View metadata, citation and similar papers at core.ac.uk brought to you by 4

provided by UPCommons. Portal del coneixement obert ¢
V J J U Y

Alex Kondratyev Jordi Cortadella Michael Kishinevsky Luciano Lavagno Alexander Yakovlev

Univ. of Aizu Univ. Politecnica Intel Corp. Univ. of Udine Univ. of Newcastle
Japan Catalunya, Spain USA Italy upon Tyne, UK
Abstract 2. The designer uses a high-level language, such as CSP [1, 6],

A method for automating the synthesis of asynchronous control
circuits fromhigh level(CSP-like) and/opartial STG (involving

only functionally critical events) specifications is presented. The
method solves two key subtasks in this new, more flexible, de-
sign flow: handshake expansion, i.e. inserting reset events with
maximum concurrency, anevent reshufflinginder interface and
concurrency constraints, by means of concurrency reduction. In
doing so, the algorithm optimizes the circuit both for size and per-
formance. Experimental results show a significant increase in the
solution space explored when compared to existing CSP-based or
STG-based synthesis tools.

1 Introduction

Specifying an asynchronous circuit is a cumbersome and error-
prone task because the designer has to define the behavior of ev-

that ignores the binary nature of circuit signals and specifies
the behavior in terms of abstract events. The following two
design steps must then precede logic synthesis:

handshake expansion replacing each communication ac-
tion of a CSP program with signal transitions on the
two wires that constitute the channel,

reshuffling : selecting the order of some non-functional events
(return-to-zero signal transitions in four phase expan-
sion of the channels) for optimizing area, performance
or power.

In this paper we solve the problem of handshake expansion
in a canonical fashion, by inserting “reset” events with max-
imum concurrency with respect to the other signals. We then
solve the problem of reshuffling by only considering the op-
eration ofconcurrency reduction

ery signal at every moment of time. Although the value of a sig- The idea of using concurrency reduction as an efficient method in
nal might be sometimes irrelevant to the general functioning of the the optimization loop was first proposed in [5]. The main distinc-
system, one must be specific about its behavior by exactly defining tive features of our approach with respect to that work are:

whether the signal is stable at 0 or 1 or making a rising or falling
transition.

To circumvent this problem, the designer should be able to
specify the behavior of a circuit by only defining those events that
are relevant to its function - they are calleshctionalevents. The
rest of the eventsnpn-functional can be defined arbitrarily under
the requirement of preserving the correctness of the circuit behav-
ior. This is exemplified by the gate-level implementation of a ris-
ing edge-triggered flip-flop. Only the rising edge is “functional”,
and must have a precise relationship with the input and the out-
put signals (setup/hold constraints and output delay respectively).
The falling edge can occur almost at any time between two con-
secutive rising edges. In the asynchronous context, this kind of
freedom provides additional room for optimization under different
cost functions aimed at area and/or performance.

There are various design scenarios in which this approach may
be useful:

1. The reduction mechanism is applied in a wider framework
(handshake expansion, reshuffling), instead of working at the
level of completely specified State Graphs.

2. A reduction based on removal of State Grapbs is used,
instead of coarser techniques based on removstiabés

3. Not every form of concurrency reduction can be modeled by
a sequence of pairwise reductions. In [3] and Section 5 a
more general (albeit expensive) technique is discussed.

4. The reduction procedures presented in this paper are aimed
at the general minimization of logic, instead of only solving
the CSC problem.

In the rest of the paper, after Section 2, devoted to theoreti-

cal background, and Section 3, devoted to an informal overview,

we will answer the following questions: (1) How is concurrency
1. The designer concentrates on the key functional aspects andexploited starting from a partial specification of an asynchronous
e.g., specifies only the rising edges of signals. A tool auto- controller? (Section 4); (2) What are the valid reductions of con-
matically inserts non-functional events. Even when all events currency? (Section 5); (3) How can concurrency be reduced by
are functional, there is some freedom in making them either iterative application of a single, elementary operation? (Section 6);
ordered or concurrent. The designer restricts some function- (4) How is the quality of the solution estimated? (Section 7). Sec-
ally important concurrency/ordering relations and allows the tion 8 presents experimental results.

tool to choose how to reduce concurrency and optimize the
circuit.

