. Assume now that

while players observe their opponent’s actions, the outcome of their experi-
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menting is private. In the previous sections, we assumed that this information

was public. This meant that players held common posterior beliefs about the

quality of both Poisson processes. Now, while a player sees whether his oppo-

nent is activating his Poisson process or not, he does not know whether this

the Poisson process has already produced a success. So each player either

faces an opponent whose Poisson process has already produced a Poisson

event (we call this the “informed” type of opponent) or an opponent whose

Poisson process has not yet produced a Poisson even (the “uninformed” type

of opponent).

Each player now holds three beliefs:

1. A belief about the likelihood of his own Poisson process having a posi-

tive arrival rate. Let p and q denote player i and j’s beliefs respectively.

2. A belief about the likelihood of his opponent’s Poisson process having a

positive arrival rate, conditional on the opponent not having observed

a Poisson event yet. Let q̂ and p̂ denote player i and j’s beliefs respec-

tively.

3. A belief about the likelihood of his opponent’s experimentation already

having produced a Poisson event. Let θ and π denote player i and j’s

beliefs respectively. From the point of view of player i, player j’s belief

about his own Poisson process is 1 with probability θ and p̂ with prob-

ability 1− θ.

The vector of beliefs held by players i and j respectively at any date t

84



4.2. PRIVATE PAYOFFS CHAPTER 4. PRIVATE PAYOFFS

are (pt, q̂t, θt) and (qt, p̂t, πt). The vector of beliefs characterising the Markov

state at any date t is

(pt, q̂t, θt; qt, p̂t, πt).

Recall that a denotes the flow payoff from playing the safe option, and

each Poisson process has arrival rate λ > 0 or 0. Since we have assumed

that 0 < a < λ, the informed type has a dominant strategy, which is to

always play his Poisson process. To complete the characterisation of the

Markov Perfect Equilibrium in this game, we need to derive the equilibrium

strategy of the uninformed type. Since in equilibrium the true belief p of the

uninformed type is the same as his opponent’s belief p̂, the vector

(p, θ; q, π)

with p < 1 and q < 1 is a sufficient summary statistic for the state when

describing the uninformed player’s problem. Without loss of generality we

can think of a state as proceeding from an initial state (p0, θ0; q0, π0). We

limit our analysis to Markov states proceeding from some initial state such

that θ0 = π0 = 0 and the vector of priors (p0, q0) is common knowledge.

A Markovian strategy µi for player i maps the beliefs (p, q) about the

Poisson processes conditional on neither of them having produced a Poisson

event, as well as his belief θ about the type of opponent he is facing, into

µi(p, q, θ), the probability that player i switches to the safe option in state

(p, θ; q, π). Similarly for player j’s strategy µj(q, p, π). The pair of strategies

(µi, µj) for the uninformed types, together with the dominant strategies of

the informed types, constitute a MPE if and only if the strategy of each

uninformed type maximises his expected discounted utility in each state,

given the strategies of both types of opponent.
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Let Vi(.) denote player i’s value function in this game. It solves the dynamic

problem:

Vi(p, q, θ;µj) = maxµi(p,q,θ)∈[0,1]

{
(1− µi(p, q, θ))LRVi(p, q, θ;µj)

+µi(p, q, θ)LSVi(p, q, θ;µj)
}
,

where

LSVi(p, q, θ;µj) = (1− θ)µj(q, p, π)
(
ιa
ρ

+ (1− ι)pλ
ρ

)
+ (1− (1− θ)µj(q, p, π)) a

ρ

LRVi(p, q, θ;µj) = pλdt
(

1 + (1− ρdt)λ
ρ

)
+(1− pλdt)(1− ρdt) (1− θ)µj(q, p, π) p′ λ

ρ

+(1− pλdt)(1− ρdt) (1− (1− θ)µj(q, p, π))Vi(p′, q′, θ′;µj).

subject to p′ = p + dp and θ′ = θ + dθ, and where ι denotes the probability

with which a tie is broken in favour of player i. Player j’s value function is

defined similarly.

4.2.1 Evolution of Beliefs

The state evolves in the following way:

1. The belief of the uninformed type of player i about his Poisson process

having a positive arrival rate follows the law of motion:

(4.1) pt + dpt = pt − pt(1− pt)λdt

Similarly for qt.

2. Let θt be player i’s belief at t about his opponent being the informed

type conditional on player j never having switched to the safe option.
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After a short time interval dt, player i updates this belief through two

channels: he observes his opponent’s action and draws inference based

on his opponent’s strategy µj which prescribes that player j exits with

probability µjt at date t. Moreover, he knows that his opponent could

have observed a Poisson event during the short interval dt. By exiting

the opponent reveals that he is uninformed and θt+dt jumps to zero. As

long as he does not exit, θt follows the law of motion:

(4.2) θt + dθt = 1− (1− θt)(1− µjtdt)
1− (1− θt)µjtdt

(1− qtλdt).

Solving for dθt and eliminating terms in O(dt2) we obtain

(4.3) dθt = (1− θt) [θµt + qλ] dt.

Notice that if over the time interval [t, t+ s) the strategy µj prescribes

that player j’s uninformed type never exits, then

θt+s = qt(1− e−λs) =
qt − qt+s
1− qt+s

.

4.2.2 No Pure Strategy Equilibrium

In this section we show that when there is sufficient competition between

players (as defined in a precise sense) this game admits no pure strategy

equilibrium. First we show that outside certain threshold beliefs, players

have strictly dominant strategies (Lemma 7). We define initial states such

that in all following states, playing his Poisson process is a strictly dominant

strategy for one player, at least until switching to the safe option becomes

strictly dominant for his opponent. In these states, there is a unique Markov

Perfect Equilibrium in which the informed type of the player whose Poisson

87



4.2. PRIVATE PAYOFFS CHAPTER 4. PRIVATE PAYOFFS

process is ex-ante least likely to have a positive arrival rate adopts the single-

player optimal behaviour.

We further show that outside these states, players cannot exit one after the

other in equilibrium (Lemma 8): one player always has strict incentives to

deviate. The player meant to exit first can increase his payoff by inducing his

opponent to believe that he is the informed type, simply by postponing his

exit. The player meant to exit second may increase his payoff by preempting

his opponent’s exit. We finally show that there cannot be a pure strategy

equilibrium in which players exit simultaneously either (Lemma 10): the safe

option is then always allocated in a tie-break (with the unique tie-break rule

defined in Lemma 9), and both players have an incentive to preempt their

opponent’s exit.

If in state (p, θ; q, π), the uninformed type of player j switches to the safe

option, player i’s continuation payoff from staying on his Poisson process in

response is

(4.4) LRVi(p, q, θ;µjt = 1) = θ V (p) + (1− θ) p λ
ρ
.

If instead player i also switches to the safe option, he faces player j in a

tie, and the tie-break rule allocates the option to player i with probability

ι ∈ [0, 1]. His payoff is

(4.5) LSVi(p, q, θ;µjt = 1) = θ
a

ρ
+ (1− θ)

(
ι
a

ρ
+ (1− ι) p λ

ρ

)
.

Finally, player i could preempt player j’s switch, in which case, in the limit,

his continuation payoff is a
ρ
.
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Denote by p∗(θ, ι) the belief solving

p ≥ p∗(θ, ι) ⇔ LRVi(p, q, θ;µjt = 1) ≥ LSVi(p, q, θ;µjt = 1).

This means that for p > p∗(θ, ι), switching to the safe option is a strictly

dominated strategy for player i, when the tie-break rule is ι. We notice that

p∗(0, ι) = pM , and p∗(1, ι) = pV . For θ > 0 , p∗(θ, ι) solves

(4.6)

[
1 + ι

1− θ
θ

]
a− pλ
pρ

(
p

1− p

)λ+ρ
λ

=
a− pV λ
pV ρ

(
pV

1− pV

)λ+ρ
λ

.

