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Abstract 
In this paper, a nonlinear adaptive control of a 3D overhead crane is investigated. A dynamic model of the 

overhead crane was developed, where the crane system is assumed as a lumped mass model. Under the mutual 

effects of the sway motions of the payload and the hoisting motion, the nonlinear behavior of the crane system is 

considered. A nonlinear control model-based scheme was designed to achieve the three objectives: (i) drive the 

crane system to the desired positions, (ii) suppresses the vibrations of the payload, and (iii) velocity tracking of 

hoisting motion. The nonlinear control scheme employs adaptation laws that estimate unknown system parameters, 

friction forces, and the mass of the payload. The estimated values were used to compute control forces applied to 

the trolley of the crane. The asymptotic stability of the crane system is investigated by using the Lyapunov method. 

The effectiveness of the proposed control scheme is verified by numerical simulation results. 

 

Keywords: 3-D overhead crane; nonlinear adaptive control; Lyapunov method; Euler-Lagrange equation; sway 

control. 

 

I. INTRODUCTION 
Overhead crane systems are widely used to 

move goods from one place to another in factories 

and harbors. A crane is naturally an underactuated 

mechanical system, in which the number of 

actuators is less than degrees of freedom (DOF) of 

the system. For an overhead crane, the degree of 

freedom is five (i.e., trolley and girder positions, 

rope length, and two sway angles) but the number 

of actuators is three (i.e., trolley, girder, and 

hoisting-motors). To improve the efficiency of an 

overhead crane, the trolley and girder should 

travel as fast as possible. However, fast trolley and 

(or) girder motions resulted in the large sway 

motions of the payload. Therefore, the fast 

motions of the trolley and (or) girders do not 

guarantee the improvement of the overhead crane 

efficiency because it may take a long time to 

suppress the sway motions of the payload. 

Moreover, for safety, the sway motions should be 

kept as small as possible during crane operation. 

Therefore, development of a control algorithm 

that allows fast trolley and girder motions together  

with quick sway suppression is desirable for crane 

systems.  

A number of crane control algorithms based on 

2D models [1-8] have been developed. It should 

be noted that 2D models do not represent all the 

cases of overhead crane operation in practice. 3D 

models [9-20] have been proposed to describe the 

crane more precisely, but they are more complex 

than 2D models. It should be noted that the 

complexity of the 3-D models yields difficulties in 

control design. Most researchers focused on 3D 

models of overhead cranes with four DOFs [9-

14,17-18, 20] (i.e., trolley and girder, and two 

sway motions), where hoisting motion was not 

considered. It should be noted that the hoisting 

motion cannot be neglected in practice because the 

variation of the rope length significantly affects 

the sway dynamics. However, only few researches 

consider crane systems with five DOFs that 

include the hoisting motion [15-16] due to the 
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complexity of the model and consequently control 

design. 

Most of the researches about overhead crane in 

recent years are developed based on the Euler-

Lagrange equation. Some of them use Lyapunov 

theory to design adaptive control [1-4,10-13, 16, 

17] which estimates unknown parameters. The 

others use linearization technique in order to 

simplify the mathematical model and design of 

linear controllers such as sliding mode control [2,  

7, 8] and fuzzy control [12, 17]. 

In practice, the crane systems are usually 

operated under the unknown parameters such as 

the mass of payload and friction/damping force. 

To solve this problem, adaptive control [1-4,10-13, 

16, 17], fuzzy control [12, 17], and sliding mode 

control [2, 7, 8] have been developed. Since 

adaptive control schemes are able to estimate 

unknown parameters that is used in control laws, 

Lyapunov energy-based control can be employed 

to establish the control design. The use of the 

Lyapunov control energy-based control   

facilitates the development of control algorithms 

based on nonlinear models, which represent 

nonlinear system precisely.  

The work [7] proposed an adaptive sliding 

mode control using estimated unknown payload 

and damping coefficient, where the variation of 

the rope length is considered. However, the 

control adaptive scheme is based on a 2D model. 

In this paper, a 3D overhead crane model with five 

DOFs (motions of trolley and girder, hoisting, two 

sway angles) is derived using Euler-Lagrange 

equation. A nonlinear adaptive control that 

estimates the coefficients of friction and the mass 

of payload is proposed. The stability of the 

proposed control system is investigated using 

Lyapunov method. The effectiveness of the 

proposed control law is illustrated by experiment 

results. 

 

II. DYNAMICS OF A 3D OVERHEAD 

CRANE  
Figure 1 shows an overhead crane system with 

the sway motions of the payload in the world 

coordinate system OXYZ. In the derivation of the 

dynamic model of the crane, the following 

assumptions are made: 

(i) The payload and the trolley are connected 

by a massless-rigid link. Also, the 

mechanical frame of the crane is considered 

as a rigid body. 

(ii) The mass of trolley is unknown. 

