
Automatic synthesis and optimization of partially specified asynchronous systems

Alex Kondratyev Jordi Cortadella Michael Kishinevsky Luciano Lavagno Alexander Yakovlev
Univ. of Aizu Univ. Politècnica Intel Corp. Univ. of Udine Univ. of Newcastle

Japan Catalunya, Spain USA Italy upon Tyne, UK

Abstract

A method for automating the synthesis of asynchronous control
circuits fromhigh level(CSP-like) and/orpartial STG (involving
only functionally critical events) specifications is presented. The
method solves two key subtasks in this new, more flexible, de-
sign flow: handshake expansion, i.e. inserting reset events with
maximum concurrency, andevent reshufflingunder interface and
concurrency constraints, by means of concurrency reduction. In
doing so, the algorithm optimizes the circuit both for size and per-
formance. Experimental results show a significant increase in the
solution space explored when compared to existing CSP-based or
STG-based synthesis tools.

1 Introduction

Specifying an asynchronous circuit is a cumbersome and error-
prone task because the designer has to define the behavior of ev-
ery signal at every moment of time. Although the value of a sig-
nal might be sometimes irrelevant to the general functioning of the
system, one must be specific about its behavior by exactly defining
whether the signal is stable at 0 or 1 or making a rising or falling
transition.

To circumvent this problem, the designer should be able to
specify the behavior of a circuit by only defining those events that
are relevant to its function - they are calledfunctionalevents. The
rest of the events (non-functional) can be defined arbitrarily under
the requirement of preserving the correctness of the circuit behav-
ior. This is exemplified by the gate-level implementation of a ris-
ing edge-triggered flip-flop. Only the rising edge is “functional”,
and must have a precise relationship with the input and the out-
put signals (setup/hold constraints and output delay respectively).
The falling edge can occur almost at any time between two con-
secutive rising edges. In the asynchronous context, this kind of
freedom provides additional room for optimization under different
cost functions aimed at area and/or performance.

There are various design scenarios in which this approach may
be useful:

1. The designer concentrates on the key functional aspects and,
e.g., specifies only the rising edges of signals. A tool auto-
matically inserts non-functional events. Even when all events
are functional, there is some freedom in making them either
ordered or concurrent. The designer restricts some function-
ally important concurrency/ordering relations and allows the
tool to choose how to reduce concurrency and optimize the
circuit.

2. The designer uses a high-level language, such as CSP [1, 6],
that ignores the binary nature of circuit signals and specifies
the behavior in terms of abstract events. The following two
design steps must then precede logic synthesis:

handshake expansion: replacing each communication ac-
tion of a CSP program with signal transitions on the
two wires that constitute the channel,

reshuffling : selecting the order of some non-functional events
(return-to-zero signal transitions in four phase expan-
sion of the channels) for optimizing area, performance
or power.

In this paper we solve the problem of handshake expansion
in a canonical fashion, by inserting “reset” events with max-
imum concurrency with respect to the other signals. We then
solve the problem of reshuffling by only considering the op-
eration ofconcurrency reduction.

The idea of using concurrency reduction as an efficient method in
the optimization loop was first proposed in [5]. The main distinc-
tive features of our approach with respect to that work are:

1. The reduction mechanism is applied in a wider framework
(handshake expansion, reshuffling), instead of working at the
level of completely specified State Graphs.

2. A reduction based on removal of State Grapharcs is used,
instead of coarser techniques based on removal ofstates.

3. Not every form of concurrency reduction can be modeled by
a sequence of pairwise reductions. In [3] and Section 5 a
more general (albeit expensive) technique is discussed.

4. The reduction procedures presented in this paper are aimed
at the general minimization of logic, instead of only solving
the CSC problem.

In the rest of the paper, after Section 2, devoted to theoreti-
cal background, and Section 3, devoted to an informal overview,
we will answer the following questions: (1) How is concurrency
exploited starting from a partial specification of an asynchronous
controller? (Section 4); (2) What are the valid reductions of con-
currency? (Section 5); (3) How can concurrency be reduced by
iterative application of a single, elementary operation? (Section 6);
(4) How is the quality of the solution estimated? (Section 7). Sec-
tion 8 presents experimental results.

