
Structural Methods to Improve the SymbolicAnalysis of Petri NetsEnric Pastor1, Jordi Cortadella2, and Marco A. Pe~na11 Department of Computer ArchitectureUniversitat Polit�ecnica de Catalunya08034 Barcelona, Spainenric,marcoa@ac.upc.eshttp://www.ac.upc.es/recerca/VLSI/2 Department of SoftwareUniversitat Polit�ecnica de Catalunya08034 Barcelona, Spainjordic@lsi.upc.esAbstract. Symbolic techniques based on BDDs (Binary Decision Di-agrams) have emerged as an e�cient strategy for the analysis of Petrinets. The existing techniques for the symbolic encoding of each markinguse a �xed set of variables per place, leading to encoding schemes withvery low density. This drawback has been previously mitigated by usingZero-Suppressed BDDs, that provide a typical reduction of BDD sizesby a factor of two.Structural Petri net theory provides P-invariants that help to derive moree�cient encoding schemes for the BDD representations of markings.P-invariants also provide a mechanism to identify conservative upperbounds for the reachable markings. The unreachable markings deter-mined by the upper bound can be used to alleviate both the calculationof the exact reachability set and the scrutiny of properties. Such approachallows to drastically decrease the number of variables for marking encod-ing and reduce memory and CPU requirements signi�cantly.1 IntroductionPetri nets (PNs) are a graph-based mathematical formalism that allows to de-scribe systems modeling causality, concurrency and conict relations among itsevents [16, 7]. In particular, PNs play an important role in the synthesis andveri�cation of concurrent systems. PNs are applied, for example, to the syn-thesis and veri�cation of digital asynchronous circuits, to model heterogeneoussystems in hardware/software codesign frameworks, and to verify concurrentsystems [5, 19].Symbolic analysis of PNs su�er from the state explosion problem [18, 19].The number of reachable markings grows exponentially with the size of thePN description. Temporal logic analysis, hazard veri�cation or circuit synthesis,need to express conditions in terms of sets of markings or sequences of events.
Pastor, E.; Cortadella, J.; Peña, M. Structural methods to improve the symbolic analysis of Petri nets. A:
International Conference on Application and Theory of Petri Nets. "Application and Theory of Petri Nets 1999,
20th International Conference, ICATPN’99: Williamsburg, Virginia, USA, June 21-25, 1999: proceedings".
Berlín: Springer, 1999, p. 26-45.
The final authenticated version is available online at https://doi.org/10.1007/3-540-48745-X_3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/188868147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Therefore, the size of the representation of the overall state space is critical andlimits the e�ciency of formal methods on large practical examples. The majorgoal of the ongoing research on symbolic analysis of PNs is to increase the sizeof the systems that can be analyzed.Along the last decades PNs have been deeply investigated with a large num-ber of theoretical results available in the literature. Specially, structural theoryconnects the dynamic behavior of PNs with its underlying structure [10, 15, 13].Until recently none of these well-known results has been used in order to alleviatethe BDD-based symbolic analysis of PNs.This work discusses several techniques for the symbolic analysis of PNs. Wewill show how structural and symbolic techniques can be e�ciently combined inthe same framework. Sets of P-invariants that will be retrieved from the PN canbe applied to ease the symbolic analysis. Previous analysis techniques alreadymake use of binary vector representations of markings [11] and P-invariants toreduce the number of bits in the vector representations [6]. However, they did notexploit the fact that the combination of P-invariants and BDDs already provideinformation about the reachable markings in the PN.The proposed algorithms can be classi�ed in two groups according to theirapplication to the computation and representation of the reachability set.{ The �rst set improves the symbolic BDD representation of the reachabilityset, reducing the number of required Boolean variables and BDD nodes.Encoding algorithms will be proposed both for the subclass of safe PNs andfor general bounded PNs.{ The second set provides enlarged approximations of the reachability set thatcan be e�ciently computed. This approximations can be applied to con-servative veri�cation techniques or to provide approximations of the sets ofunreachable markings to further reduce the BDD representations.The outline of the paper is the following. In Section 2 we introduce somebasic notions on PNs and Boolean functions. Section 3 describes by means ofan example how symbolic BDD techniques currently encode PNs and demon-strates the existence of room for further improvement. An algorithm to encodesafe PNs is presented in Section 4. The algorithm is based on sets of one-tokenSM-Components, assigning to each place in an SM-Component a unique Booleanfunction. Section 5 extends the encoding methodology to any bounded PN byusing general P-invariants. Each potential token con�guration in a P-invariantis assigned a unique Boolean function. Additionally, P-invariants allow to deter-mine a set of Potentially Reachable Markings. In Section 6 we show that com-puting a conservative set of unreachable markings may help to further improvethe analysis of PNs. Finally, Section 7 presents experiments that demonstratethe e�ciency of the proposed encoding techniques. Section 8 concludes the paperand introduces some future research directions.