The right-hand side of Equation (4.6) is a constant. The left-hand side is

decreasing in p on [pV , 1), increasing in ι and decreasing in θ. Therefore,

p∗(θ, ι) is unique, ∂p∗

∂ι
> 0 and ∂p∗

∂θ
< 0.

Assume that player j switches to the safe option in state (p, θ; q, π). For

beliefs strictly above p∗(θ, ι), player i strictly prefers letting the opponent

occupy the safe option, while for beliefs strictly below this cutoff player i

strictly prefers facing his opponent in a tie. The higher θ, the more opti-

mistic player i is about player j being the informed type, and the lower his

chances of losing access to the safe option if he decides not to switch when

the uninformed type of player j does: the relative value of experimenting

increases with θ. Similarly, the relative value of switching to the safe option

and facing his opponent in a tie increases with ι for player i.

We define q∗(π, ι) in a similar fashion and notice that q∗(0, ι) = qM ,

q∗(1, ι) = qV , ∂q∗

∂π
< 0 and ∂q∗

∂ι
< 0 (recall that ι is the probability that

player i wins a tie).

We now show that for beliefs outside [p∗(1, ι), p∗(θ, 1)], player i has a strictly

dominant strategy.
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Lemma 7. In any state such that p > p∗(θ, 1), player i has a dominant

strategy which is to play his Poisson process. In any state such that p < pV ,

player i has a dominant strategy which is to switch to the safe option.

Proof: In every state (p, θ; q, π), player i’s continuation payoff is bounded

from below by Vi(p, q, θ;µjt = 1) (a player always prefers having access to the

safe option to being forced to experiment by his opponent), and from above by

V (p), the single-player value-function. When p > p∗(θ, 1), LRVi(p, q, θ;µjt =

1) > LSVi(p, q, θ;µjt) for all µjt , even when LSVi(p, q, θ;µjt) is maximised by

the tie-break rule allocating the safe option to player i with certainty (ι = 1).

This establishes the first statement.

The second statement follows from the definition of pV , the single-player

optimal threshold belief introduced in Chapter 2. For beliefs p < pV , the

player has become too pessimistic about his Poisson process and sees no

more value in experimenting.

The equivalent statements for player j are that: in any state such that

q > q∗(π, 0), player i has a dominant strategy which is to play his Poisson

process, and in any state such that q < qV , player j has a dominant strategy

which is to switch to the safe option. �

We conclude that in states (pt, θt; qt, πt) such that qt = qV and pt > p∗(θt, 1),

player j switching to the safe option and player i continuing to activate

his Poisson process are best-responses to one another. Furthermore, neither

player has an incentive to deviate by switching at an earlier date since ∀s < t,

ps > pt > p∗(θt, 1) and qs > qt − qV .

90



4.2. PRIVATE PAYOFFS CHAPTER 4. PRIVATE PAYOFFS

We would like to describe in terms of the initial state (p0, 0; q0, 0) the states

for which this strategy profile constitutes an equilibrium. To this end, notice

that prior to the switching date t of player j, both players continuously

activate their Poisson process. Therefore, by Equation (4.3) describing the

law of motion of θ,

θt = q0(1− e−λt) =
q0

p0

p0 − pt
1− pt

.

Using this expression for θ in Equation (4.6), we can express the threshold

belief at which player i is indifferent between facing his opponent in a tie and

keep experimenting, in terms of (p0, q0) and denote it p̃∗(p0, q0, ι). It solves[
1− ι

(
1− po

qo

1− p
po− p

)]
a− pλ
pρ

(
p

1− p

)λ+ρ
λ

=
a− pV λ
pV ρ

(
pV

1− pV

)λ+ρ
λ

,

For a given vector (p0, q0, ι), p̃
∗(p0, q0, ι) is unique, increasing in ι and de-

creasing in p0 and q0 . We define q̃∗(p0, q0, ι) in a similar fashion.

Finally notice that as long as p and q follow the law of motion described

in Equation (4.1) the ratio of their likelihood ratios is constant. Let the

function Ω(x) = x
1−x for x ∈ (0, 1) denote the likelihood ratio. We are now

ready to define the set of states for which the equilibrium described above

exists.

Corrolary 1. Given an initial state (p0, 0; q0, 0) such that

(4.7)
Ω(p0)

Ω(q0)
≥ Ω(p̃∗(p0, q0, 1))

Ω(qV )
,

the strategy profile

µi(p, q, θ) =

 0 if p > p∗(θ, 1),

1 else.
, µj(q, p, π) =

 0 if q > qV ,

1 else.
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constitutes the unique Markov Perfect equilibrium (up to variations in weakly

dominated strategies). Similarly for states proceeding from an initial state

(p0, 0; q0, 0) such that

(4.8)
Ω(p0)

Ω(q0)
≤ Ω(pV )

Ω(q̃∗(q0, p0, 0))
,

and the strategy profile

µi(p, q, θ) =

 0 if p > pV ,

1 else.
, µj(q, p, π) =

 0 if q > q∗(π, 0),

1 else.

For the remainder of this section we concentrate on states proceeding from

any initial state (p0, 0; q0, 0) such that:

Ω(p0)

Ω(q0)
∈
(

Ω(pV )

Ω(q̃∗(p0, q0, 0)
,
Ω(p̃∗(p0, q0, 1)

Ω(qV )

)
=: Ξ(p0, q0),

i.e. conditions (4.7) and (4.8) are not satisfied. Intuitively, these are states

in which there is sufficient competition in the sense that the priors p0 and q0

are relatively close. We will show that in these states there is no equilibrium

in pure strategies.

Lemma 8. Given an initial state (p0, 0; q0, 0) such that Ω(p0)
Ω(q0)

∈ Ξ(p0, q0),

there exists no equilibrium in pure strategies such that one player exits after

the other.

Proof: Assume there exists an equilibrium such that the uninformed type

of player i exits at date t, and the uninformed type of player j exits at date

s > t. The continuation payoff at date t to player i is a
ρ
. If the informed

type of player i deviates and does not exit at date t, then by equation (4.3)
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player j concludes that he is facing the informed type of player i, and reverts

to playing the single-player optimal strategy: he will continue experimenting

until his belief hits qV , the single-player threshold. Player i can then just

preempt that switch, and his payoff from this deviation is

pt
λ

ρ

(
1− e−(λ+ρ)x

)
+
(
1− pt(1− e−λx)

)
e−ρx

a

ρ
,

where x solves qt e−λx

qt e−λx+1−qt = qV . As long as x > 0 this deviation is strictly

profitable. This requires that qs > qV . By Lemma 7 qs must belong to the

interval [qV , qM ]. If qs = qV then player i’s best response is to exit at t just

prior to s, so that qt ↘ qV . �

So our candidate equilibrium strategies are such that players exit simulta-

neously. We show that for every initial state, there exists a unique tie-break

rule such that players are simultaneously indifferent between switching to

the safe option or not. We then show that players always have profitable

deviations, and conclude that there are no equilibria in pure strategies.

Lemma 9. Given an initial state (p0, 0; q0, 0) there exists a unique tie-break

rule ι∗(p0, q0) such that both players are simultaneously indifferent.