2 Theoretical background

This section assumes the reader to be familiar with Petri nets [7].
Figure 1.a shows a timing diagram of a simple controller be-

tween an asynchronous memory and a processor. An operational
cycle is triggered by the processor requesting data (Req goes high).
After this request, memory prepares data and the controller replies
with an acknowledgment (Ack goes high). From now on the pro-
cessor can reset the request and immediately start a new cycle. Note

_

Definitive Version of Record in the ACM Digital Library: https://doi.org/10.1145/309847.309891

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/188868155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Req

Ack

(c) (d)

(b)

(a)

p2

p4p3

p5

p1

p1

p3 p4

p5

p2
Ack-

Ack-

0*1

11*

1*0*

00* 1*1

Ack Req

Ack+

Req-

Req+

Ack+

Req-

Req+

Ack+

Req-

Req+Ack-

Req+
Ack-

Figure 1: Simple asynchronous controller: (a) waveforms, (b,c)
STG, (d) State Graph

that in order to increase the system throughput, the processor can
send a new request without waiting for the reset of the acknowledg-
ment signal by the controller. Figure 1.b shows the Petri Net (PN)
corresponding to the timing diagram of the controller. All events
in this PN are interpreted as signal transitions: rising transitions of
signala are labeled with “a+” and falling transitions with “a�”.
We also use the notationa� if we are not specific about the sign of
the transition. Petri Nets with such interpretation of the transitions
are calledSignal Transition Graphs (orSTGs) [2].

STG transitions correspond to system events. A transition is
enabledif all its input places contain a token. In the initial mark-
ing of theSTG in Figure 1.c transitionAck+ is enabled. Every
enabled transition can fire, removing one token from every input
place of the transition and adding one token to every output place.
After the firing of transitionAck+ the net moves to a new marking
fp5g andReq� becomes enabled, etc.

State graphs. Playing the token game one can generate aState
Graph (SG) in which each node (a marking) is labeled with a vec-
tor of signal values (signals that can change in the state are marked
with an asterisk) and arcs between pairs of states are labeled with
the corresponding fired transition. AnSG is consistentif its state
labelingv : S ! f0; 1gn is such that in every transition sequence
from the initial state, rising and falling transitions alternate for each
signal. Figure 1.d shows theSG for theSTG in Figure 1.c, which
is consistent. The notation 0*1 in the initial state of Figure 1.d in-
dicates that signalAck has value0 andAck+ is enabled to fire,
while signalReq is stable at value 1.

We writes
a
! (s

a
! s

0) if there is an arc from states (to state
s
0) labeled witha ands

�
) s

0 is there is a path from states to state
s
0 labeled with a sequence of events�.

The set of all signals is partitioned into a set ofinputs, which
come from the environment, and a set ofoutputsandstatesignals
that must be implemented.

Implementability conditions In addition to consistency, the fol-
lowing two properties are required for anSG to be implementable
into a hazard-free asynchronous circuit.

The first property isspeed independence, with three constituents:
determinism, commutativity and output-persistency. AnSG is de-
terministicif for each states and each labela there can be at most
one states0 such thats

a
! s

0. An SG is commutativeif whenever
two transitions can be executed from some state in any order, their
execution always leads to the same state, regardless of the order.
An eventa� is persistentin states if it is enabled ins and remains

l?

r!

r?

l!

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

li+

ro+

ri+

lo+

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(f)

li+

ro+

ri+

lo+

li-

ro-

ri-

lo-

li+

ro+

ri+

lo+

li-

lo- ri-

ro-

��
��
��
��LR LRl r

li

lo ro

ri

(a) (b)

(c) (d) (e)

Figure 2: Specification of the LR-process

enabled in any other state reachable froms by firing another event
b
�. An SG is output-persistentif all output signal events are per-

sistent in all states and input signals cannot be disabled by outputs.
The second property,Complete State Coding(CSC), is neces-

sary and sufficient for the existence of a logic circuit implementa-
tion. A consistentSG satisfies theCSC property if for every pair of
statess; s0 such thatv(s) = v(s0), the set of output events enabled
in both states is the same. TheSG of Figure 1.d isoutput-persistent
but does not haveCSC (binary codes 11* and 1*1 correspond to
different states).

