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Using fðRÞ gravity in the Palatini formularism, the metric for a charged spherically symmetric black

hole is derived, taking the Ricci scalar curvature to be constant. The generalized uncertainty principle is

then used to calculate the temperature of the resulting black hole; through this the entropy is found

correcting the Bekenstein-Hawking entropy in this case. Using the entropy the tunneling probability and

heat capacity are calculated up to the order of the Planck length, which produces an extra factor that

becomes important as black holes become small, such as in the case of mini-black holes.
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I. INTRODUCTION

General relativity makes remarkable predictions on the
solar scale; however, when the galactic and further still the
cosmological scale are considered, some problems arise.
Indeed in 1998 the observation was made that the Universe
is in a phase of accelerating expansion [1] which would
require the existence of an exotic form of matter, namely,
dark energy. It may be that on the cosmological scale new
corrections are required. A particular class of alternative
theories of gravity that has attracted much attention re-
cently is that of fðRÞ gravity, in which the Lagrangian is
generalized fromR to a function thereof. In particular it has
been found that the acceleration may be a result of an
additional R�1 term in the Lagrangian of the Einstein-
Hilbert action [2].

As in general relativity the field equations are a result of
varying the action for both the gravitational field and the
matter field. However, in this class of theories there are
three ways of proceeding on this front. In general relativity
the action is varied with respect to the metric tensor;
following the same procedure in the fðRÞ model is the first
formularism. This paper will focus on the second formu-
larism, called the Palatini formularism, in which the metric
tensor and the connection are both considered as indepen-
dent quantities, and the action is varied with respect to both
of them independently. This is done because the field
equation would otherwise become unsolvable using tradi-
tional methods in the nontrivial cases. It is important to
note that the matter fields still remain dependent on the
metric tensor in this case and do not have a connection
element to them. The last formularism is the metric-affine
formularism, where the metric tensor and the affine con-
nection are considered as geometrically separate entities
and so the matter Lagrangian will depend on the affine
connection in this case. A feature of the resulting field
equations in this case is that they reduce to the Einstein

field equations of general relativity with a cosmological
constant as would be expected for any generalization of a
theory.
It has been shown that fðRÞ theories and Einstein’s

general theory of relativity are equivalent if extra matter
fields are incorporated in the Einstein theory [3]. This is
achieved by means of making the so-called Einstein con-
formal transformation ðh��;�Þ where � is an auxiliary

scalar field and h�� is related to the original metric tensor

through the conformal transformation g�� ! h�� ¼
f0ðRÞg��, where h�� will be put in place of the previous

metric tensor g�� in all cases thereafter. However, by

generalizing the original theory, the equations appear in a
simpler form than otherwise.
Since the original derivation by Hawking [4] of the

radiation produced by black holes, there have been numer-
ous extensions and refinements, Refs. [5–7], just to men-
tion a few. However, the underlying method is the same:
that by starting just behind the horizon, particles may be
emitted by means of the fundamental uncertainty in posi-
tion that results from the quantum mechanical nature of
reality. In this way particles may be excited through the
vacuum by the horizon, which in turn tunnel through the
horizon toward infinity in classically forbidden trajecto-
ries. The particles are in effect traveling back in time, since
the horizon is locally to the future of the external branch,
which is where the particles escape to. The sum of the
particles energy must vanish so that energy conservation is
preserved in total; thus when a particle escapes to infinity
the remaining black hole will lose mass due to the negative
energy of the remaining group of particles which were
excited out of the vacuum. Now the action for the trajecto-
ries of infalling particles will be real since such paths are
allowed classically; however, the reverse trajectory, that of
particles tunneling through the horizon, will be complex.
In essence the probability of tunneling is based on the
imaginary path of this action, or more precisely the proba-
bility is an exponential decay of the imaginary part of the
trajectory action. There are in general two ways of

*jacksons.levi@gmail.com
†kris.za@gmail.com

PHYSICAL REVIEW D 83, 043008 (2011)

1550-7998=2011=83(4)=043008(8) 043008-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.043008


calculating the imaginary part of the action: the Parikh-
Wilczek radial null geodesic method [8] and the Hamilton-
Jacobi method [9]. These methods are, however, still
confined to the semiclassical regime, leaving the quantum
gravity problem open.

