
Bernoulli 18(4), 2012, 1223–1248
DOI: 10.3150/11-BEJ383

ε-Strong simulation of the Brownian path
ALEXANDROS BESKOS1, STEFANO PELUCHETTI2 and
GARETH ROBERTS3

1Department of Statistical Science, UCL, Gower Street, London, WC1E 6BT, UK.
E-mail: alex@stats.ucl.ac.uk
2HSBC Bank, 8 Canada Square, London, E14 5HQ, UK. E-mail: stefano.peluchetti@hsbcib.com
3Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK.
E-mail: gareth.o.roberts@warwick.ac.uk

We present an iterative sampling method which delivers upper and lower bounding processes for the Brow-
nian path. We develop such processes with particular emphasis on being able to unbiasedly simulate them
on a personal computer. The dominating processes converge almost surely in the supremum and L1 norms.
In particular, the rate of converge in L1 is of the order O(K−1/2), K denoting the computing cost. The
a.s. enfolding of the Brownian path can be exploited in Monte Carlo applications involving Brownian paths
whence our algorithm (termed the ε-strong algorithm) can deliver unbiased Monte Carlo estimators over
path expectations, overcoming discretisation errors characterising standard approaches. We will show an-
alytical results from applications of the ε-strong algorithm for estimating expectations arising in option
pricing. We will also illustrate that individual steps of the algorithm can be of separate interest, giving new
simulation methods for interesting Brownian distributions.

Keywords: Brownian bridge; intersection layer; iterative algorithm; option pricing; pathwise convergence;
unbiased sampling

1. Introduction

Brownian motion (BM) is an object of paramount significance in stochastic modelling. Starting
from its original mathematical formulation by [2], its properties are still under meticulous inves-
tigation by contemporary researchers. Relevant to the purposes of this paper, considerable work
has focused on various constructions and representations of BM paths. Leaving aside the sim-
ple finite-dimensional Gaussian structure of BM, researchers have often been interested on more
complex functionals. Hitting times, extremes, local times, reflections and other characteristics of
BM have been investigated (for a general exposition see [18]). For simulation purposes, many of
the relevant distributions are easy to sample from on a computer [10]. Several conditioned con-
structions of BM are also known relating BM with the Bessel process, the Rayleigh distribution
and other stochastic objects (see, e.g., [3]).

This paper presents a contribution of our own at simulation methods for Brownian dynamics.
We develop an iterative sampling algorithm, the ε-strong algorithm, which simulates upper and
lower paths enveloping a.s. the Brownian path. To meet this objective, we collect a number of
characterisations and combine them in a way that they can deliver simple sampling methods
implementable on a personal computer. We will show that after O(K)-computational effort, the
dominating process have L1-distance of O(K−1/2). This a.s. enfolding of the Brownian path

1350-7265 © 2012 ISI/BS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1890112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/11-BEJ383
mailto:alex@stats.ucl.ac.uk
mailto:stefano.peluchetti@hsbcib.com
mailto:gareth.o.roberts@warwick.ac.uk

1224 A. Beskos, S. Peluchetti and G. Roberts

can be exploited in Monte Carlo applications involving Brownian motion integrals, minima,
maxima or hitting times; in such scenaria, the ε-strong algorithm can deliver unbiased Monte
Carlo estimators over Brownian expectations, overcoming discretization errors characterising
standard approaches (for the latter approaches, see, for instance, the exposition in [12] in the
context of applications in finance).

We will show applications of the algorithm and experimentally compare the required comput-
ing resources against typical alternatives employed in the literature involving Euler approxima-
tion. Our examples will involve a collection of double-barrier option pricing problems in a Black
and Scholes framework arising in finance. Also, we will demonstrate that individual steps of the
algorithm can be of separate interest, giving new simulation methods for interesting Brownian
distributions.

The ε-strong algorithm delivers a pair of dominating processes, denoted by X↓(n) =
{X↓

u (n);u ∈ [0,1]} and X↑(n) = {X↑
u (n);u ∈ [0,1]}, that can be simulated on a personal com-

puter without any discretisation error, with the property:

X↓
u (n) ≤ X↓

u (n + 1) ≤ Xu ≤ X↑
u (n + 1) ≤ X↑

u (n) (1.1)

for all instances u ∈ [0,1]; here, X is the Brownian path. The two dominating processes will
converge in the limit:

w.p.1, lim
n→∞ sup

u∈[0,1]
|X↑

u (n) − X↓
u (n)| → 0. (1.2)

The algorithm builds on the notion of the intersection layer, a collective information, containing
the starting and ending points of a Brownian path together with information about its extrema.
A number of operations (bisection, refinement, see main text) can be applied on this information,
explicitly on a computer, allowing the sampler to iterate itself to get closer to X.

We should note here that the methods described in this paper will be relevant also for nonlin-
ear Stochastic Differential Equations (SDEs). Recent developments in the simulation of SDEs
under the framework of the so-called ‘Exact Algorithm’ (see [4–7,9,13]) build upon the result
that, conditionally on a collection of randomly sampled points, the path of the SDE is made of
independent Brownian paths. Once this collection of points is sampled, the methodology of this
paper can then be applied separately on each of the constituent Brownian sub-paths.

The structure of the paper is as following. In Section 2, we present the notion of the intersec-
tion layer which will be critical for our methods. In Section 3, we present the individual steps
forming the ε-strong algorithm; they will require original simulation techniques for some Brow-
nian distributions. Once we identify in Section 4 the ζ -function, an alternating monotone series at
the core of Brownian dynamics, we exploit its structure in Section 5 to analytically develop these
new sampling methods. In Section 6, we apply the ε-strong algorithm to unbiasedly estimate
some path expectations arising when pricing options in finance. We will contrast the computa-
tional cost of the algorithm with Euler approximation alternatives to get a better understanding
of its practical competitiveness. In Section 7, we sketch some other potential applications of the
ε-strong algorithm. We finish with some discussion and conclusions in Section 8.

ε-Strong simulation of the Brownian path 1225

2. Intersection layer and operations

We will, in general, write paths as X = {Xu;u ∈ [s, t]} for s < t . A Brownian bridge on [s, t] is
a Brownian motion conditioned to start at Xs and end at Xt , for some prespecified Xs , Xt ; its
finite-dimensional dynamics are easily derivable following this interpretation (see, for instance,
[18]).

Instrumental in our considerations is the notion of (what we call) the intersection layer. Con-
sider a Brownian bridge X on [s, t]. Let ms,t , Ms,t be the extrema of X:

ms,t = inf{Xu;u ∈ [s, t]}, Ms,t = sup{Xu;u ∈ [s, t]}.
The ε-strong algorithm will require some information on both ms,t and Ms,t . We will identify
intervals:

Us,t = [U↓
s,t ,U

↑
s,t], Ls,t = [L↓

s,t ,L
↑
s,t],

such that:

Ms,t ∈ Us,t , ms,t ∈ Ls,t .

We will write simply m, M , U↑, U↓, L↑, L↓ ignoring the s, t-subscripted versions when the
time interval under consideration is clearly implied by the context. The intersection layer idea
refers to the collective information

Is,t = {Xs,Xt , Ls,t , Us,t }, (2.1)

that is the starting and ending points of the bridge together with intervals that contain its max-
imum and minimum. Figure 1(a) presents a graphical illustration of the intersection layer: the
extrema of an underlying Brownian bridge lie in the shaded rectangles. We will look now at two
simple operations on the information Is,t which nonetheless will be the building blocks of the
complete ε-strong algorithm described in the next section.

2.1. Refining the information Is,t

During the iterations at the execution of the ε-strong algorithm, for each piece of information
Is,t we will need to control the width of the layers Ls,t , Us,t relatively to the size t − s of the
time interval to ensure convergence of the bounding paths enveloping the underlying Brown-
ian path. Thus, the refinement of the information Is,t corresponds to a procedure that updates
Is,t by halving the allowed width for the minimum m or the maximum M of the path, thereby
correspondingly updating the layers Ls,t or Us,t .

More analytically, refinement of Is,t corresponds to deciding whether the minimum m on
[s, t], already known to be in [L↓,L↑], lies in [L↓, (L↓ + L↑)/2] or [(L↓ + L↑)/2,L↑], that is,
whether Ls,t is equal to [L↓, (L↓ +L↑)/2] or [(L↓ +L↑)/2,L↑]; the apparent analogue of such
a consideration applies for the maximum M . The analytical method of sampling the relevant
binary random variables for carrying out this procedure will be described in Section 5.

