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Abstract

Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations to the signal transform from
sound spectrograms to neural responses along the auditory pathway. Their dependence on statistical attributes of the
stimuli, such as sound intensity, is usually explained by nonlinear mechanisms and models. Here, we apply an efficient
coding principle which has been successfully used to understand receptive fields in early stages of visual processing, in
order to provide a computational understanding of the STRFs. According to this principle, STRFs result from an optimal
tradeoff between maximizing the sensory information the brain receives, and minimizing the cost of the neural activities
required to represent and transmit this information. Both terms depend on the statistical properties of the sensory inputs
and the noise that corrupts them. The STRFs should therefore depend on the input power spectrum and the signal-to-noise
ratio, which is assumed to increase with input intensity. We analytically derive the optimal STRFs when signal and noise are
approximated as Gaussians. Under the constraint that they should be spectro-temporally local, the STRFs are predicted to
adapt from being band-pass to low-pass filters as the input intensity reduces, or the input correlation becomes longer range
in sound frequency or time. These predictions qualitatively match physiological observations. Our prediction as to how the
STRFs should be determined by the input power spectrum could readily be tested, since this spectrum depends on the
stimulus ensemble. The potentials and limitations of the efficient coding principle are discussed.
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Introduction

In response to acoustic input signals, neurons in the auditory

pathway are typically selective to sound frequency f and have

particular response latencies. At least ignoring cases with

f v4 kHz, in which neuronal responses often phase lock to the

sound waves, a spectro-temporal receptive field (STRF) is often

used to describe the tuning properties of a neuron [1,2,3,4]. This is

a two-dimensional function STRF (f ,t) that reports the sensitivity

of the neuron at response latency t to acoustic inputs of frequency

f for a given stimulus ensemble (i.e., given input statistics). More

specifically, in a stimulus ensemble, the power S(f ,t) of the

acoustic input at frequency f at time t fluctuates around an

average level denoted by �SS(f ). If we let O(t) denote the neuron’s

response at time t (typically its spike rate), then STRF (f ,t) best

approximates the linear relationship between O(t) and S(f ,t) in

this stimulus ensemble as

O(t)~

ðð
STRF (f ,t)S(f ,t{t)dtdf zspontaneous activity ð1Þ

Note that in this paper, we refer to S(f ,t) as the input

spectrogram, although some authors also include the average

input power �SS(f ). Though S(f ,t) is not a full description of

acoustic input, since it ignores features such as the phase of the

oscillation in the sound wave, it is the only relevant aspect of the

auditory input as far as the STRF is concerned. Note that if we use

O(t) to denote the deviation of the neural response from its

spontaneous activity level, then both O(t) and S(f ,t) have zero

mean. We will use this simplification throughout the paper. In

studies in which the temporal dimension is omitted, the STRF is

called the spectral receptive field (SRF).

Figure 1 cartoons a typical STRF. This has excitatory and inhi-

bitory regions, reflecting its preferred frequency and response

latency. For example, if STRF (f ,t) peaks at frequency f ~f̂f and

time t~t̂t, then this neuron prefers frequency f̂f and should respond

to an input impulse S f ,tð Þ~d f {f̂f
� �

d tð Þ of this frequency with

latency t̂t. We will also refer to STRF (f ,t) as the receptive field, the

filter kernel, or the transfer function from input to neural responses,

as these all convey the same or similar meanings. A neuron’s STRF

is typically estimated using reverse correlation methods [5,4].

However, there are extensive nonlinearities in the signal

transformation along the auditory pathway. Indeed, the STRF

formulation of neural responses, though linear in spectral power, is

already a second-order nonlinear function of the auditory sound

wave. There are two kinds of nonlinearities when inputs are
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represented as spectrograms. The simpler one is a static

nonlinearity fnonlinear(O(t)), which when applied to the linear

approximation O(t) of equation (1) enables better predictions of

the neural responses [6,7]. This static nonlinearity however does

not alter the spectro-temporal selectivity of the neuron seen in the

linear STRF. This paper is interested in the more complex

nonlinearity that the STRFs are dependent on the stimulus

ensemble used to estimate them [1,5,8,9]. For example, the

STRFs are wider when the stimuli are narrow-band rather than

wide-band [10], or when the stimuli are animal vocalizations

rather than noise [11]. The STRF (or SRF) also becomes more

band-pass when sound intensity increases. The dependence of the

STRFs on the stimulus ensemble holds, for example, for type IV

neurons in the cochlear nucleus of cats [12,13], the inferior

colliculus (IC) of the frog [8] and the gerbil [7], and field L region

of the songbird (which is analogous to mammalian auditory cortex)

[14]. (The dependence on sound intensity also holds for the linear

relationship between the auditory nerve responses and input sound

waves [5]). Nonlinearities in the auditory system become pro-

gressively stronger further from the periphery.

Despite the nonlinearities, the concept of the STRF is still

widely used, not only because it provides a meaningful description

of the spectro-temporal selectivity of the neurons in a given

stimulus ensemble, but also because it can predict neural responses

to novel stimuli reasonably well, as long as the stimuli are drawn

from the same stimulus ensemble as that used to estimate the

STRF in the first place. Reasonable predictions from the STRFs

have been obtained for the responses of auditory nerves(see [15])

and auditory midbrain neurons [6,7,16] (also see [2]). They have

also been obtained for responses of the auditory cortical neurons

when the stimulus ensemble is composed of biologically more

meaningful static or dynamic ripples (broadband sound with

sinusoidally modulated spectral envelopes and their linear

combinations [17,18,19]). If the linear neural filter is augmented

to include the filtering performed by the head and ears, it is also

possible to predict the preferred locations of sound sources of

auditory cortical neurons based on the linear neural filter for input

spectrograms [20]. Meanwhile, linear STRF models fail to capture

many complex phenomena, particularly in the auditory cortex,

and nonlinearities are not limited to being just static or monotonic.

It has been suggested that some auditory cortical neurons process

auditory objects in a highly non-linear manner, by selectively

responding to a weak object component while ignoring loud

components that occupy the same region in frequency space in

auditory mixtures of these object components [21], and some

prefer low over high spectral contrast sounds [22]. Strong

nonlinearities in the auditory processes have long since motivated

nonlinear models of auditory responses (e.g., [5,12,23]).

This paper aims to understand from a computational, rather

than a mechanistic, perspective why the auditory encoding

transform should depend on the stimulus ensemble in the ways

observed. More specifically, the paper focuses on cases in which

STRFs can reasonably capture neural responses, and aims to

identify and understand the computational goal of the STRFs for a

given stimulus ensemble – finding a metric according to which the

STRFs are optimal for the ensemble. This would provide a

rationale for how the physiologically measured STRFs should

depend on or adapt to the stimulus ensemble. This paper does not

address what linear or nonlinear mechanisms could build the

optimal STRFs, or whether or how nonlinear auditory processes

enable the adaptation of the STRFs to the stimulus ensemble.

Existing computational models of auditory neurons, including ones

with the notion that cochlear hair cells perform independent

component analysis to provide an efficient code for inputs using

spikes in the auditory nerves [24,25], cannot explain the observed

dependence of the STRFs on the stimulus ensemble (see Discus-

sion for more details).

Restricting attention to the temporal properties of STRF, Lesica

and Grothe [26] observed that the temporal filter in STRF

adapted to the level of ambient noise in the input environment. In

particular, the temporal receptive field in the STRF changed from

being bandpass to being low pass with the increase of ambient

noise. They argued using a simple model that such adaptation in

the STRF enables more efficient coding of the input information.

This study applies the principles of efficient coding to under-

stand the auditory STRF and its variations with sound intensities

and other input characteristics. It generalizes the work of Lesica

and Grothe [26] to understand the temporal and spectral filtering

characteristics of STRF adaptation to changes in noise, signal and

Figure 1. A schematic example of a typical spectro-temporal
receptive field, plotted with a reversed abscissa. This STRF
has one excitatory and three inhibitory regions, prefers frequency f̂f ,
and evokes response at a typical latency t̂t. Since the response at
time t~0 is O(t~0)~

ÐÐ
STRF f ,tð ÞS f ,{tð Þdtdf , an input stimulus

S f ,tð Þ~STRF f ,{tð Þ exactly as depicted in this plot is most likely to
elicit a large response O t~0ð Þ at time t~0, or indeed a spike.
doi:10.1371/journal.pcbi.1002123.g001

Author Summary

Spectro-temporal receptive fields (STRFs) have been
widely used as linear approximations of the signal
transform from sound spectrograms to neural responses
along the auditory pathway. Their dependence on the
ensemble of input stimuli has usually been examined
mechanistically as a possibly complex nonlinear process.
We propose that the STRFs and their dependence on the
input ensemble can be understood by an efficient coding
principle, according to which the responses of the
encoding neurons report the maximum amount of
information about the sensory input, subject to limits on
the neural cost in representing and transmitting informa-
tion. This proposal is inspired by the success of the same
principle in accounting for receptive fields in the early
stages of the visual pathway and their adaptation to input
statistics. The principle can account for the STRFs that have
been observed, and the way they change with sound
intensity. Further, it predicts how the STRFs should change
with input correlations, an issue that has not been
extensively investigated. In sum, our study provides a
computational understanding of the neural transforma-
tions of auditory inputs, and makes testable predictions for
future experiments.

