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Abstract

Dependent data arise in many studies. For example, children with
the same parents or living in neighboring geographic areas tend to
be more alike in many characteristics than individuals chosen at ran-
dom from the population at large; observations taken repeatedly on
the same individual are likely to be more similar than observations
from different individuals. Frequently adopted sampling designs, such
as cluster, multilevel, spatial, and repeated measures (or longitudinal
or panel), may induce this dependence, which , the analysis of the
data needs to take into due account. In a previous publication (Geraci
and Bottai, Biostatistics 2007), we proposed a conditional quantile re-
gression model for continuous responses where a random intercept was
included along with fixed-coefficient predictors to account for between-
subjects dependence in the context of longitudinal data analysis. Con-
ditional on the random intercept, the response was assumed to follow
an asymmetric Laplace distribution. The approach hinged upon the
link existing between the minimization of weighted least absolute de-
viations, typically used in quantile regression, and the maximization
of a Laplace likelihood. As a follow up to that study, here we consider
an extension of those models to more complex dependence structures
in the data, which are modeled by including multiple random effects
in the linear conditional quantile functions. Differently from the Gibbs
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sampling expectation-maximization approach proposed previously, the
estimation of the fixed regression coefficients and of the random ef-
fects covariance matrix is based on a combination of Gaussian quadra-
ture approximations and optimization algorithms. The former include
Gauss-Hermite and Gauss-Laguerre quadratures for, respectively, nor-
mal and doubleexponential (i.e., symmetric Laplace) random effects;
the latter include a modified compass search algorithm and general
purpose optimizers. As a result, some of the computational burden
associated with large Gibbs sample sizes is avoided. We also discuss
briefly an estimation approach based on generalized Clarkes deriva-
tives. Finally, a simulation study is presented and some preliminary
results are shown.

1 Introduction

Conditional quantile regression (QR) pertains the estimation of unknown
quantiles of an outcome as a function of a set of covariates and a vector of
fixed regression coefficients. QR estimation, generally, makes no assumption
on the shape of the distribution of the outcome (Koenker and Bassett, 1978).
Their capability to provide a rich description of the distributional effects
at play without investing too much effort in looking for and fitting the
‘right’ probability model for the data, has contributed to make QR models
attractive in several fields. See for example Koenker (2005) and Yu et al.
(2003) for an overview of recent applications.

In the last few years, the need for extending the capabilities of QR for
independent data to deal with clustered sampling designs has led to sev-
eral and quite distinct approaches. These can be roughly classified into two
groups: distribution–free and likelihood–based. The former include fixed ef-
fects (Koenker, 2005; Lamarche, 2010a,b) and weighted (Lipsitz et al., 1997;
Karlsson, 2008) approaches. The latter are mainly based on the asymmet-
ric Laplace (AL) density (Geraci and Bottai, 2007; Liu and Bottai, 2009;
Yuan and Yin, 2010; Lee and Neocleous, 2010) or other parametric distri-
butions (Reich et al., 2010a; Tzavidis et al., 2010). These categories are
by no means mutually exclusive nor the subdivision is exhaustive. For ex-
ample, penalty methods as those proposed by Koenker (2004) might have
a strict relationship with the asymmetric Laplace regression with double–
exponential random effects as suggested by Geraci and Bottai (2007). Yet,
this has not been fully explored. Also, other approaches might involve mod-
eling the moments of a distribution function using a parametric family (e.g.,
Rigby and Stasinopoulos, 2005) and, by inversion, deriving the quantiles
of the response. Here, we just stress that the spirit of a likelihood–based
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approach to QR is different from a model fitting exercise. In the first case,
a probability distribution “wrapped” around a kernel function that either is
the loss function of a classical QR problem (Yu and Moyeed, 2001; Geraci
and Bottai, 2007) or some approximation of it (Tzavidis et al., 2010) al-
lows for maximum likelihood estimation of the regression parameters; in the
other case, a distribution function is fitted to the data by modeling, gener-
ally, location and variability or, via higher moments, other features such as
skewness and kurtosis (Rigby and Stasinopoulos, 2005).

In Section 2, we briefly review the AL–based approach of Geraci and Bot-
tai (2007) and we introduce a generalization of the model proposed therein.
In Section 3, we describe an estimation process based on numerical integra-
tion and nonsmooth optimization. A simulation study is offered in Section
4. All computations were performed using the package lqmm (Geraci, 2011)
for the statistical programming environment R (R Development Core Team,
2010).

2 Linear quantile mixed models

Random-effects models with asymmetric Laplace error

A continuous random variable y ∈ R is said to follow an asymmetric Laplace
density with parameters (µ, σ, τ), y ∼ AL(µ, σ, τ), if its density can be ex-
pressed as

p(y|µ, σ, τ) =
τ(1− τ)

σ
exp

{
− 1

σ
ρτ (y − µ)

}
,

where ρτ (v) = v(τ − I(v < 0)) = 0.5|v| + 0.5(2τ − 1)v is the check or loss
function, I(·) is the indicator function, 0 < τ < 1 is the skew parameter,
σ > 0 is the scale parameter and −∞ < µ < +∞ is the location parameter.
See Yu and Zhang (2005) for more details on this distribution. For a random
variable y composed of n independent variates yi with common skew and
scale parameters, but generic location µ = (µ1, . . . , µn), yi ∼ AL(µi, σ, τ),
i = 1, . . . , n, we use the simplified notation

p(y|µ, σ, τ) = σn(τ) exp

{
− 1

σ
ρτ (y − µ)

}
,

where σn(τ) = τn(1−τ)n/σn and ρτ (y − µ) =
∑n

i=1 ρτ (yi − µi) denotes the
sum of the values taken by the function ρτ at each element of its argument.