1226 A. Beskos, S. Peluchetti and G. Roberts

Figure 1. Top panel (a): the intersection layer information Is,t for a Brownian path. The underlying tra-
jectory starts at Xs and finishes at Xt with its extrema found in the shaded areas. Bottom panel (b):
the bisection of Is,t into Is,t∗ and It∗,t . The algorithm simulates Xt∗ and then decides that the ex-
trema for each of the intervals [s, t∗] and [t∗, t] are in the shaded areas, that is, Us,t∗ = [Xt∗ ,U↓],
Ut∗,t = [U↓,U↑], Ls,t∗ = [L↓,L↑] and Lt∗,t = [L↑,Xt∗]. The algorithm outputs the upgraded infor-
mation Is,t∗ = {Xs,Xt∗ , Ls,t∗ , Us,t∗ } and It∗,t = {Xt∗ ,Xt , Lt∗,t , Ut∗,t }.

ε-Strong simulation of the Brownian path 1227

Table 1. The procedure for bisecting the information Is,t . It returns the intersection layers Is,t∗ and It∗,t
with refined information about the underlying path (compared to Is,t)

Bisect(Is,t):
1. Set t∗ = (t + s)/2. Simulate Xt∗ given Is,t . Set U↓ = U↓ ∨ Xt∗ , L↑ = L↑ ∧ Xt∗ .

2a. Decide if Us,t∗ = [Xs ∨ Xt∗ ,U↓] or [U↓,U↑].
2b. Decide if Ut∗,t = [Xt∗ ∨ Xt ,U

↓] or [U↓,U↑].
2c. Decide if Ls,t∗ = [L↓,L↑] or [L↑,Xs ∧ Xt∗].
2d. Decide if Lt∗,t = [L↓,L↑] or [L↑,Xt∗ ∧ Xt].
3. Return Is,t∗ ∨ It∗,t .

2.2. Bisecting the information Is,t

This is a more involved operation on Is,t , and involves bisecting Is,t into the more analytical
information Is,t∗ ∨ It∗,t for some intermediate time instance t∗ ∈ (t, s). In particular, we will be
selecting t∗ = (t + s)/2 within the ε-strong algorithm. The method begins by sampling the mid-
dle point Xt∗ conditionally on Is,t , and then appropriately sampling the layers for the two pieces
of information Is,t∗ , It∗,t . The practicalities of implementing the second part of the method will
depend on whether Xt∗ falls within a layer of Is,t or not, thus we present the bisection operation
in more detail in Table 1.

Note that if Xt∗ > U↓ the two upper layers (for Is,t∗ and It∗,t) will be directly set to [Xt∗ ,U↑],
and we will have to simulate extra randomness about the underlying path only to determine
the lower layers. Correspondingly, if Xt∗ < L↑ the two lower layers will immediately be set to
[L↓,Xt∗]. In the scenario when L↓ < Xt∗ < U↓, we will have to simulate extra randomness to
determine all four layers. We describe in Section 5 the algorithms for sampling Xt∗ and deter-
mining the layers. Figure 1 shows a graphical illustration of the bisection procedure.

3. ε-Strong simulation of Brownian path

We introduce an iterative simulation algorithm with input a Brownian bridge X on the do-
main [0,1] and output, after n iterations, upper and lower dominating processes X↓(n) =
{X↓

u (n);u ∈ [0,1]} and X↑(n) = {X↑
u (n);u ∈ [0,1]} satisfying the monotonicity and limiting

requirements (1.1) and (1.2) respectively. Note that X here is a continuous time Brownian bridge
path, thus an infinite-dimensional random variable. However, the bounding processes will be
piece-wise constant, thus inherently finite-dimensional. One will be able to realise complete
sample paths of X↓(n) or X↑(n) on a computer without retreating to any sort of discretization or
approximation errors (apart from those due to finite computing accuracy).

3.1. ε-Strong algorithm

Given some initial intersection layer information I0,1, the algorithm will naturally set X
↑
u (0) =

U
↑
0,1 and X

↓
u (0) = L

↓
0,1 for all instances u ∈ [0,1]. It will then iteratively bisect the acquired

1228 A. Beskos, S. Peluchetti and G. Roberts

Table 2. The ε-strong algorithm. It iteratively unveils extra information about the underlying path. It out-
puts the collection of intersection layers P = ∨2n

j=1 I(j−1)2−n,j2−n

ε-strong(X0, X1, n):
1. Initialize U0,1, L0,1, set I0,1 = {X0,X1, U0,1, L0,1}. Set P = {I0,1} and i = 1.
2. For each of the 2i−1 intersection layers in P , say Is,t , do the following:

i. Bisect the information Is,t into Is,t∗ , It∗,t , where t∗ = (t + s)/2.
ii. Refine Is,t∗ , It∗,t until the width of their layers is not greater than

√
(t − s)/2.

3. Collect the updated information, P = ∨2i

j=1 I(j−1)2−i ,j2−i .
4. If i < n set i = i + 1 and return to Step 2; otherwise return P .

intersection layers, as described in Section 2.2, to obtain more information about the underlying
sample path on finer time intervals. To ensure convergence of the discrepancy X↑(n) − X↓(n)

the algorithm will sometimes refine the information on some intersection layers, as described
in Section 2.1, to reduce the uncertainty for the extrema. We give the pseudocode about the
algorithm in Table 2.

Utilising the information the ε-strong algorithm returns, we define the dominating processes
as follows:

X↑
u (n) =

2n∑
i=1

U
↑
(i−1)2−n,i2−n · Iu∈((i−1)2−n,i2−n],

(3.1)

X↓
u (n) =

2n∑
i=1

L
↓
(i−1)2−n,i2−n · Iu∈((i−1)2−n,i2−n].

The square-root rate at Step 2.ii of the algorithm in Table 2 is to guarantee convergence of the
dominating paths with minimal computing cost: it provides the correct distribution of effort be-
tween time-interval and extrema-interval bisections. To understand this, note that the range of a
Brownian motion (or a Brownian bridge) on [0,2−n] scales as O(2−n/2); see, for instance, [18].
Thus, had we used the actual Brownian minima and maxima to define dominating processes for
the Brownian path in the way of (3.1) the rate of convergence would have been O(2−n/2); we
cannot exceed such a rate, but we can preserve it if our extrema are not further than O(2−n/2)

from the actual ones. This intuitive statement will be made rigorous in the sequel, when an ex-
plicit result on the rate of convergence of the dominating processes in L1-norm is given.

Figure 2 shows successive steps of the ε-strong algorithm as implemented on a computer. For
each n, the horizontal black lines show the interval where the maxima and the minima are located:
this information is available for all 2n sub-intervals bisecting the initial time interval [0,1]. The
dashed black line corresponds to the linear interpolation of successively unveiled positions of
the underlying Brownian path. The last graph (f) corresponds to n = 12; in this case, we have
zoomed on a particular subinterval of [0,1] to be able to visualise the difference between the
bounding paths and the underlying Brownian one.

ε-Strong simulation of the Brownian path 1229

Figure 2. The ε-strong algorithm as applied on a personal computer. For each step n, the horizontal black
lines show the allowed interval for the minima and the maxima: this information is separately available for
all 2n time sub-intervals partitioning [0,1]. Note that the last graph corresponds to n = 12, with the subplot
in its frame corresponding to a zooming on the position of the paths on the time interval [0.424,0.434].

1230 A. Beskos, S. Peluchetti and G. Roberts

3.2. Convergence properties

Almost sure convergence of the dominating paths follows directly from the continuity of the
Brownian path X. The analytical proof is given in the following proposition.

Proposition 3.1. Consider the continuous-time processes X↑(n), X↓(n) defined in (3.1). Then,
the convergence in supremum norm in (1.2) will hold in the limit n → ∞.

Proof. For a Brownian bridge X on [0,1], we consider:

Dn := sup
1≤i≤2n

(
M(i−1)2−n,i2−n − m(i−1)2−n,i2−n

)
.

Uniform continuity implies that, with probability 1:

lim
n→∞Dn = 0.

Now, we have that:

sup
u∈[0,1]

|X↑
u (n) − X↓

u (n)| ≤ Dn + 2 · 2−n/2 → 0,

where we have used the fact that Step 2.ii of the ε-strong algorithm guarantees that

U
↑
(i−1)2−n,i2−n ≤ M(i−1)2−n,i2−n + 2−n/2,

L
↓
(i−1)2−n,i2−n ≥ m(i−1)2−n,i2−n − 2−n/2. �

A more involved result can give the rate of convergence of the dominating processes and will
be of practical significance for the efficiency of Monte Carlo methods based on the ε-strong
algorithm.