Proof: Fix an initial state (p0, 0; q0, 0). For every ι ∈ (0, 1) there exists a

unique pair (p̃∗(p0, q0, ι), q̃
∗(q0, p0, ι)) satisfying the indifference conditions of

both players. For these beliefs to be held by both players simultaneously, the

ratio of their likelihood ratios must equal that of the priors. (Recall that the

ratio of likelihood ratios remains constant over time.) Since ∂
∂ι
p̃∗(p0, q0, ι) > 0

and ∂
∂ι
q̃∗(p0, q0, ι) < 0, the ratio Ω(p̃∗(p0,q0,ι))

Ω(q̃∗(p0,q0,ι))
is a strictly increasing function
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of ι on
(

Ω(p̃∗(p0,q0,0))
Ω(q̃∗(p0,q0,0))

, Ω(p̃∗(p0,q0,1))
Ω(q̃∗(p0,q0,1))

)
= Ξ(p0, q0). We conclude that there exists

a unique ι∗(p0, q0) ∈ (0, 1) such that

Ω(p̃∗(p0, q0, ι
∗(p0, q0)))

Ω(q̃∗(p0, q0, ι∗(p0, q0)))
=

Ω(p0)

Ω(q0)
. �

The existence of a unique tie-break rule such that both players are si-

multaneously indifferent between switching or not is evocative of Simon

and Zame’s inclusion of the tie-break rule into the equilibrium in games

with payoff-discontinuities (Simon and Zame (1990)) - such as Bertand or

Hotelling games. Whereas with public payoffs (cf. previous chapters) we

could solve this difficulty by letting one player have a left-continuous, the

other a right-continuous strategy, here this does not work because of discon-

tinuities between payoffs when players exit together, or when players exit one

after the other. Indeed, the proposed pure strategy equilibrium breaks down

altogether.

Lemma 10. Preempting opponent’s switch is profitable deviation from switch-

ing simultaneously and facing tie-break.

Proof: For ι∗(p0, q0) ∈ (0, 1), p∗(p0, q0, ι
∗(p0, q0)) < p∗(p0, q0, 1) and so

LSVi(p∗(p0, q0, ι
∗(p0, q0)), q∗(p0, q0, ι

∗(p0, q0)), µjt = 1) <
a

ρ
.

The payoff from exiting simultaneously with his opponent is lower than the

payoff from anticipating the opponent’s switch by some small time interval

dt→ 0. �

We conclude that for states proceeding from initial states (p0, 0; q0, 0) such

that Ω(p0)
Ω(q0
∈ Ξ(p0, q0), there exists no pure strategy equilibrium.

94



4.2. PRIVATE PAYOFFS CHAPTER 4. PRIVATE PAYOFFS

4.2.3 Mixed Strategy

As a first step in exploring the existence of mixed strategy equilibria, consider

games in which players have the same prior probability of having a Poisson

process with positive arrival rate. The initial state (p0, 0; p0, 0) is then sum-

marised by p0 and given an initial state and a strategy for his opponent, a

player’s belief about his opponent’s type is given by Equation (4.3), so that

the posterior belief p < 1 is a sufficient summary statistic for each state in

which neither player has observed a Poisson event yet.

Consider the symmetric strategy profile µi(p) = µj(p) where µi(p) denotes

the probability with which player i’s uninformed type switches to the safe

option in state p. Player i’s value function V(p;µj) then solves the following

dynamic problem :

V(p;µj) = max
µi(p)∈[0,1]

{
(1− µi(p))LRV(p;µj) + µi(p)L

SV(p;µj)
}

LSV(p;µj(p)) = (1− θ)µj(p)
(
ιa
ρ

+ (1− ι)pλ
ρ

)
+ (1− (1− θ)µj(p)) a

ρ

LRV(p;µj(p)) = pλdt
(

1 + (1− ρdt)λ
ρ

)
+(1− pλdt)(1− ρdt) (1− θ)µj(p) p′ λρ
+(1− pλdt)(1− ρdt) (1− (1− θ)µj(p))V(p′;µ(p′)),

where p′ = −pλ(1− p)dt.

Conjecture 1. There is a symmetric equilibrium in mixed strategies in which

players exit with positive probability over some time interval [s, s̄] such that

pV ≤ ps̄ < ps ≤ p∗(θ, 1) .
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Let h(pt) denote the hazard rate at which an uninformed player switches

to the safe option over the time interval [t, t+ dt) conditional on not having

switched yet. If we assume that h(pt) is continuous over the support [p, p̄] =

[ps̄, ps] ⊆ [pV , p
∗(θ, 1)], then ties occur with zero probability. Hence h(pt)dt ≡

µ(pt) solves

a
ρ

= ptλdt
(

1 + (1− ρdt)λ
ρ

)
+(1− ptλdt)(1− ρdt) (1− θ(pt))h(pt)dt pt+dt

λ
ρ

+(1− ptλdt)(1− ρdt) (1− (1− θ(pt))h(pt)dt)
a
ρ
.

Eliminating terms ∈ O(dt) and simplifying, we obtain that a player is indif-

ferent between switching to the safe option and activating his Poisson process

over the short time interval [t, t + dt) whenever the expected hazard rate of

exit by his opponent in state p(t) satisfies

(4.9) (1− θ(p))h(p) = pλ(λ+ρ−a)−aρ
a−pλ = (λ+ ρ− a) p−pV

pM−p
.

Expressing the law of motion of θt described in Equation (4.3) as a function

of the state p rather than of time, we obtain the following ODE for the belief

θ:

(4.10) −pλ(1− p)dθ(p)
dp

= θ(p) [(1− θ(p))h(p)− pλ] + pλ .

Combining the two ODEs gives us the trajectory of beliefs when players

randomise:

(4.11) −pλ(1− p)dθ(p)
dp

= θ(p) [
pλ(λ+ ρ− a)− aρ

a− pλ
− pλ] + pλ .

Solving this ODE gives a functional form for θ(p). Given this functional

form, we could use Equation (4.9) and solve explicitly for h(p), the hazard

rate at which an uninformed player switches to the safe option.
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4.3 Other Extensions

In this section we present other possible extensions to the model which we

deem useful and of economic interest, though they are not analysed as part

of this thesis. Although the results from Chapter 3, especially for the case

where exit is revocable, can seem intuitive, it may be difficult to think of a

great number of ‘real-world’ illustrations of the equilibrium behaviour. While

examples of preemption abound, we may have to engage in loose interpreta-

tion when trying to think of situations in which the player currently forcing

his opponent to experiment returns to his own experimentation and leaves

the safe option for his opponent to take, after having exhausted the strategic

option-value from occupying the safe option.

Certainly the assumption that the contested option is “safe” exacerbates

the exciting result that preemption need not be irreversible. We could under-

stand the notion of “occupying the safe option” as the protracted contract

negotiation of a job-candidate aware that his competitor, who is himself hop-

ing for an offer from that employer, might seek a job elsewhere. Recognising

that there may be a strategic option-value associated with occupying an op-

tion also raises a question of identification.

Consider the situation along the equilibrium path in which one player oc-

cupies the safe option and forces his opponent to experiment. The player

occupying the safe option does so in the hope of his opponent’s experimenta-

tion producing a success, and even though his belief is close to the the myopic

threshold: absent the opponent, the player would rather experiment with his

own Poisson process. Similarly for the player being forced to experiment,

whose belief may be below the myopic threshold: he prefers the safe option.

97



4.3. OTHER EXTENSIONS CHAPTER 4. PRIVATE PAYOFFS

An outside observer who is not aware that the players are competing for

access to the safe option and who does not know the players’ beliefs might

wrongly conclude that the player occupying the safe option prefers it to his

Poisson process, and that the player occupying his Poisson process prefers

it to the safe option. The outside observer would erroneously ignore the

strategic option-value attached to occupying the safe option, and miss the

possibility that the player occupying the safe option is currently forcing the

opponent to experiment.

With view to approaching a more “realistic” setup, several extensions might

be worth pursuing. Allowing for the options to be priced is one such example.

Notice that the Planner Solution when exit is revocable could be implemented

by the planner renting out access to the safe option over some short time-

interval dt → 0 by means of a second-price auction. Players then bid the

difference in their continuation utilities with or without the option for that

time interval, and the safe option would always be allocated to the player

with the lowest expected arrival-rate.