In a previous paper (Geraci and Bottai, 2007) (GB07 hereafter) we pro-
posed a random intercept QR model for longitudinal data using the AL for
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the conditional response. We assumed the conditional quantile regression
function

F−1y|u (τ |x, u) = Xβ + u,

where (y,X) represents longitudinal data, u a vector of subject-specific ran-
dom effects and F−1 denotes the inverse of the unknown distribution func-
tion of y|u. The τ -th regression quantile of y|u was then estimated under
the convenient assumption y|u ∼ AL(Xβ+u, σ, τ), where the parameters β
and σ have a frequentist interpretation. A Bayesian nature to this model,
however, has been erroneously attributed by others (Reich et al., 2010b).

The link between the weighted absolute deviations minimization problem
and the maximum likelihood estimation of the regression coefficients β has
been described elsewhere (Koenker and Machado, 1999; Yu and Moyeed,
2001).

Model generalization

In this section we extend our model to include multiple nested random
effects. As notational standard we will use 1n to denote the n× 1 vector of
ones and In to denote the n× n identity matrix. Unless the specification of
the dimension is essential to the intelligibility of the formulas, the subscript
will be omitted.

Consider clustered data in the form (x′ij , z
′
ij , yij), for j = 1, . . . , ni and

i = 1, . . . ,M , N =
∑

i ni, where x′ij is the ith row of a known ni× p matrix
Xi, z

′
ij is the ith row of a known ni×q matrix Zi and yij is the jth observation

of the ith cluster. Mixed models (MM) represent a common and well-known
class of regression models used to analyze data coming from similar designs.
A typical linear formulation of a MM for clustered data is given by

yi = x′ijβ + z′ijui + εij , j = 1, . . . , ni, i = 1, . . . ,M

where β and ui, i = 1, . . . ,M , are, respectively, fixed and random effects
associated to p and q model covariates and y is assumed to follow a multi-
variate normal distribution characterized by some parameter θ. Within this
framework, the target of the analysis is the mean of the response, whether
conditional, i.e. E (yi|u) or marginal, i.e. E (yi), will depend on the purpose
of the analysis. Note that the use of the terms marginal and conditional
refers to the manipulation of the likelihood object for the MM specified
above that is, from a modeling standpoint, conditional. Throughout the
paper, we will use such distinction in the same context. For a discussion
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about conditional and marginal modeling see for example Lee and Nelder
(2004).

There are several reasons why an analyst might consider a random-effects
approach for their data and, yet, be wanting to go beyond the usual assump-
tions of a mixed model for the mean:

• The error distribution is not well approximated by a Gaussian bell.

• There are data points that have a substantial leverage on the least
square estimate of the model.

• The mean is not a sufficient summary of the complex distributional
effects exerted by the covariates or

• it is not a meaningful location for the distribution of the response (e.g.,
the distribution is skewed).

• If heteroscedasticity is present, this requires additional modeling effort
and reduces the degrees of freedom in the data.

Similar grounds were offered by GB07 when considering a quantile regression
approach to longitudinal designs. Here we follow the same approach but
we provide a more general and computationally efficient framework within
which to model and to estimate regression quantiles of a clustered continuous
outcome.

In our model, τ ’s value is fixed depending on the τth conditional quan-
tile to be estimated, thus it will be omitted when writing out conditional
distributions. We assume that the yi’s, yi = (y11, . . . , y1ni)

′, i = 1, . . . ,M ,
conditionally on a q × 1 vector of random effects ui, are independently dis-
tributed according to a joint AL with location and scale parameters given by
µi = Xiθx +Ziui and σ, where θx ∈ Rp is a vector of unknown fixed effects.
Also, we assume that ui = (ui1, . . . , uiq)

′, for i = 1, . . . ,M , is a random
vector independently distributed according to p(ui|Ψ), where Ψ is a q × q
covariance matrix. We assume that the random effects are zero-median vec-
tors. Other scenarios may include the case in which u are not zero–centered
(see for example Lamarche, 2010a; Koenker, 2005, p.281) and/or are not
symmetric. We will briefly resume this issue further on.

If we let u = (u′1, . . . , u
′
M )′, y = (y′1, . . . , y

′
M )′, X = [X ′1| . . . |X ′M ]′ and

Z =
⊕M

i=1 Zi, µ = Xθx+Zu, the joint density of (y, u) based on M clusters
for the linear quantile mixed model (LQMM) is given by

p(y, u|θx, σ,Ψ) = p(y|θx, σ, u)p(u|Ψ) =
M∏
i=1

p(yi|θx, σ, ui)p(ui|Ψ). (2.1)
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Throughout the paper we will assume that Ψ ∈ Sq++, where Sq++ is the set of
real symmetric positive-definite q×q matrices. Note that all the parameters
in equation (2.1) are τ -dependent.

The formulation of the quantile regression with random effects in (2.1)
is general. For q = 1, Zi = 1ni , i = 1, . . . ,M , the LQMM corresponds to the
model in GB07. We obtain the i-th contribution to the marginal likelihood
by integrating out the random effects, leading to

Li(θx, σ,Ψ|yi) =

∫
Rq
p(yi, ui|θx, σ,Ψ)dui, (2.2)

whereRq denotes the q-dimensional Euclidean space. We denote the marginal
log-likelihood with `i(θx, σ,Ψ|y) = logLi(θx, σ,Ψ|y), i = 1, . . . ,M .

3 Estimation

In GB07 we proposed to estimate the parameter of the random intercept
QR model by using a MCEM algorithm to avoid the evaluation of a mul-
tidimensional integral. This approach on the one hand simplifies the ana-
lytical impasse, but on the other hand, like any MCMC method it can be
computationally burdensome.