Understanding Auditory STRF from Efficient Coding
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correlations in input statistics. Explicitly, the principle of efficient

coding states that the neural receptive fields should enable the

neural responses to transmit as much sensory information as

possible to the central nervous system, subject to the limitation in

neural cost in representing and transmitting information. This

principle has been proposed [27] and successfully applied to the

visual system to understand the receptive fields in the early visual

pathway [28,29,30,31,32,33] (see review [34]). We will borrow

heavily techniques and intuitions from vision to derive and explain

the results in this paper.

To make initial progress, it is necessary to start with some

simplifying assumptions. First, we assume that the statistical cha-

racteristics of the stimulus ensemble do not change more rapidly

than the speed at which the sensory encoding adapts, so that the

stimulus ensemble can be approximated as being stationary as far

as optimal encoding is concerned. Knowing when this assumption

does not hold tells us when the encoding is not optimal, e.g., when

one sees poorly for a brief moment before the visual encoding

adapts to a sudden change from a dark room to a bright garden.

Second, for mathematical convenience, we assume that the linear

STRF model as in equation (1) can approximate adapted auditory

neural responses reasonably well. As we know from above, this

assumption often does not hold, particularly for auditory cortical

neurons. This paper leaves the extension of the optimal encoding

to nonlinear cases for future studies. Third, to derive a closed-

form, analytical, solution to the optimal STRF, we assume that the

input statistics in the stimulus ensemble can be approximated as

being Gaussian, with higher order correlations in the input

contributing only negligibly to the inefficiency of the representa-

tion in the original sensory inputs. Although it is known that the

natural auditory inputs are far from Gaussian [35], as for the case

of vision, the discrepancy may have only a limited impact on the

input inefficiency, as measured by the amount of information

redundancy in the original sensory input [36,37,38].

To understand how sensory inputs should be recoded to increase

coding efficiency, we start with visual encoding to draw insights and

made analogies with auditory encoding. In vision, large amounts of

raw data about the visual world are transduced by photoreceptors.

However, the optic nerve, which transmits the input data to the

visual cortex via thalamus, can only accommodate a dramatically

smaller data rate. It has thus been proposed that early visual

processes use an efficient coding strategy to encode as much

information as possible given the limited bandwidth [27,34], in

other words, to recode the data such that the redundancy in the data

is reduced and consequently the data can be transmitted by the

limited bandwidth. Compression (while preserving most informa-

tion) is possible since images are very redundant [39,40,41,42], e.g.,

with strong correlations between visual inputs at nearby points in

time and space. Removing such correlations can cut down the data

rate substantially [34].

One way to remove the correlations is to transform the raw

input S into a different representation O in neural responses that

would then have a much smaller data rate than S, yet preserving

essential input information. This transform is often approximated

by the visual receptive field, analogous to the auditory STRFs.

For instance, the (spatial) center-surround receptive fields of the

retinal ganglion cells help remove spatial redundancy [30,31,43].

They do this by making the ganglion cells preferentially respond

to spatial contrast in the input, and so eliminating responses to

visual locations whose input is redundant with that of their

neighbors. Consequently, the responses of retinal ganglion cells

are much less correlated than those of the photoreceptors, making

their representation much more efficient. One facet of this

efficient encoding hypothesis is that the optimal receptive field

transform should depend on the statistical properties, such as the

correlation structure and intensity, of the input. This dependence

has been used to explain adaptation, to changes in input statistics,

of visual receptive field characteristics, such as the sizes of center-

surround regions and the color tuning of retinal neurons, or the

ocular dominance properties of striate cortical neurons [32,34,44,

45,46,47]. In the auditory system, information redundancy is

also reduced along the auditory pathway [48]. Although this

redundancy reduction was only investigated in the neural

responses to sensory inputs rather than in the coding (STRF)

transform leading to the neural responses, it suggested that coding

efficiency is one of the goals of early auditory processes.

More formally, the efficient coding scheme is depicted in

Figure 2A. The input contains sensory signal S and noise N (e.g.,

input sampling noise). The net input SzN is encoded by a linear

transfer function K into output.

O~K(SzN)zNo ð2Þ

which also contains additional noise No introduced in the

encoding process. When the input has multiple channels, e.g.,

many different photoreceptors or hair cells, S~ S1,S2,:::,Sj ,:::
� �

is

a vector with many components, as indeed is N. Output O is a

vector representing the neural population responses from many

neurons. For output neuron i, we have Oi~
X

j

Kij(SjzNj)zNo,i.

Therefore K is a matrix, and its ith row Ki1,Ki2,:::,Kij ,:::
� �

models

the receptive field for output neuron i as the array of effective

weights from input receptors j to output neuron i. In the particular

example when input neurons are photoreceptors and output

neurons are retinal ganglion cells, Kij is the effective connection

from photoreceptor j to ganglion cell i (implemented via the

interneurons in the amacrine cell layers of the retina), and

collectively, Ki1,Ki2,:::,Kij ,:::
� �

describe the linear receptive field

of this ganglion cell. We consider the problem of finding an

optimal K that maximizes the information extracted by O about

S, i.e., the mutual information I(O; S) [49] between O and S
subject to a given cost of the neural encoding, which depends on

the responses in a way we will describe shortly.

Therefore, the optimal K should minimize the objective

function:

E Kð Þ~neural cost{l|I O; Sð Þ ð3Þ

where l is a parameter whose value specifies a particular balance

between the needs to minimize costs and to maximize extracted

information. Neural costs can arise from various sources, such as

the metabolic energy cost for generating neural activities or spikes

[50] and the cost of thicker axons to transmit higher rates of neural

firing. We follow a formulation that has been productive in vision

[31,34], and model the neural cost as

neural cost~
X

i

SO2
i T,

where S:::T indicates the average over the stimulus ensemble. This

gives

E(K)~
X

i

SO2
i T{l|I(O; S) ð4Þ

It has been shown [29,33,51,34] that the K that provides the most

Understanding Auditory STRF from Efficient Coding
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efficient coding according to E(K) has the following properties. At

high signal-to-noise ratio (SNR), K is such that O extracts the

difference between correlated channels, and thus avoids transmit-

ting redundant information. Hence, for example, in photopic

conditions, retinal ganglion cells have center-surround spatial

receptive fields which extract the spatial contrast of the input. By

contrast, at low SNR, K is a smoothing filter that averages out

input noise instead of reducing redundancy. This avoids spending

neural cost on transmitting noise. Hence, for example, in scotopic

conditions, when SNR can be considered as being low, the

receptive fields of retinal ganglion cells expand the sizes of their

center regions and weaken their suppressive surrounds [52]. We

will apply this framework to the auditory encoding to understand

STRFs and their adaptation to stimulus ensembles.

Methods

Auditory encoding system and its comparison to vision
To apply the efficient coding principle to auditory STRFs, we

borrow insights from vision by making an analogy between

(aspects of) the auditory and visual systems. For simplicity, we start

by ignoring input noise. While sound signals are typically air

vibrations over time, at the input sampling stage, they are sampled

as Sf ,t from a continuous time-frequency representation S(f ,t),
namely the response at time t of a hair cell tuned to sound

vibration frequency f . This is analogous to visual input sampling,

in which the response of a photoreceptor at location i samples the

light signal in the form of electromagnetic vibrations. Auditory

hair cells are tonotopically arranged in the cochlea, so that

neighboring hair cells are tuned to nearby sound frequencies.

Therefore, at any instant t , the response pattern (Sf1,t,Sf2,t,
:::Sfi ,t,:::) as a function of hair cell’s location i over the cochlea is

an auditory ‘‘image’’ of the pattern of powers across sound

frequencies, analogous to a retinal image. (In our formulation, we

focus on sampling the intensity or power in Sf ,t, and ignore the

phase of the sound wave at frequency f . This is because (1)

auditory nerve responses do not encode the phase except for low

frequency inputs via phase locking, and (2), as mentioned, our goal

is to understand the STRFs which do not concern the phase

information.) While a retinal image is two dimensional in space

(and one additional dimension in time), the auditory ‘‘image’’ at

any instant t is one dimensional in sound frequency f . One may

use time t as the second dimension such that Sf ,t for all f and t
collectively can be seen as a single discrete sample of the two-

Figure 2. Formulation and components of efficient coding. (A) A schematic plot of the efficient encoding transform. (B) Signal transformation
in the auditory system. The cochlea turns the time-varying waveform W tð Þ into a time-frequency representation S f ,tð Þ, as the population activities of
the auditory nerves, which is the input to the efficient encoding system. Signal and noise pass through a series of brain nuclei such as cochlear
nucleus, superior olive, inferior colliculus, etc. The current work proposes that the effective transform STRF of the spectrogram that is collectively
realized by these nuclei is, in its linear form, the optimal filter K implied by the efficient coding principle. The output O tð Þ is the activity of neurons in
a higher nucleus. (C) Three steps of signal flow within the linear encoding step K or STRF in (A) and (B). Note that these three steps are merely
abstract algorithmic steps, rather than neural implementation processes for the effective transform K or STRF.
doi:10.1371/journal.pcbi.1002123.g002

Understanding Auditory STRF from Efficient Coding
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dimensional auditory ‘‘image’’. When input noise N is included,

input S becomes SzN .