It may only be a few years until the production of
mini-black holes becomes possible with the LHC at
CERN or in other particle accelerators being proposed.
Thus it is imperative that the effects of quantum gravity
be understood as the black hole mass reduces to Planck
dimensions. In particular the significance of gravity in
the uncertainty principle is how it will enter into the
radiation process. In this way even without a full de-
scription of quantum gravity some features may be cal-
culated such as the temperature and eventual entropy of
the black hole. It is expected that all the forces including
gravity will unify at the Planck scale, which would make
this the minimum length scale of the universe; at this
scale gravity becomes as important as electroweak and
strong interactions.

In this work we consider the Palatini formularism of
gravity and derive the metric for a spherically symmetric
charged black hole. In general relativity black holes are
classified by a three-parameter family, namely, ðM;Q; aÞ or
mass, charge and the rotation parameter. In the following
analysis a fourth parameter is considered that of a non-
vanishing Ricci scalar curvature, which is taken to be
constant since otherwise the calculations would be too
complex to solve analytically. This is however a cosmo-
logical parameter common to the metric describing the
whole Universe. We show that the quantum tunneling
process is modified when the effects of quantum gravity
are taken into account, with the Planck scale as the funda-
mental scale of nature. We obtain the radiation tunneling
probability of this kind of black hole by making a correc-
tion to the Hawking-Bekenstein entropy using the gener-
alized uncertainty principle (GUP), in which gravitational
effects are included.

The paper generalizes some of the results offered by
Ref. [10] at a higher order expansion, which does affect the
final results, as well as introducing some new quantities
that gain importance over the lifetime of the black hole.
Furthermore, the ultimate fate of the black hole is explored
as well as the heat capacity during all the phases of its
lifetime.

The paper uses the signature ð�;þ;þ;þÞ, and repeated
indices are to be summed. Units where c ¼ 1 ¼ G ¼ ℏ ¼
kB are used unless explicitly stated otherwise. The paper is
organized as follows. In Sec. II the Palatini formularism of
fðRÞ gravity is introduced. In Sec. III the metric for a
spherically symmetric charged black hole is derived using
the Palatini formularism and a constant scalar curvature. In
Sec. IV the temperature and entropy are calculated fol-
lowed by the tunneling probability as well as the heat
capacity, and finally in Sec. V we summarize our results.

II. fðRÞ GRAVITY

We start with the action [11]

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

Rþ Smðg��; c mÞ; (1)

where �2 ¼ 8�, g is the determinant of the metric g��

and Sm is a matter action that depends on the curvature of
g�� and the matter fields c m. The Ricci scalar R ¼
g��R�� ¼ g��R�

��� is all that is needed in the action to

produce standard general relativity. Indeed by varying the
action Eq. (1) with respect to g��, we find the Einstein

field equations

R�� � 1

2
Rg�� ¼ �2T��; (2)

where T�� ¼ � 2ffiffiffiffiffi�g
p �Sm

�g�� .

It was just a few years after the establishment of
Einstein’s general theory of relativity that modifications
were being proposed [12] and by the people that had
previously provided evidence for relativity such as
Eddington who had measured the light bending angle
during a solar eclipse in 1919. The generalization of
Einstein’s relativity occurs by making the replacement of
R with fðRÞ. It is difficult to find a more general theory,
fðR; R��R��; R

����R����; . . .Þ, due to fatal Ostrogradski

instabilities that may take hold [13] in such cases, not that
there are no such theories [14]. The condition for stability
is given by f00 > 0, where primes denote differentiation
with respect to R. Consider the complete action in Palatini
gravity [15]