The generalization of the QR model with random intercepts to account
for more complex structures of the random effect vector seem to bring ad-
ditional difficulties to the maximization of the marginal likelihood in (2.2).
In this study we will explore alternative computational techniques based on
different optimization approaches.

The integral we want to estimate for the marginal distribution of yi in
model (2.1) can be written as

py(yi|θx, σ,Ψ) = σni(τ)

∫
Rq

exp

{
− 1

σ
ρτ (yi − µi)

}
p(ui|Ψ)dui, (3.1)

where the subscript y is used to avoid confusion with the conditional distri-
bution of y|u.

It is useful to introduce Theorem 6 of Prékopa (1973) in order to char-
acterize the density in (3.1).

Theorem (Prékopa, 1973). Let f(x, y) be a function of p + q variables
where x is an p-component and y is an q-component vector. Suppose that
f is logarithmic concave in Rp+q and let A be a convex subset of Rq. Then
the function of the variable x: ∫

A
f(x, y)dy
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is logarithmic concave in the entire space Rp. �

It follows that, if p(ui|Ψ) is log–concave in u, the integrand function
in (3.1) will be log–concave in y and Prékopa’s Theorem will apply to
py(yi|θx, σ,Ψ). As we shall see, the random-effects distributions considered
in this study are log–concave. Extension of the the log-concavity property
to the likelihood function must be applied with caution for the joint log–
likelihood is not a concave function of the scale and variance parameters,
unless it undergoes a (simple) parametric transformation.

3.1 Numerical integration

The integral in equation (3.1) has the form
∫
Rq f(u)w(u)

∏
q duq. By choos-

ing a suitable weighting function or kernel w(u) and upon a change of the
integration variable where necessary, the q-dimensional Gaussian quadra-
ture formula, based on q successive applications of simple one–dimensional
rules, provides the approximation∫

Rq
f(u)w(u)du ≈

K∑
k1=1

· · ·
K∑

kq=1

f(vk1,...,kq)

q∏
l=1

wkl ,

where K is a given integer. The abscissas vk1,...,kq = (vk1 , . . . , vkq)
′ and the

weights wkl , kl = 1, . . . ,K, l = 1, . . . , q, are chosen so that the approximation
is exact if f(u) is a polynomial of a given total order. More precisely, the
product rule defined above would be exact for a tensor product of univariate
polynomials.

For this reason the product rule entails a ‘curse of dimensionality’, an
exponential increase of the number of evaluations of the integrand func-
tion. For example, we would need 3,200,000 function evaluations for a 5-
dimensional quadrature rule based on 20 nodes but 64,000,000 for adding
only one random effect, let alone the total number of evaluations necessary
to convergence if the parameter’s estimation algorithm is iterative (as it will
be seen to be the case). A possible relief from such cumbersome computa-
tional burden is offered by integration on sparse grids (Heiss and Winschel,
2008). In the next sections we will provide formulas for the standard Gaus-
sian quadrature and refer the reader to Appendix for a skecth of Heiss and
Winschel’s (2008) idea.

The choice of an appropriate distribution for the random effects u is not
straightforward. In our previos publication, we recognized that robustness
issues might apply not only to the error model but also to the random effects.
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As a robust alternative to the Gaussian choice, we suggested the use of the
symmetric Laplace. This choice led to a regression model which, after a
simple transformation (Geraci and Bottai, 2007, p.146), was similar to the
penalized model proposed by Koenker (2004).

In the following, we will focus explicitly on two types of distributions,
namely Gaussian and Laplacian. It is immediate to verify that these choices
correspond to applying, respectively, a Gauss-Hermite and a Gauss-Laguerre
quadrature to the integral in (3.1). More general considerations can be done
with regard to the use of symmetric as well as asymmetric kernels belonging
to the exponential family. Also, we will briefly introduce and discuss a
possible adaptive approach to the Gaussian quadrature.

Normal random effects

Under the assumption of normal random effects, the approximation of the
integral in equation (3.1) by Gauss-Hermite quadrature is, bar a proportion-
ality constant, given by∫
Rq

(2π)−q/2 |Ψ|−1/2 exp

{
− 1

σ
ρτ (yi −Xiθx − Ziui)

}
exp

(
−u′iΨ−1ui/2

)
dui

=

∫
Rq

(2π)−q/2 exp

{
− 1

σ
ρτ

[
yi −Xiθx − Zi

(
ΨT/2v

)]}
exp

(
−‖v‖2/2

)
dv

'
K∑

k1=1

· · ·
K∑

kq=1

exp

{
− 1

σ
ρτ

[
yi −Xiθx − Zi

(
ΨT/2vk1,...,kq

)]}
×

q∏
l=1

wkl ,

with nodes vk1,...,kq = (vk1 , . . . , vkq)
′ and weights wkl , l = 1, . . . , q.

The (marginal) log-likelihood for all clusters is approximated by

`app(θx, σ,Ψ|y) =
M∑
i

log


K∑

k1=1

· · ·
K∑

kq=1

p
(
yi|θx, σ,ΨT/2vk1,...,kq

)

×
q∏
l=1

wkl

}
.