p2

p1

p4 p3

t3

t2 t1
2

2

2

(a)

2010

0120

t1 t1

3002

1112

t1

t3 t2

t2t3

t3t3

t3 1206

2104

0214

t2

(b)

p1 p2 p3 p4

Fig. 1. (a) A bounded PN and (b) its reachability graph.2 Basic Notations2.1 Petri netsA Petri net (PN) [16, 7] is a four-tuple N = hP ; T ;W ;M0i, where P and Tare sets of places and transitions respectively. W : (P � T) [(T � P) ! INde�nes the weighted ow relation. If W(u; v) > 0 then there is an arc from u tov with weight W(u; v). The function M : P ! IN is called a marking; that is,an assignment of a nonnegative integer to each place. If k is assigned to place pin a marking M , we will say that p is marked with k tokens (M(p) = k). M0 isthe initial marking of the PN.PNs are graphically represented by drawing places as circles, transitions asboxes (or sometimes bars), the ow relation as directed arcs, and tokens asdots circumscribed into the places. Fig. 1(a) depicts a PN with initial markingM0 = fM0(p1) = 2;M0(p2) = 0;M0(p3) = 1;M0(p4) = 0g.The set of markings that can be reached from the initial marking M0 byrepeatedly �ring the transitions of the net is called the reachability set (denotedRS). Fig. 1(b) shows the reachable markings corresponding to the PN examplein Fig. 1(a).A place p 2 P is called k-bounded (k 2 IN) i� at any reachable markingit does not contain more than k tokens. A PN is bounded i� every place is k-bounded for some value k. A PN is safe if all places are 1-bounded. Fig. 2 depictsa safe PN describing two competing philosophers.PNs can be symbolically manipulated by means of BDDs [18, 17, 19]. Eachplace in the PN is considered as an integer variable, being represented by anumber of Boolean variables. The RS can be obtained by computing the least�x point of the following recurrence [5]:So =M0Si+1 = Si [Image(PN; Si)where Image is a function that returns the markings reachable from Si in onestep. In the PN example of Fig. 1(a), Image(PN; [2010]) = f[3002]; [0120]g.

(idle)

(eating)

Go to
Table

Take
right
fork

Take
left
fork

Start
eating

Leave
forks
and
table

(idle)

(eating)

Go to
Table

Take
right
fork

Take
left
fork

Start
eating

Leave
forks
and
table

p1

p2 p3

p4
p5

p6 p7

p8

p9

p10 p11

p12 p13

p4

p14

t1

t2 t3

t4

t5

t6

t7 t8

t9

t10Fig. 2. PN for two dining philosophers (two instances of p4 are depicted for clarity).From now on, we will assume that the reader to be familiar with both BDDsand Algebraic Decision Diagrams (ADDs) [2, 4, 1].2.2 Place-invariants and State Machines ComponentsThe structure of a PN can be represented by its incidence matrix [13, 15], aP � T integer matrix given by C(pi; tj) = W(tj ; pi) �W(pi; tj). The incidencematrix of the PN depicted in Fig. 1(a) is the following:C = 0BB@�2 1 11 �1 01 0 �10 �2 21CCAThe places of a PN have an associated token conservation equation usuallywritten in the matrix form M =M0+C ��, where � is called the Parikh vectorof a sequence of transitions �.Every solution X 2 QjPj of the equationXT �C = 0 is said to be a P-invariant[16]. A P-invariant I is called semi-positive if I � 0 and I 6= 0. The support ofa semi-positive P-invariant I , denoted by hIi, is the set of places p satisfyingI(p) > 0. A semi-positive P-invariant I is minimal if no other semi-positive P-invariant J satis�es hJi � hIi. In the sequel, for sake of simplicity we will referto P-invariants as invariants.Given an invariant I , any reachable marking M must agree with the initialmarking M0; that is, I �M0 = I �M . Therefore, invariants can be used to provethat a marking M is not reachable if M and M0 do not agree on an invariant.