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ Smatterðg��; c mÞ; (3)

where the symbols have the same meaning as in Eq. (1).
For clarity when dealing with Palatini gravity it is common
to replace R�� with R��. Varying the action with respect

to g�� and ��
��, respectively, gives the field equation

FðRÞR�� � fðRÞ
2

g�� ¼ �2T��; (4)

�r �ð ffiffiffiffiffiffiffi�g
p

f0ðRÞg��Þ ¼ 0; (5)

where FðRÞ ¼ f0ðRÞ ¼ @f=@R and �r is the covariant
derivative defined with the independent connection ��

��.

Taking the trace of Eq. (4) yields

FðRÞR� 2fðRÞ ¼ �2T: (6)

This equation will be useful in the physical interpretation
of the field equations, and, in particular, in deriving the
metric.
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III. CHARGED BLACK HOLES
IN PALATINI GRAVITY

We consider a spherically symmetric vacuum solution in
the coordinate system ðt; r; 	; �Þ and of the form

ds2 ¼ �e2�ðt;rÞdt2 þ e2�ðt;rÞdr2 þ r2d�2
2; (7)

where

d�2
2 ¼ d	2 þ sin2	d�2 (8)

is the line element of the 2-sphere and the usual assumption
of vanishing charge is not made. As is well known, the
solution remains static [16] and furthermore by considering
two elements of the Ricci tensor it is found that� and� are
dependent upon each other. In particular, it turns out that

e2�ðrÞRrr þ e2�ðrÞRtt ¼ 0; (9)

which in turn implies that

�ðrÞ ¼ ��ðrÞ: (10)

As for the metric tensor, since vanishing charges is not
assumed, the electromagnetic stress-energy tensor will
have to be included, which is given by

T�� ¼ F�
F�

 � 1

4
g��F
�F


�; (11)

where F�� is the electromagnetic tensor constrained by the

Maxwell equations

r�F�� ¼ 0; r½�F��� ¼ 0: (12)

Using the metric ansatz and the electromagnetic stress-
energy tensor, the only nonvanishing elements of the
electromagnetic tensor are found to be

F10 ¼ �F01 ¼ ð4�Þ�1=2Qer
�2; (13)

F32 ¼ �F23 ¼ ð4�Þ�1=2Qm sin	 (14)

whereQm andQe are the total magnetic and electric charge,
respectively.
The curvature scalar is restricted to being a constant, i.e.

R ¼ R0, and

fðRÞjR¼R0
¼ b0 (15)

FðRÞjR¼R0
¼ b1: (16)

This will limit the generality of the obtained solution;
however, due to the complexity involved an analytic solu-
tion will be too difficult to find using traditional tech-
niques. This is still a considerable generalization since a
second constant of nature is proposed, namely, the defini-
tive of fðRÞ; this may also have cosmological consequen-
ces that are far different from general relativity [17,18].
Considering the (22)-Palatini field equation gives

b1ðe�2ð��Þ½rð�2�;rÞ1� þ 1Þ � 1

2
R0r

2

¼ �2

�
Q2

m

2r2ð4�Þ þ
Q2

e

2r2ð4�Þ
�
: (17)

Letting Q2 ¼ Q2
m þQ2

e gives a solution

e2� ¼ 1� Rs

r
þ Q2

b1r
2
� r2

R0

6b1
(18)

and by considering the limiting case of vanishing charge
and Ricci scalar, while letting FðRÞ ! 1, gives Rs ! 2M,
but otherwise this is just a constant.
The Kretschmann scalar is also given since it reveals the

curvature invariant of this metric and so the inherent distinc-
tions that arise. This scalar is defined byK ¼ R����R

����,

whereR���� is the Riemann tensor. Given the immensity of

the calculation that is required, this scalar turns out to be
remarkably simple, and, in particular, it is given by

