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We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions
of charged hadrons at high transverse momentum (high p7) in minimum bias and central d + Au
collisions at ,/syy = 200 GeV. The inclusive yield is enhanced in d + Au collisions relative to binary-
scaled p + p collisions, while the two-particle azimuthal distributions are very similar to those
observed in p + p collisions. These results demonstrate that the strong suppression of the inclusive
yield and back-to-back correlations at high py previously observed in central Au + Au collisions are
due to final-state interactions with the dense medium generated in such collisions.

DOI: 10.1103/PhysRevLett.91.072304 PACS numbers: 25.75.Dw, 25.75.Gz
Energetic partons propagating through matter are pre-  on the color charge density [1]. Partonic energy loss is
dicted to lose energy through induced gluon radiation,  potentially a sensitive probe of the matter created in high

with the magnitude of the energy loss depending strongly ~ energy heavy-ion collisions, where a quark-gluon plasma
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may form if sufficiently high energy density is achieved.
The energetic partons originate in the hard scattering of
partons from the incoming nuclei. Direct measurement of
jets resulting from parton fragmentation is difficult in
nuclear collisions; nevertheless partonic energy loss can
be studied using observables such as inclusive spectra and
two-particle azimuthal distributions of high transverse
momentum (high pr) hadrons.

Measurements of high p; hadron production in ultra-
relativistic interactions of heavy nuclei reveal strong sup-
pression of both the single-particle inclusive yield [2-5]
and back-to-back pairs (large azimuthal separation A¢)
in the most-central, violent collisions, while nearside
pairs (small A¢) exhibit jetlike correlations that are
similar to those in proton + proton (p + p) collisions
[6]. One interpretation of these results is that, in the final
state following the hard scattering, energetic partons
traversing the dense medium in the core of the collision
lose energy, and the observed jets are primarily those
created from partons produced near the surface and
directed outwards [6]. Alternatively, the suppression
might result from initial-state effects prior to the hard
scattering, such as the saturation of gluon densities in the
incoming nuclei [7]. Models incorporating either picture
are capable of describing central Au + Au collision data
[5]. Initial- and final-state effects in Au + Au collisions
can be separated through studies of deuteron (d)+Au
collisions. Theoretical expectations for d + Au collisions
at the Brookhaven National Laboratory Relativistic
Heavy Ion Collider (RHIC) are given in [7-15]. Within
a perturbative QCD (pQCD) framework, the expected
initial-state nuclear effects in d + Au collisions are mul-
tiple scattering prior to a hard collision, which has been
used to explain the Cronin enhancement of the inclusive
yield [16], and shadowing of the parton distribution func-
tions. Nuclear effects are expected to increase for more
central collisions; thus the centrality dependence of ob-
servables measured in d + Au collisions also will help
reveal their origin.

The STAR Collaboration reports measurements of the
inclusive invariant p; distribution and two-particle azi-
muthal distributions at high p; for charged hadrons
[(h* + h™)/2, approximated by the summed yields of
primary 7=, K=, p, and p] in minimum bias and cen-
tral d + Au collisions at center of mass energy /syy =
200 GeV per nucleon pair. Comparison is made to mea-
surements at ,/syy = 200 GeV in the same detector for
Au + Auand p + p interactions [5,6]. The inclusive yield
is enhanced in d + Au collisions relative to binary-scaled
p + p collisions, in contrast to the large suppression
observed in central Au + Au interactions. Similar results
are reported in [17-19]. The d + Au two-particle azimu-
thal distributions are very similar to those observed in
p + p collisions. These observations are consistent with
expectations from pQCD models incorporating both the
Cronin enhancement and nuclear shadowing [8—12], and
are inconsistent with calculations that attribute the sup-
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pression in central Au + Au collisions to initial-state
gluon saturation [7].

STAR is a multipurpose detector [20] located at BNLs
RHIC facility. For these measurements, the minimum
bias trigger required at least one beam-rapidity neutron
in ZDC-Au, the zero degree calorimeter (ZDC) in the Au
beam direction, which is assigned negative pseudorapid-
ity (n). This trigger accepts (95 * 3)% of the d + Au
hadronic cross section oA, Trigger backgrounds were
measured using beam bunches not in collision. Charged
particle momenta were measured by the time projection
chamber in a 0.5 T solenoidal magnetic field.