(iii) The friction forces fcx
 and fcy cannot be 

measured, where the viscous friction 

coefficients cx and cy are unknown. 

As shown in Figure 1, the girder, the trolley, and 

the payload position vectors are given as follows 

0 0 ,

0 ,

sin cos sin cos cos ,

r

c

p

r x

r x y

r x l y l l

 (1) 

where x and y are the trolley position in X and Y 

directions, respectively. 

Let 5( )q t R be the generalized coordinate 

vector defined as follows. 

T
( ) ( )    ( )    ( )    ( )    ( )q t x t y t l t t t        (2) 

The forces applied to the system are given by. 

[( )   ( )         0      0]
x cx y cy l

F F f F f F  (3) 

The friction forces in the X and Y directions 

respective are given as follows. 

( ) ( ), ( ) ( )cx x cy yf t c x t f t c y t  (4) 

where cx and cy are the viscous friction coefficients 

in X and Y directions, respectively. 

The total kinetic energy K and the potential 

energy P of the crane system are given as 

,

,

trolley rail payload

payload

K K K K

P P
 (5) 

where 

1

2
trolley c c cK m r r   (6) 

1
,

2
rail r r rK m r r   (7) 

1
,

2
payload p p pK m r r   (8) 

(1 cos cos ).payload pP m gl  (9) 
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Figure 1. The overhead crane system 
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Using the Euler-Lagrange equation [21], the 

equations of motion are derived as follows 

     ( 1,2,3,4,5)
i

i i

d L L
T i

dt q q
 (10) 

with L = K-P. 

The dynamic equations (10) can be rewritten as 

( ) ( , ) ( ) ,
m

M q q C q q q G q u  (11) 

where 5 5( )M q R  is inertia matrix of the crane 

system and 5 5( )
m

C q R  represent the centripetal 

Coriolis, and 5( )G q R is the gravity term. Based 

on the structure of ( )M q  and ( , )
m

C q q given by 

Eq. (11), it should be noted that the following 

skew-symmetric relationship is satisfied. 

51
( ) ( , ) 0,    ,

2

T

m
M q C q q R  (12) 

where ( )M q can be upper and lower bounded by 

the following inequality. 

2 2 5

1 2
( ) ,Tn M q n R  (13) 

where 1 2
 and n n R are positive bounded 

constants. 

 

III. CONTROL DESIGN 
In this section, a control law is proposed to 

drive the crane to the desired position and to 

suppress the sway angles simultaneously. For 

convenience, a new generalized coordinate vector 

is defined as follows 

T    ,
m a

q q q  (14) 

where 

( ) ( ) ( )
T

m
q x t y t l t , ( ) ( )

T

a
q t t . 

The equations of motion of the overhead crane 

(11) can be rewritten as follow. 

 (15) 

To achieve the control objective, with the given 

desired signals d
q , d

q , and d
q (which are 

assumed to be bounded), the control law 
mf

u  is 

designed to guarantee the asymptotical 

convergence of q to d
q . 

 

The error signals are defined as 

 (16) 

where 
T

=m m dm x y le q q e e e  

TT

a a da d de q q e e  

where  are defined trajectories of 

, respectively.  are defined as 

follows 

 (17) 

where 

0 0

0 0 0 ,

0 0

m

a

K

K

K

1

2

3

0 0

0 0 ,

0 0

K

K K

K

4

5

0

0

K
K

K
 

 and  are positive definite matrices. A 

new variable s are defined as follows 

 (18). 

Then, using Eq. (11), the dynamics in terms of 

the signals  and  can be derived as 

 (19) 

where the fictitious torques  and   are 

defined as follows 

       ( ) ,

      ( ).

m mm rm ma ra mm rm

ma ra m mcf

a am rm aa ra am rm

aa ra a

M q M q C q

C q G q u

M q M q C q

C q G q

 (20) 

The signals  and  can be expressed as in 

term of a known matrix  and  and unknown 

parameter vectors,  and . 

11 13

22 23

32

0 0
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0 0 0 0

,

c r p

c pm m

pm m m
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c

c

τ
 (21) 
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,
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rlr d
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r
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where 

 

 

 (22) 

where 

 

 

As a majority of the adaptive controller, the 

following signal is defined. 

 (23) 

where  is a positive constant and 

 (24) 

From Eq. (24), it is concluded that  is 

positive.  Define a positive function . 

It can be shown that 

2

2

1 ˆ( )
( )

( ) 0

m T T

a a a a av a

m

h s
h t s s K S

h t s

h t

 (25) 

It is assumed that there exists a measure zero 

set of time sequences  such that 

(i.e., ). 

The following control law is proposed. 

 (26) 

where 

 

where  are the estimates of  and 

, respectively. 

The adaptation laws are given as. 

 (27) 

Then the error dynamics can be obtained as. 

 (28) 

which can be rewritten as follows. 

 (29) 

where 

 

Since  are constant, we obtain. 