K¼ 1

3b21r
8ðrð6b1ðRs�rÞþr3R0Þ�6Q2Þ2 ½2ð12Q

4r2ð9b21ð28r2�102rRsþ95R2
sÞþ3b1r

3R0ð32Rs�33rÞþ26r6R2
0Þ

�6Q2r3ð�36b31ð3r3�16r2Rsþ32rR2
s�21R3

sÞþ6b21r
3R0ð16r2�46rRsþ27R2

sÞþb1r
6R2

0ð72Rs�41rÞþ2r9R3
0Þ

þr4ð54b41ð8r4�20r3Rsþ30r2R2
s�32rR3

sþ15R4
sÞ�36b31r

3R0ð11r3�24r2Rsþ24rR2
s�9R3

sÞ
þ9b21r

6R2
0ð20r2�34rRsþ21R2

sÞþb1r
9R3

0ð24Rs�35rÞþ3r12R4
0Þ�216Q6rð�27b1rþ48b1Rsþ2r3R0Þ

þ2b1r
2cosec2ð	Þðrð6b1ðRs�rÞþr3R0Þ�6Q2Þ2ð3b1r2cosec2ð	Þ�6b1rRsþ6Q2þr4ð�R0ÞÞþ3888Q8Þ�; (19)

which is considerably different from the Kretschmann
scalar for a charged black hole with a nonzero cosmologi-
cal constant in standard Einstein-Hilbert gravity. This
arises because the above curvature invariant has two cos-
mological degrees of freedom, while the one considered
below has only one. In particular, the metric for the
Reissner Nordström black hole (Einstein-Hilbert charged
black hole) (see Fig. 1) is given in Ref. [19] by

ds2 ¼ �VðrÞdt2 þ dr2

VðrÞ þ r2d�2
2; (20)

where

VðrÞ ¼ 1� 2M

r
þQ2

r2
� 1

3
�r2; (21)

which results in a scalar invariant given by
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KGR ¼ 1

3r6ð6M� 3ðQ2 þ 1Þrþ r3�Þ2 ½4ð3r
6�2ð126M2 � 6Mð20Q2 þ 17Þrþ ð37Q4 þ 65Q2 þ 30Þr2Þ

� 9r3�ð�72M3 þ 12M2ð11Q2 þ 8Þr� 4Mð19Q4 þ 29Q2 þ 12Þr2 þ ðQ2 þ 1Þð16Q4 þ 23Q2 þ 11Þr3Þ
þ 27ð60M4 � 8M3ð11Q2 þ 8Þrþ 2M2ð29Q4 þ 40Q2 þ 15Þr2 � 2MðQ2 þ 1Þð10Q4 þ 11Q2 þ 5Þr3
þ ðQ2 þ 1Þ2ð3ðQ4 þQ2Þ þ 2Þr4Þ þ r9�3ð48M� ð38Q2 þ 35ÞrÞ þ rcosec2ð	Þð6M� 3ðQ2 þ 1Þrþ r3�Þ2
� ð�12Mþ 6Q2r� 2r3�þ 3rcosec2ð	ÞÞ þ 6r12�4Þ�: (22)

Finally we give a graphical comparison which shows
that this degree of freedom actually has a significant effect
on the background spacetime, as shown in Fig. 2 even for
small sample values.

A look at Fig. 2 shows that quantitative differences arise
where there are flat planes, signifying large differences
between the two metrics, and the fine structural differ-
ences, shown by the curved parts of the graph.
In the next section, for completeness, the case

of a falling observer will be considered for the metric
in Eq. (7).