Excitation Regions and Concurrency. A set of states is the
excitation region(ER) of eventa� (denoted byER(a

�
)) if it is a

maximal connectedset of states such that8s 2 ER(a
�
) : s

a
�

!.
SGs are used in this paper as the main model for performing the

concurrency reductions. Hence we need to define the concurrency
notion in terms of theSG.

Definition 2.1 Two eventsa and b are said to be concurrent in
the SG A (ajjb) if the following diamond structure of states and
transitions belongs toA:

(s1
a
! s2) ^ (s1

b
! s3) ^ (s2

b
! s4) ^ (s3

a
! s4):

It can be easily shown that for a speed-independentSG two
output eventsa andb are concurrent iff theirERs intersect:

ajjb, ER(a)\ ER(b) 6= ;:

In the SG of Figure 1.d transitionReq+ is enabled in states
1*0* and 00* (ER(Req+)=f1*0*,00*g) while Ack� is enabled
in 1*0* and 1*1 (ER(Ack�)=f1*0*,1*1g). Excitation regions
of these transitions intersect, thus implying that the corresponding
transitions are concurrent.

3 Overview of the method

We illustrate our methodology by means of an example. Figure 2.a
shows the structure of an LR-process [6] using the “handshake
component” notation [1]. The process has a passive portl and an
active portr. It transfers control from the left port to the right port.
Figure 2.b shows the refinement of each channel with two wires:
l = fli; log andr = fri; rog. Figure 2.c gives a specification of
this process using CSP-like actions for events, wherel?; l! (r?; r!)
stand for the input and output actions at channell (r). Figure 2.d
presents a handshake expansion of the previous specification. It is
obtained by relabeling channel actionsl? andl! to rising transitions
on the input and output wires of the ports,li+ andlo+, correspond-
ingly (the same for channelr). The latter specification is viewed as
a partially specifiedSTG. It cannot be directly implemented by ex-
istingSTG-based synthesis tools since the falling (reset) transitions

Area Performance
Circuit area # CSC sign. cr.cycle inp.events
Q-module (hand) 104 1 14 4
Full reduction 0 0 8 4
Max.concurrency 168 2 13 3
li k ri 144 0 9 3
li k ro 160 1 11 3
lo k ri 136 1 11 3
lo k ro 232 2 16 3

Table 1: Area/performance trade-off for different implementations
of the LR-process

of the signals are not specified. There are many different solutions
for inserting falling signal transitions. Starting from the solution
with maximum concurrency one can derive any other valid reshuf-
fling of transitions by concurrency reduction. Figure 2.e shows an
STG with maximal concurrency for all falling transitions, assum-
ing that all signals are independent, and that no interface constraints
were given.

This handshake expansion however is not valid for the LR-
process. Indeed, we should obey additional ordering constraints
for the channels: never reset the requesting signal before receiving
the acknowledgment. For example, for a passive portl one should
satisfy the following interleaving of signal transitions:

�[li+; lo+; li�; lo�]

Similarly for the active channel. Figure 2.f presents a valid hand-
shake expansion with maximal concurrency for the LR-process tak-
ing interface constraints into account.

ro-ri-

C

li+

ro+

ri+

lo-

lo+li-

ro-

ri-

lo ri

li ro

C

S
R

Rs

lo ri

ro
li

li+

ro+

ri+

lo+

ri-

li- ro-

lo- (c)

lo-

li-

csc-

li+

ro+

ri+csc+

ro-
ri-lo+

C

C
li

lo

ri

ro

li+

ro+

lo-

ri+

csc+lo+

li-

csc-

(a)

li

lo

ro

ri

(b)

(d)

Figure 3: Implementations of the LR-process

This specification can be implemented with the currentSTG
based synthesis tools. Two state signals are inserted for resolving
the Complete State Coding (CSC) conflicts.