Thinking of the options as employers setting wages at which they hire

workers, it is also clear that a success by his opponent makes a player the

monopolist vis-à-vis the safe option. How such a sudden shift in bargaining-

power would affect the worker’s wage is not clear: the firm could wait until the

player has experimented and risk him never wanting the safe job should his

experimentation result in a success. If however the player’s Poisson process

never produces a Poisson event, the firm can now hire the worker very cheaply.

Even without prices, we can think of options as strategic players deriving

utility from being activated by a player and so get closer to a two-sided
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matching setup. It is clear from the results in Chapter 3 that an option

benefits from competition, since players have incentives to occupy an option

that they would not occupy in the absence of competition, so as to block

the other player. From the point of view of an option, it might therefore be

optimal to be the “second choice” for many players rather than the “first

choice” for a few players.

With view to deriving the model’s implications in a larger economy, one

further extension one could consider would be to increase the number of

players. In this case, even though players still benefit from an opponent

being forced to experiment, each player would like another player to block

the safe option, rather than occupying the safe option himself: there is an

incentive to free-ride. At the same time, occupying the single safe option

forces several players to experiment, making the strategy more appealing.

Depending on how the two effects trade each other off, the set of beliefs

for which players switch to the safe option in equilibrium could increase or

decrease, although we conjecture that the first effect will dominate. Even if a

player forces several players to experiment, the probability of them all having

a success, and the player achieving the single-player value, is minute. The

equilibrium behaviour in the game with revocable exit would gradually evolve

towards the equilibrium behaviour in the game with irrevocable exit, with

the relevant threshold beliefs gradually approaching the myopic threshold.

However, in letting the number of players increase, one must beware not

to run into a motivational conflict: recall that we are assuming that payoffs

are public, and players are aware of their competition. When the number of

players increases, these assumptions may become indefensible.
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Chapter 5

N-dimensional Blotto Game

with Asymmetric Battlefield

Values

5.1 Introduction

Budget-constrained multidimensional allocation problems were amongst the

very first ones considered in game theory. The first version can be found

in Borel and Ville (1938). This problem and similar ones later came to be

known as “Colonel Blotto” games, after Gross and Wagner (1950)’s approach

to the allocation problem.

In the simplest version of the Colonel Blotto game, two generals want

to capture three equally valued battlefields. Each general disposes of one

divisible unit of military resources. The generals have to simultaneously

allocate these resources among the three battlefields. A battlefield is captured
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by a general if he allocates more resources there than his opponent. The goal

of each general is to maximise the number of captured battlefields.

In that game, a pure strategy for player i is a 3-dimensional allocation

vector xi = (xi1, x
i
2, x

i
3) where xik is the amount of resources allocated to the

kth battlefield. The set of all pure strategies is the 2-dimensional simplex

∆2. A mixed strategy is a trivariate distributions function F : ∆2 → [0, 1].

This version of the game was considered in Borel’s course on probability

Borel and Ville (1938) at the university of Paris in 1936-37. The solutions

given by Borel reappear in Gross’s and Wagner’s unpublished research mem-

orandum (1950).

They state that a mixed strategy F constitutes a symmetric equilibrium

of the game if all one-dimensional margins of F are uniform over [0, 2
3
]. One

geometrical approach to building such a distribution F consist of projecting

a sphere, together with a uniform generic point belonging to its surface, onto

the disc inscribed in an equilateral triangle.

Gross and Wagner conjecture that this geometrical method of generating

the equilibrium distribution extends to Colonel Blotto games with more than

three equally valued battlefields. This extension is formalised in Laslier and

Picard (2002). It is worth noting that Weinstein (2005) presents a different

geometric approach for case of n ≥ 3 equally valued battlefields.

Roberson (2006) addresses the question of whether the univariate marginal

distributions of the equilibrium strategies (n-variate distributions) are nec-

essarily uniform for symmetric battlefield weights but possibly asymmetric

budgets, and finds that they indeed have to be. That paper does not, how-

ever, solve the Blotto Game with asymmetric battlefield values. Another
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related paper is Kvasov (2007). It looks at a variation of the Blotto Game

in which the allocation of resources is costly, and there too, battlefields are

symmetric.

The present chapter generalises Gross and Wagner’s geometric approach

to construct equilibrium distributions of the n-dimensional Colonel Blotto

game with asymmetric battlefield weights. The difficulty lies in inscribing

a circle within an irregular n-gon. The necessary and sufficient conditions

for this relate to the integer partitioning problem, a well-known problem of

combinatorial optimisation.

The next section describes the model, then generalises the proofs of the

existing literature to describe known equilibria of this game. Section 5.3

presents geometrical methods of constructing equilibrium distributions. It

describes Borel’s solutions as formulated in Gross and Wagner (1950), then

Laslier and Picard’s geometric construction method. Section 5.4 constitutes

the main contribution of this chapter. It shows how, and under which condi-

tions, this method can be extended to asymmetric n-dimensional cases. The

conditions are related to a constrained version of the NP-complete “integer

partitioning problem”.

We end this chapter (Section 5.5) by illustrating the construction method

using the example of US presidential elections. We argue that given the

motivations of presidential candidates, the Colonel Blotto game is an apt

model. Moreover, it turns out that in that example and given the actual

distributions of electoral votes across US states, the construction method

suggested performs very well at generating equilibrium distributions. The
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final section concludes.

5.2 Model and Equilibrium

Two players with identical budget normalised to one decide how to allocate

their resources across n battlefields indexed by k ∈ {1, ..., n}. The absolute

value of battlefield k is the positive integer1 Ek. For all k, denote ek =

Ek/
∑n

k=1Ek the relative value of battlefield k and note that
∑n

k=1 ek = 1.

To make the game non-trivial, assume that 0 < ek < 1/2, or equivalently

that 0 < Ek <
∑

j 6=k Ej, for all k = 1, ..., n.

Player i ∈ {1, 2} chooses a nonnegative vector of allocations xi = (xi1, ..., x
i
n)

where xik is the amount of resources allocated to battlefield k. Player i wins

in battlefield k if his resources in that battlefield, xik, exceeds the resources

xjk of the other player. Ties are resolved by flipping a coin. Both players

are budget-constrained so the sum of a player’s resources allocated across all

battlefields cannot exceed that player’s budget of 1.

A pure strategy of player i is an n-dimensional vector xi satisfying the

budget constraint. Denote S i the set of pure strategies of player i:

S i =
{
x ∈ [0, 1]n :

n∑
k=1

xk ≤ 1
}

Both players seek to maximise the aggregate value of captured battlefields.

The function g : S i × Sj → R measures the excess aggregate value of bat-

1Notice that we could choose battlefield weights in R. But because we will relate

this problem to the integer partitioning problem (and for real numbers, condition (P1E’)

introduced in Section 5.4.3 holds with zero probability), we restrict attention to integers

from the outset.
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tlefields captured by player i if he plays the pure strategy xi while player j

plays xj:

g(xi,xj) =
n∑
k=1

ek sgn(xik − x
j
k),

with sgn(u) = 1 if u > 0, 0 if u = 0 and −1 if u < 0.

A mixed strategy of player i is an n-variate joint distribution function

F i : Si → [0, 1]. Denote F i
k the kth one-dimensional margin of F i, i.e. the

unconditional distribution of xik. For each k = 1, ..., n, F i
k maps [0, 1] into

itself. Define the payoff to a mixed strategy as the mathematical expectation

of g(xi,xj) with respect to the strategy profile (F i, F j).

The following proposition generalises existing results on the form of equi-

libria in Blotto games to the case of asymmetric battlefield weights. The

proof is relegated to Appendix 5.7.1.

Theorem 3. Consider the Colonel Blotto Game with asymmetric battlefield

weights.

(i) This game has no pure strategy Nash equilibrium

(ii) Both players meet their resource constraint in equilibrium.

(iii) Let F ∗ be a probability distribution of x ∈ ∆n−1 such that each vector

coordinate xk (k = 1, ..., n) is uniformly distributed on [0, 2ek]. Then (F ∗,

F ∗) constitutes a symmetric Nash equilibrium.