A. The infalling observer

The metric in Eq. (7) contains two singularities which
implies that measurements cannot be made across such
bounds using classical observers since measurements in
this metric are made by an observer at infinity. However,
when a falling observer is considered, such branches of
spacetime become attainable. To derive such a metric,
tortoise coordinates are considered, first by defining a
new radial variable, r�, by

dr�

dr
¼ e�2�; (23)

FIG. 1 (color online). Top: The plot of the Kretschmann scalar
for the Reissner-Nordström black hole with a cosmological
constant in terms of the radius and the colatitude angle for
unit mass and with Q ¼ 0:8 and � ¼ 0:01. Bottom: The
Kretschmann scalar for the Palatini charged black hole with
again unit mass such that Q ¼ 0:8 and with R0 ¼ 0:01, b1 ¼
0:05, and Rs ¼ 3. (However, varying this final constant did not
make an appreciable difference between the two graphs.)

FIG. 2 (color online). A qualitative comparison between a
charged black hole in general relativity with a nonzero cosmo-
logical constant and a Palatini charged black hole with a nonzero
cosmological constant. The figure shows that on the small scale
there is a fine difference between the two metrics, and further-
more the flat planes show where significant differences arise.
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and then by considering a new time coordinate, which can
be interpreted as the new falling time coordinate

v ¼ t� ðr� r�Þ; (24)

where the positive (upper) transformation refers to an in-
going observer and the negative (lower) transformation
refers to the outgoing observer. Combining this transfor-
mation with Eq. (23) gives the final metric

ds2 ¼ �
�
1� Rs

r
þ Q2

b1r
2
� r2

R0

6b1

�
dv2

�
�
�1� Rs

r
þ Q2

b1r
2
� r2

R0

6b1

�
dr2

� 2

�
Rs

r
� Q2

b1r
2
þ r2

R0

6b1

�
dvdrþ r2d�2

2: (25)

This metric is significant because it does not contain the
singularities that the metric in Eq. (7) has; however, it
contains the cross term between the radial and the timelike
coordinate, meaning that the observer must be either
falling in or out over time.

IV. BLACK HOLE LIFETIMES

A. Entropy

Now that a charged solution to the Palatini formularism
has been found, we can move on to calculating the entropy
of this black hole. In particular, wewill employ some of the
calculation techniques used in Ref. [10], that is, we will use

the generalized uncertainty principle in lieu of the uncer-
tainty principle when deriving the Hawking temperature,
which will turn out to predict a different fate for black
holes. The radii of the horizons will first be derived. The
roots of

e2� ¼ 0 (26)

will give the radii of the inner and outer horizons.
However, there will also be two others roots from
Eq. (26), i.e. there will be four roots, which can be classi-
fied by

r1 > r2 > r3 > r4; (27)

where r1 will correspond to the cosmological horizon and
r4 will turn out to be negative and so not a physical
manifestation of the black hole and so not measurable by
observers at infinity. The negativity of r4 emerges from the
lack of cubic term in Eq. (26), and the cosmological
horizon emerges out of the fact that the Universe had a
beginning. Now the inner (or Cauchy) and outer horizons
will be represented by r� and rþ, respectively. The radii
that will represent the horizons given by Eq. (26) and
satisfying the condition given by Eq. (27) are given by

rþ ¼ �
ffiffiffiffi
Y

p
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12b1
R0

� Y þ 24Mb1

R0

ffiffiffiffi
Y

p
s

; (28)

r� ¼
ffiffiffiffi
Y

p
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12b1
R0

� Y � 24Mb1

R0

ffiffiffiffi
Y

p
s

; (29)

where

X ¼
0
@� 432b31

R3
0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
� 432b31

R3
0

� 2592b1Q
2

R0

þ 3888M2b21
R0

�
2 � 4

�
36b21
R2

0

� 72Q2

R0

�
3

vuut � 2592b1Q
2

R2
0

þ 3888M2b21
R2

0

1
A1=3

; (30)

Y ¼
ffiffiffi
23

p ð36b21R2
0

� 72Q2

R0
Þ

3X
þ 4b1

R0

þ X

3
ffiffiffi
23

p : (31)

As in Ref. [10] we consider the black hole as a cube of side
length twice the outer horizon radius; the uncertainty in
position of a Hawking particle is then given by