Proposition 3.2. Consider the L1-distance:

|X↑(n) − X↓(n)|1 =
∫ 1

0
|X↑

u (n) − X↓
u (n)|du.

Then:

2n/2 × E[|X↑(n) − X↓(n)|1] = O(1).

Proof. We proceed as follows:

|X↑(n) − X↓(n)|1 =
2n∑
i=1

(
U

↑
(i−1)2−n,i2−n − L

↓
(i−1)2−n,i2−n

) · 2−n

(3.2)

≤
2n∑
i=1

(
M(i−1)2−n,i2−n − m(i−1)2−n,i2−n + 2 · 2−n/2) · 2−n,

ε-Strong simulation of the Brownian path 1231

the inequality being a direct consequence of Step 2.ii of the ε-strong algorithm in Table 2.
Consider now the path from X(i−1)2−n to Xi2−n . Let Z be a Brownian bridge from Z0 = 0 to
Z2−n = 0; we denote by Mz and mz its maximum and minimum, respectively. Conditionally on
X(i−1)2−n and Xi2−n , a known property of the Brownian bridge implies (see, e.g., [14]) that:

Xt+(i−1)2−n = Zt +
(

1 − t

2−n

)
X(i−1)2−n + t

2−n
Xi2−n , t ∈ [0,2−n],

in the sense that the processes on the two sides of the above equation have the same distribution.
It is now clear that:

M(i−1)2−n,i2−n − m(i−1)2−n,i2−n ≤ ∣∣Xi2−n − X(i−1)2−n

∣∣ + (Mz − mz).

So, taking expectations at (3.2), we get:

E[|X↑(n) − X↓(n)|1] ≤ E[Mz − mz] + 2 · 2−n/2 +
2n∑
i=1

E
∣∣Xi2−n − X(i−1)2−n

∣∣2−n

The finite-dimensional distributions of the initial Brownian bridge from X0 to X1 imply that:

Xi2−n − X(i−1)2−n ∼ N
(
(X1 − X0)2

−n,2−n(1 − 2−n)
)
,

which gives directly that:

E
∣∣Xi2−n − X(i−1)2−n

∣∣ = O(2−n/2).

It remains to show that E[Mz − mz] = O(2−n/2) to complete the proof. Now, self-similarity of
Brownian motion implies that:

Zu = 2−n/2Z̃u/2−n ,

where Z̃ is a Brownian bridge from Z̃0 = 0 to Z̃1 = 0. Let M̃z, m̃z be the maximum and minimum
of Z̃. Due to the self-similarity, we have

Mz − mz = 2−n/2(M̃z − m̃z).

Since M̃z − m̃z in a random variable of finite expectation (see, e.g., [14]), we obtain directly that
E[Mz − mz] = O(2−n/2) which completes the proof. �

4. The ζ -function

We have yet to present the sampling methods employed when refining or bisecting an intersection
layer during the execution of the ε-strong algorithm, thus constituting the building blocks of our

1232 A. Beskos, S. Peluchetti and G. Roberts

algorithm. All probabilities involved in these methods can be expressed in terms of a hitting
probability of the Brownian path. We denote by

W
(l,x,y)

the probability law of a Brownian bridge from X0 = x to Xl = y. Let ζ(L,U ; l, x, y), with
L < U , be the probability that the Brownian bridge escapes the interval [L,U]. That is:

ζ(L,U ; l, x, y) = W
(l,x,y)[m0,l < L or M0,l > U].

We also define:

γ (L,U ; l, x, y) = 1 − ζ(L,U ; l, x, y). (4.1)

These probabilities can be calculated analytically in terms of an infinite series. The result is
based on a partition of Brownian paths w.r.t. to a trace they leave on two bounding lines and can
be attributed back to [11]; for more recent references see [1,9,17]. We define for j ≥ 1,

σ̄
j
(x, y, δ, ξ) = exp

{
−2

l
[δj + ξ − x][δj + ξ − y]

}
,

(4.2)

τ̄
j
(x, y, δ) = exp

{
−2j

l
[δ2j + δ(x − y)]

}
.

Then, Theorem 3 of [17] yields

ζ(L,U ; l, x, y) =

⎧⎪⎨
⎪⎩

∞∑
j=1

(σ
j
− τ

j
), L < x,y < U,

1, otherwise,

(4.3)

where

σj = σ̄
j
(x, y,U − L,L) + σ̄

j
(−x,−y,U − L,−U),

(4.4)
τj = τ̄

j
(x, y,U − L) + τ̄

j
(−x,−y,U − L).

The infinite series in (4.3) exhibits a monotonicity property which will be exploited by our sim-
ulation algorithms. We consider the sequence {Sn}, with Sn = Sn(L,U ; l, x, y), defined as:

S2n−1 =
n−1∑
j=1

(σj − τj) + σn, S2n = S2n−1 − τn, (4.5)

when L < x,y < U , otherwise Sn ≡ 1. Then:

0 < S2n ≤ S2n+2 ≤ ζ ≤ S2n+1 ≤ S2n−1 (4.6)

for all n ≥ 1; for a proof see [9] or [5].

ε-Strong simulation of the Brownian path 1233

4.1. ζ -Derived events

We can combine ζ -probabilities to calculate other conditional probabilities arising in the context
of the ε-strong algorithm. We begin with the following definition:

β(L↓,L↑,U↓,U↑; l, x, y) := W
(l,x,y)[L↓ < m0,l < L↑,U↓ < M0,l < U↑].

Now, we have the set equality:

{L↓ < m0,l < L↑,U↓ < M0,l < U↑}
(4.7)

= {L↓ < m0,l ,M0,l < U↑} − {L↑ < m0,l ,M0,l < U↑} ∪ {L↓ < m0,l ,M0,l < U↓}.
Thus, taking probabilities and recalling the definition of γ in (4.3), we find that:

β(L↓,L↑,U↓,U↑; l, x, y) = γ (L↓,U↑; l, x, y) − γ (L↑,U↑; l, x, y)
(4.8)

− γ (L↓,U↓; l, x, y) + γ (L↑,U↓; l, x, y).

Before the next event, we enrich the notation for the Brownian bridge measure. We define (for
0 < q < l):

W
(l,x,y)

(q,w) [·] = W
(l,x,y)[· | Xq = w].

We set r = l − q . Consider now the conditional probability:

ρ(L↓,L↑,U↓,U↑;q, r, x,w,y) = W
(l,x,y)

(q,w) [L↓ < m0,l < L↑,U↓ < M0,l < U↑].

Using again the set equality (4.7), and taking probabilities under W
(l,x,y)

(q,w) , we obtain:

ρ(L↓,L↑,U↓,U↑;q, r, x,w,y) = γ1γ2 − γ3γ4 − γ5γ6 + γ7γ8, (4.9)

where we have defined:

γ1 = γ (L↓,U↑;q, x,w), γ2 = γ (L↓,U↑; r,w,y), γ3 = γ (L↑,U↑;q, x,w),

γ4 = γ (L↑,U↑; r,w,y), γ5 = γ (L↓,U↓;q, x,w), γ6 = γ (L↓,U↓; r,w,y),

γ7 = γ (L↑,U↓;q, x,w), γ8 = γ (L↑,U↓; r,w,y).

Note that the product terms arise due to the independency of the Brownian bridges on [0, q] and
[q, l]. We will be using these expressions for β(·; ·) and ρ(·; ·) in the sequel.

4.2. Simulation of ζ -derived events

We will need to be able to decide whether events of probability ζ have occurred or not. In a
simulation context, this corresponds to determining the value of the binary variable IR<ζ for

1234 A. Beskos, S. Peluchetti and G. Roberts

R ∼ Un[0,1]. With (4.6) in mind, we define:

J = inf{n ≥ 1 :n odd, Sn < R or n even, Sn > R}.
Due to the alternating monotonicity property (4.6) of Sn:

IR<ζ = IJ is even.

Thus, we need a.s. finite number of J computations to evaluate IR<ζ . Note that Sn converges to
its limit exponentially fast, so J will be of small expectation; one can easily verify that all its
moments are finite. Such an approach was also followed in [5].