As for vision, we explore whether the auditory STRFs can be

partly understood by the goal of efficiently coding auditory

information. The sensory input is sampled as SzN, the responses

of the cochlear hair cells. This input is encoded by the STRFs to

give rise to outputs O as the neural activities of a higher nucleus,

such as the inferior colliculus (IC) or the auditory cortex

(Figure 2B). The STRF is then analogous to a spatial receptive

field, such as that of the retinal ganglion cells. Thus the STRF

should be determined by the statistics of the auditory inputs, and

in particular, the correlation RS
ij~SS(f ,t)i

S(f ,t)j
T between different

inputs S(f ,t)i
and S(f ,t)j

, where (f ,t)i labels a particular spectro-

temporal combination of a frequency value f and time t. Note that

for i=j, the frequency f or t, but not both, in the two indices (f ,t)i

and (f ,t)j may be equal. (Here, for simplicity we assume, or pre-

process the signal, such that all inputs have zero mean, i.e.,

SS(f ,t)i
T~0, just like the input signal fluctuation S(f ,t) around the

ensemble average in the definition of the STRF in equation (1)). As

in vision, natural auditory inputs express substantial correlations

between inputs of neighboring frequencies and at neighboring

temporal instances. When the input SNR is sufficiently high, an

optimal STRF should reduce these correlations to achieve efficient

transmission. Such an STRF will have neighboring excitatory and

inhibitory regions in the frequency-latency domain, making the

neuron be tuned to spectro-temporal contrast and be insensitive to

the spectro-temporal redundancy.

Auditory STRF filter as an efficient coding transform
The general formulation and derivation of the efficient coding

transform K (or STRF) can be found in its application to vision

[34]. Here we outline these results and illustrate their conse-

quences for auditory coding. Let S be the input with p input

channels:

S~(S1,S2,:::,Sp)T ð5Þ

(superscript T denotes vector or matrix transpose). These p input

channels may correspond to p auditory nerves if we omit the

temporal dimension, p time instances if we focus on a single

frequency channel, or they may correspond to p spectro-temporal

labels (f ,t)i for i~1,2,:::,p. Let the input correlation be described

by correlation matrix RS with elements RS
ij~SSiSjT. The optimal

transform K that minimizes E(K) in equation (4) can be

decomposed in three steps (Figure 2C): (1) a principal component

transform to de-correlate the inputs, (2) gain control of each

principal component, (3) an ortho-normal or unitary transform on

the array of the gain-controlled components to arrive at various

output channels. We now elaborate and elucidate these three steps.

The first step is a coordinate rotation, or ortho-normal transform,

S?KoS, by an ortho-normal matrix Ko that de-correlates the input

channels such that each of the channels in the transformed signal

KoS contains a principal component of the original signal. We

denote these principal components as Sk~
X

j
(Ko)kjSj , with sub-

index k (instead of i,j) as the indices of the de-correlated channels

(later, we also use v to denote the de-correlated channels in the

temporal domain, or (V,v) in spectro-temporal domain). Since the

correlation between Sk and Sk’ is SSkSk’T~(KoRSKT
o )kk’,

decorrelation between principal components implies that

KoRSKT
o is a diagonal matrix, with (KoRSKT

o )kk’~SS2
kTdkk’,

where SS2
kT is the kth eigenvalue of matrix RS and also the average

signal power of the kth principal component Sk. As we will see later,

when the input correlation SSf ,tSf ’,t’T depends mainly on the

differences (f {f ’,t{t’) in frequency and time, it turns out that Sk

(with the index k denoting the spectro-temporal modulation

frequency (V,v)) is the amplitude of a dynamic or moving ripple

that some experiments use to estimate the STRFs of cortical and

midbrain neurons [17,18,19,16,2].

The second step is gain control gk on each component Sk,

giving output gkSk. Including noiseN k, which is the original input

noise N projected to the kth channel by the transform Ko, and the

encoding noise N o,k (in the decorrelated k space), the total output

becomes Ok~gk(SkzN k)zN o,k. It can be shown (see [34]) that

the gain gk that minimizes E(K) in equation (4) is determined by

the input signal-to-noise ratio SS2
kT=SN

2T to satisfy

g2
k!Max

1

2(1zSN 2T=SS2
kT)

"(

1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

2l

(ln2)SN 2
oT

SN 2T
SS2

kT

vuut
0
@

1
A{1

3
5; 0

9=
;

ð6Þ

where SN 2T is the variance of N k, and also of the input noise N
(assumed to be independent, identically distributed and Gaussian

in each channel) , and SN 2
oT is the variance of the encoding noise

N o,k in each channel k (and of the encoding noise No,i in each i

since different encoding noise channels are also assumed to be

independently and identically distributed).

Note that the total noise at output neuron i is output
noisei~SjKijNjzNo,i. One effect of the encoding transform K
is that noise corrupting different output neurons can be correlated,

even when the original input noise is independent. The additional

encoding noise No,i could also be correlated in different output

neurons, since it could also reflect a common origin in inter-

mediate stages of the encoding processes. Our assumption of

independence between No,i and No,j for i=j is thus a

simplification for mathematical convenience.

Since all the variables are assumed to be Gaussian, each output

Ok extracts the following amount of information

I(Ok;Sk)~
1

2
log 1z

g2
kSS

2
kT

g2
kSN

2TzSN 2
oT

 !

about the input S and has an output power SO2
kT~

g2
k(SS2

kTzSN 2T)zSN 2
oT. Since different output channels Ok

from different k are decorrelated from each other, the quantity E
in equation (4) is

E~
X

k

SO2
kT{l

X
k

I(Ok;Sk) ð7Þ

One can then verify that g2
k in equation (6) indeed minimizes this

E since dE=dg2
k~0 at that value. Note that if Sk is the amplitude

of a moving ripple indexed by k, gk will be the sensitivity of the

neuron to the moving ripple.

We can write these two steps as the product gKo, where Ko is

the principal component transform, and g performs the gain

control. g is a diagonal matrix with diagonal elements gk. The net

output is then O~gKo(SzN)zNo. Consider imposing on this

transform an orthonormal or unitary transform U (with UUT~1),

the third step in building the efficient coding filter K , giving

K~UgKo. It follows [34] from the properties of unitary matrices

that neither the first term nor the second term in E in equation (4)

Understanding Auditory STRF from Efficient Coding
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will be affected by U (at least when signal and noise are Gaussian

and when the components of No are independent and identically

distributed).

Each row vector of the matrix K determines the receptive field

of a particular output channel or neuron. Without U , K~gKo

would specify receptive fields that would be gain controlled

eigenvectors or principal components of the input correlation

matrix. For example, they would look like ripples covering the

entire spectro-temporal range. An appropriate choice of non-

trivial U will alter the receptive field shape dramatically, giving

rise to receptive field properties found in real neurons such as a

finite span in input channel space. For example, if we consider

only the input frequency channels f for auditory inputs and omit

the time dimension, we may prefer that the STRF for an output

neuron to be selective to only a finite band of input frequencies

such that the neural responses O resemble periphery inputs S
while maintaining coding efficiency. It can be shown [34,35] that

this can be achieved by choosing U~K{1
o , such that

K~K{1
o gKo. We will use this choice, U~K{1

o , in building our

STRF in frequency domain. However, insensitive to the exact

form of U , the critical feature of the STRF comes from the gain gk

specified in the second step of the encoding model (as long as one

does not impose additional computational goals that may restrict

the final STRFs, see Discussion). We will show later that gk often

corresponds to the modulation transfer functions (MTFs, also

called ripple transfer function, RTF,in different literatures) of the

STRFs.

We now apply this general framework to the case of auditory

encoding. Sound spectrogram S(f ,t) is derived from the sound

waveform W (t) as follows. The first step is to perform a

temporally-windowed Fourier transform of W (t) to obtain the

sound spectrum ŴW (f̂f ,t)!
Ð

W (t)T(t{t)e{i:2pf̂f tdt as a function

of time, where T(t) is a temporal window function (e.g., T(t)~1
for t[ 0,t0½ �, T(t)~0 otherwise). Since the cochlea performs

approximately a log scale frequency analysis, we first let

f ~ log f̂f
� �

to obtain ŴW (f ,t) (although the more accurate form

would be f ~21:4 log10 4:37f̂f z1
� �

[53]). Then the input power

in f is ŜS(f ,t)~ ŴW (f ,t)
�� ��2. One may employ a further logarithmic

transform S(f ,t)~ log ŜS(f ,t) to characterize the cochlear response

better (through capturing the compressive input/output transform

realized by processes in the basilar membrane and hair cells)

[54,55]. However, this further logarithmic transform is not

essential for our formulation, and, as pointed out previously

[56], it does not significantly affect the qualitative characteristics of

the empirical STRFs. If one omits this logarithmic transform, then

S(f ,t)~ŜS(f ,t). We then subtract the mean SS(f ,t)T from S(f ,t),
and, for simplicity, denote the resulting zero mean signal still by

S(f ,t), as in the definition of STRF. We next consider discrete

samples Sf ,t of the continuous S(f ,t). This leads to the input

correlation matrix RS
ij~SS(f ,t)i

S(f ,t)j
T.