2 Theoretical background

This section assumes the reader to be familiar with Petri nets [7].

Figure 1.a shows a timing diagram of a simple controller be-

tween an asynchronous memory and a processor. An operational
cycle is triggered by the processor requesting d&tay@oes high).

After this request, memory prepares data and the controller replies
with an acknowledgment4ck goes high). From now on the pro-
cessor can reset the request and immediately start a new cycle. Note

Definitive Version of Record in the ACM Digital Library: https://doi.org/10.1145/309847.309891

https://core.ac.uk/display/188868155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

. li H.Rri
Req ‘ /%(/ IH ' lo @ ro
(@ b)
Ack K?/ k;/ li+ Iif.\li o li+
” .

@ l J W’ fi

9(% pl PZ% M ro+ o ro- o 1o
Req+ Req+ ’

Ack- Ack Req i i l e T i T
ED_\ACKE L \‘p\i ;/ 2 0¢1Ack+ r lH liC”' li- i”v ro-
p3 Ack 11% Ack-
—pi\ck+ [:p;— Reat j;m' |¢! lo+ |0@|0- LIO+
L Req- ’;:/ N © ©) ® ®
(c (d)

) q Figure 2: Specification of the LR-process

®) enabled in any other state reachable froby firing another event

b*. An SG is output-persistenif all output signal events are per-

sistent in all states and input signals cannot be disabled by outputs.
The second propertfzomplete State CodingSC), is neces-

sary and sufficient for the existence of a logic circuit implementa-

tion. A consistenSG satisfies th€SC property if for every pair of

"Statess, s such that)(s) = v(s’), the set of output events enabled

in both states is the same. T8& of Figure 1.d ioutput-persistent

but does not hav€SC (binary codes 11* and 1*1 correspond to

different states).

Figure 1: Simple asynchronous controller: (a) waveforms, (b,c)
STG, (d) State Graph

that in order to increase the system throughput, the processor cal
send a new request without waiting for the reset of the acknowledg-
ment signal by the controller. Figure 1.b shows the Petri Net (PN)
corresponding to the timing diagram of the controller. All events

in this PN are interpreted as signal transitions: rising transitions of
signala are labeled with ¢+" and falling transitions with &—".]
We also use the notatiarx if we are not specific about the sign of ~ Excitation Regions and Concurrency. A set of states is the
the transition. Petri Nets with such interpretation of the transitions €xcitation region(ER) of eventa™ (denoted byER(a")) if it is a

are calledSignal Transition Graphs (08TGs)[2]. ~ maximal connectedet of states such thes € ER(a”) : s .
STG transitions correspond to system events. A transition is 5Gs are used in this paper as the main model for performing the

enabledif all its input places contain a token. In the initial mark- concurrency reductions. Hence we need to define the concurrency
ing of the STG in Figure 1.c transitiomck+ is enabled. Every notion in terms of th&SG.

enabled transition can fire, removing one token from every input

place of the transition and adding one token to every output place. Definition 2.1 Two events: and b are said to be concurrent in
After the firing of transitionAck+ the net moves to anew marking the SG A (a||b) if the following diamond structure of states and
{ps} and Reg— becomes enabled, etc. transitions belongs tal:

State graphs. Playing the token game one can generaStade (s1 3 s2) A (81 LN s3) A (82 BN s4) A (s3 = s4).
Graph (SG) in which each node (a marking) is labeled with a vec-

tor of signal values (signals that can change in the state are marked It can be easily shown that for a speed-indepen@&&ttwo
with an asterisk) and arcs between pairs of states are labeled withoutput events andb are concurrent iff theiERSs intersect:

the corresponding fired transition. /A8G is consistenif its state

labelingv : S — {0,1}" is such that in every transition sequence allb & ER(a) N ER(b) # 0.
from the initial state, rising and falling transitions alternate for each] N))
signal. Figure 1.d shows tH&G for the STG in Figure 1.c, which In the SG of Figure 1.d transitioneg+ is enabled in states

is consistent. The notation 0*1 in the initial state of Figure 1.d in- 1*0* and 00* (ER(Req+)={1*0*,00*}) while Ack— is enabled

dicates that signalick has valued and Ack+ is enabled to fire, ~ in 1*0* and 1*1 (ER(Ack—)={1*0*,1*1}). Excitation regions
while signalReq is stable at value 1. of these transitions intersect, thus implying that the corresponding

We write s < (s %) if there is an arc from state(to state ~ transitions are concurrent.

s') labeled witha ands = s’ is there is a path from stateto state

s’ labeled with a sequence of events 3 Overview of the method

The set of all signals is partitioned into a setigputs which))
come from the environment, and a setooftputsandstatesignals ~ We illustrate our methodology by means of an example. Figure 2.a
that must be implemented. shows the structure of an LR-process [6] using the “handshake

component” notation [1]. The process has a passive ipand an
active portr. It transfers control from the left port to the right port.
Figure 2.b shows the refinement of each channel with two wires:
I = {li,lo} andr = {ri,ro}. Figure 2.c gives a specification of
this process using CSP-like actions for events, whgrg (r?, r!)

stand for the input and output actions at charingl). Figure 2.d
presents a handshake expansion of the previous specification. It is
obtained by relabeling channel actidfisand! to rising transitions

Implementability conditions In addition to consistency, the fol-
lowing two properties are required for &G to be implementable
into a hazard-free asynchronous circuit.

The first property ispeed independenasith three constituents:
determinism, commutativity and output-persistency. 3@ is de-
terministicif for each stgte and each labet there can be at most

’ ’ H NG
et o o o A ETYE! 1S I A ULt WIS of h podt anclo . Coresponc:
! ingly (the same for channe). The latter specification is viewed as

execution always leads to the same state, regardless of the order, N i . . X
An eventa™ is persistentin states if it is enabled ins and remains a partially specifie®TG. It cannot be directly implemented by ex

isting STG-based synthesis tools since the falling (reset) transitions

Area Performance .
- .] Inputs: Initial STG

Circuit area | #CSCsign.|| cr.cycle | inp.events Interface constraints (channel interleaving)

Q-module (hand) 104 1 14 4 Concurrency constraints (concurrent events,...)

Full reduction 0 0 8 4 Output: Reduced State graph and the corresponding STG

Max.concurrency| 168 2 13 3 1: Insert the “reset” transitions with maximal

li || ri 144 0 9 3 concurrency, satisfying all interface constraints

lif| ro 160 1 11 3 2. Generate SG A from the STG

Lo ri 136 1 1 3 3: while the cost improves do

lo]l ro 232 2 16 3 4: Reduce concurrency of SG A, satisfying
Table 1: Area/performance trade-off for different implementations 'rzts&fjﬁg a“gs?“fg‘,ﬁ;ﬁc”gy aﬁ‘;,”ﬁﬁ;‘;“iomp,emy
of the LR-process endwhile

5: Generate a new STG for the best reduced SG

of the signals are not specified. There are many different solutions Figure 4: Handshake expansion and reshuffling¥o6Gs
for inserting falling signal transitions. Starting from the solution

with maximum concurrency one can derive any other valid reshuf-
fling of transitions by concurrency reduction. Figure 2.e shows an R Ty]

STG with maximal concurrency for all falling transitions, assum- dy O O t

ing that all signals are independent, and that no interface constraints (o) /® ECS é (5
-

o]

3
2

were given.