In a more general context, we will also be required to decide if events of probability β(·; ·)
or ρ(·; ·) have taken place or not; we will in fact be considering even more complex events
related with the ζ -function. In the most encompassing scenario, when executing our sampling
methods, we will be required to compare a given real number R with Z(ζ1, ζ2, . . . , ζm) for some
given function Z, with the different ζi ’s corresponding to different choices of the arguments
l, x, y,L,U for ζ(·; ·). Using the monotonicity property (4.6), we will be able to develop corre-
sponding alternating sequences SZ

n such that:

SZ
2n ≤ SZ

2n+2 ≤ Z(ζ1, ζ2, . . . , ζm) ≤ SZ
2n+1 ≤ SZ

2n−1;
(4.10)

lim
n→∞SZ

n = Z(ζ1, ζ2, . . . , ζm),

and proceed as above. Analytically, we will determine the value of the comparison binary indi-
cator IR<Z(ζ1,ζ2,...,ζm) as follows:

Calculate SZ
n until the first n such that either n is odd and SZ

n < R (whence return 0) or n is
even and SZ

n > R (whence return 1).

5. Distributions and their simulation

We will now describe analytically all simulation algorithms employed at the development of the
ε-strong algorithm presented in Table 2. In particular, one has to develop sampling methods to
carry out the refinement and bisection (see Section 2) of the intersection layer Is,t . To simplify
the presentation, when conditioning on Xs , Xt∗ or Xt we will make the correspondence:

x = Xs, w = Xt∗, y = Xt,

l = t − s, q = t∗ − s, r = t − t∗.

5.1. Bisection of Is,t : Sampling the middle point Xt∗

Bisection of Is,t = {Xs,Xt , Ls,t , Us,t }, with Ls,t = [L↓,L↑], Us,t = [U↓,U↑], begins by sam-
pling a point of the Brownian bridge conditionally on the collected information about its min-
imum and maximum; this is Step 1 of Table 1. Such a conditional distribution is analytically
tractable via Bayes’ theorem.

ε-Strong simulation of the Brownian path 1235

Proposition 5.1. The distribution W[Xt∗ | Is,t], with t∗ ∈ [s, t], has probability density:

f (w) ∝ ρ(L↓,L↑,U↓,U↑;q, r, x,w,y) × π(w)

where ρ(·; ·) is defined in (4.9) and

π(w) = exp

{
−1

2

(
w −

(
r

l
x + q

l
y

))2/(
qr

l

)}
.

Proof. The function π(w) corresponds to the prior (unnormalised) density for the middle point
X∗

t |Xs,Xt which is easily found to be normally distributed with mean and variance as implied
by the expression for π(w). So, following the definition of ρ(·; ·) in (4.9), the stated result is an
application of Bayes’ theorem. �

We will develop a method for sampling from f (w). It is easy to construct an alternating series
bounding f (w). Let:

ζi = 1 − γi, 1 ≤ i ≤ 8,

for the eight γ -functions appearing at the definition of ρ in (4.9). Let {Si,n}n≥1 be the alternating
series (4.6) for ζi , for each 1 ≤ i ≤ 8; that is:

0 < Si,2n ≤ Si,2n+2 ≤ ζi ≤ Si,2n+1 ≤ Si,2n−1, (5.1)

with limn→∞ Si,n = ζi . Consider the sequence {SZ
n } defined as follows:

SZ
n = (1 − S1,n+1 − S2,n+1 + S1,nS2,n) − (1 − S3,n − S4,n + S3,n+1S4,n+1)

(5.2)
− (1 − S5,n − S5,n + S5,n+1S6,n+1) + (1 − S7,n+1 − S8,n+1 + S7,nS8,n).

Due to (5.1), one can easily verify that {SZ
n } is an alternating sequence for ρ(·; ·), in the sense

that:

SZ
2n ≤ SZ

2n+2 ≤ ρ(L↓,L↑,U↓,U↑, q, r, x,w,y) ≤ SZ
2n+1 ≤ SZ

2n−1 (5.3)

with limn→∞ SZ
n = ρ(L↓,L↑,U↓,U↑;q, r, x,w,y).

We exploit this structure to build a rejection sampler to draw from the density f (w) in Propo-
sition 5.1. We will use proposals from:

f2n+1(w) = SZ
2n+1(w) × π(w),

where we have emphasized the dependence of SZ
2n+1 on the argument w. Note that the domain

of both f (w), f2n+1(w) is [L↓,U↑]. Now, we will illustrate that SZ
2n+1(w) has a concrete struc-

ture that we will exploit for our sampler. Consider the first of the four terms forming up SZ
2n+1

from (5.2):

1 − S1,2n+2 − S2,2n+2 + S1,2n+1S2,2n+1. (5.4)

1236 A. Beskos, S. Peluchetti and G. Roberts

Following the analytical definition of the alternating sequences in equations (4.2), (4.4), (4.5),
both S1,n and S2,n, can be expressed as a sum of 2n terms each having the exponential structure
± exp{a + bw}IL↓<w<U↑ for appropriate constants a, b varying among the 2n terms. Thus, the
quantity in (5.4) can be expressed as:

1 +
k1,n∑
i=1

(−1)ci exp{ai + biw}IL↓<w<U↑

for k1,n = 4{(2n + 1)2 + (2n + 2)}, and constants ai , bi , ci with ci ∈ {0,1}. Working similarly
for all four summands forming up SZ

2n+1 in (5.2), we get that the function f2n+1(w) can in fact
be written as the weighted sum:

f2n+1(w) =
kn∑

i=1

(−1)ci exp{ai + biw}ILi<w<Ui
× π(w) (5.5)

for kn = 2(k1,n + k2,n) with k2,n = 4{(2n + 2)2 + (2n + 1)}, and some explicit constants ai , bi ,
ci ∈ {0,1}, Li , Ui . Experimentation has showed that f1 is already a very good envelope function
for the rejection sampler, in which case kn ≡ k0 = 64; this is not accidental, and relates with
the rapid exponential convergence of the alternating sequence in (4.5) to its limit. The cdf, say
F1(w), corresponding to the unormalised density function f1(w) can be analytically identified
since integrals for each of the summands in (5.5) can be expressed as differences of the cdf of
the standard Gaussian distribution. Samples from f1(w) can then be generated using the inverse
cdf method, that is, by returning F−1

1 (R) for R ∼ Un[0,1]. F−1
1 cannot be found analytically,

but numerical methods can return F−1
1 (R), up to maximum allowed computer accuracy, expo-

nentially fast. We have used MATHEMATICA to automatically calculate all integrals giving the
cdf, and then incorporated the calculation into a C++ code.

Summarising, our rejection sampler will be as described below, where for simplicity we write
ρ(w) ≡ ρ(L↓,L↑,U↓,U↑;q, r, x,w,y):

Repeat until the first accepted draw:
Propose w ∼ f1 and accept with probability f (w)/f1(w) ≡ ρ(w)/SZ

1 (w).

Note here that the acceptance probability involves ρ(w) which is made up of eight infinite series,
see (4.9). We avoid approximations by using the alternating construction (5.3) and employ the
methods of Section 4.2 to obtain the value of the decision indicator IR<ρ(w)/SZ

1 (w) for some
R ∼ Un[0,1].

As shown in Step 1 of Table 1, once Xt∗ is obtained, we adjust the allowed range for the
extrema of the bridge on [s, t] by simply setting U↓ = U↓ ∨ Xt∗ , L↑ = L↑ ∧ Xt∗ .

5.2. Bisection of Is,t : Updating the Layers given Xt∗

At the second step of the bisection procedure, see Table 1, we obtain separate information for
the extrema of the two newly formed bridges given the middle point Xt∗ : the one bridge being

ε-Strong simulation of the Brownian path 1237

Table 3. The nine possible scenaria for the extrema of the two Brownian bridges (from Xs to X∗
t and from

Xt∗ to Xt)

Left bridge Right bridgeEvent
E = i Ims,t∗∈[L↓,L↑] IMs,t∗∈[U↓,U↑] Imt∗,t∈[L↓,L↑] IMt,t∗∈[U↓,U↑]

i = 1 1 1 1 1
i = 2 1 1 0 1
i = 3 1 1 1 0
i = 4 1 1 0 0
i = 5 0 1 1 1
i = 6 0 1 1 0
i = 7 1 0 1 1
i = 8 1 0 0 1
i = 9 0 0 1 1

from Xs to Xt∗ , the other from Xt∗ to Xt . In particular, the algorithm will decide over the range
of the four newly formed layers, Ls,t∗ , Us,t∗ , Lt∗,t , Ut∗,t in the following manner: for the case
of Ls,t∗ for instance a decision will be made over whether ms,t∗ lies in [L↓,L↑] (which is the
allowed range for the minimum of the original bridge on [s, t]) or in [L↑,Xs ∧Xt∗]. The apparent
analogues apply in the case of the three other layers.