Finally, we follow the three encoding steps above to obtain the

optimal encoding transform as STRF~K . In the sub-section

‘‘The spectral filter SRF’’, we discuss the simple case in which the

temporal dimension t is omitted. Then, the input vector (equation

(5)) is S~(Sf1
,Sf2

,:::)T , and the input correlation matrix is

RS
ij~SSfi

Sfj
T. The efficient encoding procedure specifies the

optimal spectral receptive field (SRF) Kij for neuron i, with

Oi~SjKijSfj
znoise. When the temporal dimension is included

S~(S(f ,t)1
,S(f ,t)2

,:::)T , RS
ij~SS(f ,t)i

S(f ,t)j
T, and efficient coding

specifies the optimal STRF as input weights or selectivity

associated with the spectrogram fS(f ,t)i
g.

It is apparent that the optimal SRF and STRF depend on input

statistics via the input correlation RS and the input SNR (through

the steps 1 and 2 in the encoding scheme). Therefore, when the

stimulus ensemble changes, altering the input correlations and

signal intensity, the form of the encoding receptive field should

adapt in order to maintain encoding optimality. We propose that it

is this that explains the input ensemble dependence of the STRFs.

A special class of input statistics has translation invariant

correlations, i.e., with RS
ij ~SS(f ,t)i

S(f ,t)j
T depending only on the

differences fi{fj (quantified in octaves) and ti{tj . This is a

reasonable approximation of the input correlations in natural

auditory scenes under two conditions. The first is that a local

frequency range is considered that is not much larger than the

range of the frequencies to which a neuron is sensitive, i.e., in the

perspective of a neuron, the dependence of SS(f ,t)i
S(f ,t)j

T on the

frequency is mainly through fi{fj . This is analogous to

approximating spatial correlation of visual inputs as translation

invariant to understand the retinal ganglion cell’s spatial receptive

fields although the spatial sampling density varies substantially

with input eccentricity [31,34]. The second is that the environ-

ment is statistically stationary, as then the correlations in time

depend only on the temporal difference ti{tj . It can then be

shown that [34] the principal components are moving ripple
!ei(2pVf z2pvt), each of which has a 2D modulation frequency

(V,v), which can be indexed by k:(V,v). The first encoding step

is then a 2D Fourier transform (Ko)(V,v),j* exp½{2pi(Vfjzvtj)�
of the input S(f ,t) to obtain S(V,v)!

ðð
S(f ,t)e{i(2pV f z2pvt)

dfdt. Meanwhile, the original input can be written as

S(f ,t)!
ðð
S(V,v)ei(2pV f z2pvt)dVdv, i.e., as a weighted sum of

the moving ripples [19]. The second encoding step determines the

gains for the ripple amplitudes S(V,v) [34] as

g2(V,v)!Max
1

2(1zSN 2T=SS2(V,v)T)

"(

1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

2l

(ln2)SN 2
oT

SN 2T
SS2(V,v)T

vuut
0
@

1
A{1

3
5,0

9=
;

ð8Þ

i.e., replacing gk and SS2
kT in equation (6) by the corresponding

g(V,v) and SS2(V,v)T. If U is chosen as the inverse Fourier

transform

Ui,(V,v)* exp½2pi(Vfizvti)ziw(V,v)�, ð9Þ

with an extra phase function w(V,v), then the encoding transform

is Kij~
P

(V,v) Ui,(V,v)g(V,v)(Ko)(V,v),j . This gives

K fi,ti; fj tj

� �
:K fi{fj ,ti{tj

� �
!
ðð

g V,vð Þ exp 2pi(V(fi{fj)zv(ti{tj))ziw(V,v)
� 	

dVdv,
ð10Þ

which depends only on the differences fi{fj and ti{tj . Applying

this transform to input S to give output Oi(ti)~
ÐÐ

dfjdtj

K(fi{fj ,ti{tj)S(fj ,tj), we see, by comparison with equation (1),

that the STRF is STRF (f ,t)~K(fi{f ,t). This is a temporal filter

tuned to sound frequency with a tuning pattern governed by

g(V,v), and centered around frequency fi . Changing the center

frequency from fi to fj is like shifting from one output neuron i to

another neuron j. Altering the phase w(V,v) in equation (9) alters

the STRF shape, in particular to ensure its temporal causality. In

physiology, modulation tuning function (MTF) is often mentioned

Understanding Auditory STRF from Efficient Coding
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as the Fourier transform of auditory receptive field [19].

Therefore, it is clear from equation (10) that the gain profile

g(V,v), which is determined by efficient coding, corresponds to

the magnitude of the MTF. However, the shape of an STRF is

determined by the phase as well as the magnitude of the MTF, and

efficient coding does not strongly constrain the phase. Therefore,

while we will illustrate the general properties of some example

STRFs predicted by the theory by choosing particular U
transforms (governed by the additional requirements of spectro-

temporal locality and causality), in the Results, we will generally

compare physiological data to the magnitudes of the MTFs that

the theory predicts.

In the Results, we will discuss the efficient coding framework for

situations both with (e.g., to study temporal aspects of STRFs) and

without (e.g., to study their spectral aspects) translation invariance

in input statistics.

Results

To illustrate how the framework explains and predicts

physiological experiments, we first discuss a few examples when

the temporal or the spectral dimension is omitted, and then show a

full spectro-temporal STRF.

The spectral filter SRF
We first omit time, treating the input S(f ) as varying only in

frequency. In this case, the encoding filter reduces from being an

STRF to an SRF. We take fi as one of 250 discrete values

i~1,2,:::,250, from low to high frequencies; hence input S is a one

dimensional vector S~(Sf1
,Sf2

,:::,Sf250
)T . In simulations, input

sample S is generated by smoothing a random noise vector

S’~(S’f1
,S’f2

,:::,S’f250
)T (Figure 3A), with all the components S’fi

taken to be independent, zero mean, unit variance, Gaussian

noise. Specifically

Sfi
~

ffiffiffiffiffi
IF

p X
j

MijS’fj ð11Þ

where IF is a factor to scale the overall input power intensity, and

M is the smoothing matrix with elements

Mij~AiM̂Mij ð12Þ

explained in detail below. Here Ai~
250{i

300
z0:1 controls the

scale of the signal Sfi
, which decays with i (like in an environment

in which high frequency sounds do not propagate well), and M̂M is a

normalized smoothing matrix with elements M̂Mij~ ~MMi{j=NORM,

in which

~MMi{j~
0:54z0:46 cos (

2p(i{j)

L
), if {L=2ƒ i{jƒ L=2

0, otherwise:

8<
: ð13Þ

NORM~
PL=2

a~{L=2
~MM2

a

� �1=2

is a normalization constant, and L

controls the range of frequency difference jfi{fj j for significant

correlation coefficient between the variation of Sfi
and that of Sfj

.

Consequently, each Sfi
is also a zero mean Gaussian random

variable, and the input correlations comprise a 2506250 matrix

RS~IF MMT . One could also estimate RS from input samples S

(as when animals adapt their auditory system to environmental

sound through experience), in which case element RS
ij~

S Sfi
{SSfi

T
� �

Sfj
{SSfj

T
� �

T. Figure 3B illustrates RS (obtained

numerically from 250 samples of S in Figure 3A, of course one

could use more than 250 samples to estimate RS ) for L~14. The

correlation RS
ij~IF AiAj(M̂M

2)ij scales with strengths of the original

signals Sfi
and Sfj

through the scales Ai and Aj , and so decays with

frequency fi and fj . Thus the statistics of the stimulus ensemble are

not translation invariant in the spectral frequency f . Nevertheless,

the correlation coefficient

Cij:
RS

ijffiffiffiffiffiffiffiffiffiffiffiffi
RS

ii R
S
jj

q ~
(M̂M2)ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(M̂M2)ii(M̂M
2)jj

q

does depend mainly on the (frequency) difference i{jj j, since (M̂M2)ii

is almost independent of i and (M̂M2)ij depends mainly on i{jj j
except for the very small or very large i and j. This is evident in the

fact that the rate of decay of RS
ij with the difference fi{fj

�� �� in

Figure 3B is almost constant. Since the stimulus ensemble is not

translation invariant, we will use the general formulation to obtain

the SRF. From RS , we obtain its 250 eigenvalues and the

corresponding eigenvectors. Each of these is a vector with 250

components. We list them in the order of descending eigenvalues,

denoting the kth eigenvector as Vk:½(Ko)k1,(Ko)k2,:::,(Ko)kj,

:::(Ko)k250�
T

, and placing it as the kth row vector of the Ko

transform matrix. Figure 3C depicts the eigenvectors for

k~5,10,:::,50, where smaller k is associated with a larger

eigenvalue. Each principal component or eigenvector can be seen

as a special input spectrum pattern S~Vk, while a general input

S~
P

k SkVk is a linear sum of the principal components with

weights Sk. The first encoding step is thus a transformation of the

original input S by Ko to obtain the decorrelated signal Sk, for

k~1,2,:::,250. The average power in Sk is the kth eigenvalue of

matrix RS

SS2
kT~(KoRSKT

o )kk

The eigenvectors look roughly like oscillating waveforms (spectral

oscillations) with different oscillation rates, and are comparable to the

sinusoidal bases in the Fourier transform. They also resemble the

‘‘ripples’’ used in physiological experiments. This is because the

input correlations are roughly translation invariant, at least within a

small range of frequencies in which the signal power SS2
f T is roughly

independent of f (just like in vision when the statistics of inputs

sampled at the retina can be seen as roughly translation invariant

within a local region). Also note that smaller or larger k is associated

with eigenvectors with fewer or more oscillations. This makes k

relate monotonically to the spectral modulation frequency (corre-

sponding to the ‘‘ripple frequency’’ V in physiological experiments).