(3.2)

The integral above can be recognized as a normal-Laplace convolution
(Reed, 2006). This type of distribution is known in a special form in meta-
analysis (Demidenko, 2004). The temptation to follow an approach based on
the (closed form) likelihood of this distribution is strong. However, we desist
from pursuing such attempt here as it will require further investigation.
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Robust random effects

We consider independent random effects, i.e. Ψ = diag(ψ1, . . . , ψq) under the
assumption of symmetric Laplace distribution. Since each one-dimensional
integral in (3.1) can be split around zero, the Gauss-Laguerre quadrature can
be applied to the interval [0,∞) and, by symmetry, to the interval (−∞, 0].
This results in the following approximation∫

Rq

(
q∏
l=1

1

4ψl

)
exp

{
− 1

σ
ρτ (yi −Xiθx − Ziui)

}
exp

(
−

q∑
l=1

|uil|/2ψl

)
dui

=

∫
Rq

4−q exp

{
− 1

σ
ρτ
[
yi −Xiθx − Zi

(
ΨT v

)]}
exp

(
−

q∑
l=1

|vl|/2

)
dv

'
K∑

k1=1

· · ·
K∑

kq=1

exp

{
− 1

σ
ρτ
[
yi −Xiθx − Zi

(
ΨT vk1,...,kq

)]} q∏
l=1

wkl ,

with nodes vk1,...,kq = (vk1 , . . . , vkq)
′ and weights wkl , l = 1, . . . , q, oppor-

tunely chosen.
The log-likelihood for all clusters is approximated by

`app(θx, σ,Ψ|y) =

M∑
i

log


K∑

k1=1

· · ·
K∑

kq=1

p
(
yi|θx, σ,ΨT vk1,...,kq

)
×

q∏
l=1

wkl

}
.

(3.3)

There is an increasing number of papers on variations of the univariate
Laplace distribution (Kozubowski and Nadarajah, 2008). A valid multivari-
ate extension of the asymmetric Laplace distribution that imposes a general
covariance structure is not straightforward and would require some elabora-
tion. For example, Kotz et al. (2000) proposed a multivariate asymmetric
Laplace distribution whose density in the n-variate symmetric case is given
by

p(y|Σ) = 2(2π)−n/2|Σ|−1/2
(
y′Σ−1y/2

)λ/2
Kλ

(√
2y′Σ−1y

)
, (3.4)

with Cov(y) = Σ, λ = 1− n/2 and Kλ(t) is the modified Bessel function of
the third kind. For n = 1 and Σ = σ2, (3.4) reduces to

1

2

√
2

σ
e−
√

2
σ
|y|,

9



that is an AL(0, σ
2
√
2
, 0.5). It can be shown that for a n× n real matrix G,

Cov(Gy) = GΣG′ (Kotz et al., 2000).
The use of equation (3.4) for correlated random effects is uncertain.

Even though it is easy to re-scale Ψ to a diagonal matrix, the joint density
does not factorize into q AL variates (Eltoft et al., 2006) and, therefore, the
q–dimensional quadrature can not be based on q successive applications of
one–dimensional rules. Therefore, at the moment, we do not consider any
of the available proposals for a generalized Laplace distribution as suitable
for our purposes. See for example Liu and Bottai (2009) for some results on
the use of Kotz et al.’s (2000) multivariate Laplace distribution.

Adaptive quadrature

Generalized linear models and nonlinear mixed models are a typical exam-
ple of where quadrature-based approximations of high-dimensional integrals
provide an efficient and reliable computational strategy. At some extent, the
quadrature gaussian rule can be considered as the deterministic equivalent
of Monte Carlo integration algorithm; similarly the adaptive quadrature is
seen as the efficient counterpart of importance sampling (Pinheiro and Bates,
1995; Pinheiro and Chao, 2006). In normal (linear or nonlinear) mixed mod-
els the adaptive gaussian rule is easily implemented by centering and scaling
the grid of abscissas using an “importance” distribution that approximates
the integrand obtained by applying a second-order Taylor expansion around
the conditional modes of the random effects.

In this section, we consider an adaptation of (3.2) and (3.3) when cen-
tering the grid of abscissas v around the conditional (on Ψ) modes of ui
rather than 0. Although this is a topic of current research, we provide a
brief sketch of the idea.

The adaptive quadrature rule for the Gaussian and the Laplace models is
simply obtained by centering the abscissas v, scaled by the relevant variance
matrix, with the conditional modes

ûi = arg min
ui

1

σ
ρτ (yi −Xiθx − Ziui) + u′iΨ

−1ui/2

or

ûi = arg min
ui

1

σ
ρτ (yi −Xiθx − Ziui) +

q∑
l=1

|uil|/2ψl

respectively, that is ûi + Ψ1/2vk1,...,kq or ûi + Ψvk1,...,kq . This approach is
particularly useful if the ui’s are not assumed to be zero–median random
vectors.
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The scaling of the random effects could be ameliorated when using a
variance matrix consistent with the scale of the integrand or a linear ap-
proximation of it. This is particularly true if the variance of the random
effects is large (see for example Heiss and Winschel, 2008). The lack of
(strict) differentiability of the loss function in a LQMM prevents us from
pursuing an approach similar, say, to that described by Pinheiro and Bates
(1995). Nonetheless, it would be reasonable to introduce a smooth approx-
imation of ρτ and go from there.

For example, one could consider the smooth function used in Chen and
Wei (2005)

κω,τ (v) =


v(τ − 1)− 1

2(τ − 1)2ω if v ≤ (τ − 1)ω,
v2

2 ω if (τ − 1)ω ≤ v ≤ τω,
vτ − 1

2τ
2ω if v ≥ τω,

where v ∈ R, ω > 0 is a scalar “tuning” parameter and with the under-
standing that κω,τ (v) =

∑n
i=1 κω,τ (vi) if v ∈ Rn.

Let us define the function

g (θx,Ψ, σ, yi, ui) =
1

σ
ρτ (yi −Xiθx − Ziui) + u′iΨ

−1ui/2

and its smooth approximation

h (θx,Ψ, σ, yi, ui) =
1

σ
κω,τ (yi −Xiθx − Ziui) + u′iΨ

−1ui/2.