After event selection cuts, the data set consists of 107
minimum bias d + Au events. Data were analyzed using
the techniques described in [2,6]. The vertex was recon-
structed in (93 = 1)% of triggered minimum bias events.
The spectra were corrected for trigger and vertex-finding
efficiencies. Contamination of the spectra due to weak
decay products was corrected based on HIJING [21].
Results of an independent analysis, using a different
technique for vertex reconstruction [5], agree with the
reported spectrum within the relative normalization un-
certainties at all py.

Centrality tagging of d + Au collisions is based on the
raw (uncorrected) charged particle multiplicity within
—3.8 < 1 < —2.8, measured by the forward time projec-
tion chamber in the Au beam direction (FTPC-Au [20]).
The FTPC-Au multiplicity was examined in quadrants
relative to the orientation of the leading charged hadron at
midrapidity; autocorrelation effects were found to be
negligible. An independent centrality tag, used as a
cross-check, requires at least one beam-rapidity (specta-
tor) neutron in ZDC-d, the ZDC in the deuteron beam
direction. The cross section for this process in hadronic
events was measured to be (19.2 = 1.3)% of o{a. ZDC-d
and FTPC-Au are separated by 8 rapidity units. Figure 1

EPry
<10 &=
g = —> d+Au FTPC-Au 0-20%
=3
i C
~ C ——— Glauber Calculation
zZ L
S 0%
=z E
° o
g r
-3 T
= .| Single Neutron
107
ot b e b L JHHJHHJHHJH‘:‘
0 5 10 15 20 25 30 35 40 45 50

Raw FTPC-Au Ny,

FIG. 1 (color online). Uncorrected charged particle multi-
plicity distributions measured in —3.8 < n < —2.8 (Au direc-
tion) for d + Au collisions. Points are for minimum bias
(triangles) and peripheral (circles, ZDC-d single neutron) col-
lisions. Both are normalized to the total number of d + Au
collisions. Histograms are Glauber model calculations.
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shows the FTPC-Au multiplicity for minimum bias and
7ZDC-d neutron-tagged events. The latter have a strong
bias toward low multiplicity.

The centrality tags were modeled using a Monte Carlo
Glauber calculation [2] incorporating the Hulthén wave
function of the deuteron [22]. In this model the mean
number of binary collisions (Ny;,) is 7.5 = 0.4 for mini-
mum bias events and o?2" = 2.21 * 0.09 b. Events witha
neutron spectator from the deuteron comprise (18 = 3)%
of oA in the model. This event class is biased toward
peripheral collisions, with (Ny,) = 2.9 =0.2. The
FTPC-Au multiplicity distribution was modeled by con-
voluting the Glauber model distribution of participants
from the Au nucleus with the charged multiplicity distri-
bution measured in 2.5<|5|<3.5 for p + p collisions at
/s =200 GeV [23]. The FTPC-Au acceptance, effi-
ciency, and backgrounds were taken into account using
HIJING [21] events in a GEANT model of the detector.
Figure 1 shows the measurements for both minimum
bias and ZDC-d neutron-tagged events, together with
the corresponding Glauber model predictions. The model
is validated by its agreement with both multiplicity dis-
tributions and with the ZDC-d single neutron cross sec-
tion fraction. High FTPC-Au multiplicity therefore
biases towards central collisions. Figure 1 shows the cut
defining the 20% highest multiplicity collisions in the
data. (Ny;,) = 15.0 = 1.1 for the 20% highest multiplicity
collisions in the Glauber model, where the uncertainty
includes the spread in values obtained with several alter-
native models.

Figure 2 shows the invariant inclusive pr distribution
of (h* + h™)/2 within |9|<0.5 for minimum bias and
central d + Au collisions, together with that for p + p
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FIG. 2 (color online). Inclusive p; distributions for mini-
mum bias and central d + Au collisions, and non-singly dif-
fractive p + p collisions [5]. Hash marks at the top indicate bin
boundaries for p; > 3.8 GeV/c.
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collisions from [5]. The error bars are the quadrature sum
of statistical errors and point-to-point systematic uncer-
tainties. The normalization uncertainty for d + Au colli-
sions is 10%.