Table 1 presents the area and performance results for different
implementations of the LR-process. The row “Max. concurrency”
corresponds to the implementation of theSTG with maximum con-
currency of the reset signal transition. The circuit area is 168 units.
Assuming that all internal and output events have a delay of 1 time
unit, and that all input events have a delay of 2 time units, the criti-
cal cycle is 13 units and contains 3 input events. Other implemen-
tations are shown in Figure 3. Figure 3.a shows an implementation
of the LR-process known widely as Q-module [6] or S-element [1].
Figure 3.b corresponds to the case of full concurrency reduction. It
produces the best area (two wires) but does not allow to decouple
the left and the right sides of LR-process.

The above examples suggest the algorithm for optimization of
partially specifiedSTGs shown in Figure 4.

Inputs: Initial STG
Interface constraints (channel interleaving)
Concurrency constraints (concurrent events,...)

Output: Reduced State graph and the corresponding STG
1: Insert the ‘‘reset’’ transitions with maximal

concurrency, satisfying all interface constraints
2: Generate SG A from the STG
3: while the cost improves do
4: Reduce concurrency of SG A, satisfying

interface and concurrency constraints
reducing CSC conflicts and logic complexity

endwhile
5: Generate a new STG for the best reduced SG

Figure 4: Handshake expansion and reshuffling forSTGs

p1 p2

p3

ai+ ai+

req

a_rtz

ack

p1 p2

p3

ao+ ao+

req

ack

p_rtz

p1 p2

p3

a!

p1 p2

p3

a?

(d)
(e)

p1 p2

p3

b+

rtz

rdy

b-
rtz

rdy

p1 p2

p3

b

ai-

ao- ai-

ao-

ack

req

p_rtz a_rtz(b)(a) (c)

Figure 5: STG structures for 4-phase refinement. Partially speci-
fied signal: return-to-zero event (a) and functional event (b). Chan-
nel: return-to-zero part (c) and functional parts, for input channel
(d) and for output channel (e).

4 Handshake expansion

This section explains how handshake expansion is performed. The
syntax of our specifications allows one to describe the behavior of
channelsandpartially specified signals. In both cases, the specifi-
cation only contains theactivetransitions, whereas the handshake
expansion method transforms the specification according to the re-
finement chosen by the designer:2-phase refinement, with no dis-
tinction between up and down transitions, or4-phase refinement,
with return-to-zero signaling for each handshake.

Partially speci�ed signals. The STG transformation required
to expand a partially specified signal is shown in Figure 5.a and
b. Figure 5.a illustrates an additional return-to-zero transition that
must be connected (using the places labelledrdy andrtz) to the
functional part corresponding to the rising transition of the signal,
shown in Figure 5.a. Note that each rising transition is enabled only
when the return-to-zero transition has fired (arcrdy ! b+). The
return-to-zero transition is enabled as soon as the rising transition
has fired (arcb+ ! rtz).

Channels. For channel refinement we use a notation similar to
that proposed forhandshake processes[1]. Two types of events can
occur in channela: input events (a?) and output events (a!). The
terminals of a channel are calledports. A channela is implemented
by two signals:ai (input) andao (output).

The expansion from channel to signal events can be done by
manipulating the structure of the underlying Petri net. For 2-phase
refinement, the transformation simply requires relabeling theSTG

a!

a?

b

c+

a!

b

c-

a?

(a)

ao+ b-

ai+ ao-

c+ c-

b+ ai-

(b)

b+ao+

b+

c+

ai+

c-

ao+ai+

ai-

ao-

ao-

ai-b-

b-

(c)
Figure 6: (a) Original specification (SG), (b) 2-phase refinement
(SG), (c) 4-phase refinement (STG).

transitions froma? to ai~anda! to ao~, where the suffix~denotes a
transition toggling the value of the signal.