One might initially think that there are in total 24 different scenaria for the four layers. But
one has to remember that the update has to respect the information in Is,t , so that at least one
of the two minima (resp. maxima) on [s, t∗] and [t∗, t] must lie in [L↓,L↑] (resp. [U↓,U↑]). In
particular, there are in fact nine different possible scenaria, which are the ones shown in Table 3
(labelled as events {E = i}, for 1 ≤ i ≤ 9): a value of 1 in Table 3 means that the corresponding
minimum or maximum will still be found within the allowed range for the original bridge on
[s, t], whereas a value of 0 means that the second option occurs and the extremum will be shifted
inwards. For instance, a value of 0 for the indicator variable concerning ms,t∗ , Ms,t∗ , mt∗,t or
Mt∗,t implies that ms,t∗ ∈ [L↑,Xs ∧ Xt∗], Ms,t∗ ∈ [Xs ∨ Xt∗ ,U↓], mt∗,t ∈ [L↑,Xt∗ ∧ Xt] or
Mt∗,t ∈ [Xt∗ ∨ Xt,U

↓], respectively.
The probability for each of the events in Table 3 can be derived via functions β(·; ·) and ρ(·; ·)

defined in (4.8) and (4.9), respectively. Recall that we are conditioning upon Is,t and Xt∗ , so we
work as follows:

P[E = i|Is,t ,Xt∗] = P[E = i|m ∈ [L↓,L↑],M ∈ [U↓,U↑],Xs,Xt∗ ,Xt]

= P[E = i,m ∈ [L↓,L↑],M ∈ [U↓,U↑]|Xs,Xt∗ ,Xt]
P[m ∈ [L↓,L↑],M ∈ [U↓,U↑]|Xs,Xt∗ ,Xt]

= P[E = i|Xs,Xt∗ ,Xt]
ρ(L↓,L↑,U↓,U↑;q, r, x,w,y)

.

Now, conditionally on {Xs,Xt∗ ,Xt } the law of the path factorises into two independent Brow-
nian bridges. Thus, recalling also the definition of β(·; ·) in (4.8), the probability P[E =

1238 A. Beskos, S. Peluchetti and G. Roberts

Table 4. The conditional probabilities for each of the events in Table 3

i P[E = i|Is,t ,Xt∗] × ρ(L↓,L↑,U↓,U↑;q, r, x,w,y)

1 β(L↓,L↑,U↓,U↑;q, x, y) × β(L↓,L↑,U↓,U↑; r,w,y)

2 β(L↓,L↑,U↓,U↑;q, x,w) × β(L↑,wy,U↓,U↑; r,w,y)

3 β(L↓,L↑,U↓,U↑;q, x,w) × β(L↓,L↑,wy,U↓; r,w,y)

4 β(L↓,L↑,U↓,U↑;q, x,w) × β(L↑,wy,wy,U↓; r,w,y)

5 β(L↑,wx,U↓,U↑;q, x,w) × β(L↓,L↑,U↓,U↑; r,w,y)

6 β(L↓,L↑,U↓,U↑;q, x,w) × β(L↓,L↑,U↓,U↑; r,w,y)

7 β(L↑,wx,U↓,U↑;q, x,w) × β(L↓,L↑,wy,U↓; r,w,y)

8 β(L↓,L↑,wx,U↓;q, x,w) × β(L↑,wy,U↓,U↑; r,w,y)

9 β(L↑,wx,wx,U↓;q, x,w) × β(L↓,L↑,U↓,U↑; r,w,y)

i|Xs,Xt∗ ,Xt] in the numerator above can be written as a product of two β(·; ·) functions.
The analytical calculation of the numerator, or equivalently of the product P[E = i|Is,t ,Xt∗] ×
ρ(L↓,L↑,U↓,U↑;q, r, x,w,y), is given in Table 4 where, to simplify the presentation, we have
set:

wx = x ∧ w, wx = x ∨ w, wy = w ∧ y, wy = w ∨ y.

The method to simulate the discrete random variable E could follow the alternating series
approach of Section 4.2. Analytically, consider the cumulative probability values pi = P[E ≤
i|Is,t ,Xt∗]. A simple inverse cdf sampling method requires finding the index inf{i ≥ 1 :R <

pi} for a R ∼ Un[0,1]. Note now that the pi ’s can be bounded above and below by monotone
converging sequences as in (4.10), thus each comparison {R < pi} can be carried out via the
alternating series approach of Section 4.2 without any need for approximations.

5.3. Remaining sampling procedures

A sampling algorithm is required for the refinement of the uncertainty over the extrema of a
Brownian bridge. As described in Section 2.1, given the current intersection layer information
Is,t and in particular the fact that Ms,t ∈ [L↓,L↑], the algorithm will need to decide whether the
maximum Ms,t lies in [U↓,U∗] or in [U∗,U↑], for U∗ = (U↓ +U↑)/2. Recalling the definition
of β(·; ·) from (4.8), it is easy to check that the ratio:

β(L↓,L↑,U∗,U↑; l, x, y)

β(L↓,L↑,U↓,U↑; l, x, y)

provides precisely the probability of the event {Ms,t ∈ [U∗,U↑]|Is,t }. Thus, we can again use the
alternating sequence construction of Section 4.2 to simulate, without approximation, the binary
variable IMs,t∈[U∗,U↑]. The same approach can be followed for refining the allowed range for the
minimum ms,t .

ε-Strong simulation of the Brownian path 1239

We should also give some details over the initialization of the layers U0,1 and L0,1 at the
first step of the ε-strong algorithm in Table 2 given X0 and X1. (Note that sometimes, as in the
example applications that we consider in the following section, this initialization steps might not
even be necessary, as the problem at hand provides a natural definition of U0,1 and L0,1.) One
way to proceed is by specifying increasing sequences {ai}i≥0, {bi}i≥0, with a0 = b0 = 0, growing
to ∞ and a bivariate index I such that:

{I = (i, j)} = {x̄ − ai < m ≤ x̄ − ai−1, ȳ + bj−1 < M ≤ ȳ + bj },
where x̄ = x ∧ y, ȳ = x ∨ y. We can easily identify the probability distribution of I under the
Brownian bridge dynamics since:

W
(1,x,y)[I = (i, j)] = β(x̄ − ai, x̄ − ai−1, ȳ + bj−1, ȳ + bj ;1, x, y).

Thus, we can work as in the case of the simulation of the discrete variable E in Section 5.2:
assuming Ĩ = 1,2, . . . is some chosen ordering of the states of I , an inverse cdf method would
required finding inf{i ≥ 1 :R < P[I ≤ i]} for R ∼ Un[0,1], and approximations at the compari-
son between R and P[I ≤ i] can be avoided via the alternating series approach. In practice, one
could select some big enough values for the first couple of elements of the sequences {ai} and
{bi} so that almost all probability mass is concentrated on {I = (i, j)} for i, j ≤ 2, and not a lot
of computational resources are spent on this step.

6. Application: Unbiased estimation of path expectations

The information provided by the ε-strong algorithm can be exploited to deliver unbiased es-
timators for path expectations arising in applications, avoiding discretization errors character-
ising standard approaches. We emphasize that we mean to sketch here only a potential di-
rection for application of the algorithm. Analytically, consider a nonnegative path functional
F :C([0,1],R) �→ R

+ and the expectation: E[F(X)], X being a Brownian motion on [0,1]. One
can easily check, by integrating out E, that:

IF(X)>E · eE, E ∼ Exp(1), (6.1)

with E being independent of X, is an unbiased estimator of E[F(X)]. The ε-strong algorithm
could be utilised here to unbiasedly obtain the value of the binary variable IF(X)>E in finite
computations. We can easily find the second moment of the unbiased estimator in (6.1):

E
[
IF(X)>E · e2E

] = E
[
eF(X)

] − 1. (6.2)

We describe for a moment in more detail the identification of IF(X)>U via the ε-strong algorithm.
Utilising the lower and upper convergent processes X↓(n), X↑(n) in (3.1) one could in many
cases analytically identify quantities F

↓
n , F

↑
n (realisable with finite computations) such that:

F↓
n ≤ F

↓
n+1 ≤ F(X) ≤ F

↑
n+1 ≤ F↑

n ;
F↑

n − F↓
n → 0.