In place of Ψ in the scaling of the v, we use the Hessian of h

Hi ≡ H (θx,Ψ, σ, yi) =
∂h (θx,Ψ, σ, yi, ui)

∂ui∂u′i

∣∣∣∣
ui=ûi

evaluated at the modes ûi = arg minui h (θx,Ψ, σ, yi, ui).
Let vk1,...,kq = (vk1 , . . . , vkq)

′ = and wkl , l = 1, . . . , q be the nodes and
the weights of the Gauss-Hermite quadrature rule. Under the assumption
of normal random effects, a possible adaptive Gaussian quadrature rule is
given by∫
Rq

(2π)−q/2 |Ψ|−1/2 exp

{
− 1

σ
ρτ (yi −Xiθx − Ziui)

}
exp

(
−u′iΨ−1ui/2

)
dui

=

∫
Rq

(2π)−q/2 |HiΨ|−1/2 exp
{
−g
(
θx,Ψ, σ, yi, ûi +H

−1/2
i v

)
+ ‖v‖2/2

}
× exp

(
−‖v‖2/2

)
dv

' |HiΨ|−1/2
∑
k

exp {−g (θx,Ψ, σ, yi, ṽik)} w̃k
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where ṽik = ûi +H
−1/2
i vk1,...,kq and w̃k = exp

(
‖vk‖2/2

)∏q
l=1wkl .

The (marginal) log-likelihood for all clusters is approximated by

`app(θx, σ,Ψ|y) = log σN (τ)− M

2
log |Ψ| − 1

2

M∑
i=1

log |Hi|

+
M∑
i

log

{∑
k

exp [−g (θx,Ψ, σ, yi, ṽik)] w̃k

}
.

Under Laplacian random effects, one could smooth the kernel of u using
κ again

h (θx,Ψ, σ, yi, ui) =
1

σ
κωy ,τ (yi −Xiθx − Ziui) + κωu,0.5 (ui) ,

however the feasibility and benefit of such approach in this case are unclear
at this stage of the research.

Note that if the smooth function h was too used for approximating ρ
in the exponential argument, it would be possible to expand the objective
function with a Laplace (second-order) approximation, which, at least in
the case of a generalized linear MM, corresponds the one point adaptive
Gaussian quadrature (Pinheiro and Bates, 1995).

3.2 Nonsmooth or subgradient optimization

The nondifferentiability of the loss function ρτ at points where yij −x′ijθx−
z′ij
(
Ψ1/2v

)
= 0 interferes with the standard theory of smooth optimization.

Subgradient optimization and derivative–free optimization techniques (e.g.,
coordinate and pattern–search methods, modified Nelder–Mead methods,
implicit filtering) have been developed to tackle nonstandard optimization
problems. In Geraci and Bottai (2007), we considered the Clarke’s deriva-
tives as a viable approach to nonsmooth analysis.

In his book, first published in 1983, Clarke (1990) developed a general
theory of nonsmooth analysis that leads to a powerful and elegant approach
to mathematical programming. Here, we focus our attention on theorems
for Lipschitz functions which play an important role in Clarke’s treatise.

We begin characterizing the (approximated) marginal likelihood as a
Lipschitz function. Let θz denotes the vector of m non-redundant elements
of the matrix Ψ1/2. Consider the i-th contribution to the likelihood in (3.2),
rewritten as

`app,i (θ, σ) = log σni(τ) + log
∑
k

exp

{
− 1

σ
ρτ

(
yi − X̃i,kθ

)} q∏
l=1

wkl (3.5)

12



where X̃i,k = [Xi| (v′k ⊗ Zi)Tq] has row vectors x̃′ij,k, vk is a q × 1 vector of

nodes, θ = (θ′x, θ
′
z)
′. Tq is a matrix of order q2×m so that vec

(
ΨT/2

)
= Tqθz

(Gauss-Hermite) or vec
(
ΨT
)

= Tqθz (Gauss-Laguerre). Since the likelihood
function is strictly differentiable with respect to σ, we focus on θ alone for
brevity.

It can be noted that `app,i, as a function of θ, is a real-valued function
given by the composition g◦h, where h : Rp+m → RniKq

and g : RniKq → R.
Each component function hj,k of h,

hj,k(θ) = ρτ
{
yij − x̃′ij,kθ

}
/σ

is Lipschitz near θ, so is g (h(θ)) = log σni(τ) + log
∑

k exp
{
−
∑

j hj,k(θ)
}
·∏q

l=1wkl near h(θ).
Then, we calculate the generalized gradient for Lipschitz functions (Clarke,

1990). We have that (i) −g is convex (i.e., g is concave), thus regular at
h(θ), (ii) each hj,k is regular at θ, and (iii) every element λ of ∂(−g) (h(θ))
has nonnegative components

λr,h = ∂(−g) (h(θ))r,h =

∏q
l=1whl exp

{
−hr,h(θ)−

∑
j 6=r hj,h(θ)

}
∑

k exp
{
− 1
σρτ

(
yi − X̃i,kθ

)}∏q
l=1wkl

,

for r = 1, . . . , ni and h = (h1, . . . , hq)
′, hl = 1, . . . ,K, l = 1, . . . , q.

For the chain rule I (Clarke, 1990, Theorem 2.3.9, p.42), it follows that

∂(−g) (h(θ)) = C
{∑

λj,kξj,k : ξj,k ∈ ∂hj,k(θ), λ ∈ ∂(−g) (h(θ))
}
,

where the summation is extended to all j’s and k’s and C denotes the weak∗-
closed convex hull. For the chain rule II (Clarke, 1990, Theorem 2.3.10, p.45)

∂hj,h (θ) =



− τ

σ
x̃ij,h if yij − x̃′ij,hθ > 0

− (τ − 1)

σ
x̃ij,h if yij − x̃′ij,hθ < 0

−
(
ω + τ − 1

2

)
x̃ij,h : |ω| ≤ 1 if yij − x̃′ij,hθ = 0

If a local minimum or maximum is attained at θ̂, solution to the mini-
mization problem

min
θ

{
−

M∑
i

`app,i (θ, σ) |θx ∈ Rp,Ψ(θz) ∈ Sq++

}
,

13



then 0 ∈ ∂ −
∑M

i `app,i (Clarke, 1990). On a practical level, the constraint
Ψ(θz) ∈ Sq++ can be imposed a posteriori by calculating the nearest sym-
metric positive definite matrix (Higham, 2002) after θz is estimated or, a
priori, by a reparameterization of Ψ (Pinheiro and Bates, 1996; Pourah-
madi, 1999). Equality and inequality constraints can be accommodated by
the Lagrangian rule provided by Theorem 6.1.1 in Clarke (1990, p.228).