�x ¼ 2rþ ¼ 2

�
�

ffiffiffiffi
Y

p
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12b1
R0

� Y þ 24Mb1

R0

ffiffiffiffi
Y

p
s �

¼ � ffiffiffiffi
Y

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12b1
R0

� Y þ 24Mb1

R0

ffiffiffiffi
Y

p
s

: (32)

Applying the uncertainty principle, in its usual form, to the
energy of the Hawking particles being emitted,

�E � c�p � ℏc
�x

¼ ℏc
�
� ffiffiffiffi

Y
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12b1
R0

� Y þ 24Mb1

R0

ffiffiffiffi
Y

p
s ��1

: (33)

It is then straightforward to calculate the temperature [4].
Indeed it is related to the outer horizon radius by

T ¼ 1

4�rþ
¼ 1

2��x
: (34)

Now the Bekenstein-Hawking entropy, S, will be related to
the black hole mass by

T ¼ dE

dS
¼ dM

dS
(35)

since geometric units are being used. Thus using Eqs. (32),
(34), and (35)
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SðMÞ ¼ A2

�
� ffiffiffiffi

Y
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12b1
R0

� Y þ 24Mb1

R0

ffiffiffiffi
Y

p
s ��2

�
Z

dM

�
� ffiffiffiffi

Y
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12b1
R0

� Y þ 24Mb1

R0

ffiffiffiffi
Y

p
s �

; (36)

where A2 ¼ 4�r2þ is the surface area of the black hole
outer horizon.

Because of the extreme nature of the event horizon of
such black holes, terms that are negligible in other physical
processes can take hold and make a significant contribu-
tion. In this case the interaction of gravity is considered in
the emission process, in particular, the GUP is considered
[20,21] where

�x � ℏ
�p

þ �2L2
p

�p

ℏ
; (37)

where Lp ¼
ffiffiffiffiffi
Gℏ
c3

q
is the Planck length and � is a constant,

normally set to the order of unity but which in string theory
is found to correspond to the string tension. The second
term in Eq. (37) relates to the uncertainties due to the
gravitational effects, and so they will only become signifi-
cant when �x � Lp. Considering again �x as 2rþ will

result in a range of possible values for�p by Eq. (37), such
that

rþ
�2Lp

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2Lp

2

rþ2

vuut �
� �p

ℏ

� rþ
�2Lp

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2Lp

2

rþ2

vuut �
: (38)

Taking a series expansion of the first inequality in Eq. (38)
and taking the lower limit gives

�p

ℏ
¼ rþ

�2Lp
2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2Lp

2

rþ2

vuut �

¼ 1

2rþ

�
1þ �2Lp

2

4rþ2
þ �4Lp

4

8rþ4

�

¼ 1

�x

�
1þ �2Lp

2

ð�xÞ2 þ 2
�4Lp

4

ð�xÞ4
�
þOðLp

5Þ: (39)

Substituting into Eq. (37),

�x0 ¼ �x

��
1þ �2Lp

2

ð�xÞ2 þ 2
�4Lp

4

ð�xÞ4
��1

þ �2Lp
2

ð�xÞ2
�
1þ �2Lp

2

ð�xÞ2
��

: (40)

Finally the resulting corrected Hawking temperature
becomes

T0 ¼ 1

2��x0

¼ T

��
1þ �2Lp

2

ð�xÞ2 þ 2
�4Lp

4

ð�xÞ4
��1

þ �2Lp
2

ð�xÞ2
�
1þ �2Lp

2

ð�xÞ2
���1

: (41)

Similar to Eq. (36), the corrected entropy can be calculated
analogously, leading to

S0ðMÞ ¼ SðMÞ � 2�4Lp
4BðMÞ þOðLp

5Þ; (42)

where SðMÞ is given by Eq. (36) and

BðMÞ ¼
Z

dM

�
A2

�
� ffiffiffiffi

Y
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12b1
R0

� Y þ 24Mb1

R0

ffiffiffiffi
Y

p
s ��5

�
:

(43)

The Planck correction term becomes fourth order from
second order as in Ref. [10] due to the expansion in
temperature in Eq. (41) being taken to fourth order in
Eq. (42). That is, the second order term cancels in this
case. Thus the entropy is modified by a corrected tempera-
ture given by the GUP. This still returns only values that
have statistical significance when Planck dimensions are
reached by the horizon, and indeed it does affect the final
state, as will be shown.