The first point implies that an equilibrium, if it exists, must be in mixed

strategies. The second point guarantees that the support of any equilib-

rium strategy is the (n − 1)-dimensional simplex. Point three states that

having univariate margins that are uniform on [0, 2ek] is a sufficient condi-
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tion for a mixed strategy with support ∆n−1 to constitute a symmetric Nash

equilibrium. Roberson (2006) shows that for homogeneous battlefield values

(∀k ek = 1/n) uniform univariate margins are also a necessary condition for

equilibrium.

Is it always possible to build a joint distribution satisfying the proper-

ties of F ∗? We cannot answer this question in general, but we provide one

method for building these equilibrium distributions. We then present con-

ditions under which this method works, and address the question of when

these conditions are likely to be satisfied. To this end we note a parallel to

the constrained integer partitioning problem.

The following section describes the geometric construction method of Gross

and Wagner, and later Laslier and Picard, while section 5.4 generalises it to

accommodate asymmetric battlefield values. We obtain conditions under

which this construction method always produces a joint distribution satisfy-

ing the properties of F ∗.

5.3 Multivariate Distributions - Known Cases

The aim is to construct a n-variate distribution function F ∗ from given one-

dimensional margins and given the equilibrium restrictions on the support

of F ∗. Indeed, in equilibrium candidates only use strategies in the (n − 1)-

dimensional simplex, ∆n−1, which does not include the whole of ×nk=1[0, 2ek].

Were it otherwise, it would be possible to construct a joint distribution with

any correlation properties.
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So the restriction of the support of F ∗ given its margins limits the number

of possible interactions between resource allocations to different battlefields.

So far, I have not been able to fully characterise the set of possible correlations

satisfying the restrictions on F ∗.

This section presents a geometrical method of constructing F ∗ that we

will refer to as the generalised disk solution, in reference to the disk solution

presented in Gross and Wagner (1950) and later with some modifications in

Laslier and Picard (2002).

Note that because this is not the only way to construct multivariate dis-

tributions satisfying the restrictions above, this method might not describe

the entire set of F ∗s even in cases where the method is applicable.

5.3.1 Triangle Solution - Gross and Wagner (1950)

First, consider the case presented in Gross and Wagner (1950) for n = 3

asymmetric battlefield weights. The following process generates three di-

mensional vectors x = (x1, x2, x3) in the two dimensional simplex ∆2 such

that each xk is distributed uniformly over [0, 2ek].

Think of the triangle of sides2 e1, e2, e3, as belonging to the plane with

z-coordinate zero in the three-dimensional space (x, y, z). Inscribe a disk of

centre O and radius r within that triangle. This disk is the projection (onto

the plane (x, y, 0)) of the sphere S of centre O and radius r belonging to

the three dimensional space (x, y, z). Finally, let R be a generic point that

2For simplicity we identify a side of the triangle with its length. So we use ek to

refer both to a segment and to its length. Note also that this triangle always exists since

ek < 1/2 ∀k.
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is uniformly distributed on the surface of the sphere S, and let P be the

orthogonal projection of R onto the plane.

Figure 1: The Triangle Solution.

For all k, hk is the distance of P from the side ek. In the three-dimensional

space, it is also the distance of R from Pk, the vertical plane tangent to the

sphere of centre O and which projects onto the side ek.

If R is uniformly distributed on the surface of the sphere, what is the

distribution of hk? For all t ∈ [0, 2r], the spherical cap of height t is the

region of the sphere S that lies between the vertical plane Pk, and the vertical

plane parallel to Pk and at a distance t away from it. Then, for all t ∈ [0, 2r],

Pr(hk < t) = Pr(R ∈ cap of height t), and since R is uniformly distributed

on the surface of the sphere, this probability equals the surface area of the
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cap3 of height t, t ∈ [0, 2r], divided by the total surface area of the sphere:

Pr(hk < t) =
2π
∫ t
o
r dx

2π
∫ 2r

o
r dx

=
t

2r
,

and so hk is distributed uniformly on [0, 2r].

Back in the two-dimensional plane, call Ak the area of the triangle of height

hk and side ek subtended by P . For all k, Ak = ekhk/2. Since hk ∼ U [0, 2r],

it must be that Ak ∼ U [0, 2rek/2] ≡ U [0, rek].

Letting A = A1 + A2 + A3 = (e1 + e2 + e3)r/2 = r/2 be the total area

of the triangle, we assimilate the fractions x1, x2, x3, which are assumed to

belong to the two dimensional simplex, to the fractions A1/A, A2/A, A3/A,

which belong to the two dimensional simplex by construction. So for all

k, xk=Ak/A = 2Ak/r. Then finally, since Ak ∼ U [0, rek], it must be that

xk ∼ U [0, 2rek/r], i.e. xk ∼ U [0, 2ek]. �

Note that this construction is unique as there is only one cyclical permu-

tation of 3 objects, if we account for the orientation of the cycle (i.e. treat

{x, y, z} and {z, y, x} as equivalent).

3 Note that the result of this sub-section is largely

driven by the following property of spheres: Con-

sider the spherical segment of height h. Its surface

(excluding the bases) is called a zone. Its mathe-

matical expression is 2π
∫ b
a
r dx = 2πrh. Note that

this area is independent of the vertical position of

the zone.
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5.3.2 Regular n-gon - the disk solution - Laslier and

Picard 2002

As n increases beyond three, note that different orderings of the ek’s create

different supports for the equilibrium strategy. Moreover for n ≥ 4 it is not

possible to inscribe a circle in any n-gon. Irregular n-gons are the object of

the next section.

Let us first consider the case of regular n-gons, which is the result presented

in Laslier and Picard (2002). As supported by the disk solution, it is possible

to construct a multivariate distribution F ∗ for the case in which all states

carry the same value: ek = 1/n for all k. Then, regardless of n, it is possible

to inscribe a circle within the n-gon; and following the same method as in

the triangle case, the process generates n-dimensional vectors x = (x1, ..., xn)

belonging to the (n−1)-dimensional simplex, such that each xk is distributed

uniformly over [0, 2/n].

In the two-dimensional, oriented plane, consider the regular n-gon {P0, ..., Pn−1}

centered at zero such that

Pk =
(
ρ cos (2k+1)π

n
, ρ sin (2k+1)π

n

)
= ρ ei

(2k−1)π
n .

The disk that is inscribed within this n-gon is centered at zero and has

radius r such that ∣∣∣∣Pk + Pk+1

2

∣∣∣∣ =
ρ

2

√
2(1 + cos

4π

n
) = r.

This disk is the projection onto the plane of the sphere centered at zero of

radius r. To generate the n-dimensional vector x, use the method corre-

sponding to the three-dimensional case described above.
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Figure 2: Regular n-gon

Note that there are as many disk solutions as there are ways to order n

objects in a circle without taking into account the orientation of the circle,

i.e. (n−1)!/2. Even though all sides have the same length, meaning that the

n-gons {e1, e2, e3, e4} and {e3, e2, e1, e4} say, look identical, the correlations

of vector coordinates deriving from the resulting joint distributions will be

different.

5.4 Multivariate Distributions - Irregular n-

gon

In this section, we present a novel construction method for the case where

battlefield values differ. Note that if there exists an n-gon with sides of

lengths corresponding to the battlefield values and that admits an inscribed

circle, we can use the method for constructing F ∗ described above. But as
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noted in the previous section, for n ≥ 4 it is not possible to inscribe a circle

in any n-gon. Roughly, the figure needs to be sufficiently regular. Indeed,

for some {ek}nk=1, it may never be possible to inscribe a circle in an n-gon of

sides ek regardless of the ordering. This is the case for instance if one ek is

much larger than all the others.