Following the subgradient approach of Rockafellar (1970), Koenker (2005)
gives optimality conditions of the quantile regression problem for indepen-
dent data.

3.3 Interpretation of parameters

Consider the classical random intercept model

y|u = µ+ Zu+ ε

u ∼ N
(
0, ψ2

uI
)

ε ∼ N
(
0, ψ2I

)
,

where ε ⊥ u, with marginal distribution y ∼ N
(
µ, ψ2I + ψ2

uZZ
′).

The parameters of such model have a straightforward interpretation: µ
is the mean effect at the population level, ψ2

u is a measure of the disper-
sion of the cluster–specific random effects and related to the intra–cluster
correlation γ, γ = ψ2

u/(ψ
2 + ψ2

u), and ψ2 is the ‘white’ noise.
Each cluster have a conditional distribution N

(
µ+ ui, ψ

2I
)
, therefore

the ‘atomic’ τ -th quantile is qij(τ) ≡ qi·(τ) = µ+ ψΦ−1(τ) + ui, where Φ−1

denotes the inverse of the cumulative distribution function of a standard
normal. Conditionally on ui, the yij ’s are independent. Thus, the τ -th
sample quantile q̂i·(τ) is an estimator of qi·(τ), which, asymptotically,

q̂i·(τ)∼̇N

(
qi·(τ),

τ(1− τ)

ni
[
pyi·|ui(qi·(τ))

]2
)
.

Note that this result is valid for any 0 < τ < 1 and continuous p. If we took
the average of M such estimators we would obtain, for a large M ,

1

M

M∑
i

q̂i·(τ)∼̇N (q̄(τ), ν)

where q̄(τ) = 1
M

∑
i qi·(τ) ≈ µ+ ψΦ−1(τ) and ν = 1

M2

∑
i

τ(1−τ)
ni[pyi·|ui (qi·(τ))]

2 =

1
M2

∑
i
τ(1−τ)2πψ2eΦ

−1(τ)

ni
. It is intended that, under the above random in-

14



tercept model, the approximation of the mean is valid on average (that is,
Eu {q̄(τ)}).

Let us now turn to the linear quantile mixed models. Our starting model
is conditional. The marginal likelihood (3.1), estimated under models (3.2)
or (3.3), implicitly assumes that the τ -th regression quantiles of the clus-
ters ‘gravitate’ around a common regression quantile which, in the case of
the normal intercept model, would be µ + ψΦ−1(τ), clearly different from
the τ -th quantile of the marginal model µ +

√
ψ2 + ψ2

uΦ−1(τ). Oberhofer
and Haupt’s (2005) showed that the unconditional quantile estimator for
dependent random variables is asymptotically unbiased.

The scale parameter σ does not have, in general, a straightforward in-
terpretation since the use of the Laplace distribution for the conditional
response responds to the need for a likelihood approach to quantile regres-
sion rather than to the observation that the data is effectively Laplacian.
But what if it is? Consider the linear median mixed model (τ = 0.5). The
(asymptotic) variance of the quantile estimator of qi·(0.5) based on ni ob-

servations is τ(1−τ)

ni

[
τ(1−τ)
σ

]2 = 4σ2

ni
and the variance of a variable y ∼ AL(µ, σ, τ)

is given by var(y) = σ2(1−2τ+2τ2)
(1−τ)2τ2 (Yu and Zhang, 2005). It follows that

var(y) = 8σ2 for τ = 0.5. The relative efficiency of this estimator under

Laplacian and normal hypotheses is then 4σ2

ni
/πψ

2

2ni
= 8σ2/πψ2. The median

estimator would achieve the same asymptotic efficiency under the two dis-
tributions if σ ≈ 0.62ψ or, equivalently in terms of variances, if 8σ2 = πψ2.

4 Simulation study

The data were generated according to

yij = β0 + β1xij + ui + εij

where β = (100, 2), xij = δi + ζij , δi ∼ N(0, 1), ζij ∼ N(0, 1). Random
intercepts, u, and error terms, ε, were independently drawn from a N(0, 5)
(N), a Student’s t3 (t), and a χ2

2 (X). The number of replicated datasets
is denoted with R. The Gauss-Hermite quadrature (“normal”) was used.
The quantiles τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9} were estimated. The estimation
method was either derivative free (“df”) or gradient search (“gs”).