Larger eigenvalues, i.e., larger signal powers SS2
kT, are associated

with fewer spectral modulations or smaller indices k, because inputs

of more similar sound frequencies are more correlated with each

other, i.e., RS
ij decreases with increasing fi{fj

�� ��. The analogy

between the eigenvectors and the Fourier bases can be understood as

follows: if RS is strictly translation invariant, then the eigenvectors

are sine waves with different spectral modulation frequencies V. The

eigenvalues are the Fourier transforms of RS
ij:RS(fi{fj), and

hence they decrease with the modulation frequency V because

RS(fi{fj) is non-negative and decreases with increasing fi{fj

�� ��.
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The second encoding step is to assign the gain gk to each of

these channels Sk according to equation (6), giving Sk?gkSk (see

Figure 3D; IF ~2, SN 2T~1 and l=SN 2
oT~10). Note that while

the signal power SS2
kT decreases with increasing k, the gain

magnitude gk first increases with k and then decreases and drops

to zero at higher k.

The gain for small k is low since the SNR SS2
kT=SN

2T is high

enough to make amplifying Sk less necessary. From equation (6) [34],

g2
k!SS2

kT
{1 when SS 2

kT =SN 2T?? ð14Þ

This implies that g2
kSS2

kT~constant for sufficiently large SNRs.

When each principal component Sk is a modulation frequency

mode, this gain profile gk is often called whitening. At smaller signal

powers, the gain increases so as to utilize the channel’s dynamic range

fully. However, when SNR is too small, for example, when noise

power is higher than signal power SS2
kT=SN

2Tv1, gain decreases

with decreasing SS2
kT [34]. This is because such input components

are dominated by noise, and amplifying noise increases neural cost.

Thus, in general, when SS2
kT decreases with increasing k, the gain

profile has a band-pass shape, first increasing, and then decreasing

Figure 3. Simulation of the efficient spectral kernel SRF, when the temporal dimension is omitted. (A) 250 samples of input spectra S(f ),
each of which is smoothed Gaussian white noise in the frequency domain (equations (11–13), IF ~2, L~14). (B) Correlation between different
frequency channels S(f ). Left: Correlation RS ; Right: an zoomed-in view, as RS

ij vs fi~fj . (C) Ten examples of eigenvectors V k(f ) of the correlation
matrix RS in B; each is an independent component in S fð Þ. Smaller indices k are associated with larger eigenvalues. (D) Gain profile (peaking at kp),
and signal and noise power in decorrelated channels. (E) Four examples (i~50, 100, 150, and 200) of spectral receptive fields
SRFi(f )~SkgkV k(fi)V

k(f ); each prefers input frequencies around fi .
doi:10.1371/journal.pcbi.1002123.g003
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with increasing k (see the red curve in Figure 3D). The peak of the

gain occurs at k~kp, where SS2
kT=SN

2T^1.

Third, taking U~K{1
o in order to localize the receptive Fields

as best as possible, the overall encoding transform is K~K{1
o gKo.

Here, the gain matrix is diagonal having elements gkk~gk. When

KT
o ~K{1

o (as when the eigenvectors are real and othornorma-

lized)

Kij~(KT
o gKo)ij~

X
k

gk(Ko)ki(Ko)kj~
X

k

gkVk
i Vk

j :

As the overall encoding transform gives outputs O~KSznoise,

where noise~KNzNo, the ith output neuron Oi has its SRF as a

vector of weights for inputs Sfj
of various frequencies

j~1,2,:::,250

SRFi~(Ki1,Ki2,:::,Ki250)~
X

k

gkVk
i Vk

It can thus be seen as a weighted sum of the eigenvectors Vk of the

input correlation matrix, with weights gkVk
i for output neuron i.

Figure 3E shows SRFs for four different output neurons (or

channels i). These SRFs have different preferred frequencies f , so

that the preferred frequencies of all the output neurons span the

whole input frequency range. The shapes of the SRF depend on

the input statistics via the dependence of Vk and gk on the input

correlation matrix RS . In particular, for sufficiently high input

SNR, while a neuron is excited by its preferred frequency, it is

suppressed by nearby frequencies. This form of contrast

enhancement achieves a measure of decorrelation between

neighboring output neurons that would otherwise reflect the

strong correlations between neighboring frequencies. For SRFs

tuned to higher frequencies, the center excitatory regions are

larger and the surround suppression is weaker. This is because

SNRs are weaker for higher frequency inputs (the dependency of

SRF on SNR will be discussed in the next sub-section). If the input

statistics are strictly translation invariant, the SRFs for different

output channels will have the same shape, and will just be centered

on different frequencies.

Adaptation of SRF to input signal-to-noise ratio
When sound intensity decreases, the basilar membrane in the

cochlea undergoes a smaller vibration. This decreases the

magnitudes of input signals S, and so, if the level of the noise

stays unchanged, the signal-to-noise ratio SSk
2T=SN 2T will

decrease. This will change the optimal encoding gain gk via

equation (6), and thus change the final SRFs. In our example, we

simulate the change in input intensity by changing IF in equation

(11).

Figure 4A shows three example input intensity profiles SS2
kT,

and the corresponding gain profiles gk. While an overall change of

input intensity merely scales the profile SS2
kT up and down, the

gain profile gk does not trivially scale up and down. When input

intensity decreases, the k at which SS2
kT=SN

2T~1 becomes

smaller, thereby decreasing the kp at which gk peaks. Conse-

quently, the gain profile turns from being band-pass to being low-

pass (Figure 4A).

The non-zero gain at higher k implies sensitivity to weaker

principal components with more spectral oscillations (or higher

‘‘ripple frequencies’’). Thus, as input intensity decreases, the

overall SRF filter changes in two ways (Figure 4B): (1) it fluctuates

less (i.e., has fewer excitatory and inhibitory regions, and with

decreased strength inhibitory regions); (2) the width of the

excitatory and inhibitory regions increases, as the result of losing

contributions from spectral modulations Vk with higher modula-

tion frequencies.

The insights from Figure 4B can help to understand the

difference between the four SRFs in Figure 3E. Given the IF as

in Figure 3, one may divide the whole sound frequency range into

two ranges of equal bandwidth, one for the lower and the other for

the higher f ’s, and treat the two ranges as if they were two different

stimulus ensembles. If one ignores the overall sound frequency

difference between these two ensembles, then these two ensembles

differ from each other only in their SNRs, with a higher SNR for the

ensemble for the lower sound frequencies f . In this perspective, one

can understand why a SRF tuned to the lower frequencies in

Figure 3E has a narrower excitatory region and a stronger surround

suppression than a SRF tuned to higher frequencies, using the

insights gained from Figure 4. (In comparing Figure 4B with

Figure 3E, one should note that each SRF in Figure 4B is depicted

by zooming to the frequency region around the preferred frequency

f of the SRF.) One may even view the four SRFs in Figure 3E as if

they were each exposed to one of the four different stimulus

ensembles that differ in SNRs (and in sound frequency f , and we

ignore this difference). Within each of these stimulus ensembles, the

input statistics may be seen as approximately translation invariant,

Figure 4. The effect of signal-to-noise ratio (SNR) on gain gk

and the spectral receptive field (SRF). Same stimulus ensemble as
in Figure 3A except the overall SNR has been scaled by IF . (A) Gain
control (red), signal (blue), and noise power (black) under high, medium
and low SNR. (B) The corresponding SRFs of one output neuron
(channel #120) in the three SNR cases.
doi:10.1371/journal.pcbi.1002123.g004
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since SS2
f T is almost independent of f and the correlation SSf Sf ’T is

approximately only a function of the frequency difference f {f ’
within a small range of frequency f .

Adaptation of SRF to input signal correlation
As well as adapting to the input SNR, the SRF can adapt to the

signal correlations in the input. These can also vary across

auditory environments. We generate two stimulus ensembles

(Ensembleshort and Ensemblelong) based on equation (11), with

short and long range (in frequency space) correlations between

inputs Sfi
and Sfj

of different sound frequencies. We do this by

setting the smoothing length L in equation (13) to be Lshort~10
and Llong~20. Since short and long range correlations give

respectively smaller and larger correlations or degrees of input

redundancy, in this paper, we use the terms short/long-range and

small/large correlations interchangeably. The two stimulus

ensembles are made to have the same overall signal power

SkSS2
kT, and consequently their SS2

kT vs. k curves cross each

other at a particular frequency kx (Figure 5A). In Ensemblelong,

signal power SS2
kT is more concentrated in lower k’s, and the

‘‘bandwidth’’ of gain, i.e., the range of k’s with substantial gk, is

consequently narrower.