Figure 3: Ill-behaved n-gons

The next sub-section describes how to construct an irregular n-gon admit-

ting an incircle, assuming this is possible. Then, sub-section 5.4.2 presents

the necessary and sufficient conditions on battlefield weights guaranteeing it

is possible to construct an irregular n-gon admitting an incircle.

5.4.1 Irregular n-gon - the modified disk solution

Consider the n-vector e = (e1, ..., en) of battlefield weights, and define the n-

vector γ = (γ1, ..., γn) to be a reordering of e satisfying conditions described

in section 5.4.2. Let k, the index of the coordinates of γ, be congruent

modulo n.

Given γ, consider the following method of constructing an irregular n-gon

of ordered sides γ1, γ2, etc, such that a circle is inscribed in it.

For k = 1, ..., n, let Γ be a string of n connected segments [Pk−1, Pk] of

length γk with the following equidistance property: let Tk be a point of the
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segment [Pk−1, Pk] such that, for each k, the distances ||TkPk|| and ||PkTk+1||

are the same, denoted tk. The points Tk will be the tangency points between

the n-gon and the circle inscribed in it.

Figure 4: The set Γ.

Consider the disk (O, r) and two connected segments [AB] and [BC]. Let

both segments be tangent to the circle, and let K and L be the points of

tangency of [AB] and [BC] respectively. It is a well known result that the

distances ||K −B|| and ||B − L|| are then necessarily equal.

Figure 5: Equidistance

Accordingly, if a sequence of connected segments can be wrapped around a

circle (regardless of the number of times the sequence goes around the circle)

in such a way that all segments are tangent to that circle, then the points of

tangency of two consecutive segments are equidistant from the point common

to both segments.
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Figure 6: Wrapping Gamma around a circle.

This equidistance property is, by construction, satisfied by the set Γ. So

Γ can be wrapped around any circle (O, r). The number of times we can

wrap this set of connected segments around a circle depends on r. Theorem

4 states that there is only one value of r for which we can wrap a given Γ

around a circle, such that Pn = P0, closing the n-gon. Denote θk the angle

(Pk−1, 0, Pk).

Theorem 4. For a given Γ,
∑n

k=1 θk = f(r) where f is a continuous, strictly

monotone function. Therefore, r∗ satisfying f(r∗) = 2π is unique.

Proof. Denote ak the angle (Tk, 0, Pk). Then
∑n

k=1 θk = 2
∑n

k=1 ak. The

function sin−1 is defined (and monotonically increasing) on [−1, 1], and since

for all x ∈ R+∗, 0 < x/
√
x2 + r2 ≤ x/

√
x2 = 1, so

sin ak =
tk√
t2k + r2

⇔ ak = sin−1

[
tk√
t2k + r2

]
,

and
n∑
k=1

θk = 2
n∑
k=1

sin−1

[
tk√
t2k + r2

]
= f(r),

113



5.4. IRREGULAR N -GON CHAPTER 5. BLOTTO GAME

which is strictly decreasing, and hence invertible in r for all n. The propo-

sition follows. �

Note that r∗ depends on the particular choice of tk so that any vector e

may be associated with several r∗.

We now present the conditions on γ that are necessary and sufficient for

the existence of a set Γ, and hence for the existence of an n-gon of sides given

by γ and admitting an inscribed circle.

5.4.2 Necessary and sufficient conditions

When the n-gon is regular, it is always possible to inscribe a circle within

it. As we deviate from the regular n-gon, what are sufficient conditions on

{ek}nk=1 and on the ordering of the sides of the irregular n-gon that need to

be satisfied to ensure that a circle can be inscribed within it?

First note that the restriction ek < 1/2 ∀k guarantees that a convex n-gon

with sides of lengths given by {ek}nk=1 exists.

This section describes conditions for reordering the coordinates of the n-

vector e = (e1, ..., en) to form the n-vector γ = (γ1, ..., γn). Recall that k,

the index of the coordinates of γ, is congruent modulo n. The conditions are

necessary and sufficient to be able to inscribe a circle in the irregular convex

n-gon with ordered sides given by γ, and from there, to build an equilibrium

strategy F ∗.

It will be shown that some vectors e will not admit any reordering γ sat-

isfying these conditions so that it will not be possible to build a distribution
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with the properties of F ∗ using the geometric method.

To be able to build such a set Γ, the vector γ needs to satisfy the follow-

ing restrictions (P1) and (P2), that are divided in sub-cases depending on

whether n, the number of battlefields, is odd or even.

(P1E) If n is even, then

n∑
i=1

(−1)iγk+i = 0.

(P2E) If n is even, then for any k, there exists a constant c > 0 such that

for ν = 1, 2, ..., n
2
,

max
ν
{

2ν+1∑
i=0

(−1)iγk+i} < c < min
ν
{

2ν∑
i=0

(−1)iγk+i}

(P1O) If n is odd, then for any k,

tk =
1

2

n−1∑
i=0

(−1)i+1γk+i.

(P2O) If n is odd, then for any k,

γk >
∥∥∥ n−1∑
i=1

(−1)i+1γk+i

∥∥∥.
These restrictions are all derived from the fact that by definition, γk =

tk + tk+1, and from the two following requirements:

1) Congruence ∀k, tk+n = tk.

2) Fit ∀k, 0 < tk < γk.

(P1) and (P2) hold if and only if congruence and fit are satisfied. The

details can be found in appendix 5.7.2.
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Congruence and fit are necessary and sufficient conditions for γ to generate

a set Γ as defined in section 5.4.1. It follows that these properties of γ

are necessary and sufficient for the resulting Γ to generate at least one n-

gon admitting an incircle. Of course, they are all satisfied when all the

coordinates of γ are the same - corresponding to the case of Laslier’s and

Picard’s regular n-gon. The following theorem is the main result of this

section:

Theorem 5. If for a vector e of battlefield weights we can find a reordering

γ satisfying (P1) and (P2), then we can construct an irregular n-gon with

an inscribed circle of radius r∗.

The radius r∗ is defined in theorem 4. In the remainder of this section, we

provide some insight into these properties and in particular (section 5.4.3),

ask how easy they are to satisfy.

Conditions (P2E) and (P1O), relate to the tangency points of the in-

scribed circle with the n-gon. They ensure that if tk belongs to the interval

(0, γk), then tk+1, which is equal to γk − tk, belongs to the following interval,

(γk, γk+1). We can see that while for n odd, the conditions on the length tk

are very strict (equality), for n even it will be sufficient for tk to belong to

the interval defined in (P2E):

(P2E)’ If n is even, then for all k,

tk ∈
(

max
ν
{

2ν+1∑
i=0

(−1)iγk+i} ,min
ν
{

2ν∑
i=0

(−1)iγk+i}
)

So for a given γ, if n is even, it is possible to build an infinity of sets Γ

as long as (P2E)’ is satisfied, while for n odd, there exists a unique Γ with

distances tk satisfying (P1O).
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The remaining two conditions, (P1E) and (P2O), are discussed in the

next sub-section.

5.4.3 The constrained integer partitioning problem

It is clear that while some vectors e may admit several corresponding vectors

γ, others may admit none. Indeed, the properties are all regularity restric-

tions on the ordering of the coordinates of γ and impose some balance. Notice

that (P1E) can be rewritten as:

(P1E)’ If n is even, then

n
2∑
i=1

γ(k+2i) =

n
2∑
i=1

γ(k+2i−1) =
1

2
,

and that (P2O) can be rewritten as:

(P2O)’ If n is odd, then for any k,

γk >
∥∥∥ n−1

2∑
i=1

γ(k+2i) −
n−1
2∑
i=1

γ(k+2i−1)

∥∥∥.
So the two conditions are similar in requiring that the n-gon generated

by γ is balanced in the sense that the summed length of odd sides and the

summed length of even sides are equal (for n even) or close in a precise sense

(for n odd).