B. Tunneling probability

In classical physics any units of mass that enter a black
hole cannot escape, that is, black holes are perfect absorb-
ers. However, the horizon is not a classical surface, in that
since it is a one-way membrane, it may excite particles
from the vacuum such that they may tunnel through, and
for those with enough energy, they may escape to infinity.
Thus, despite there being no such classical trajectory, there
still is a way for black holes to emit through classical
forbidden regions, by considering the fundamental quan-
tum nature of reality. The process of emission is hence a
semiclassical one, since the event horizon is a result of
classical physics, and emission through it is a quantum
process. Using the WKB approximation [22], the tunneling
probability is a function of only the imaginary part of the
classical action of the trajectory I, namely,

�	 e�2ImðIÞ; (44)

where ImðIÞ ¼ ImðIÞ. This can be represented, as in
Ref. [23], as

�	 eSf

eSi
¼ e�S; (45)

where �S is the difference between the final and initial
entropies of the black hole.
Because of the correction in the Bekenstein-Hawking

entropy in Eq. (42), the change in entropy will turn out
to be
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�S0 ¼ �S� 2�4Lp
4�B; (46)

where

�S ¼ SðM� EÞ � SðMÞ; (47)

�B ¼ BðM� EÞ � BðMÞ; (48)

and E is the energy of a particle being emitted. Now
substituting Eq. (46) into Eq. (45) gives

�0 	 �Exp½�4Lp
4�B�; (49)

which corrects the tunneling probability up to the Planck
length. This indicates that as the black hole reduces in size
to Planck dimensions quantum gravity takes hold, and an
exponential factor drastically modifies the emission rate of
particles through the horizon membrane. The effect of the
extra factor will be minimal for very large black holes;
however, the generalized tunneling probability will take
effect when considering black holes at the end of their
evaporation process.

C. Heat capacity

Using the semiclassical approach, the heat capacity of a
black hole may be calculated by first giving the inverse
temperature, which is given by

� ¼ T�1 ¼ dS

dM
: (50)

The heat capacity is then given by C ¼ dM
dT , which when

using Eq. (34) results in

C ¼ 1

�T2

�
1ffiffiffiffi
Y

p þ
�
12b1
R0

� Y þ 24Mb1

R0

ffiffiffiffi
Y

p
��1=2

�
�
1þ 12Mb1

R0Y
3=2

���1 1

W
; (51)

where

W ¼ dY

dM
¼

� ffiffiffi
23

p ð72Q2

R0
� 36b

1
2

R0
2 Þ

3X2
þ 1

3
ffiffiffi
23

p
�
Z (52)

and

Z ¼ dX

dM

¼ 1

3
X�2

�
1

2

�
X3 þ 432b1

3

R0
3

þ 2592b1Q
2

R0
2

��1

�
�
2

�
� 432b1

3

R0
3

� 2592b1Q
2

R0

þ 3888M2b1
2

R0

�

� 7776M2b1
2

R0

�
þ 7776Mb1

2

R0
2

�
: (53)

However, when the GUP is incorporated, the heat capacity
becomes

C0 ¼ C

�
1� �4Lp

4

ð� ffiffiffiffi
Y

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12b1
R0

� Yþ 24Mb1
R0

ffiffiffi
Y

p
q

Þ4
�
2

�
�
1þ �4Lp

4

ð� ffiffiffiffi
Y

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12b1
R0

� Yþ 24Mb1
R0

ffiffiffi
Y

p
q

Þ4
�

1

8�5
� 1

���1
;

(54)

in which Eq. (41) was used.
When Lp vanishes, Eq. (54) reduces to Eq. (51) as would

be expected. The effects of the generalization will be given
in Sec. V along with the consequences of the other
generalizations.