The expansion to a 4-phase protocol is performed by relabel-
ing transitions and inserting return-to-zero events. The transforma-
tions performed at theSTG level consist of adding a return-to-zero
structure and defining multiple instances of the transitions repre-
senting channel events. The return-to-zero structure corresponding
to a channel is depicted in Figure 5.c. The placereq indicates
that the channel is ready for a new handshake. The placeack in-
dicates that the channel has received a request (a? for passive and
a! for active handshakes) and will perform an acknowledgment (a!

for passive anda? for active handshakes). The placesp rtz (for
passive) anda rtz (for active) receive a token as soon as the hand-
shake is complete and activate the return-to-zero transitions. This
scheme allows a channel toact both as an active and as a passive
port at different instants of the behavior of the system.

Figures 5.d.e show how channel events are translated into ac-
tual signal events by structural transformations of theSTG. Each
eventa? is transformed into a rising transition of the input signal
(ai+). Similarly,a! is transformed intoao+. Two instances ofai+
andao+ in Figures 5.d.e model different types of channel behavior
(active or passive). The parallel composition of theSTG pieces of
Figures 5.c.d.e gives an overall picture of the channel behavior in
the set and reset phases. Note that the specification must properly
interleave the events on the channel according to the handshake
protocol, otherwise the expansion would produce an inconsistently
encodedSTG. This scheme guarantees the maximum concurrency
for the return-to-zero sequence, that is then exploited by the con-
currency reduction algorithm described in Section 3.

Example. Figure 6 presents an example illustrating all the above
transformations. The original specification (Figure 6.a) has a chan-
nel (a), a partially specified signal (b) and a completely specified
signal (c). Two-phase and four-phase refinements of the same spec-
ification are shown in Figure 6.b.c.

5 Concurrency reduction

In this section we develop the theory and algorithms that allow us
to explore onlyvalid reductions of concurrency more efficiently
than by working on a state-by-state basis. In particular, our notion
of concurrency reduction is related to the introduction of places
(causal constraints) at theSTG level, and then “fixing” theSTG so
that consistency and speed-independence are preserved.

Valid concurrency reduction should preserve certain properties.
LetA be the initialSG andAred be a reducedSG. Reducing con-
currency for evente means truncating someERs of this event. In
other words, some of the arcs labeled withe are removed from the
SG as a result of concurrency reduction. This may cause some of
the states to become unreachable and to be removed from theSG.

No states or arcs not present in the initialSG can appear in
Ared. This trivially implies that consistency, commutativity, and
determinism of theSG cannot be violated as a result of concur-
rency reduction. Also no newCSC conflicts can appear (in fact
some or all of the conflicts can disappear due to state removal).

Validity then requires the following properties to be satisfied
after concurrency reduction:

1. Speed-independence is preserved: as noted above, commu-
tativity and determinism are automatically preserved, so the
only constraint is that ifA is output persistent, thenAred

must be output persistent.

2. I/O interface is preserved:

(a) No transition of input signals is delayed.
(b) The initial state is preserved with respect to the I/O sig-

nals, i.e., ifs0 2 A ands00 2 Ared are the initial states
of the original and the reducedSGs respectively, then
there is a paths0

�

) s
0

0 or s00
�

) s0 in A such that
sequence� contains only events ofinternalsignals, not
observable by the environment.

Both conditions can in fact be partially relaxed if the designer
can accept changing the interface behavior of the module,
e.g., if also the environment will be synthesized later.

3. No events disappear: if for some evente there isER(e) 2 A,
thenERred(e) 6= ;.

4. No deadlock states appear: if states 2 A ands 2 Ared, and
s is not a deadlock state inA (there exists evente: s

e
! 2 A),

then there exists some other evente
0 such that:s

e
0

! 2 A and

s
e
0

! 2 Ared.

Whenever concurrency is reduced for an output signal, one must
also make sure that this is reflected in the specification of the be-
havior assumed by the environment (e.g., by another design team).
Otherwise, concurrency reduction may introduce deadlocks in the
composition of the circuit and the environment, e.g., if the environ-
ment expectsb aftera and the circuit providesb beforea as a result
of two conflicting concurrency reductions for initially concurrent
eventsa andb.

Definition 5.1 (Valid reduction) If a reducedSG satisfies all prop-
erties (1)–(4) above, then the concurrency reduction isvalid.