This handshake expansion however is not valid for the LR- itz [ai]
process. Indeed, we should obey additional ordering constraints O O
for the channels: never reset the requesting signal before receiving P " O
the acknowledgment. For example, for a passive porte should ® ® © pre ane

satisfy the following interleaving of signal transitions:

#[li+; lo+; li—; lo—] /() /()
Similarly for the ac'Five cha}nnel. Figure 2.f presents a valid hand- . (] = [eo]
shake expansion with maximal concurrency for the LR-process tak-
ing interface constraints into account. O O
10°® |i+ 10°®~ i a @ P ©)
0- i+
JSC e ! 0 b i ro Figure 5: STG structures for 4-phase refinement. Partially speci-
o %" i"* fied signal: return-to-zero event (a) and functional event (b). Chan-
¢" ™o L i ro- i lo ri nel: return-to-zero part (c) and functional parts, for input channel
lo+ csc+ Ti__/ o+ (d) and for output channel (e).
ﬁlvro- () ®)
N | . i
IW . (e o—_F ’ 4 Handshake expansion
0t=e I~
f” Js This section explains how handshake expansion is performed. The
lox i — ° syntax of ificati Il to describe the behavior of
L yntax of our specifications allows one to describe the behavior o
K lo_/°' channelsandpartially specified signalsin both cases, the specifi-
" © cation only contains thactivetransitions, whereas the handshake
lo- f /_’D_. i expansion method transforms the specification according to the re-
JSC C§C/+r°*\m finement chosen by the design@rphase refinemenivith no dis-
NP \ tinction between up and down transitions, 4phase refinement
N N @ °ﬂ ro with return-to-zero signaling for each handshake.
Figure 3: Implementations of the LR-process Partially specified signals. The STG transformation required

. . . . to expand a partially specified signal is shown in Figure 5.a and
This speC|f|_cat|on can be |mple_mented W'Fh the cun®ni . b. Figure 5.a illustrates an additional return-to-zero transition that
based synthesis tools. Two state signals are inserted for resolvmgmust be connected (using the places labaltyd andrtz) to the
the$%r|npllete State C(r)]dlng:SC) (aonfh(;ts. its for diff functional part corresponding to the rising transition of the signal,
__ Table 1 presents the area and performance results for differentgy, , in Figure 5.a. Note that each rising transition is enabled only
implementations of the LR-process. The row “Max. concurrency when the return-to-zero transition has fired (atg —s b+). The

corresponds to the implementation of 8G with maximum con- a4 t6.7ero transition is enabled as soon as the rising transition
currency of the reset signal transition. The circuit area is 168 units. has fired (aré+ — rtz)

Assuming that all internal and output events have a delay of 1 time

unit, and that all input events have a delay of 2 time units, the criti- Channels. For channel refinement we use a notation similar to

cal cycle is 13 units and contains 3 input events. Other implemen- that proposed fdnandshake processk. Two types of events can

tations are shown in Figure 3. Figure 3.a shows an implementation gccur in channek: input events ¢?) and output eventsa{). The

of the LR-process known widely as Q-module [6] or S-element [1]. terminals of a channel are callpdrts A channek is implemented

Figure 3.b corresponds to the case of full concurrency reduction. It py two signalsa; (input) anda, (output).

produces the best area (two wires) but does not allow to decouple ~ The expansion from channel to signal events can be done by

the left and the right sides of LR-process. o manipulating the structure of the underlying Petri net. For 2-phase
The above examples suggest the algorithm for optimization of refinement, the transformation simply requires relabelinghi&

partially specifiedSTGs shown in Figure 4.

@

Figure 6: (a) Original specificatior5G), (b) 2-phase refinement
(SG), (c) 4-phase refinemensTG).

(b)

(©

transitions froma? to a; anda! to a,, where the suffixdenotes a
transition toggling the value of the signal.