As a brief digression, note that they also can be interpreted as the re-

quirement that there exists a coalition of states such that each state in that

coalition and each state in the complement coalition is pivotal. Pivotality

is not a very apt concept here, as players are maximising their plurality. It

would be more fitting in a context where players maximise their probability

of winning.
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More can be said about when (P1E) and (P2O) may be satisfied by not-

ing that these conditions are related to the constrained integer partitioning

problem, a classic problem of combinatorial optimisation. The exercise con-

sists in partitioning n integers into two subsets of given cardinalities such

that the discrepancy, the absolute value of the difference of their sums, is

minimized.

(P1E) corresponds to the constrained partitioning problem in which the

cardinality of the two resulting subsets is n/2 and the discrepancy is equal

to zero. A partition with a discrepancy of zero is called a perfect partition.

(P2O) corresponds to n instances of a more relaxed version of the con-

strained partitioning problem just described: for each k = 1, ..., n, the aim

is to partition n− 1 integers into two subsets of equal cardinality, such that

the discrepancy is less than γk.

These are computationally difficult problems. The unconstrained parti-

tioning problem is NP-complete, and while some algorithms deliver good

approximations of the optimal partition (the partition with the lowest possi-

ble discrepancy), the brute force algorithms that compares the discrepancies

of all possible partitions is still the best known solution to the problem.

Borgs et al. (2003) identify two phases of the constrained problem depend-

ing on its computational difficulty. They study the typical behaviour of the

optimal partition when the n integers are i.i.d. random variables chosen

uniformly from the set {1, ..., 2m} for some integer m.

They find that, for m and n tending to infinity keeping the ratio m/n

constant, with probability tending to one there exists a perfect partition

when m/n < 1. They call this the perfect phase of the problem. In the hard
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phase of the problem, for m/n > 1, the probability of a perfect partition

tends to zero and the optimal partition is unique, making computation of

the optimal partition more difficult there. Still, the minimum discrepancy,

i.e. the discrepancy of the optimal partition, can be bounded from above

and below.

While in the limiting case, the phase transition is sharp at 1, in finite cases,

the phase transition happens within a specified interval containing 1, and it

is not clear whether the transition is sharp. Finally, the number of perfect

partitions in the perfect phase is lower than in the limiting case by about

twenty percent for a given ratio m/n.

For the purpose of this chapter, the results of Borgs et al. allow the con-

clusion that (P1E) and (P2O) are likely to be more easily satisfied for

m/n < 1 than for m/n > 1, and that while (P2O) may be satisfied for

m/n > 1, (P1E) never is.

m/n < 1 m/n > 1

(P1E) easy impossible

(P2O) easy hard

Finally note the importance of the assumption that battlefield values are

integers. Indeed, were battlefield values drawn from R, the condition for n

even would hold with probability zero.

5.5 Application

One compelling illustration of this model is the election of US presidents by

electoral college: first, during primaries, two candidates, one Democrat, the
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other Republican, are chosen to represent their party in the general election,

which is then held simultaneously in all 51 US states (50 + D.C). Each state

is allocated a number of electoral votes depending on its population4. There

are 538 electoral votes in total. A candidate gains all electoral votes of a

given state if he receives more than half the votes cast in that state. To win

the election, a candidate must win at least 270 electoral votes.

This situation can be modeled as an asymmetric Colonel Blotto game under

the following three assumptions: (i) presidential candidates face identical

budget constraints, (ii) the probability of winning the election in a given

state increases with campaigning resource allocated to that state, and (iii)

candidates wish to maximise their plurality, rather than the probability of

winning the election.

The first two assumptions are the least controversial. In fact assumption

(i) is trivially satisfied if we think of the campaigning resource as time spent

campaigning in each state.

What if we think of money as the resource? In practice, candidates can

choose whether to self-finance their general election campaign, or (since 1976)

can accept public funding5. To be eligible to receive the public funds, a

candidate must limit spending to the donation6. So if both candidates are

4For details, see Appendix 5.7.3
5For information on the Public Matching Fund scheme, visit the Federal Election Com-

mission at http://www.fec.gov/.
6In essence. More precisely, the candidate may not accept private contributions for

the campaign. Private contributions may, however, be accepted for a special account

maintained exclusively to pay for legal and accounting expenses associated with complying

with the campaign finance law. These legal and accounting expenses are not subject to

the expenditure limit. For more detail, see the FEC brochure for Public Funding of
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publicly funded, it makes sense to assume that they both face the same

resource constraint.

The assumption of equal budgets becomes more trying if at least one of

the candidates is self-funded. Indeed, there is considerable evidence that in

these cases, budgets differ, as seen in the latest US presidential elections.

The positive relationship between campaign effort and votes is well doc-

umented, whether campaigning effort is understood to be time spent cam-

paigning in a state (Herr (2008)) or financial campaign expenditures in that

state (Chapman and Palda (1984)). So assumption (ii) is also pretty unprob-

lematic.

This is not so for the last assumption. In general, one would assume that

candidates maximise the probability of their winning the election. Neverthe-

less one could argue that because presidential elections coincide with Senate

and House of representative elections, presidential candidates do campaign

so as to maximise the plurality of votes in they favour, not only so as to win

the presidential election. This is more believable in cases where one candi-

date already expects to win with a significant plurality, but surely not when

elections are close. Either way, it is fair to say that maximising the plurality

in his favour is at least a candidate’s secondary objective.

One strong argument supporting the claim that candidates care at least

a little about plurality is that they do indeed campaign in all states, while

ignoring small states (states with few electoral votes, that have little chance

of being pivotal) would be consistent with the strategy of a candidate solely

trying to maximise his probability of winning the election.

Presidential Elections at http://www.fec.gov/pages/brochures/pubfund.shtml.
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So we can think of the US general election game as a Colonel Blotto game.

In both cases candidates choose how to allocate a fixed amount of resources

across states. Strategic considerations arise because of the positive relation-

ship between campaign effort and votes. By spending more in a state than

his opponent, a candidate increases his chances of winning that state.

In this section we look for a solution to a Colonel Blotto game in which

each state has a value corresponding to its relative number of electoral votes.

The distribution of electoral votes across states is shown in Appendix 5.7.3.

Two candidates with budgets XA = XB = X decide how to allocate their

campaigning funds across n = 51 states indexed by k ∈ 1, ..., n. The value of

state k is ek which corresponds to the number of electoral votes allocated to

state k as a fraction of the total number of electoral votes, 538. For instance,

the state of Alabama has 9 electoral votes, so for that state, e = 9/538.

Accordingly ek < 1 for all k and
∑n

k=1 ek = 1.

Candidate i’s plurality, i.e. the number of electoral votes won minus the

number of electoral votes lost, is measured by the function gi : Si × Si → R

defined in section 5.2.

Since this matches the setup of section 5.2, the results of all following

sections hold, including the existence of one equilibrium distribution. In-

deed, consider the vector γn presented in Appendix 5.7.4. It is such that

each ek corresponds to the number of electoral votes allocated to state k as a

fraction of the total number of electoral votes, 538. For clarity, we multiply

all numbers back by 538. Note that this solution uses the current distribu-

tion of electoral votes (i.e. the third column in table 5.7.3), but that the
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construction method works equally well for the other two distributions.

This vector satisfies the conditions (P1) and (P2) for n odd (n = 51).

Note that within the framework of section 5.4.3, the 51 partitioning problems

corresponding to this exercise are in the perfect phase. Here, the greatest

of the n = 51 integers is 55, the number of electoral votes for the state

of California. So we can treat the electoral votes as n i.i.d integers chosen

uniformly from the set {1, ..., 2m} with m = 6, in which case m/n = 6/51� 1

(perfect phase) so that the partitioning problem should be relatively easy

to solve. Indeed, a solution can be easily found heuristically, as shown in

Appendix 5.7.4. This illustrates one possible equilibrium of the US general

elections game.