If SS2
kTwSN 2T at k~kx, the k at which signal power

SS2
kT=SN

2T~1 is larger in Ensembleshort (Figure 5A, upper

panel, IF ~2, SN 2T = 1, l=SN 2
oT~10). Thus, the frequency kp at

which gain gk peaks is also larger in Ensembleshort. If the SNR is

lower, so that SS2
kTvSN 2T at k~kx, then kp is instead smaller in

Ensembleshort than in Ensemblelong. However, this is less

apparent since gain profiles in both ensembles become ‘‘low-pass’’

in k implying that there is no obvious ‘‘peak position’’ (Figure 5A,

lower panel, IF ~0:2 ). Nevertheless, the cutoff frequency k where

gk~0 is always smaller for Ensemblelong (Figure 5A), and the

optimal SRFs for it consequently enjoy a greater spectral extent

(i.e., the SRFs are non-zero for a larger range of f (Figure 5B).

Intuition for this effect is that for it to be effective as either a

contrast enhancing filter at a high SNR, or a smoothing filter at a

low SNR, the SRF’s spectral extent should match the range of the

input correlations.

The temporal filter TRF
We can similarly ignore the frequency dimension of the input

to understand the temporal receptive field (TRF). This is

determined from the way Ot~St’Ktt’St’+noise, the input

temporal sequence S~(St1
,St2

,:::,Sti
,:::) is transformed to the

output temporal sequence O. In a statistically stable auditory

environment, the input correlation should be time shift invariant,

i.e., RS
tt’~SStSt’T should depend only on t{t’. Denote

RS
tt’~RS(t{t’). Then, the de-correlating transform Ko should

just be a Fourier transform (Ko)vt!e{i:2pvt with the principal

component Sv!
X

t
e{i:2pvtSt being the Fourier Amplitude of

the relevant mode. Here we use index v instead of k to denote

the principal component to signify the association with the

temporal Fourier amplitude. The average power SS2
vT!ð

dtRS(t)e{i:2pvt is simply the Fourier transform of the input

temporal correlation. If we set Ai~1 in equation (12) to generate

inputs with shift invariant correlation, then SS2
vT~IF M2(v)

where M(v) is the Fourier amplitude of M(i{j)~Mij . The gain

control Sv?gvSv in the second encoding step is determined by

equation (6) (substituting v for k). The final TRF will be the

transform K~UgKo given an appropriate choice of U .

However, the actual procedure to obtain the TRF is trickier in

that the U transform in the third encoding step to give the overall

K~UgKo has to be chosen to satisfy the causality constraint. That

is, the output Ot at time t should only depend on past input St’ for

t’ƒt, i.e., Ktt’~0 for t’wt. Moreover, it is better for the TRF to

have a short temporal span and latency, an outcome that can

be achieved by assuming that the optimal temporal filter K

Figure 5. Adaptation of gain gk and spectral filter kernel SRF to input correlations under high/low SNR. Same input ensemble as that in
Figure 3A, except that the smoothing parameter, L~10 and L~20, are set for short and long range correlations, respectively. Analogous figure
format as in Figure 4, with added illustrations of the adaptation to input correlations. The thick and thin curves correspond to quantities for inputs
with large and small correlations respectively, blue/red curves plot signal power SS2

kT and gain gk respectively.
doi:10.1371/journal.pcbi.1002123.g005
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has a minimum phase-shift [57]. Short latency can feasibly be

implemented by neural synaptic and membrane mechanisms that

typically have time constants no longer than a few hundred

milliseconds [58]. Hence, these offer credible constraints on the

TRF. Note that if we choose U~K{1
o , i.e., Utv!ei:2pvt, then

Ktt’!
P

v gvei:2pv(t{t’)would be an even function of t{t’ and thus

not a causal temporal filter given gains gv that are all real. The

filter K can be made causal and minimal phase by choosing

another U simply as Utv!ei:2pvtziw(v) with a particular phase

function w(v), so that Ktt’!
P

v gvei:2pv(t{t’)ziw(v). Instead of

directly obtaining this phase function w(v), we can also

equivalently obtain this minimum phase shift causal filter by

transforming the acausal K using standard procedures in signal

processing theory as follows (see [57] for the proof). Given a non-

causal filter K t̂tð Þ with finite non-zero values in discrete time

t̂t~{M,{Mz1,:::,0,:::,N{M{1,N{M, first let t~t̂tzM to

make a causal filter K tð Þ whose nonzero values are at t~0,1,:::,N.

Second define

~KK zð Þ~K 0ð ÞzK 1ð Þz{1zK 2ð Þz{2z � � �zK Nð Þz{N :

Among the N complex roots of the equation ~KK zð Þ~0, let zi

denote the roots with zij jw1 and zj the other roots with zj

�� ��ƒ1.

Third, let

~KKmin~z{NPi z{1=zið ÞPj z{zj

� �
~Km 0ð ÞzKm 1ð Þz{1zKm 2ð Þz{2z � � �zKm Nð Þz{N

The coefficients Km tð Þ, t~0,1,:::,N are the values of the desired

causal minimum phase filter. One example of this process is

demonstrated in Figure 6A (before the minimum phase adjust-

ment) and Figure 6B (after the minimum phase ad-

justment)(IF ~2,L~14).

The temporal kernel also depends on the SNR and the input

correlations. The change in gv when sound intensity becomes

lower is similar to that in the spectral case: from band-pass to low-

pass. A temporal kernel under lower SNR is demonstrated in

Figure 6C. The changes in gv and TRF with input correlations

are analogous to those in the spectral case as well (figure not

shown).

The two dimensional STRF
Finally, we show examples of the two dimensional STRF (f ,t).

Here, we extended the assumption of shift invariance in the input

correlations to the spectral dimension for the convenience of

calculation. This assumption is reasonable when individual STRFs

cover sufficiently small ranges of frequencies that the correlation in

the spectral space is almost translation invariant within that range,

as we see in our SRF examples. Then, spectral and temporal

dimensions can be de-correlated at the same time by performing a

2-D Fourier transform on inputs S(f ,t), with the moving ripples as

decorrelated channels, each denoted by a 2D index (V,v) marking

the spectral and temporal modulation frequencies.

Let the signal power in the de-correlated channels (V,v) for

input S(f ,t) be SS2(V,v)T~IF F(V,v). Here, F (V,v) typically

decays with modulation frequency jVj and jvj since most natural

inputs have input correlation SS(f ,t)S(f ’,t’)T that decays with

jf {f ’j and jt{t’j. IF is a scale factor that controls the SNR. We

use the following example in our simulations

SS2(V,v)T~
IF

NORM
exp½{(jVj=V0)3{a(jvj=v0)3� ð15Þ

where a~1:8,V0 and v0 are parameters that control input correlation,

and NORM~
P

V

P
v exp½{(jVj=V0)3{a(jvj=v0)3� is a nor-

malization factor. Figure 7A shows an example with

V0~4, v0~4 According to equation (8), the gain g(V,v) can

be obtained as shown in Figure 7B (SN 2T~1, l=SN 2
oT~10, and

IF ~60,500). In particular, in the frequency range (V,v) in which

noise is negligible relative to the signal, the gain

g(V,v)!(SS2(V,v)T){1=2 ð16Þ

Figure 6. Simulation of temporal receptive field TRF, when the
spectral dimension is omitted. The same stimulus ensemble is used
as in Figure 3A, except the factor Ai~1 in equation (12) to ensure
translation invariance of correlation. (A;B) Demonstration of transform-
ing an acausal temporal filter (A) to its causal minimum-phase
counterpart (B) at a relatively high input SNR. (C) TRF for a relatively
low input SNR.
doi:10.1371/journal.pcbi.1002123.g006
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specifies the whitening filter of equation (14). This gain profile

changes from being a band-pass to a low-pass two dimensional

filter as the SNR is lowered.

As we noted before, efficient coding predicts the gain g(V,v), or

the modulation transfer function (MTF), but does not precisely

determine the STRF shape. The latter depends on the less

constrained U transform. Therefore, we qualitatively compare our

g(V,v) for two different IF ’s with the MTFs obtained from

physiological experiments under two different input sound levels.

Figure 7E and Figure 7F are obtained from data on STRFs of 40

cells in the inferior colliculus of animals exposed to natural rain

sound at low and high sound levels [7]. We first did a two-

dimensional Fourier transform on the STRF of each cell to obtain

its MTF. Then the spectral modulation frequency Vp and the

temporal modulation frequency vp where the MTF has its

maximum value were identified and normalized by a fixed value

across cells. The average Vp and vp across all cells are shown in

Figure 7E. These two ‘‘peak frequencies’’ both increased when

sound intensity increased. The physiological MTF averaged across

all cells (Figure 7F) also becomes higher pass, both spectrally and

temporally, under higher sound intensities, as predicted by

efficient coding (Figure 7B).

For completeness, we illustrate in Figure 7C the model STRFs

from the gain profiles g(V,v), using an inverse Fourier transform

with a proper phase function w(V,v) as the candidate U matrix.