1240 A. Beskos, S. Peluchetti and G. Roberts

Given enough iterations, there will be agreement; for the a.s. finite random instance:

κ = inf{n ≥ 0: I
F

↓
n >E

= I
F

↑
n >E

} (6.3)

we will have

IF(X)>E = I
F

↓
κ >E

. (6.4)

Thus, combining (6.1) with (6.4), we have developed an unbiased estimator of a path expectation,
involving finite computations. Certainly, the numerical efficiency of such an estimation will rely
heavily on the stochastic properties of κ and the cost of generating F

↓
n , F

↑
n , and of course the

variance of the estimator.
The particular derivation of the above unbiased estimator of the path expectation is by no

means restrictive; one can generate unbiased estimators using distributions other than the expo-
nential. Consider the following scenario. We can generate some preliminary bounds F

↓
n0 , F

↑
n0 up

to some fixed or random (depending on X) instance n0. Now, one can easily check (by consider-
ing the conditional expectation w.r.t. R|X) that:

IF(X)>RF↑
n0

+ IF(X)<RF↓
n0

; R ∼ Un[F↓
n0

,F↑
n0

], (6.5)

is also an unbiased estimator of E[F(X)]. We have empirically found the estimator (6.5) to be
much more robust than (6.1) in the numerical applications we present in the sequel. This is not
accidental: for instance, considering a random n0 such that F

↑
n0 −F

↓
n0 < C, for a constant C > 0,

we get that the second moment of the estimator (6.5) will be:

E
[
IF(X)>R(F↑

n0
)2 + IF(X)<R(F↓

n0
)2]

= E[F(X)(F↑
n0

+ F↓
n0

)] − E[F↑
n0

F↓
n0

] ≤ E[F 2(X)] + CE[F(X)]
which has now a quadratic structure – compare this with (6.2). In general, increasing n0 adds to
the computational cost per sample, but decreases the variance. We have empirically found that
moderate values of n0 deliver significantly better estimates than (6.1) and will be using such an
approach for our numerical examples in the sequel.

6.1. Numerical illustrations

We will apply the ε-strong algorithm to unbiasedly estimate some option prices arising in finance.
In particular, option prices are expressed as expectations:

E[F(S)]
of a functional F(·) of the path process S = {St } modelling the underlying asset. We will consider
some double-barrier options corresponding the expectations of the functionals:

Fa(S) = e−rT (supSt − KS)+ILS<infSt<supSt<US
; (6.6)

ε-Strong simulation of the Brownian path 1241

Fb(S) = e−rT

(
1

T

∫ T

0
St dt − KS

)+
ILS<infSt<supSt<US

; (6.7)

Fc(S) = e−rT (supSt − KS)+ILS<infSt e−rt<supSt e−rt<US
(6.8)

(where for x ∈ R, x+ := x ∨0) for underlying asset S = {St ; t ∈ [0, T]} modelled via a geometric
Brownian motion (we consider a Black and Scholes framework) determined as:

logSt = logS0 +
(

r − σ 2

2

)
t + σWt (6.9)

for constants r (interest rate), σ > 0 (volatility) and a Brownian motion {Wt }. Also, T above
is the maturity time, KS the strike price and LS , US the lower and upper barriers respectively;
suprema and infima are considered over the time period [0, T]. Note that E[Fb(S)] corresponds
to the price of the Asian option, see, for example, [21]. The process St is an 1–1 transformation of
a Brownian motion with drift. In particular, we can rewrite the functionals (6.6)–(6.8) as follows:

Fa(X) = e−rT (eσ supXt − KS)+IL<infXt<supXt<U ; (6.10)

Fb(X) = e−rT

(
1

T

∫ T

0
eσXt dt − KS

)+
IL<infXt<supXt<U ; (6.11)

Fc(X) = e−rT
(
eσ sup((r/σ)t+Xt) − KS

)+IL<infXt<supXt<U , (6.12)

for L = log(LS)/σ , U = log(US)/σ , and:

Case Fa,Fb : Xt = log(S0)/σ +
(

r

σ
− σ

2

)
t + Wt ;

Case Fc : Xt = log(S0)/σ − σ

2
t + Wt.

Conditionally on its ending point, the dynamics of the drifted Brownian motion do not depend
on the value of the drift and coincide with those of a simple Brownian bridge; this is a simple
by-product of the Girsanov theorem, see, for example, [15]. Thus, the ε-strong algorithm can
now deliver convergent, lower and upper dominating processes for X.

The choices of functionals in (6.6)–(6.8) is not accidental: some generic characteristics of the
structure of each functional (relevant also for other applications) will effect the set-up of the
ε-strong algorithm and its efficiency; we will say more on this in the sequel.

For all three examples, our general methodology is as follows: we begin by sampling XT

and, then, the indicator variable IL<infXt<supXt<U ; if the latter is 0 the sample for our unbi-
ased estimator is simply 0, otherwise we proceed with applying the methods of the ε-strong
algorithm by initializing the first intersection layer as I0,T = {X0,XT , U0,T , L0,T } for intervals
U0,T = [X0 ∨ XT ,U] and L0,T = [L,X0 ∧ XT]. In some cases we might not need all of the
machinery of the ε-strong algorithm to construct the sequences F

↓
n , F

↑
n enveloping F(X), with

direct implications on the efficiency of the algorithm, as we explain analytically below.

1242 A. Beskos, S. Peluchetti and G. Roberts

Fa-example: Only refinement

Here, we need information only on the marginal variable supXt (and not the whole of the con-
tinuous path on [0, T]) to develop an alternating series for Fa(X). Thus, it suffices to apply a
reduced version of the complete ε-strong algorithm in Table 2 where we only repeatedly refine
the initial intersection layer I0,T (in particular, we only refine the layer for the maximum) as
described in Section 2.1 (and never bisect it) to construct F

↓
n , F

↑
n . In particular, having defined:

φ(x) = e−rT (eσx − KS)+

knowing that after n refinements the allowed range for supXt is [U↓
n ,U

↑
n] (with initial position

[U↓
0 ,U

↑
0] = [X0 ∨ XT ,U]) we set F

↓
n = φ(U

↓
n), F

↑
n = φ(U

↑
n).

Fb-example: Refinement and bisection

The complete machinery of the ε-strong algorithm in Table 2 is required here as we need to bound
a path integral. Recall that the nth step of the algorithm provides the piecewise constant paths
X

↓
t (n), X

↑
t (n) enveloping X defined in (3.1). We now set F

↓
n = Fb(X

↓(n)), F
↑
n = Fb(X

↑(n)).

Fc-example: Selective refinement and bisection

We will now only need to bisect a selection of intersection layers as we will be allowed to
delete intersection layers that cannot definitely contain sup(r

σ
t + Xt) during the execution of the

ε-strong algorithm. In particular, assuming the current collection (after n − 1 steps) of stored
intersection layers Isi ,ti , with si < ti ≤ si+1, containing information about the path X, and deter-
mining the allowed range for sup(r

σ
t + Xt) :

[U↓
n−1,U

↑
n−1] =

[
sup

i

{
U

↓
si ,ti

+ r

σ
si

}
, sup

i

{
U

↑
si ,ti

+ r

σ
ti

}]
(6.13)

we proceed to the nth step where: (i) we bisect and refine all stored intersection layers Isi ,ti ,

(ii) calculate the running bounds [U↓
n ,U

↑
n] by taking the suprema as in (6.13) but now over all

newly obtained intersection layers, (iii) delete the obtained intersection layers Is,t for which
U

↑
s,t < U

↓
n (as they cannot offer extra information on the whereabouts of sup(r

σ
t + Xt) given

that we already know that the latter is within [U↓
n ,U

↑
n]) and store only the remaining ones for the

next iteration. At each step, we set F
↓
n = φ(U

↓
n), F

↑
n = φ(U

↑
n) with φ as defined above.

Numerics

We have run the ε-strong algorithm for the above scenaria. To give an idea of its computing cost,
we compare its execution times with those of the standard (Euler) approximation method that
replaces the continuous-time path {St ; t ∈ [0, T]} with its discretised approximation {Sti }li=0, for
ti = ti−1 + δ, with step-size δ = T/l; then, continuous-time maxima and integrals appearing in
the functionals (6.6)–(6.8) are replaced with their obvious approximations based on the discrete-
time vector {Sti }. We run our simulations under the parameter selections:

r = 0.05, σ = 0.2, S0 = 1, K = 1, T = 1, U = 1.25, L = 0.75.