The expansion to a 4-phase protocol is performed by relabel-
ing transitions and inserting return-to-zero events. The transforma-
tions performed at th8TG level consist of adding a return-to-zero
structure and defining multiple instances of the transitions repre-

senting channel events. The return-to-zero structure corresponding

to a channel is depicted in Figure 5.c. The plaeg indicates
that the channel is ready for a new handshake. The plekein-
dicates that the channel has received a requésfof passive and

a! for active handshakes) and will perform an acknowledgmeht (
for passive and? for active handshakes). The plaqestz (for
passive) ana._rtz (for active) receive a token as soon as the hand-

shake is complete and activate the return-to-zero transitions. This

scheme allows a channel ot both as an active and as a passive
port at different instants of the behavior of the system

Figures 5.d.e show how channel events are translated into ac-

tual signal events by structural transformations of #165. Each
eventa? is transformed into a rising transition of the input signal
(a;+). Similarly,a! is transformed inta,,+. Two instances of; +
anda,+ in Figures 5.d.e model different types of channel behavior
(active or passive). The parallel composition of 8IEG pieces of
Figures 5.c.d.e gives an overall picture of the channel behavior in
the set and reset phases. Note that the specification must properl
interleave the events on the channel according to the handshak
protocol, otherwise the expansion would produce an inconsistently
encodedSTG. This scheme guarantees the maximum concurrency
for the return-to-zero sequencthat is then exploited by the con-
currency reduction algorithm described in Section 3.

Example. Figure 6 presents an example illustrating all the above
transformations. The original specification (Figure 6.a) has a chan-
nel (@), a partially specified signab) and a completely specified

signal ¢). Two-phase and four-phase refinements of the same spec-

ification are shown in Figure 6.b.c.

5 Concurrency reduction

In this section we develop the theory and algorithms that allow us
to explore onlyvalid reductions of concurrency more efficiently
than by working on a state-by-state basis. In particular, our notion
of concurrency reduction is related to the introduction of places
(causal constraints) at tl#T G level, and then “fixing” the&STG so

that consistency and speed-independence are preserved.

Valid concurrency reduction should preserve certain properties.
Let A be the initialSG and A,., be a reduce&G. Reducing con-
currency for event means truncating sonteRs of this event. In
other words, some of the arcs labeled withre removed from the
SG as a result of concurrency reduction. This may cause some of
the states to become unreachable and to be removed fro8G3he

No states or arcs not present in the init&6 can appear in
A,eq. This trivially implies that consistency, commutativity, and
determinism of theSG cannot be violated as a result of concur-
rency reduction. Also no neW€SC conflicts can appear (in fact
some or all of the conflicts can disappear due to state removal).

Validity then requires the following properties to be satisfied
after concurrency reduction:

1. Speed-independence is preserved: as noted above, commu-
tativity and determinism are automatically preserved, so the
only constraint is that ifd is output persistent, theA, .4
must be output persistent.

2. l/O interface is preserved:

() No transition of input signals is delayed.

(b) The initial state is preserved with respect to the 1/0 sig-
nals, i.e., ifsp € A ands; € A,.q are the initial states
of the original and the reducesiGs respectively, then
there is a patlyy = s) or sj = so in A such that
sequence contains only events afiternal signals, not
observable by the environment.

Both conditions can in fact be partially relaxed if the designer
can accept changing the interface behavior of the module,
e.g., if also the environment will be synthesized later.

3. Noevents disappear: if for some evethere isER(e) € A,
thenER,..q(e) # 0.
4. No deadlock states appear: if state A ands € A,.q, and

s is not a deadlock state i (there exists event s = € A),
then there exists some other evehsuch thats <» € A and
S i> [S Ared-

Whenever concurrency is reduced for an output signal, one must
also make sure that this is reflected in the specification of the be-
havior assumed by the environment (e.qg., by another design team).
Otherwise, concurrency reduction may introduce deadlocks in the
composition of the circuit and the environment, e.g., if the environ-

);nent expects aftera and the circuit provides beforea as a result
Hf two conflicting concurrency reductions for initially concurrent

eventsa andb.

Definition 5.1 (Valid reduction) If areducedSG satisfies all prop-
erties (1)—(4) above, then the concurrency reductioveigd.