Nuclear effects on hadron production in d + Au and
Au + Au collisions are measured through comparison to
the p + p spectrum using the ratio

d’N/dprdn
TAdeo-pp/dedn’

Rup(pr) = (1

where d°N/dpydn is the differential yield per event in
the nuclear collision A + B, Typ = (Nyi,)/ oPP, describes
the nuclear geometry, and d>a?? /dprdn for p + p in-
elastic collisions is determined from the measured p + p
differential cross section [5]. In the absence of nuclear
effects such as shadowing, the Cronin effect, or gluon
saturation, hard processes are expected to scale with the
number of binary collisions and R,z(py) = 1. Figure 3
shows R,p(pr) for minimum bias and central d + Au
collisions. The error bars are the quadrature sum of the
statistical and point-to-point systematic uncertainties.
Rup(pr) > 1for 2 < p;y <7 GeV/c. Ryp(py) for central
and minimum bias d + Au collisions contain many com-
mon uncertainties, including dependence on the same
p + p reference spectrum. The ratio of R,z(py) for cen-
tral relative to minimum bias collisions, which factors out
these common uncertainties, is 1.02 * 0.03 at 4 GeV/c.
R4p(pr) may be influenced by nuclear shadowing [13]
and its centrality dependence [14]. Figure 3 also shows
Rup(py) for central Au + Au collisions [5], exhibiting
large suppression in hadron production at high py.

Figure 4(a) shows the two-particle azimuthal distribu-
tion D(A ¢), defined as

£ .0 ~o-d+Au FTPC-Au 0-20% ]
I? L —&—d+Au Minimum Bias

lllll

1.5

—_
]
]
v
|
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N T T T T |

0.5
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) I S IS E I B

0 2 4 6 8 10
p; (GeV/c)

FIG. 3 (coloronline). R,p(pr) from Eq. (1) for minimum bias
and central d + Au collisions, and central Au + Au collisions
[5]. The minimum bias d + Au data are displaced 100 MeV/c
to the right for clarity. The bands show the normalization
uncertainties, which are highly correlated point-to-point and
between the two d + Au distributions.
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FIG. 4 (color online). (a) Efficiency corrected two-particle
azimuthal distributions for minimum bias and central d + Au
collisions, and for p + p collisions [6]. Curves are fits using
Eq. (3), with parameters given in Table . (b) Comparison of
two-particle azimuthal distributions for central d + Au colli-
sions to those seen in p + p and central Au + Au collisions [6].
The respective pedestals have been subtracted.

1 1 dN
D(Ad)) B Ntriggergd(A(ﬁ)’

2

for minimum bias and central d + Au collisions, and for
p + p collisions [6]. Only particles within |5]|<0.7 are
included in the analysis. N;gec, 18 the number of particles
within 4 < py(trig) < 6 GeV/c, referred to as trigger
particles. The distribution results from the correlation of
each trigger particle with all associated particles in the
same event having 2 < py < py(trig), where € is the
tracking efficiency of the associated particles. The nor-
malization uncertainties are less than 5%.

The azimuthal distributions in d + Au collisions in-
clude a nearside (A¢ ~ 0) peak similar to that seen in
p + p and Au + Au collisions [6] that is typical of jet
production, and a back-to-back (A¢ ~ 77) peak similar to
that seen in p + p and peripheral Au + Au collisions [6]
that is typical of di-jet events. The azimuthal distributions
are characterized by a fit to the sum of nearside (first
term) and back-to-back (second term) Gaussian peaks
and a constant:

o~ (861203

2oy

o—(18g]-77/20%

mTOpR

+ Ag +P. (3)

Fit parameters are given in Table I. Their systematic
uncertainties are highly correlated between the data
sets, are less than 20% for oy, and are less than 10%
for all other parameters. The only large difference in the
azimuthal distributions in p + p and d + Au collisions is
the growth of the pedestal P. It increases with increasing
(Npin), but is not proportional to (Ny;,) as might be ex-
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TABLE L
only.