ε-Strong simulation of the Brownian path 1243

Table 5. Simulation results from the application of the Euler approximation and the ε-strong algorithm for
the estimation of the option price in E[Fa(S)] in (6.6). The results in the table correspond to a sample of
100 000 estimates. δ is the discretisation increment of the Euler method, and n0 is the number of preliminary
steps for the ε-strong algorithm before the simulation of the uniform random variable (see (6.5))

Euler approximation

δ Time (secs) 95% Conf. Int.

1/10 0.4 [638,647] × 10−4

1/20 0.8 [657,667] × 10−4

1/40 1.5 [669,679] × 10−4

1/80 2.9 [674,683] × 10−4

1/160 5.8 [680,689] × 10−4

ε-strong

n0 Time (secs) 95% Conf. Int.

2 1.1 [683,693] × 10−4

Tables 5–7 show results from the simulation study. For each different algorithm, we show its
execution time (all algorithms were coded in C++) and a 95% confidence interval for the mean
of the realised estimators to give an idea about the variance of the estimates and their bias (for the
case of the Euler approximation, as the ε-strong algorithm is unbiased). The results in Tables 5,
7 are obtained via 100 000 independent realizations of the estimators, whereas those in Table 6
via 10 000 independent realizations.

Looking at the three tables, we can make some comments; we focus more here on giving a
simple picture to the reader than being mathematically precise. The cost per sample of the ε-
strong algorithm corresponds to that of the Euler approximation with δ ≈ 1/40, δ ≈ 4−1 · 10−4

and δ ≈ 10−3 for the cases of E[Fa(S)], E[Fb(S)] and E[Fc(S)] respectively. Taking also the
standard deviation under consideration (but not the bias) from the column with the confidence
intervals, for the case of E[Fb(S)] we would need about 25 times more samples than then Euler
approximation to attain the same range for the confidence interval; thus, ignoring the bias for
the Euler approach, one could say that the overall cost of the ε-strong algorithm for the case of
E[Fb(S)] corresponds to that of the Euler method with step-size δ′ ≈ (4 · 25)−110−4 = 10−6.

However, a general remark here is that the ε-strong algorithm returns unbiased estimators of
the relevant path expectations, and for the applications we have considered above it can provide

Table 6. Similar results as for Table 5, but now for the case of the Asian option E[Fb(S)] in (6.7) – with
the difference that here the results correspond to a sample of 10 000 estimates

Euler approximation

δ Time (secs) 95% Conf. Int.

10−1 0.1 [157,169] × 10−4

10−2 0.4 [120,130] × 10−4

10−3 3.5 [106,116] × 10−4

10−4 34.3 [107,116] × 10−4

10−5 344.8 [102,112] × 10−4

ε-strong

n0 Time (secs) 95% Conf. Int.

2 115.9 [81,128] × 10−4

1244 A. Beskos, S. Peluchetti and G. Roberts

Table 7. Similar results as for Table 5, but now for the case of E[Fc(S)] in (6.7)

Euler approximation

δ Time (secs) 95% Conf. Int.

1/10 0.5 [797,807] × 10−4

1/20 0.9 [822,832] × 10−4

1/40 1.7 [833,844] × 10−4

1/80 3.3 [835,846] × 10−4

1/160 6.6 [846,858] × 10−4

ε-strong

n0 Time (secs) 95% Conf. Int.

2 178.0 [842,854] × 10−4

accurate, unbiased estimates in reasonable amounts of time. Even when ignoring the bias of
the Euler approach, for the cases of E[Fa(S)] and E[Fc(S)] the cost of the ε-strong algorithm
already seems to be on a par with that of the Euler method for relatively non-conservative choices
of discretisation step δ. (We should also stress that there is definitely great space for improving
the efficiency of the used computing code for the ε-strong algorithm.)

6.2. Remark on number of bisections for ε-strong algorithm

We make a comment here on the number of required iterations before the value of the binary
variable IF(X)>R in (6.5) is decided. Proposition 3.2 will be of relevance in this context. Recall
that κ in (6.3) denotes the number of steps to decide about IF(X)>R . The cost of κ iterations of
the ε-strong algorithm (when its full machinery is required) is proportional to K = 2κ . In the
context of (6.5), we find:

P[K > 2n] = E
[
P[κ > n|X]] = E

[
F

↑
n − F

↓
n

F
↑
n0 − F

↓
n0

]
.

Proposition 3.2 states that |X↑(n) − X↓(n)|L1 = O(2−n/2). The same rate of convergence will

many times also be true for E[F↑
n − F

↓
n]: this will be the case for instance when F(X) =

f (
∫ 1

0 g(Xs)ds) under general assumptions on f,g (e.g., if |f (y) − f (x)| ≤ M(x,y)|y − x|,
for a polynomial M , and the same for g; a proof is not essential here). For such a rate (and since
the user-specified F

↑
n0 − F

↓
n0 should be easily controlled), we will get:

P[K > 2n] = O(2−n/2)

giving the infinite expectation E[K] = ∞.
In a given application though, one could fix a big enough maximum number nmax, stop the

bisections if that number has been reached and report, say, (F
↑
n0 + F

↓
n0)/2 as the realization of

the estimator if that happens, without practical effect on the results. To explain this, note that we
know, from (6.5), that the actual unbiased value is either F

↑
n0 or F

↓
n0 , so we know precisely that the

absolute bias from the single realization when nmax was reached cannot be greater than (F
↑
n0 −

ε-Strong simulation of the Brownian path 1245

F
↓
n0)/2. In total, when averaging over a number of realizations we can have a precise arithmetic

bound on the absolute value of the bias of the reported average; if nmax is ‘big enough’ so that
we reach nmax only in a small proportion of realizations the (analytically known) bias could be
of such a magnitude that the reported results will be precisely the same as when implementing
the regular algorithm without nmax for a reasonably selected degree of accuracy. For example, in
the case of the estimation of E[Fc(S)] in Table 6, we have in fact used nmax = 10 and found that
the introduced bias was smaller than 3 × 10−5 so avoiding it would not make any difference or
whatsoever at the results reported right now in Table 6.

Note that such an issue did not arise in the cases of E[Fa(S)] and E[Fc(S)] when a reduced
version of the ε-strong algorithm was applied.

7. Further directions for applications

We sketch here some other potential applications of the ε-strong algorithm.
In the case of barrier options, sometimes one needs to evaluate expectations involving a Brow-

nian hitting time (see, e.g., [19]). Given a nonconstant boundary H : [0,∞) → R, such that
S0 < H0, consider:

τ
H

= inf{t ≥ 0: St ≥ Ht },
with S = {St } being the geometric BM in (6.9). The price of a related derivative will be E[F(S)]
where now:

F(S) = ψ(ST) · Iτ
H

<T

for some pay-off function ψ(·). This estimator requires the evaluation of Iτ
H

<T for a realised
path. Such an evaluation is possible under our simulation methods, since for a given bridge, say
from Ss to St with s < t < T , we can decide if its maximum is within [H↓

s,t ,H
↑
s,t] or not (thus,

deciding also whether there is a chance that the bridge hits H on [s, t] or not), with

H
↓
s,t = inf{Hu;u ∈ [s, t]}, H

↑
s,t = sup{Hu;u ∈ [s, t]},

using the refinement procedure described in Section 2.1 (more particularly, a slightly modified
version of it, where instead of halving the allowed variation for the maximum, it decides if it
lies in a given interval or not). Computational effort will then only be spent on the bridges for
which the maximum is indeed in [H↓

s,t ,H
↑
s,t], iteratively bisecting them until a definite decision

is reached about whether H has been hit.
Individual simulation techniques employed in the development of the ε-strong algorithm are

also of independent interest. For instance, we have exploited during the construction of the ε-
strong algorithm a monotonic property at the core of the Brownian structure; we can further use
this characteristic to develop original simulation techniques for Brownian distributions. One ap-
plication for instance could involve dynamics of Brownian motion restricted to stay in a bounded
domain. A Brownian motion with constant drift, restricted to remain in (−π/2,π/2), is known
(see [16]) to be described via the stochastic differential equation:

dXt = − tan(Xt)dt + dWt. (7.1)

1246 A. Beskos, S. Peluchetti and G. Roberts

Unbiased sampling methods for Xt are not (to the best of our knowledge) available; one has
to resort to Euler, or other, approximations. We can, however, now construct an exact sampling
algorithm based on the methods so far described. Girsanov’s theorem provides the following
expression for the transition density of the Markov process (7.1):

p(y;x, t) := P[Xt ∈ dy|X0 = x]/dy
(7.2)

= cos(y)

cos(x)
γ (−π/2,π/2; t, x, y)p0(y;x, t), y ∈ (−π/2,π/2),

for the unconditional Brownian transition density:

p0(y;x, t) = (2πt)−1/2e−(y−x)2/(2t).