D. The black hole remnant

As the mass of a black hole with a background metric
given by Eq. (7) vanishes, the heat capacity also vanishes
when the standard uncertainty principle is employed; how-
ever, when one incorporates the GUP into the theory, the
heat capacity suddenly vanishes outside of the singularity
at a critical mass, say, Mc. This mass depends heavily on
the cosmological parameters R0 and b1; however, it is
quite tediously long. The point to take from this is that the
size of the remnant black hole depends very strongly on the
large scale parameters of the Universe in this case. This
indicates as in Refs. [24,25] that the black hole enters a
new phase that does not include evaporation, and thus a
black hole remnant would emerge which would truly be a
remnant since most thermodynamical change would have
ceased, leaving just the classical singularity and the
horizons behind.
The process will follow as shown in Fig. 3 in which

particles will be emitted with energies E1; E2; . . . , up to the
point where emission ceases.
In this way as the black attains Planck dimensions, its

entropy tends to infinity. Given that the entropy increases
in this way, the mass cannot decrease to zero unless a new
quantum gravity process allows for the dissipation of the

FIG. 3. The process by which the black hole emits a series of
particles Pi with energy Ei with a probability of emission �ðEiÞ.
However, after a certain number of particles, say, n particles, has
been emitted, the black hole stops emitting particles, and so the
probability of emission vanishes, which in turn leaves a black
hole remnant behind with a critical mass Mc.
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new degrees of freedom produced by the previous process
of evaporation.

V. CONCLUSION

Through the Palatini formularism of fðRÞ gravity, the
metric for a spherically symmetric charged mass was
derived for a constant Ricci scalar. This turned out to be
the regular de Sitter metric for the Reissner-Nordström
metric with some extra and significant factors. These fac-
tors were found to be strongly dependent on the type of
fðRÞ gravity being employed. The metric introduced in
this work thus generalizes the general relativistic one;
however, a further degree of freedom is allowed, namely,
the derivative of the fðRÞ function with respect to the
Ricci scalar with a constant curvature scalar, which was
shown to give order or magnitude differences in the
background curvature, which can be seen by comparing
Fig. 1 with Fig. 2.

For the second part of this paper, the tunneling proba-
bility for the derived black hole was calculated. The
uncertainty principle with relation to the position of the
particle was generalized to encompass gravitational ef-
fects that take effect on Planck scales, but still have
some minor effect on large black holes. In using the
GUP, the temperature and thus the entropy was calcu-
lated correcting the Bekenstein-Hawking result. Using
this entropy result, the WKB semiclassical approxima-
tion was applied, and through it the tunneling probability

was calculated for the generalized metric, thus showing a
difference between solutions in fðRÞ theories and those
with this function being taken as unity. This could
potentially prove vital in differentiating between compet-
ing theories of gravity if mini-black holes are produced
in particle accelerators. It is in these types of black holes
that this tunneling probability takes on significant prac-
tical importance. It may thus be possible in just a few
years to determine the fðRÞ function and whether it is
actually not unity in reality.
Finally, it was shown how a black hole of this nature

would proceed to attain Planck scale dimensions, and it
turned out that the evaporation process described by
Hawking [4] cannot make the mass vanish in this phase
of the black hole lifetime due to the gravitational effects of
the GUP. Lastly the heat capacity was calculated for both
the standard uncertainty principle and the generalized un-
certainty principle, giving different masses where this
parameter vanishes. This quantity is an important factor
in black hole thermodynamics because it is inextricably
related to the entropy and so to the information content of a
black hole, since �S ¼ ��I, where I is the information
content of the black hole.
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