6 The basic operation: forward reduction

The algorithm sketched in Figure 7 defines our basic operation for
concurrency reduction, calledforward reduction. It takes two con-
current events as parameters. Concurrency is reduced for the first
event (a). The second event (b) defines the set of statesER(a) \
ER(b) in which concurrency fora should (at least) be reduced in
one step. In the simplest case, when events enabled inER(a) are
persistent, andER(a) has only one minimal state (a state is mini-
mal in anER if it has no predecessors in theER), FwdRed(a,b)
creates an arc from eventb to eventa at theSTG level.

The application of the forward concurrency reductionFwdRed
to anSTG with choice (non-persistency) and concurrency is illus-
trated in Figure 8. The reducedSG corresponds to anSTG with no
concurrency between(a; b), (a; e), and(a; d). Hence, in general
reducing concurrency for a pair of events can also reduce concur-
rency for some other pairs. Note that in lines 1,2 ofFwdRed, states
are removed from theER of eventa, not from theSG. I.e., at this
step only arcs labeled witha can be removed from theSG.

The following proposition shows that iterative application of
FwdRed to anSG results in a valid concurrency reduction.

FwdRed(a,b)

1: /* remove all arcs s
a

! such that s

is backward reachable from ER(a) \ ER(b) */
2: ERred(a)=ER(a)� (ER(b) [backreach(ER(a) \ER(b)))

3: remove unreachable states and their output arcs
4: if exists some e such that ER(e) = ; or
5: initial state wrt to I/O is changed then
6: return (invalid reduction)
7: else return (reduced SG)

Figure 7: Reduction of concurrency for output eventa by eventb.

c

a

ed

b

c

d e

b

a

(a)

c

a

a
b

b

d

e

d
e

s0

s1

s6

s7

s8

s2

s3

s5

s4

c

a

a
b

d

e

s0

s1

s8

s2

s3

s5

s4

c

a

a

a

a
b

b

d

e

d
e

s0

s1

s6

s7

s8

s2

s3

s5

s4

ER(a)

ER_red(a)

(b)

Figure 8: ApplyingFwdRed(a,b) to anSG fragment (a) and the
correspondingSTG transformation (b).

Proposition 6.1 (Validity of FwdRed) LetA be a consistent and
speed-independentSG. If a is an output event anda and b are
concurrent inA, thenFwdRed(a,b) is a valid concurrency re-
duction (See [3] for the proof).

Note. A more general formulation of concurrency reduction is
done via the removal of a single arc from the correspondingSG
through the notion ofbackward reduction[3]. However, contrary
to FwdRed(a,b) backward reduction in general does not have a
clear interpretation in terms of ordering relations between events.
Therefore, our practical implementation described in the next sec-
tion is restricted to the application ofFwdRed.

7 Implementation

As we mentioned in Section 3, concurrency reduction can reduce
the logic complexity of the circuit in two ways. First of all, the
number ofCSC conflicts is reduced, and hence the complexity of
the logic implementing the state signals is reduced. Secondly, the
number of reachable states is reduced, and hence the don’t care set
for logic minimization is increased. However, in case one signal
becomes ordered with another, the support of its boolean function
increases. For this reason, we use a heuristic cost function that es-
timates changes in logic complexity at each step, since exact com-
putation by state signal insertion, decomposition and technology
mapping would be too expensive.

The algorithm in Figure 9 describes how concurrency reduc-
tion is performed. The designer initially provides a list of pairs of
events whose concurrency cannot be reduced, e.g., because they
are crucial for overall system performance. This will prevent the
algorithm from adding causality relations between these pairs of
events.

The exploration is done by a strategy similar to the��� prun-
ing commonly used in game-playing algorithms. At each level of

the exploration from a given configuration, a set of neighbor con-
figurations is generated by performing a basic transformation (for-
ward concurrency reduction between two events). For each level
of the exploration, only a few candidates, with the best estimated
cost, survive to the next level. These candidates are kept in the
list frontier . The width of the exploration is controlled by the
parametersize frontier .

Note that at each level of the exploration the obtained state
graphs are less concurrent than their predecessors. This monotonous
behavior guarantees that the algorithm will terminate when no more
concurrency can be reduced in the current search space.