Specifically, the model STRF is

STRF (f ,t)~

ð
dV

ð
dvg(V,v)ei:2pV f zi:2pvtziw(V,v)

where the phase w(V,v) is chosen to make the STRF causal, and

Figure 7. The 2D STRFs/MTFs implied by efficient coding and found physiologically. (A) input power SS2(V,v)T (equation (15), V0~4,
v0~4) in decorrelated channels. (B, C) MTF profile g(V,v) and the corresponding STRFs with two SNRs (scaled by IF ’s). (D) g(V,v) and STRF as in B;C
(when IF ~500) except with larger input correlations (V0~3:2, v0~3:2 in equation (15)). (E;F) Modulation transfer functions (MTFs) and their
properties at low and high input sound intensities averaged over 40 IC neurons from Lesica and Grothe [7]. Here, (Vp,vp) is the spectral-temporal
modulation frequency where the MTF peaks. Modulation frequencies in E and F are normalized by the same value across cells and intensities. Error
bars in E indicate standard errors. The magnitude patterns of the MTFs for all neurons are normalized to peak value 1. Their average across neurons at
each input intensity is then normalized to the same peak value and displayed in F.
doi:10.1371/journal.pcbi.1002123.g007
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with minimum phase shifts in the temporal dimension. In practice,

the STRF is obtained as follows, by extending our method for

obtaining the causal 1-D TRF. For each V, we first obtain the

temporal acausal filter

K(V,t)acausal~

ð
g(V,v)ei:2pvtdv

and then transformed this into a causal minimum phase filter

K(V,t) as for the one dimensional TRF filter. The final two-

dimensional STRF is then

STRF (f ,t)~

ð
K(V,t)ei:2pV f dV

In general the model STRF has its highest amplitude at the

preferred frequency on the spectral axis and for short latencies

(i.e., the early part of the temporal axis). At low IF , the STRF has a

large excitatory region and a weak inhibitory surround (Figure 7C).

At larger IF , the STRF involves more excitatory and inhibitory

regions with an increased inhibitory strength. Overall this has a

more band-pass gain profile. Meanwhile, the bandwidth for the

gain g(V,v) increases with IF , thus shrinking the width of the

main excitatory region. Therefore, adaptation to higher sound

levels makes the frequency-time tuning curve sharper, or

equivalently more narrowly tuned and so, at a single cell level,

supporting a more precise read out of the time and frequency of

auditory input. Qualitatively, physiologically observed STRFs

adapt to the input intensity in the same way [7] (also see [14]).

The model also predicts changes to MTFs and STRFs for

different input correlations. Figure 7D shows the gain function

g(V,v) and STRF for an example in which the input has longer-

range correlations in both spectral and temporal dimensions (we

set V0~3:2,v0~3:2 while holding IF ~500 as in the high SNR

case in Figure 7B and 7C). The peak modulation frequency in

g(V,v) is decreased, and the excitatory region is wider compared

with counterparts in Figure 7B and 7C at high SNR. This is

consistent with our 1-D results in the spectral dimension (Figure 5).

Discussion

Summary of findings and predictions
In summary, this study set out to understand the computational

role of auditory spectro-temporal receptive fields (STRFs). In

particular, we generalized previous work [26] by proposing that

STRFs are efficient codes for inputs which retain maximal

information for a given neural cost associated with the output. We

analyzed this proposal in detail for the case that input signals and

noise are approximated as Gaussian. Mathematically, the STRF

transform can be shown [34] to be composed of three abstract

steps: input de-correlation, gain control, and multiplexing. For

typical input statistics that are shift-invariant in sound frequency

and time, the transform can be compared with two sorts of

experimental data. First, gain control corresponds to the

magnitude of the modulation transfer function of the STRFs.

Second, by choosing the form of multiplexing to arrange the

STRFs to have minimal phase, one can predict their full form.

That the STRFs or the MTFs adapt to input statistics is a direct

prediction of this efficient coding framework, since both the

information conveyed and the neural coding cost depend on these

statistics. Our efficient coding proposal is thus experimentally

testable.

We made two particular predictions about the adaptation of the

STRFs, one associated with input intensity, the other with input

correlation. For the case of intensity, we predicted that the MTF of

the STRFs should become more low pass when input intensity is

lowered. Intuitively, as long as inputs at nearby frequencies and

times are correlated, a low pass filter smoothes the input to reduce

noise, whereas a band pass filter extracts differences between input

frequencies and times to remove redundancy. Compared with a

band pass STRF, a low pass STRF has one or all of the following

characteristics: (1) it has fewer excitatory and inhibitory regions; (2)

each excitatory/inhibitory region has a larger size; (3) the

secondary or opponent region, e.g., the inhibitory region for a

STRF with an primary excitatory region, is weaker. All three

characteristics help to smooth noise, a necessary strategy for weak

inputs. In contrast, a band-pass filter has the opposite character-

istics, so as not to increase the neural cost due to the transmission

of redundant input information. These predictions are analogous

to those seen in adaptations of visual coding to input SNR

[29,33,34,51,52]. They also generalize previous accounts of the

adaptation of the temporal auditory filter [26] to input intensity.

For the case of adaptation to input correlation, our framework

predicts that the sizes of the excitatory and inhibitory regions of

the STRFs should adapt to the range of input correlations. That is,

input ensembles with longer range correlations in frequency and/

or time should lead to STRFs with larger excitatory and inhibitory

regions in the corresponding feature dimensions. Longer range

input correlations are typically equivalent to greater input

modulation power in the lower modulation frequency range in

the stimulus ensemble. Equally, larger excitatory/inhibitory

regions in the STRF are typically equivalent to its MTF being

tuned to lower modulation frequencies. Thus, our prediction can

be stated equivalently as saying that a stimulus ensemble with

greater input power in the lower modulation frequency range,

spectrally and/or temporally, should lead to neural MTFs tuned to

the lower modulation frequency ranges. We demonstrated this

form of adaptation for SRFs in Figure 5, and for STRFs in

Figure 7. In particular, with a sufficiently high SNR, the MTF

profile g(V,v) should whiten the ensemble specific input

modulation power SS2(V,v)T.

Experimental evidence and tests of the predictions
Various experimental observations pertain to these predictions

about adaptation to input intensity. Lesica and Grothe [7]

presented natural rain sounds to gerbils and found that, for a

majority of cells in inferior colliculus (IC), the STRFs have more

excitatory/inhibitory regions for higher input sound levels, and

only have excitatory regions, or at least very weak inhibitory

regions for lower sound levels. Nagel and Doupe [14] conducted a

similar study in field L of songbirds, an area analogous to

mammalian auditory cortex. In both spectral and temporal

dimensions, they found that the excitatory/inhibitory regions of

the STRFs become smaller and sharper under higher sound

intensity, while the number of such regions do not increase. These

results paralleled those of an earlier study in which they only

examined the temporal dimension of the receptive fields [58]. Both

studies are consistent with our proposal that the MTF changes

from lower to higher pass when input intensity (and hence, SNR)

increases. They thus offer complementary confirmation of our

predictions.

As mentioned in the Introduction, Lesica and Grothe [26] also

examined the adaptation of the temporal receptive field(TRF) to

vocalizations and ambient noises. They found that the TRF

changed from being bandpass to lowpass when noise was mixed

into the ensemble of vocalizations, and accounted for this finding

in terms of efficient temporal coding. Their result can be

understood as a special case of adaptation to SNR in our

Understanding Auditory STRF from Efficient Coding

PLoS Computational Biology | www.ploscompbiol.org 13 August 2011 | Volume 7 | Issue 8 | e1002123



framework, focusing on the temporal dimension of the STRF, and

treating the addition of noise as a reduction in input SNR.

According to the principle of efficient coding, the spectral

receptive field should also have changed from bandpass to lowpass

when this noise was added.

There are as yet few physiological experiments that pertain to

our prediction about adaptation to input correlations. One study

by Woolley et al [11] examined the STRFs of midbrain neurons in

zebra finch in response to bird songs or modulation-limited noise.

Compared to that of the noise, the input modulation power of the

songs is more concentrated in lower modulation frequencies. The

MTFs of the STRFs matched the corresponding modulation

frequency spans, consistent with our theoretical prediction.

The studies by Woolley et al [11] and Lesica and Grothe [26]

could be extended to different ensembles of natural stimuli, e.g.,

songs, speech, animal vocalization, and environmental back-

ground, each with its own particular input correlations [59].

Findings from such extended studies would provide a stern test of

the efficient coding framework. Generally, the input modulation

power SS2(V,v)T in natural sounds decays with increasing

modulation frequency (V,v), at a rate that is specific to the

ensemble [59]. Ensembles with faster decays have longer range

input correlations (or larger correlations), as modelled in our

Figure 5A and Figure 7BCD. We predict that this decay rate in

SS2(V,v)T should dictate the shape of the neural MTFs g(V,v),
such that ensembles with faster decay should lead to neural MTFs

focusing on lower modulation frequency ranges. In particular, for

high input SNR, the MTF profile should be that of a whitening

filter g(V,v)!(SS2(V,v)T){1=2, with the upper frequency limit

(V,v) for this whitening (beyond which MTF quickly decays to

zero) being around the frequency at which SS2(V,v)T is

comparable to the power level of the noise. The recent study by

Rodriguez et al [59] showed that inferior colliculus (IC) neurons,

when examined collectively as a population, do seem to whiten

typical natural stimuli, in that the population MTF g(V,v)
increases with frequency (V,v) (up to a high frequency limit). This

is to be expected for an efficient code, since natural input power

SS2(V,v)T decreases with frequency. However, the neural STRFs

in this study were obtained (using the moving ripple stimuli)

without specific adaptation to any particular natural stimulus

ensemble. We predict that if the STRFs had been measured under

adaptation to the natural sounds for high SNR, then the neural

MTF profile, at a neural population level if not at individual

neuron level, should be ensemble specific, i.e., whitening the input

power SS2(V,v)T of the adapting stimuli.