5.6 Conclusion and Open Questions

This chapter describes a geometrical method for constructing equilibrium

distribution in the Colonel Blotto game with asymmetric battlefield values.

The appeal of geometrical methods for constructing n-dimensional distribu-

tions subject to restrictions on their support and their margins lies in the

relative simplicity with which they describe complicated multi-dimensional

objects. The drawback is that they may fail to generate the full set of distri-

butions satisfying given restrictions on support and margins. This downside

is limited when that set is well defined, as it is here, so that the exercise

becomes to generate instances of these well-defined objects.

The method presented in this chapter generalises to the n-dimensional case

a construction method first proposed by Gross and Wagner. It does partic-
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ularly well in instances of the Colonel Blotto game in which the battlefield

weights satisfy some clearly defined regularity conditions (Section 5.4.2).

Though these conditions constrain the set of games in which this method

reliably generates equilibrium strategies, they are less restrictive than the

condition of symmetry across all battlefields (Laslier and Picard). Moreover,

their implications suggest directions for further research.

Noticing that the conditions on the reordering γ can be interpreted as the

requirement that there exists a coalition such that every battlefield is pivotal

suggests a parallel between behaviour of candidates seeking to maximise plu-

rality and candidates seeking to maximise probability of victory, though this

work leaves the exact relationship between these games an open question.

Finally, the restrictions on the support of equilibrium distributions limit

the number of possible correlations across xk’s. This captures the idea that

even though it is intuitive that more resources are likely to be allocated

to battlefields with greater weight, the solution suggests that allocations to

different battlefields interact in a particular way. Looking more carefully at

possible correlations across xk’s could be interesting from the empirical point

of view.
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5.7 Appendix Chapter 5

5.7.1 Proof of Proposition 1

Proof of (i) and (ii): Straightforward.

Proof of (iii): To prove this point, it is sufficient to show that the payoff

to any pure strategy y ∈ S i against F ∗ is non-positive. First we show that

the expected payoff to player i from playing F ∗ against F ∗ is zero. Let

xi = (xi1, ..., x
i
n) and xj = (xj1, ..., x

j
n) be generated by F ∗. Accordingly, for

all k = 1, ..., n, xik and xjk are drawn from the uniform distribution over

[0, 2ek] and Pr(xjk < xik) = F ∗k (xik) =
xik
2ek

. So given xi, for all k = 1, ..., n,

E[sgn(xik − x
j
k)|xi] = 2F ∗(xik)− 1 =

xik
ek
− 1.

And hence, for all k = 1, ..., n,

E[sgn(xik − x
j
k)] =

∫ 2ek

0

(
t

ek
− 1

)
dF ∗k (t)

=
1

2ek

∫ 2ek

0

(
t

ek
− 1

)
dt

which is zero for all k = 1, ..., n so that:

E[g(F ∗, F ∗)] =
n∑
k=1

ek · E[sgn(xik − x
j
k)] = 0.

Now consider the payoff to player i of playing an arbitrary pure strategy

y ∈ S i = ∆n−1 against F ∗. Since for all k = 1, ..., n, ek <
1
2

and F ∗k is

the uniform distribution on [0, 2ek], F
∗
k (yk) = yk/2ek if yk ∈ [0, 2ek] and

F ∗k (yk) = 1 if yk > 2ek. So

E[sgn(yk − xjk)|y] = 2F ∗k (yk)− 1
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= 2 min

{
1,
yk
2ek

}
− 1.

Hence:

E[g(y, F ∗)] =
n∑
k=1

ek min

{
1,
yk
ek
− 1

}

≤
n∑
k=1

ek

(yk
ek
− 1
)

The last term equals
∑n

k=1 yk −
∑n

k=1 ek which is zero since y ∈ ∆n−1 and∑n
k=1 ek = 1 by construction. So g(y, F ∗) ≤ 0 = g(F ∗, F ∗) for all y ∈ Si. �

5.7.2 Restrictions on γ, the reordering of e

In this appendix, I illustrate how to derive the conditions (P1) and (P2)

from the property tk + tk+1 = γk, and the requirements:

1) Congruence ∀k, tk+n = tk

2) Fit ∀k, 0 < tk < γk

First, let’s develop the first requirement. For n even:

tk+n = tk

⇔ tk = γk+n−1 − γk+n−2 + γk+n−3 − ...− γk + tk

⇔
∑n

i=1(−1)iγk+i = 0

⇔ (P1E)
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For n odd:

tk+n = tk

⇔ tk = γk+n−1 − γk+n−2 + γk+n−3 − ...+ γk − tk
⇔ 2tk = γk+n−1 − γk+n−2 + γk+n−3 − ...+ γk

⇔ 2tk =
∑n

i=1(−1)i+1γk+i

⇔ (P1O)

Now, let’s develop the second requirement.

For n odd, from (P1O) we know that tk = 1
2
(γk−γk+1 +γk+2− ...+γk+n−1).

So

0 < tk < γk

⇔ −γk < −γk+1 + γk+2 − ...+ γk+n−1 < γk

⇔ γk >
∥∥∥ n−1∑
i=1

(−1)i+1γk+i

∥∥∥
⇔ (P2O)

For n even, the fit requirement, ∀k, 0 < tk < γk gives us n restrictions:

(1) 0 < tk < γk

(2) 0 < tk+1 < γk+1

(3) 0 < tk+2 < γk+2

...

(n) 0 < tk+n−1 < γk+n−1
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They can all be simplified to n restrictions on tk:

(1) 0 < tk < γk

(2) γk − γk+1 < tk < γk

(3) γk − γk+1 < tk < γk − γk+1 + γk+2

...

(n) γk − γk+1 + ...+ γk+n−2 − γk+n−1 < tk < γk − γk+1 + ...+ γk+n−2

Notice that tk faces n/2 upper bounds and n/2 lower bounds. All n con-

ditions are satisfied if:

max
ν
{

2ν+1∑
i=0

(−1)iγk+i} < tk < min
ν
{

2ν∑
i=0

(−1)iγk+i}

and for this to be possible, γ needs to satisfy (P2E).
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5.7.3 Distribution of Electoral Votes (Source: FEC

www.fec.gov)

State 1981-1990 1991-2000 2001-2010 State 1981-1990 1991-2000 2001-2010

Alabama 9 9 9 Missouri 11 11 11

Alaska 3 3 3 Montana 4 3 3

Arizona 7 8 10 Nebraska 5 5 5

Arkansas 6 6 6 Nevada 4 4 5

California 47 54 55 New Hampshire 4 4 4

Colorado 8 8 9 New Jersey 16 15 15

Connecticut 8 8 7 New Mexico 5 5 5

Delaware 3 3 3 New York 36 33 31

D.C 3 3 3 North Carolina 13 14 15

Florida 21 25 27 North Dakota 3 3 3

Georgia 12 13 15 Ohio 23 21 20

Hawaii 4 4 4 Oklahoma 8 8 7

Idaho 4 4 4 Oregon 7 7 7

Illinois 24 22 21 Pennsylvania 25 23 21

Indiana 12 12 11 Rhode Island 4 4 4

Iowa 8 7 7 South Carolina 8 8 8

Kansas 7 6 6 South Dakota 3 3 3

Kentucky 9 8 8 Tennessee 11 11 11

Louisiana 10 9 9 Texas 29 32 34

Maine 4 4 4 Utah 5 5 5

Maryland 10 10 10 Vermont 3 3 3

Massachusetts 13 12 12 Virginia 12 13 13

Michigan 20 18 17 Washington 10 11 11

Minnesota 10 10 10 West Virginia 6 5 5

Mississippi 7 7 6 Wisconsin 11 11 10

Wyoming 3 3 3
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5.7.4 One possible support of the modified disk solu-

tion applied to US data.

For clarity, all numbers are multiplied by 538.
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