The relative absolute bias |β̂i−β̃i|/β̃i and the standard deviation

√
var(β̂i),

i = 0, 1, are reported in Tables 1–12 (the first letter of the distribution com-
bination refers to u, the second to ε). The ‘true’ β’s, β̃, were calculatated
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as follows: β̃0(τ) = 100 +F−1ε (τ), where F−1ε () is the quantile function of ε,
and β̃1(τ) = 2, for all τ ’s (i.e., homoscedastic model) .

quantile N-N t-N N-t t-t N-X t-X

0.10 0.0008 0.0005 0.0053 0.0024 0.0036 0.0011
0.25 0.0012 0.0003 0.0028 0.0017 0.0002 0.0012
0.50 0.0004 0.0004 0.0007 0.0004 0.0039 0.0030
0.75 0.0012 0.0006 0.0034 0.0022 0.0043 0.0028
0.90 0.0020 0.0001 0.0064 0.0045 0.0043 0.0025

Table 1: Relative bias for β0. Method = df, n = 50, m = 5, R = 300.

quantile N-N t-N N-t t-t N-X t-X

0.10 0.6037 0.4989 0.6163 0.4875 0.5753 0.4170
0.25 0.5254 0.3608 0.5595 0.3645 0.5022 0.3415
0.50 0.4826 0.3382 0.5381 0.3602 0.5107 0.3610
0.75 0.4905 0.3523 0.5259 0.3353 0.5316 0.3645
0.90 0.5760 0.4501 0.5820 0.5447 0.6671 0.6350

Table 2: Std deviation for β0. Method = df, n = 50, m = 5, R = 300.
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quantile N-N t-N N-t t-t N-X t-X

0.10 0.0038 0.0020 0.0007 0.0029 0.0028 0.0009
0.25 0.0002 0.0026 0.0016 0.0008 0.0009 0.0025
0.50 0.0062 0.0006 0.0020 0.0024 0.0005 0.0021
0.75 0.0006 0.0030 0.0057 0.0037 0.0003 0.0038
0.90 0.0148 0.0088 0.0024 0.0026 0.0033 0.0093

Table 3: Relative bias for β1. Method = df, n = 50, m = 5, R = 300.

quantile N-N t-N N-t t-t N-X t-X

0.10 0.2344 0.2044 0.1753 0.1623 0.1179 0.1074
0.25 0.1925 0.1751 0.1377 0.1199 0.1198 0.1046
0.50 0.1775 0.1577 0.1227 0.1052 0.1277 0.1208
0.75 0.1877 0.1752 0.1338 0.1153 0.1774 0.1746
0.90 0.2120 0.2063 0.1740 0.1544 0.2697 0.2704

Table 4: Std deviation for β1. Method = df, n = 50, m = 5, R = 300.

quantile N-N t-N N-t t-t N-X t-X

0.10 0.0006 0.0006 0.0029 0.0030 0.0013 0.0021
0.25 0.0003 0.0005 0.0010 0.0012 0.0009 0.0007
0.50 0.0002 0.0001 0.0005 0.0002 0.0020 0.0016
0.75 0.0004 0.0004 0.0019 0.0015 0.0021 0.0018
0.90 0.0006 0.0006 0.0032 0.0037 0.0019 0.0018

Table 5: Relative bias for β0. Method = df, n = 300, m = 10, R = 500.
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quantile N-N t-N N-t t-t N-X t-X

0.10 0.3273 0.2949 0.3536 0.3063 0.3221 0.2867
0.25 0.2806 0.1738 0.3241 0.2317 0.3307 0.2348
0.50 0.2714 0.1712 0.3136 0.2291 0.3166 0.1907
0.75 0.2638 0.1936 0.3001 0.2453 0.2897 0.1975
0.90 0.3122 0.3030 0.3274 0.3940 0.3383 0.3360

Table 6: Std deviation for β0. Method = df, n = 300, m = 10, R = 500.

quantile N-N t-N N-t t-t N-X t-X

0.10 0.0003 0.0016 0.0032 0.0002 0.0005 0.0002
0.25 0.0003 0.0013 0.0007 0.0001 0.0006 0.0010
0.50 0.0011 0.0014 0.0004 0.0004 0.0008 0.0008
0.75 0.0000 0.0006 0.0006 0.0004 0.0020 0.0008
0.90 0.0020 0.0005 0.0016 0.0005 0.0021 0.0014

Table 7: Relative bias for β1. Method = df, n = 300, m = 10, R = 500.

quantile N-N t-N N-t t-t N-X t-X

0.10 0.0717 0.0764 0.0607 0.0562 0.0353 0.0347
0.25 0.0598 0.0565 0.0429 0.0392 0.0377 0.0338
0.50 0.0557 0.0488 0.0381 0.0341 0.0405 0.0376
0.75 0.0586 0.0571 0.0441 0.0387 0.0624 0.0545
0.90 0.0773 0.0765 0.0583 0.0552 0.0947 0.0970

Table 8: Std deviation for β1. Method = df, n = 300, m = 10, R = 500.

quantile N-N t-N N-t t-t N-X t-X

0.10 0.0016 0.0009 0.0044 0.0034 0.0035 0.0026
0.25 0.0004 0.0004 0.0014 0.0012 0.0005 0.0006
0.50 0.0001 0.0001 0.0002 0.0001 0.0019 0.0016
0.75 0.0003 0.0005 0.0021 0.0014 0.0023 0.0018
0.90 0.0015 0.0006 0.0044 0.0035 0.0026 0.0017

Table 9: Relative bias for β0. Method = gs, n = 300, m = 10, R = 500.