p4

p13

p14

p6

p8

p5

p7

p8

p12

p14p8

p1

p2

p6

SM1

p8

p1

p3

p7

SM2

p9

p10

p12

p14

SM3

p13

p9

p11

p14

SM4 SM5 SM6

x1 x2 x3 x4x5 x6

00

01

11

10

00

01

11

10

0

0

1

1

0

0

1

1Fig. 3. SM decompositions for the dining philosophers example.The PN Ni generated by a subset of places is said to be a State MachineComponent (SM) of N if Ni is a strongly connected State Machine. A key resultfor the contribution of this work is the following [7]: Let Ni = hPi; Ti;Wi;M0iibe a SM-Component of a Petri Net N . Then Ni is a minimal semi-positive P-invariant of N .The Smith Normal Form [12] provides an e�cient method to derive invariantsfor bounded PNs. This technique has been introduced by Desel et al. [8] andgenerates a basis of all possible invariants (not necessarily minimal or semi-positive). A basis of invariants for the PN in Fig. 1(a) is:I1 : 2p1 + 4p2 � p4 = 4I2 : p1 + p2 + p3 = 3 : (1)For safe PNs we can compute SM-Components by posing a set of linearequations [15, 13]. A minimal one-token semi-positive invariant IP, including aplace pi, can be computed by solving the linear system of equations:min Pp IP(p) � 0s:t: IP � C = 0Pp IP(p) �M0(p) = 1IP(pi) � 1Figure 3 shows six SM-Components generated from the PN of Fig. 2. Forexample, SM1 has been generated from the invariant p1 + p2 + p6 + p8 = 1 andSM5 from p5 + p7 + p8 + p12 + p14 = 1.2.3 Logic FunctionsNow we briey sketch some basic theory on Boolean algebras. Most of the con-cepts presented here have been extracted from [3].

t1 t1 t1

t3 t2

t2t3

t3t3

t3

t2

010

111

000

100

001

110 011

x1 x2 x3

(b)

(a)

t1 t1 t1

t3 t2

t2t3

t3t3

t3

t2

100001
0000

110000
0010

100100
0100

000110
0000

010101
0010

001001
0100

011000
0110

p11 p12 p21 p22 p31 p32
p41 p42 p43 p44

Fig. 4. Encoded reachability graph: (a) sparse and (b) optimal, for the PN in Fig. 1.A Boolean algebra is a quintuple (B;+; �; 0; 1) where B is a set called thecarrier, + and � are binary operations on B, and 0 and 1 are elements of B. Thesystem (B = f0; 1g;+; �; 0; 1) , with + and � de�ned as the logic OR and logicAND operations respectively, is a Boolean algebra.An n-variable logic function is a mapping f : Bn ! B. Let Fn be the set ofn-variable logic functions on B. Then the system (Fn;+; �; 0; 1) is also a Booleanalgebra. Let us also de�ne Mn as the subset of n-variable logic functions suchthat one and only one combination of inputs evaluates to 1 (i.e. that only containa minterm).3 A Motivating ExampleThe symbolic representation of the RS of a PN requires an encoding mecha-nism to map each marking in a unique binary code inside a Boolean algebra.Traditionally, the encoding has been created by assigning a number of Booleanvariables to each place in the PN. The number of variables should be enoughto represent the maximum number of tokens that can be located in each place.This encoding technique is known as an sparse encoding scheme [17].Sparse encoding schemes are extremely ine�cient for PNs because they as-sume that all possible combinations of tokens inside places are possible. However,in most cases, places are causally related or in conict and therefore not all com-binations of tokens exist.In order to compare the e�ciency of di�erent encoding schemes we introducean encoding density function D. Given a PN, DPN is calculated as the optimum

number of variables required to encode the RS, divided by the actual numberof variables that are used, i.e.DPN = dlog2(j[M0ij)e# of variablesAn encoding is optimal if DPN = 1. This optimality implies that the Booleanspace is fully used and no binary code is left unassigned.The bounded PN in Fig. 1(a) has four di�erent places that may contain acertain number of tokens. The maximum number of tokens that can be located ineach place will determine how many variables are required for sparse encoding.A conservative upper bound for each place pi can be derived from a basis B ofinvariants, i.e.max M(pi)s:t: BtM = BtM0For that example, after solving the Linear Programming Problem we obtainthat the maximum number of tokens are max(p1) = max(p2) = 3, max(p3) = 2andmax(p4) = 8. That implies that to encode places p1; p2; p3 we need 2 variablesfor each of them (because their values are between 0 and 3); while place p4requires 4 variables (because its values are between 0 and 8). This sparse schemeleads to a Boolean algebra with 10 variables, representing up to 210 di�erentmarkings. However, it is known that the PN has only 7 reachable markings! (seeFig. 4(a).)An optimal encoding should use a logarithmic number of variables with re-spect to the number of reachable markings (dlog2 j[M0ije). In the previous ex-ample, dlog2 7e = 3 is the optimal number of variables (see Fig. 4(b)).Deriving optimal encoding schemes is not a viable strategy because it requiresknowing the existing markings a priori, which is in fact the problem that wasoriginally posed. Hence, the goal of this work is to propose alternative denseencoding schemes for PNs, that lay in between the conventional sparse encodingand the optimal schemes. The proposed methodology should reduce the numberof variables, while maintaining a reasonable computation e�ort.It is well known that the number of BDD variables does not always havea direct impact on the number of BDD nodes required to represent a set ofmarkings. For a �xed set and number of variables, the number of BDD nodesmay vary from polynomial to exponential depending on the variable orderingin the BDD. However, experiments show that a reduction in the number ofvariables combined with an accurate assignment of binary codes to markingsprovide signi�cant improvements both in the number of BDD nodes and theircomputation times.Finding out relations among places that restrict their simultaneous mark-ing may help to reduce the number of Boolean variables required to encode thesame RS [17]. Relations among places not only provide an encoding mechanism,but additionally restrict the set of potentially reachable markings. Some mark-ings will be determined not to be in the RS even before starting any symbolictraversal.