The cost function to select the best configurations at each level
aims at reducing the complexity of the resulting circuit. Unfor-
tunately, the estimation of the complexity of the logic for output
signals with CSC conflicts can be inaccurate due to the impossi-
bility to derive correct equations. For this reason, the cost func-
tion combines the information of CSC conflicts with the estimated
complexity of the logic. A designer can specify a parameterW

(0 � W � 1) which defines the trade-off between biasing the
heuristic search towards reducing CSC conflicts (W ; 0) or re-
ducing estimated complexity of the logic (W ; 1).

Inputs: State graphinitial SG
Keep Conc � E � E (preserved concurrency relations)
size frontier: size of the frontier for exploration

Output: State graphreduced SGwith reduced concurrency

frontier = exploredSGs =finitial SGg;
while frontier 6= ; do

new solutions =;;
foreachSG2 frontier do

foreach(e1; e2):s.t.e1 k e2 , (e1; e2) 62 Keep Conc
ande2 is not an input eventdo

new SG = FwdRed (SG,e2 ,e1);
explored = explored[fnew SGg;
new = new[fnew SGg;

endfor
endfor;
frontier = “the bestsize frontier elements innew”;

endwhile;
reduced SG= “best element inexplored ”;

Figure 9: Algorithm for reducing concurrency.

8 Experimental results

The techniques presented in this paper have been implemented in
the tool petrify [4]. After handshake expansion and concur-
rency reduction, circuits have been derived by using previously
published synthesis techniques for speed-independent circuits. The
final area was obtained by decomposing the circuit into 2-input
gates and mapping the network onto a gate library. The decom-
position was performed by preserving the speed-independence of
the circuit.

First case study: the PAR component This section presents
a case study considering the handshake expansion and concurrency
reduction of thePARcomponent used in VLSI programming from
the concurrent language Tangram [1].

Figure 10.a shows anSTG specification in terms of channel
events. This specification may yield different implementations de-
pending on the selected phase refinement and concurrency among
events. The most challenging problem arises when a 4-phase re-
finement is desired. The freedom to schedule the return-to-zero
transitions opens a spectrum of different implementations. Fig-
ure 10.c [9] (see implementation in Figure 10.f) has been obtained
manually and is used by the current Tangram compiler.

b!

b?

a?

a! c!

c?

ai+

bo+ co+

bo-

bi-

co-ai-

ao-

bi+ bi+

bo+

bo-

bi-

co+

ci+

co-

ci-

ao+

ci+

ao-

ao+

ci-

ai+

bo+

bi+

bo-

bi-

co+

ci+

ao+

ai-

co-

ai-

ci-

C

C

C

C

C

ai+

ao-

(b)

(a)

ai

ai

ai
bi

bi

ci

ao

bo

co

bi

ai

ci

co

ao

bo (c)

(d)

(e) (f)

Figure 10: Different specifications and implementations for a PAR
component.

Our tool can automatically perform a 4-phase expansion by us-
ing the structural techniques discussed in Section 4, and derive the
specification shown in Figure 10.b. After this transformation, the
return-to-zero signalling is performed with maximum concurrency.
However, a direct implementation of this behavior would result in a
complex circuit due to the need of inserting extra logic for state en-
coding and logic decomposition (twice as complex as Figure 10.e).

Figures 10.d.e depict the solution automatically obtained by re-
ducing the concurrency of the 4-phase refinement in Figure 10.b.
The reduction has been performed by preserving the concurrency
between the eventsb? andc?, thus maintaining the parallel execu-
tion of both processes. Interestingly, the circuit manifests an asym-
metric behavior that can be beneficial to implementPARcompo-
nents in which the process at channelb is known to be slower than
that atc. The circuit is slightly smaller (by 12% in our standard
cell library) than the known manual design. However, its estimated
performance may be worse than that of Figure 10.f, ifb andc have
balanced delays1.