Density (7.2) has a structure reminiscent of that of the density of the middle point in Proposi-
tion 5.1: ideas employed there, are also relevant now. Analytically, for x not close to the bound-
aries, one can simply carry out a rejection sampler with proposals from p0. Then, the accep-
tance/rejection decision will be based on comparing a real number with γ (−π/2,π/2; t, x, y)

following the pattern described in Section 4.2. As x approaches the boundaries, this algorithm
becomes inefficient. But, similarly to the method for the simulation of the density in Proposi-
tion 5.1, partial sums from the infinite series-expression for γ (−π/2,π/2; t, x, y) can be incor-
porated in the proposal to produce an efficient algorithm (Section 5.1 describes the algorithm for
the more complex density appearing there; here, we omit the details).

8. Conclusions

We have presented a contribution to sampling methods for Brownian dynamics: a new iterative
algorithm that envelopes the Brownian path, thus offering explicit information for all its aspects
(minimum, maximum, hitting times). Individual steps of the algorithm could be of independent
interest, yielding new sampling methods for distributions derived from Brownian motion dynam-
ics.

We should remark here on the generality of our scope. The ε-strong algorithm (or some of
its individual steps) can provide, more or less unchanged, unbiased Monte Carlo estimators in
separate estimation problems, for which quite an extensive amount of case-specific methods
have been investigated in the literature; for instance, one can refer to the long literature for the
applications we briefly described in Sections 6 and 7.

We have presented some applications and sketched some others towards illustrating the poten-
tial of our methods. Note that the infinite expectation issue remarked in Section 6.2 is a direct
consequence of the Brownian dynamics: the maximum of the Brownian path scales as �t1/2

on a small time interval [0,�t] (see, e.g., [18]). Thus, any enfolding processes will necessarily
converge not faster than O(�t1/2) (which is the order attained by the ε-strong algorithm). This
relatively slow convergence of the enfolding processes also explains the increased cost for when
estimating E[Fb(S)] in Section 6.1. We envisage that it might be possible to combine the iterative
process of the algorithm with a coupling step once the bounding processes are relatively close to
each other to overcome this long anticipation (in the spirit of [8,20]). We hope to formalise this
idea in future research.

ε-Strong simulation of the Brownian path 1247

Acknowledgements

We thank the referees for many valuable comments and suggestions that have greatly improved
the content of the paper.

References

[1] Anderson, T.W. (1960). A modification of the sequential probability ratio test to reduce the sample
size. Ann. Math. Statist. 31 165–197. MR0116441

[2] Bachelier, L. (1900). Théorie de la spéculation. Ann. Sci. École Norm. Sup. (3) 17 21–86. MR1508978
[3] Bertoin, J., Pitman, J. and Ruiz de Chavez, J. (1999). Constructions of a Brownian path with a given

minimum. Electron. Commun. Probab. 4 31–37 (electronic). MR1703609
[4] Beskos, A., Papaspiliopoulos, O. and Roberts, G.O. (2006). Retrospective exact simulation of diffu-

sion sample paths with applications. Bernoulli 12 1077–1098. MR2274855
[5] Beskos, A., Papaspiliopoulos, O. and Roberts, G.O. (2008). A factorisation of diffusion measure and

finite sample path constructions. Methodol. Comput. Appl. Probab. 10 85–104. MR2394037
[6] Beskos, A., Papaspiliopoulos, O., Roberts, G.O. and Fearnhead, P. (2006). Exact and computationally

efficient likelihood-based estimation for discretely observed diffusion processes. J. R. Stat. Soc. Ser. B
Stat. Methodol. 68 333–382. With discussions and a reply by the authors. MR2278331

[7] Beskos, A. and Roberts, G.O. (2005). Exact simulation of diffusions. Ann. Appl. Probab. 15 2422–
2444. MR2187299

[8] Beskos, A. and Roberts, G.O. (2005). One-shop CFTP; application to a class of truncated Gaussian
densities. Methodol. Comput. Appl. Probab. 7 407–437. MR2235153

[9] Casella, B. and Roberts, G.O. (2008). Exact Monte Carlo simulation of killed diffusions. Adv. in Appl.
Probab. 40 273–291. MR2411824

[10] Devroye, L. (1986). Nonuniform Random Variate Generation. New York: Springer. MR0836973
[11] Doob, J.L. (1949). Heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Statist. 20

393–403. MR0030732
[12] Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Applications of Mathematics

(New York) 53. New York: Springer. MR1999614
[13] Jourdain, B. and Sbai, M. (2007). Exact retrospective Monte Carlo computation of arithmetic average

Asian options. Monte Carlo Methods Appl. 13 135–171. MR2338086
[14] Karatzas, I. and Shreve, S.E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate

Texts in Mathematics 113. New York: Springer. MR1121940
[15] Øksendal, B. (2003). Stochastic Differential Equations, 6th ed. Berlin: Springer. MR2001996
[16] Pinsky, R.G. (1985). On the convergence of diffusion processes conditioned to remain in a bounded

region for large time to limiting positive recurrent diffusion processes. Ann. Probab. 13 363–378.
MR0781410

[17] Pötzelberger, K. and Wang, L. (2001). Boundary crossing probability for Brownian motion. J. Appl.
Probab. 38 152–164. MR1816120

[18] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Berlin:
Springer. MR1725357

[19] Roberts, G. and Shortland, C. (1997). Pricing barrier options with time-dependent coefficients. Math.
Finance 7 83–93.

[20] Roberts, G.O. and Rosenthal, J.S. (2002). One-shot coupling for certain stochastic recursive se-
quences. Stochastic Process. Appl. 99 195–208. MR1901153

http://www.ams.org/mathscinet-getitem?mr=0116441
http://www.ams.org/mathscinet-getitem?mr=1508978
http://www.ams.org/mathscinet-getitem?mr=1703609
http://www.ams.org/mathscinet-getitem?mr=2274855
http://www.ams.org/mathscinet-getitem?mr=2394037
http://www.ams.org/mathscinet-getitem?mr=2278331
http://www.ams.org/mathscinet-getitem?mr=2187299
http://www.ams.org/mathscinet-getitem?mr=2235153
http://www.ams.org/mathscinet-getitem?mr=2411824
http://www.ams.org/mathscinet-getitem?mr=0836973
http://www.ams.org/mathscinet-getitem?mr=0030732
http://www.ams.org/mathscinet-getitem?mr=1999614
http://www.ams.org/mathscinet-getitem?mr=2338086
http://www.ams.org/mathscinet-getitem?mr=1121940
http://www.ams.org/mathscinet-getitem?mr=2001996
http://www.ams.org/mathscinet-getitem?mr=0781410
http://www.ams.org/mathscinet-getitem?mr=1816120
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=1901153

1248 A. Beskos, S. Peluchetti and G. Roberts

[21] Rogers, L.C.G. and Shi, Z. (1995). The value of an Asian option. J. Appl. Probab. 32 1077–1088.
MR1363350

Received November 2009 and revised January 2011

http://www.ams.org/mathscinet-getitem?mr=1363350

	Introduction
	Intersection layer and operations
	Refining the information Is,t
	Bisecting the information Is,t

	epsilon-Strong simulation of Brownian path
	epsilon-Strong algorithm
	Convergence properties

	The zeta-function
	zeta-Derived events
	Simulation of zeta-derived events

	Distributions and their simulation
	Bisection of Is,t: Sampling the middle point Xt*
	Bisection of Is,t: Updating the Layers given Xt*
	Remaining sampling procedures

	Application: Unbiased estimation of path expectations
	Numerical illustrations
	Fa-example: Only refinement
	Fb-example: Refinement and bisection
	Fc-example: Selective refinement and bisection
	Numerics

	Remark on number of bisections for epsilon-strong algorithm

	Further directions for applications
	Conclusions
	Acknowledgements
	References