In this work we will propose encoding schemes based on the informationknown a priori from the PN structure |its invariants. These invariants allow todiscard sets of unreachable markings and �nd more e�cient encodings for thosethat are still potentially reachable. The method proposed for the dense encodingof the reachable markings of a PNs is structured as:1. A basis of invariants of the PN is calculated. Algebraic and linear program-ming techniques will be used for ordinary PNs, while the SNF can be usedfor bounded PNs.2. The PN must be bounded and the upper bounds must be known, eitherderived from the invariants or provided by the user.3. A dense encoding is derived for the places covered by invariants. The rest ofplaces are encoded by using the sparse scheme. E�cient encoding techniquesare used for one-token SM-Components, while more elaborated mechanismsare required for general invariants.4. Assign binary codes to the places in each invariant, in such a way that BDDsize is minimized.5. Given the selected encoding, calculate the transition relation of the PN andthe RS by using symbolic traversal techniques.4 Encoding Safe Petri NetsThis section proposes an encoding scheme that is based on the fact that safePNs can be decomposed into one-token SM-Components. The places in eachSM can be encoded separately using a logarithmic encoding technique. Aftercombining the variables in each invariant, the result is a reduced number ofBoolean variables compared to the conventional sparse techniques.To illustrate the proposed encoding scheme we use the PN in Fig. 2. ThisPN can be decomposed into six SMs that, in this particular case, cover all places(see Fig. 3). The sparse encoding scheme requires 14 Boolean variables to encodeeach place, resulting into a density of DPN = dlog2(22)e=14 = 0:36.First, we show how an SM-Component can be encoded by using an opti-mal number of variables. Then we determine the set of invariants that allows toencode the PN while minimizing the total number of variables. Two methodolo-gies are proposed to select the set of invariants: a simple method that does notconsider the interrelations between invariants, and a more elaborated that takesinto account those interactions.4.1 Encoding a single SMLet Pi � P be the subset of places covered by a one-token SM-Component Ii.Since one and only one place in Pi is marked at each marking, a logarithmicencoding can be found for those places. Thus, any injective encoding functionEIi : Pi ! Mn (n = dlog2 jPije) is appropriate. Each place must be assigned aunique minterm to uniquely identify the location of the token in Ii, i.e.8pj; pk 2 Pi; j 6= k : EIi(pj) � EIi(pk) = 0 : (2)