Second case study: the MMU controller In [8] it was shown
that by using timing assumptions on the behavior of the environ-
ment, it is possible to reduce the area of an asynchronous Memory
Management Unit control circuit by over 50 %, with respect to the
original speed-independent implementation. Our experiments pre-
sented in Table 2 show that approximately the same area improve-
ment can be reachedwithout sacrificing speed-independence, if we
are allowed to use flexibility in playing with concurrency of the
reset transitions of the four-phase protocol. A combination of our
high-level transformation and Myers’ lower level timing optimiza-
tions can conceivably provide even better optimization results.

We can conclude that:

� With respect to the original solution, reshuffling can yield an
area reduction to less than one half.

� This area reduction can be obtained without losing perfor-
mance. E.g., the solutionk (b;m; r) with area 384 units has
a critical cycle of 94 units, while the original implementation
with area 744 had a critical cycle of 100 units We used the
same timing delay assumptions as in [8]. In case [8] used a
finite delay interval, we considered the average delay, while
in case the upper bound was infinite, we considered the lower
bound.

1The critical cycle is longer by 11% under the assumption that the delay of a com-
binational gate is 1 time unit, that of a sequential gate is 1.5 time units, and that of an
input event is 3 time units.

Area Performance
Circuit area # CSC sign. cr.cycle inp.events
original 744 2 100 4
original reduced 208 0 118 6
csc reduced 96 1 123 7
k (b; l; r) 440 1 101 4
k (b;m; r) 384 0 94 4
k (b; l;m) 352 1 104 5
k (l;m; r) 368 1 105 5

Table 2: Area/performance trade-off for different implementations
of the MMU controller

9 Conclusions

Specifying the behavior of an asynchronous system is a complex
task that needs to be performed at the appropriate high level of ab-
straction. Reasoning in terms of actions (or events) and communi-
cation channels allows the designer to describe a behavior without
worrying about the implementation details.

This paper has presented a method to automate the decisions
taken at the lowest levels of circuit synthesis, concerning phase re-
finements and event reshuffling. Thus the designer is only left the
task of defining the causality among actions and specifying the de-
sired concurrency in the system. The task of translating actions into
signals transitions is automatically handled by CAD tools.

Some aspects still require further research. In particular, better
logic estimation strategies when the specification has CSC conflicts
must be sought. On the other hand, simple but accurate methods for
performance estimation should be devised to increase the degree of
automation and provide a wider exploration of the solution space.

Acknowledgments. We thank Steve Furber for emphasizing the need
to tackle the problem of automatic handshake expansion and concurrency
reduction. This work was supported by ESPRIT ACiD-WG (21949), CI-
CYT TIC 98-0410 and TIC 98-0949, UK EPSRC GR/K70175 and GR/L24038,
and British Council (Spain) Acci´on Integrada MDR/1998/99/2463.

References

[1] Kees van Berkel.Handshake Circuits: an Asynchronous Architecture
for VLSI Programming, volume 5 ofInternational Series on Parallel
Computation. Cambridge University Press, 1993.

[2] T.-A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic
Specifications. PhD thesis, MIT, June 1987.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Automatic handshake expansion and reshuffling using
concurrency reduction. InWorkshop on Hardware Design and Petri
Nets, pages 86–110, June 1998.

[4] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano
Lavagno, and Alex Yakovlev. Petrify: a tool for manipulating concur-
rent specifications and synthesis of asynchronous controllers.IEICE
Transactions on Information and Systems, E80-D(3):315–325, 1997.

[5] Bill Lin, Chantal Ykman-Couvreur, and Peter Vanbekbergen. A general
state graph transformation framework for asynchronous synthesis. In
Proc. European Design Automation Conference (EURO-DAC), pages
448–453. IEEE Computer Society Press, September 1994.

[6] Alain J. Martin. Synthesis of asynchronous VLSI circuits. In J. Straun-
strup, editor,Formal Methods for VLSI Design, chapter 6, pages 237–
283. North-Holland, 1990.

[7] T. Murata. Petri Nets: Properties, analysis and applications.Proceed-
ings of the IEEE, pages 541–580, April 1989.

[8] Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asyn-
chronous circuits.IEEE Transactions on VLSI Systems, 1(2):106–119,
June 1993.

[9] Ad Peeters. Implementation of a parallel component in tangram. Per-
sonal communication, 1997.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