18



quantile N-N t-N N-t t-t N-X t-X

0.10 0.3032 0.2707 0.3215 0.2770 0.3441 0.3586
0.25 0.2733 0.1658 0.3268 0.2236 0.3275 0.2356
0.50 0.2551 0.1638 0.3164 0.2120 0.3054 0.1790
0.75 0.2586 0.1844 0.3119 0.2355 0.2745 0.1912
0.90 0.2973 0.5716 0.3193 0.2884 0.3129 0.4666

Table 10: Std deviation for β0. Method = gs, n = 300, m = 10, R = 500.

quantile N-N t-N N-t t-t N-X t-X

0.10 0.0009 0.0005 0.0023 0.0005 0.0018 0.0007
0.25 0.0001 0.0011 0.0002 0.0003 0.0010 0.0014
0.50 0.0008 0.0011 0.0010 0.0004 0.0005 0.0009
0.75 0.0001 0.0007 0.0000 0.0002 0.0016 0.0010
0.90 0.0004 0.0004 0.0029 0.0011 0.0030 0.0004

Table 11: Relative bias for β1. Method = gs, n = 300, m = 10, R = 500.

quantile N-N t-N N-t t-t N-X t-X

0.10 0.0736 0.0764 0.0587 0.0553 0.0386 0.0363
0.25 0.0601 0.0567 0.0436 0.0392 0.0379 0.0337
0.50 0.0561 0.0494 0.0383 0.0346 0.0401 0.0375
0.75 0.0592 0.0576 0.0448 0.0393 0.0622 0.0550
0.90 0.0777 0.0778 0.0598 0.0559 0.0948 0.0974

Table 12: Std deviation for β1. Method = gs, n = 300, m = 10, R = 500.
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(b)

Figure 1: Smoothed regression quantiles (τ ∈ {0.1, 0.5, .9}) with data points
(a) and 95% confidence bands (b). The true mean function is represented
by a dashed line.

5 Special cases

5.1 Smoothing splines

We show a simple application of the LQMMs presented in Section 2. We
generated n = 10 observations clustered within M = 50 groups using the
nonlinear heteroscedastic model

yij = exp

{
5xij

1 + 2x2

}
+ ui + xijεij , (5.1)

where xij ∼ U(0, 1), ui ∼ N(0, .25) and εij ∼ N(0, 1), independently. With
such model, the within-group correlation cor

(
yij , yij′

)
, j 6= j′, will vary in

the range 0.2–1, depending on xij .
We approximated the nonlinear function in (5.1) with a natural cubic

spline model with four degrees of freedom, break-points placed at the quar-
tiles of x and boundary knots at the extremes of x’s range. The B-spline basis
matrix S was then included in the quantile mixed model y = Sβ + u + ε.
Figure 1 shows a summary of the regression models fitted with a 9-knot
Gauss-Hermite quadrature for three quantiles (τ ∈ {0.1, 0.5, .9}) and 95%
confidence bands estimated by using 50 bootstrap replications. Due to the
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simmetry of the error term, the estimated median and the (true) mean are
very close. However, the spread of the distribution differs across the values
of x.

5.2 Spatial modelling

Spatial modelling refers, loosely, to the case in which geographical informa-
tion is introduced in the model. We might consider the case in which x
is a vector of geographical coordinates or, more simply, when the grouping
factor is some geographical unit (e.g., postal codes, wards or counties). In
the latter case, each random term u of the LQMM would be associated to
a small-area effect and the resulting variance–covariance matrix would be
interpreted as a spatial correlation matrix at the quantile of interest. The
modelling of Ψ, therefore, should take into account the spatial association
between areas (e.g., contiguity). See for example Lee and Neocleous (2010)
for an application of Bayesian quantile regression (Yu and Moyeed, 2001) to
environmental epidemiology using the results of Machado and Silva (2005).

Quantile smoothing of surfaces and related inference is a recent topic
(He et al., 1998; He and Portnoy, 2000; Koenker and Mizera, 2004). An
application of triogram smoothing splines to poverty mapping is described
by Geraci and Salvati (2007). A Bayesian quantile modeling of ozone con-
centration surfaces is given by Reich et al. (2010b).

Suppose we want to estimate the quantiles of an outcome under the
following nonparametric model

yi = f(xi) + εi

where x′i is a vector of geographical coordinates. We could introduce a
bivariate smoother for f as, for example, a generalized covariance function
with quadratic penalty and adopt an approach as described in Ruppert et al.
(2003) or a triogram smoothing spline model (Koenker and Mizera, 2004)
with L1 penalized coefficients. Differently from the classical L2 penalty used
for estimating nonparametric mean functions, L1 penalization (Koenker
et al., 1994) has a more direct and natural application to quantiles from
a modeling and estimation standpoint. However, in both circumstances,
the random effects would play the role of spline coefficients and the type of
quadrature to be used would naturally follow the metric of the associated
penalty term.
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APPENDIX

Consider the integration problem as in section 3.1 and let Gk =
∑

v∈Vk f (v)
· w (v) be the univariate Gaussian quadrature rule with accuracy level k
where Vk is a set of nodes and w(·) is a weighting function (e.g., Hermite
or Laguerre). The product rule for q-variate Gaussian quadrature with
accuracy level k is given by the tensor product of q univariate rules

Tq,k = (Gk ⊗ . . .⊗Gk) .

Following the seminal work of Smolyak (1963), Heiss and Winschel (2008)
proposed an integration rule based on the difference of successive univari-
ate quadrature rules Dk = Gk − Gk−1, with G0 = 0 and k ∈ N. Given a
sequence of Gaussian quadrature rules Gk such that each Vk used by Gk
has k nodes, the Smolyak rule with accuracy level K ∈ N for q-dimensional
Gaussian quadrature is defined as

Sq,K =
K−1∑
m=0

∑
k∈Nqm

(
Dk1 ⊗ . . .⊗Dkq

)
(A.1)

where Nqm =
{
k ∈ Nq :

∑q
l=1 kl = q +m

}
and k = (k1, . . . , kq)

′. For accu-
racy level K = 1, Sq,1 = Tq,1. As K grows to infinity, the number of nodes

in the set Vq,K =
⋃K−1
m=K−q

⋃
k∈Nqm

(
Vk1 ⊗ · · · ⊗ Vkq

)
used by the sparse grid

rule (A.1) does not increase exponentially as does with the product rule, but
only polynomially. Heiss and Winschel (2008) showed that for a given ac-
curacy K and rising q, the logarithm of nodes in Vq,K is of order O (log (q))
(Theorem 2).
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