6 The basic operation: forward reduction

The algorithm sketched in Figure 7 defines our basic operation for
concurrency reduction, callddrward reduction It takes two con-
current events as parameters. Concurrency is reduced for the first
event @). The second evenb) defines the set of statdsR(a) N
ER(b) in which concurrency for should (at least) be reduced in
one step. In the simplest case, when events enablétitu) are
persistent, and& R(a) has only one minimal state (a state is mini-
mal in anE R if it has no predecessors in tf&R), FwdRed(a,b)
creates an arc from evehtto events at theSTG level.

The application of the forward concurrency reductitwdRed
to anSTG with choice (non-persistency) and concurrency is illus-
trated in Figure 8. The reduc&s corresponds to aB8TG with no
concurrency betweefu, b), (a,e), and(a,d). Hence, in general
reducing concurrency for a pair of events can also reduce concur-
rency for some other pairs. Note that in lines 1, FofdRed, states
are removed from thER of eventa, not from theSG. l.e., at this
step only arcs labeled withhcan be removed from theG.

The following proposition shows that iterative application of
FwdRedto anSG results in a valid concurrency reduction.

the exploration from a given configuration, a set of neighbor con-

FwdRed(a,b) 3 figurations is generated by performing a basic transformation (for-
o~ ff)molzle f:j” afCSh o fs - SUCthE | SER(b) , ward concurrency reduction between two events). For each level

IS backward reachable trom a) N * H H H H
2 ERn.s(a)=BR(a) - (ER(b) Ubackreac BR(a) N ER(b))) of the exp!oratlon, only a few candidates, W|_th the best estlmated
3. remove unreachable states and their output arcs cost, survive to the next level. These candidates are kept in the
4: if exists some e such that FER(e) =0 or .

if exi h th 0 list frontier The width of the exploration is controlled by the
5: initial state wrt to 1/O is changed then parametesize _frontier
6 retum (invalid reduction) Note that at each level of the exploration the obtained state
7. else return (reduced SG) . .

graphs are less concurrent than their predecessors. This monotonous

]) behavior guarantees that the algorithm will terminate when no more
Figure 7: Reduction of concurrency for output everty eventb. concurrency can be reduced in the current search space.

The cost function to select the best configurations at each level
aims at reducing the complexity of the resulting circuit. Unfor-
tunately, the estimation of the complexity of the logic for output
signals with CSC conflicts can be inaccurate due to the impossi-
bility to derive correct equations. For this reason, the cost func-
tion combines the information of CSC conflicts with the estimated
complexity of the logic. A designer can specify a paramétér
(0 < W < 1) which defines the trade-off between biasing the
heuristic search towards reducing CSC confli¢ts &> 0) or re-

Y ducing estimated complexity of the logid{ ~ 1).
c 9 plexity g
A
d 5 Inputs: State graplinitial ~ _SG

d e L b Keep_Conc C E x E (preserved concurrency relationg)

¢ -~ size _frontier: size of the frontier for exploration

? Output: State graphieduced _SGwith reduced concurrency
b
. . © ° frontier = exploredSGs ={initial ~ _SG};
Figure 8: ApplyingFwdRed(a,b) to anSG fragment (a) and the while frontier 0 do
corresponding TG transformation (b). newsolutions =f;
foreach SG € frontier do
foreach(e1, e2):s.t.e1 || e2, (e1, e2) & Keep_Conc

. o . andes is not an input everdo
Proposition 6.1 (Validity of FwdRed) Let A be a consistent and new.SG = FwdRed (SGz,e1);
speed-independer8G. If a is an output event and and b are explored = explored) {new SG};
concurrent inA, thenFwdRed(a,b) is a valid concurrency re- engfor T new {newSGh;
duction (See [3] for the proof). endfor:

. . . frontier = “the bessize _frontier elements imew”;
Note. A more general formulation of concurrency reduction is endwhile;

done via the removal of a single arc from the correspon@ay reduced _SG="best elementirexplored ";
through the notion obackward reductior§3]. However, contrary
to FWdRed(a,b) baCkWard I‘eduction in general doeS not haVe a Figure 9: Algonthm for reducing Concurrency_

clear interpretation in terms of ordering relations between events.
Therefore, our practical implementation described in the next sec-

tion is restricted to the application BivdRed. .
8 Experimental results

7 Implementation The techniques presented in this paper have been implemented in
. . . . the tool petrify [4]. After handshake expansion and concur-
As we mentioned in Section 3, concurrency reduction can reduce rency reduction, circuits have been derived by using previously

the logic complexity of the circuit in two ways. First of all, the — , plished synthesis techniques for speed-independent circuits. The
number ofCSC conflicts is reduced, and hence the complexity of fina| area was obtained by decomposing the circuit into 2-input
the logic implementing the state signals is reduced. Secondly, the

.) ates and mapping the network onto a gate library. The decom-
number of reachable states is reduced, and hence the don't care S%osition was performed by preserving the speed-independence of

for logic minimization is increased. However, in case one signal ine circuit.

becomes ordered with another, the support of its boolean function

increases. For this reason, we use a heuristic cost function that esFirst case study: the PAR component This section presents
timates changes in logic complexity at each step, since exact com-a case study considering the handshake expansion and concurrency
putation by state signal insertion, decomposition and technology reduction of thePARcomponent used in VLSI programming from
mapping would be too expensive. the concurrent language Tangram [1].

The algorithm in Figure 9 describes how concurrency reduc- Figure 10.a shows aBTG specification in terms of channel
tion is performed. The designer initially provides a list of pairs of events. This specification may yield different implementations de-
events whose concurrency cannot be reduced, e.g., because thegending on the selected phase refinement and concurrency among
are crucial for overall system performance. This will prevent the events. The most challenging problem arises when a 4-phase re-
algorithm from adding causality relations between these pairs of finement is desired. The freedom to schedule the return-to-zero
events. transitions opens a spectrum of different implementations. Fig-

The exploration is done by a strategy similar to ¢he 3 prun- ure 10.c [9] (see implementation in Figure 10.f) has been obtained
ing commonly used in game-playing algorithms. At each level of manually and is used by the current Tangram compiler.

ait =

a? ai+ ai+ /
/ $\ o PW/ £\0+¢c‘, b/ \+ oo, Circuit area irtéasc sign. cr.cypcle(;form?)r.]g\?ents
AN 1 T L\ original 744 2 100 4
i/ \L j bi j l 1 J/} i-,, T “I* . original reduced|| 208 0 118 6
b? 2 0- =— bi+ i- i+ —= co- i ci d d
N VA el A A
@ ao+ bo- a0+ co- ¢ a0+ Il (b,m,r) 384 0 94 4
®) | | N Il (5,2, m) 352 1 104 5
bi- ai- ci- a‘,\ / I, m,r) 368 1 105 5
" o NI | o e

Table 2: Area/performance trade-off for different implementations
of the MMU controller

ao bi

C co ci
f co
al

(© ®

Figure 10: Different specifications and implementations for a PAR
component.

ai—

9 Conclusions

Specifying the behavior of an asynchronous system is a complex
task that needs to be performed at the appropriate high level of ab-
straction. Reasoning in terms of actions (or events) and communi-
cation channels allows the designer to describe a behavior without
worrying about the implementation details.

This paper has presented a method to automate the decisions
)) taken at the lowest levels of circuit synthesis, concerning phase re-
~ Our tool can automatically perform a 4-phase expansion by us- finements and event reshuffling. Thus the designer is only left the
ing the structural techniques discussed in Section 4, and derive thetask of defining the causality among actions and specifying the de-
specification shown in Figure 10.b. After this transformation, the sjred concurrency in the system. The task of translating actions into
return-to-zero signalling is performed with maximum concurrency. signals transitions is automatically handled by CAD tools.
However, a direct implementation of this behavior would resultin a Some aspects still require further research. In particular, better
complex circuit due to the need of inserting extra logic for state en- |ogic estimation strategies when the specification has CSC conflicts
coding and logic decomposition (twice as complex as Figure 10.€). must be sought. On the other hand, simple but accurate methods for