 (30) 

Theorem: Consider the system (11) under the 

parameters systems unknown. The proposed 

control law (26) employing the adaption laws (27) 

guarantees the asymptotic stability of the systems, 

i.e., , , and  as . 

Proof: Lyapunov function candidate can be 

defined as. 

 (31) 

11
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From Eqs. (23)-(24),  positive-definite 

can be concluded. Taking the time derivative of 

 yields. 

1 1

( )=

.

T

T T T T

m m m m m a a a a a

V t s Ks

s s
  

 (32) 

By substituting (27) into (32), the following 

inequality is obtained. 

T( ) 0V t s Ks  (33) 

From Eq. (23), it is concluded that is 

continuous for all . Since is a continuous 

function of ,  is continuous at time , 

i.e.,  . From Eq. (33), 
 
and 

 then it is concluded that  is non-

increasing at time , which implies . 

Therefore, from Eq. (22) , and using 

definitions of , is obtained. Moreover, 

it is clear that ∫ �̇�𝑑𝑡 = 𝑉() − V(0) < 


0
 , or 

equivalent. Therefore by invoking the Barbalat’s 

lemma, we obtain that  asymptotically as

, therefore, implies as . 

 

IV. EXPERIMENT RESULTS 
The experiments were carried out with the 

testbed, as shown in Figure 2. The payload hangs 

at the end of the rope whose top end is hinged by 

the pulley mounted on the trolley. Three AC servo 

motors (MITSUBISHI MR-J2S-40) make the 

three motions of the crane system: the trolley, the 

girder, and the hoisting. The three motors are 

controlled via current inputs provided by a power 

interface. 

The five encoders are employed to measure the 

five variables, i.e. the displacements of the trolley 

and the gantry, the rope length, and the two sway 

angles of the payload, where three encoders are 

available in the three AC servo motors. The pulse 

signals of the five encoders are converted to 16-bit 

digital signals by the power interface.  

The reference signals for the three AC servo 

motors are sent from a PC to the power interface 

through a PCI board (SMC-4DF-PCI provided by 

CONTEC company), which also receives the 16-

bit digital signals of the five encoders. The control 

program runs in Windows 7 environment. 

To illustrate the control performance, we 

perform the experiments of the proposed nonlinear 

adaptive controller of (30) employing the 

adaptation laws (27) in a testbed (as shown in 

Figure 2) with the following parameters: 

2

5 kg,  5 kg,

0.5 kg,  9.81 m/s

c r

p

m m

m g
 

The initial state of the system is chosen as: 

(0) 0,  (0) 0,  y(0) 0,  (0) 0,

(0) 1 m,  (0) 0, (0) 0,  (0) 0,  

(0) 0,  (0) 0.

x x y

l l  

( )V t

( )V t

( )h t

it ( )V t

( )h t ( )V t it

( ) ( )i iV t V t ( ) 0iV t

( ) 0iV t ( )V t

it ,s h L

, ,m ae L

,m a s L

0s

t  and 0e e t

AC servo of X 

direction

AC servo of Y 

direction

AC servo of 

hoisting motion

Controller Driver AC servo 
  

Figure 2. Experimental system 
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The trolley moves to the desired position 

selected as follows: 

 

The control gains of the control law (26) are 

turned until the best performance is achieved, 

which yields the following control gains. 

 

 

Figures 3, 4 and 5 plots demonstrate that trolley 

reach 0.8 mdx  at t = 12.3s and 0.8 mdy  at t = 

12.3s, the rope will drop payload down from initial 

height (0) 0.8 ml to zero position after duration t 

= 12.3s. During trolley is moving, the maximum 

vibration amplitudes of the sway angles 

 and  are demonstrated 

in Figure 6 and 7. After 14 seconds, the vibration 

almost eliminated 

Figures 8 and 9 are the parameters estimation 

results. The estimated values converge to constant 

although it may not get the true values. As shown 

in Figures 8 and 9, the values may not get the true 

values. However, getting true values of the 

parameters was not the purpose of this paper. 
 

0.8 ,      0,

0.8 ,      0,

0 ,        0.

d d

d d

d d

x m x

y m y

l m l
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Figure 5. Rope length 

 

  
Figure 3. Position of the trolley in X-direction Figure 6. Sway angle ( )t  

  

 
 

Figure 4. Position of the trolley in Y-direction Figure 7. Sway angle ( )t  
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V. CONCLUSION 
In this paper, a 5-DOF dynamic model of the 

3D overhead crane was developed under the 

effects of unknown friction force and unknown 

payload. A nonlinear adaptive controller was 

proposed for the overhead crane to drive it to its 

desired point and to suppress the swing of payload. 

Under the proposed controller, asymptotic 

stability of the overhead crane system is proved by 

using Lyapunov method. Experiment and 

simulation results illustrate the effectiveness of the 

proposed controller. 
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