Fit parameters from Eq. (3). Errors are statistical

p + p min. bias d + Au min. bias d + Au central

Ay 0.081 = 0.005 0.073 = 0.003 0.067 = 0.004
oy 0.18 = 0.01 0.20 = 0.01 0.22 = 0.02
Ap 0.119 = 0.007 0.097 = 0.004 0.098 = 0.007
op 0.45 = 0.03 0.48 = 0.02 0.51 =0.03
P 0.008 £ 0.001 0.039 = 0.001 0.052 = 0.002

pected for incoherent production. Both o and o exhibit
at most a small increase from p + p to central d + Au
collisions. A small growth in o is expected to result
from initial-state multiple scattering [24,25]. The modest
reduction in the correlation strengths Ay and Ap from
p + p to central d + Au collisions is similar to that seen
previously for peripheral Au + Au collisions [6].

Figure 4(b) shows the pedestal-subtracted azimuthal
distributions for p + p and central d + Au collisions.
The azimuthal distributions are shown also for central
Au + Au collisions after subtraction of the elliptic flow
and pedestal contributions [6]. The nearside peak is simi-
lar in all three systems, while the back-to-back peak in
central Au + Au shows a dramatic suppression relative to
p+ pandd + Au.

The contrast between d + Au and central Au + Au
collisions in Figs. 3 and 4 indicates that the cause of the
strong high p; suppression observed previously is asso-
ciated with the medium produced in Au + Au but not in
d + Au collisions. The suppression of the inclusive hadron
yield at high p7 in central Au + Au collisions has been
discussed theoretically in various approaches (see [5] for
references). Measurements of central Au + Au collisions
[5] are described both by pQCD calculations that incor-
porate shadowing, the Cronin effect, and partonic energy
loss in dense matter, and by a calculation extending the
saturation model to high momentum transfer. How-
ever, predictions of these models differ significantly for
d + Au collisions. Because of the Cronin effect, pQCD
models predict that Rup(py) > 1 within 2 < py <
6 GeV/c for minimum bias d + Au collisions, with a
peak magnitude of 1.1-1.5 in the range 2.5 < p; <
4 GeV/c [11]. The enhancement is expected to be larger
for central collisions [12]. The saturation model calcula-
tion in [7] predicts Ryz(py) < 1, with larger suppression
for more central events, achieving R5(p7) ~ 0.75 for the
20% most-central collisions. In contrast, another satura-
tion model calculation [15] generates an enhancement in
R4p(pr), similar to the Cronin effect, for both d + Au
and Au + Au collisions. Figure 3 shows that R,z(pr) is
qualitatively different in d + Au and central Au + Au
collisions: in d + Au, Ryup(py) significantly exceeds
unity. These results are consistent with expectations
from pQCD calculations but not the saturation model in
[7]. Scattering of the hadronic fragments of jets also may
contribute to the suppression of the inclusive yield [5,26].
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The azimuthal distributions of back-to-back jets and
high p; di-hadrons have been observed to broaden in
fixed-target p+ nucleus collisions relative to p + p col-
lisions, but are not strongly suppressed [24]. Slight broad-
ening of the back-to-back hadron distribution in d + Au
collisions at ,/syy = 200 GeV is also expected from
pQCD models incorporating the Cronin effect [25].
Predictions of the saturation model for the back-to-back
hadron distributions require further theoretical develop-
ment, though the rate may be suppressed due to a mono-
jet contribution [27]. Table I shows that the distribution
of back-to-back high p; hadrons is not substantially
modified in central d + Au collisions relative to p + p
collisions, consistent with expectations from pQCD
calculations.

In summary, we have reported the inclusive py distri-
butions and two-particle azimuthal distributions of high
pr hadrons in minimum bias and central d + Au colli-
sions at ,/syy = 200 GeV. Similar measurements for
Au + Au and p + p interactions have revealed a striking
suppression of both the inclusive hadron yield and the
back-to-back correlations for central Au + Au collisions.
If the suppression is the result of initial-state effects, it
also should be observed in d + Au collisions. No suppres-
sion in d + Au collisions is observed. Rather, the inclu-
sive yield is enhanced and the two-particle azimuthal
distributions exhibit little change relative to p + p.
These results suggest that the Cronin effect plays a sig-
nificant role in d + Au collisions for 2 < p; <7 GeV/c.
We conclude that the suppression phenomena seen in
central Au + Au collisions are due to final-state interac-
tions with the dense system generated in the collision.
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