The neural implementation of the efficient STRF and its
adaptations

We seek of the overall effective STRF rather than its realization.

Thus, it is important to note that the three separate steps of our

mathematical analysis of the efficient STRFs are purely abstract.

They do not correspond to an actual physiological implementa-

tion. In principle, when a receptive field is entirely linear, it can as

well be implemented in a single step, as in multiple linear steps in a

cascade. Meanwhile, the observation that STRFs adapt to changes

in the statistics of auditory inputs, and indeed that visual receptive

fields expand when the visual environment changes from bright

outdoors to dark indoors [52], attest to the availability of the

mechanisms for implementing (and thus adapting) efficient sensory

coding.

We speculate that the adaptation of a STRF in a midbrain

auditory neuron is likely to involve gain control in many

intervening and distributed neural processes upstream along the

auditory pathway [60]. Even a simple adaptation of efficient

coding, in the large monopolar cells (LMCs) in an insect

compound eye to changes in the distribution of input contrasts

in the visual environment, involves multiple stages of processes,

some in the photoreceptors and others in lamina from the

receptors to the LMCs [61]. Synaptic and intrinsic mechanism

were also found in the adaptation of retinal bipolar and ganglion

cells to temporal contrast [62,63]. Considering the multiple

synapses from the hair cells to IC or auditory cortex, and the

many recurrent and feedback networks with both excitatory and

inhibitory connections [64,65] in this pathway (for example,

medial olivocochlear (MOC) efferent effects [66]), we speculate

that gain control processes are likely to include synaptic facilitation

and depression and distributed channel based adaptations. They

should collectively achieve the effective adaptation in the gain such

as the gk in equation (6) and/or the underlying eigenmodes.

Because there are multiple, redundant, and distributed synapses

from the auditory periphery to the neuron whose STRF we model,

a STRF could be implemented in multiple ways. Such

implementational redundancy is likely to be needed to accommo-

date the many forms of adaptation that might be needed, given a

limited degree of flexibility in any individual mechanism.

The timescale of STRF adaptation to sound levels or input

SNRs should be less than several or tens of seconds, or even

shorter, since, in the physiological experiments, the stimulus

duration for one sound intensity level is 40 s in [7] and 5 s in [14],

while adaptation to mixing noise into the vocalization inputs

occurs within hundreds of milliseconds in [26]. Adaptation has

been observed to occur over multiple time scales, ranging from

tens of milliseconds to minutes in the fly visual system [67]. In the

auditory systems, midbrain neurons adapt to sound levels within

hundreds of milliseconds [68,69], while cortical adaptation

happens over multiple timescales and is likely to arise from

network activities [70,71]. We still know too little about the actual

mechanisms for STRF adaptation [26] or sensory adaptation in

general, although it has been suggested that channel based

mechanisms at the cellular level are plausible candidates [67].

Understanding the computational roles of the STRFs should

motivate future investigations of these mechanisms.

Limitations of the framework
As an initial attempt to understand the computational role of

the STRFs, our framework has various limitations. First, the

STRF model as a whole is quantitatively inaccurate since it

specifies a linear mapping between sensory inputs and neural

responses (in each adapted state). The accuracy could be improved

in future work through the addition of a static nonlinearity after

the STRF [6,7]. However, this would not be expected to lead to a

qualitative change in STRFs or their adaptation. Extensions to

dynamic nonlinearities would be much more complex. Second, for

analytical convenience, we assumed that the input statistics are

Gaussian, meaning that there are no input signal correlations

higher than second order. The same approximation was made for

the case of efficient visual coding, in the absence of good

information about higher order input correlations [30,32,34].

Subsequent work using independent component analysis (ICA) on

natural visual images avoided the Gaussian assumption, leading to

models of visual encoding in primary visual cortex V1 [72,73].

This approach has been adopted to understand the STRFs in the

auditory cortex [74] and avian primary auditory area field L [75],

although it cannot predict adaptation to SNR and its whitening

prediction does not go beyond that obtained under the Gaussian

assumption. It is still controversial whether higher order statistics

are the cause for the dramatic difference between the V1 encoding

and that in the retina and the lateral geniculate nucleus [34].

Understanding Auditory STRF from Efficient Coding
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Furthermore, higher order correlations in natural visual inputs

contribute much less redundancy (measured in signal entropy)

than second order correlations [36,37,38]. This may explain why

the Gaussian assumption was not overly deleterious to the

predictions of the efficient coding principle in vision. Although

higher order correlations in auditory inputs are also poorly

understood, they do cause auditory adaptation, e.g., in stimulus-

specific adaptation to complex temporal patterns of tones [76]. To

what extent higher order input statistics can influence auditory

encoding remains to be answered in future studies.

Our focus on coding efficiency ignores aspects of auditory

processing devoted to additional tasks such as sound source

localization or stream segmentation. The observed STRFs may

reflect elements of both efficient coding and requirements

associated with these tasks. In fact, some variations are possible

within the context of an efficient code. For instance, we have so far

restricted ourselves by making all neurons share the same MTF

profile predicted by efficient coding (by restricting the U transform

to that in equation (9)). Relaxing this restriction would allow other

STRFs. In particular, different neurons in the coding population

could be tuned to different modulation frequency regions within

the (V,v) extent covered by the overall MTF envelope g(V,v),
and could have different shapes. Accordingly, different STRFs

could have different spectral bandwidths (or resolution) and

shapes, in addition to preferring different center frequencies f .

Indeed, in the auditory cortex, different neurons exhibit different

spectral resolutions, and even prefer different motion directions of

the spectral ripples [77,78,19]. (Analogously, primary visual

cortical neurons are tuned to multiple spatial sizes and prefer

different orientations, a coding scheme that can be shown to be

consistent with efficient coding [36].) Such a collection of STRFs

could satisfy the joint goals of coding efficiency and detecting

ecologically meaningful auditory objects (such as vocalizations).

Diversity in the shape and bandwidth of the STRFs is already

present, although perhaps less so, sub-cortically, e.g., in inferior

colliculus [78]. When different neurons have different STRF

bandwidths, our prediction that the input modulation power will

be whitened by the neural MTFs should be modified, such that the

‘neural MTFs’ should mean the collective MTF of the whole

neural population within a particular auditory stage (such as IC,

see [59]).

There could be alternative formulations (other than equation

(4)) of the efficient coding principle, in particular, in the

formulation of the neural cost. Our formulation

neural cost~SiSO2
i T causes the degeneracy of the efficient

coding solution, i.e., the existence of many choices of the equally

efficient coding transforms, when the signals are gaussian. Other

formulations of the neural cost could break this degeneracy. For

example, formulation neural cost~SiH(Oi) in terms of the

summation of individual neural channel capacity (or entropy

H(Oi)), or neural cost~SiSjOijT in terms of the total activity

level, would generate neural codes to encourage very different

MTFs for different neurons. In both audition and vision, the

MTFs (in audition) and the contrast sensitivity functions (the vision

analog of the MTFs) for different neurons tend to be similar in the

sensory periphery (cochlear nucleus and retina), but they are

increasingly disparate further towards the central brain. These

changes could be caused by the different cost functions in the

nervous system, or, as discussed in the previous paragraph, due to

the breaking of the degeneracy by additional computational tasks

further downstream along the sensory pathway.

Redundancy redunction and information preservation are two

essential ingredients of the efficient coding principle. While this

principle has been quite successful in understanding the retinal

coding, it cannot explain the enormous increase in the redundancy

of the visual coding in the primary visual cortex (in which the

number of neurons are about 100 times as many as those in the

retina) [34], nor the drastic loss of visual information outside the

focus of attention in the higher visual areas without introducing

task-dependent factors. It remains to be investigated how much

and in what form the efficient coding will take further along the

auditory pathway. One can expect that more processes will be

devoted to solving specific auditory tasks, in addition to the task of

sensory encoding, in the higher stages of auditory processing.

Concluding remarks
This study was partly inspired by the success of the efficient

coding principle in understanding receptive fields in the early

stages of visual processing, and the way these receptive fields adapt

across sensory environments. Analogies between visual and

auditory processes have been explored by previous researchers

[79], and we expect that they can be carried further in higher level

sensory processes including segmentation, selective attention [80],

and even object recognition.

In conclusion, efficient coding provides a plausible computa-

tional interpretation of various recent experimental observations

on STRFs, and notably the way they adapt to input environments.

By making testable predictions, it motivates experimental

directions which should hopefully lead to further insights and

understanding.
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