Figures 10.d.e depict the solution automatically obtained by re- performance estimation should be devised to increase the degree of
ducing the concurrency of the 4-phase refinement in Figure 10.b. gutomation and provide a wider exploration of the solution space.
The reduction has been performed by preserving the concurrency
petween the eventsf andc?, thuls maintaining .the pqrallel €XeCU- Acknowledgments. We thank Steve Furber for emphasizing the need
tion Qf both processes. Interestlngl_y,_the C'_rcu't manifests an asym- i tackle the problem of automatic handshake expansion and concurrency
metrlc‘ beha}Vlor that can be beneflc[al to implemBAR compo- reduction. This work was supported by ESPRIT ACID-WG (21949), CI-
nents in which the process at chanh@ known to be slower than ¢y 71¢ 98-0410 and TIC 98-0949, UK EPSRC GR/K70175 and GR/L 24038,

that .atc. The circuit is slightly smaller.(by 12% in our star!dard and British Council (Spain) Acoii Integrada MDR/1998/99/2463.
cell library) than the known manual design. However, its estimated

performance may be worse than that of Figure 10#,a@hdc have
balanced delays

ci

References

[1] Kees van Berkel.Handshake Circuits: an Asynchronous Architecture
for VLSI Programmingvolume 5 ofInternational Series on Parallel
Computation Cambridge University Press, 1993.

T.-A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic
SpecificationsPhD thesis, MIT, June 1987.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Automatic handshake expansion and reshuffling using
concurrency reduction. IMorkshop on Hardware Design and Petri
Nets pages 86-110, June 1998.

Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano

Second case study: the MMU controller In [8] it was shown

that by using timing assumptions on the behavior of the environ-
ment, it is possible to reduce the area of an asynchronous Memory
Management Unit control circuit by over 50 %, with respect to the
original speed-independent implementation. Our experiments pre-
sented in Table 2 show that approximately the same area improve-
ment can be reachedthout sacrificing speed-independendeve

are allowed to use flexibility in playing with concurrency of the
reset transitions of the four-phase protocol. A combination of our

[2]

i3

[4]

high-level transformation and Myers’ lower level timing optimiza-
tions can conceivably provide even better optimization results.

We can conclude that:

With respect to the original solution, reshuffling can yield an Bl

area reduction to less than one half.

This area reduction can be obtained without losing perfor-
mance. E.g., the solutidh (b, m,) with area 384 units has ~ [©
a critical cycle of 94 units, while the original implementation
with area 744 had a critical cycle of 100 units We used the
same timing delay assumptions as in [8]. In case [8] used a 7]
finite delay interval, we considered the average delay, while

in case the upper bound was infinite, we considered the lower [8]
bound.

Lavagno, and Alex Yakovlev. Petrify: a tool for manipulating concur-
rent specifications and synthesis of asynchronous controll&&CE
Transactions on Information and SysteB80-D(3):315-325, 1997.

Bill Lin, Chantal Ykman-Couvreur, and Peter Vanbekbergen. A general
state graph transformation framework for asynchronous synthesis. In
Proc. European Design Automation Conference (EURO-DAGYes
448-453. IEEE Computer Society Press, September 1994.

] Alain J. Martin. Synthesis of asynchronous VLSI circuits. In J. Straun-

strup, editor,Formal Methods for VLSI Desigrthapter 6, pages 237-
283. North-Holland, 1990.

T. Murata. Petri Nets: Properties, analysis and applicatiétreceed-
ings of the IEEEpages 541-580, April 1989.

Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asyn-

chronous circuitslEEE Transactions on VLSI Systeri§2):106-119,
June 1993.

- 1The critical cycle is longer by 11% under the assumption that the delay of a com- [9] Ad Peeters. Implementation of a parallel component in tangram. Per-
binational gate is 1 time unit, that of a sequential gate is 1.5 time units, and that of an

input event is 3 time units.

sonal communication, 1997.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