4.2 Selecting SMsThe number of variables required to encode a PN directly depends on the selectedinvariants. Since a place may be covered by di�erent invariants, the density ofthe encoding may decrease if di�erent sets of variables are used to encode thesame place at di�erent invariants. To achieve a dense encoding it is importantto select a set of invariants that minimize the over-encoding of common places.Let SMC = fIig be a set of SMs that (totally or partially) cover the placesof the PN. The problem of �nding an optimal subset of SMC to encode the PNcan be formulated as a Unate Covering Problem[14] as follows:1. Take SMC [P as the set of covering objects and P as the set of coveredobjects. Each invariant Ii covers a subset of places Pi � P . Each place pi 2 Pcovers itself.2. For each Ii 2 SMC, de�ne cost(Ii) = dlog2(jPij)e.3. For each pi 2 P , de�ne cost(pi) = 1.4. Find a minimum cost cover of SMs and places.In practice heuristics are used, e.g. a Fiduccia&Mattheyses algorithm that it-eratively takes or rejects invariants for encoding [9]. Obviously, the quality ofthe �nal encoding depends on the initial selection of invariants and the order inwhich they are processed.The �nal encoding of each place can be computed as the conjunction of theencoding function used in each particular SM; that is,E(pj) = YIi:pj2Pi EIi(pj) :The following minimum cost encoding using 10 variables (with densityDPN =5=10 = 0:5) can be found:{ SM1 covering places fp1; p2; p6; p8g (2 variables).{ SM3 covering places fp9; p10; p12; p14g (2 variables).{ SM4 covering places fp9; p11; p13; p14g (2 variables).{ The rest of places encoded with one variable per place (p3, p4, p5 and p7).4.3 Combining SMs for a Denser EncodingThe encoding scheme presented in the previous section can be further improvedby taking into account that places may be covered by more than one invariant.In that case, a place can be over-encoded, resulting in a less dense encodingscheme. Intuitively, each place only needs to be encoded once even though it canbe covered by several SMs.A denser encoding scheme can be implemented as follows. Let us assume thata subset of SMs, fI1; : : : ; Ii�1g is already used to encode some places of the PN.Let us include now an additional SM Ii covering the places Pi. We can partitionPi into two subsets Pi = Pcovi [Pnewi . Pcovi contains all those places alreadycovered by fI1; : : : ; Ii�1g, whereas Pnewi contains the places only covered by Ii.

Given that places in Pcovi have been already encoded in other SMs, weonly need additional variables to encode the places remaining in Pnewi ; thatis, dlog2(jPnewi j)e variables. Since most of the SMs of a PN overlap each other,encoding the places in Pnewi rather than the whole set Pi should lead to muchdense encodings.Once we have determined the number of variables, we need to de�ne theconditions under which binary codes have to be assigned to encode each place. Avalid encoding for Ii would be any function EIi : Pi !Mn (n = dlog2(jPnewi j)e)such that assigns a unique minterm to each place in Pnewi ; i.e.8pj; pk 2 Pnewi ; pj 6= pk : EIi(pj) � EIi(pk) = 0 : (3)Equation (3) imposes looser conditions than (2), because no encoding restric-tion is de�ned over places already covered in Pcovi . This encoding scheme willuse the new Boolean variables to both encode the places in Pnewi and Pcovi . Inthat way, a certain degree of over-encoding is introduced for places in Pcovi .Note that for each place p 2 Pnewi there may be a set of places Pp in Pcoviwith the same code as p, i.e.Pp = fp0 2 Pcovi j EIi(p) � EIi(p0) 6= ;g :This ambiguity is only apparent since the marking of p can be indirectly deter-mined by the marking of the other SMs encoding the places of Pp. In the extremecase of having a single place in Pnewi no additional variables are required be-cause the value of p can be determined by using the places in Pcovi , i.e. p will bemarked i� no other place in Pcovi is marked.The number of variables required to encode the PN depicted in Fig. 2 can bereduced by using the improved encoding technique. A minimum cost encodingusing 6 variables (with density DPN = 5=6 = 0:84) can be found. To derive thisencoding all SMs available in Fig. 3 have been used, but only a subset of placesin each SM is covered:{ SM1 covering places fp1; p2; p6; p8g (2 variables).{ SM2 covering places fp3; p7g (1 variable).{ SM3 covering places fp9; p10; p12; p14g (2 variables).{ SM4 covering places fp11; p13g (1 variable).{ SM5 covering place fp5g (0 variables).{ SM6 covering place fp4g (0 variables).Figure 3 shows all SMs of the PN with the suggested codes to be assigned toeach place. The encoding described in Table 1 can be derived for the places ofthe PN maintaining the one-to-one relation between markings and binary codes.4.4 Characteristic Functions for PlacesIn general, every place p can be covered by several SM-Components. By usingthe improved encoding approach presented in the previous section, only one of

Table 1. Encoding for the dining philosophers example in Fig. 2.SM / place SM1 SM3 SM2 SM4 SM5 SM6variables x1x2 x3x4 x5 x6p1 = x1 x2 p9 = x3 x4 p1 = x5 p9 = x6 p5 = 1 p4 = 1Encoding p2 = x1 x2 p10 = x3 x4 p3 = x5 p11 = x6p6 = x1 x2 p12 = x3 x4 p7 = x5 p13 = x6p8 = x1 x2 p14 = x3 x4 p8 = x5 p14 = x6Table 2. Characteristic functions for the places according to Table 1.�[p1] = x1 x2 x5 �[p8] = x1 x2 x5�[p2] = x1 x2 �[p9] = x3 x4 x6�[p3] = x5 (x1 + x2) �[p10] = x3 x4�[p4] = x1 x3 x6 + x1 x4 x6 �[p11] = x6 (x3 + x4)�[p5] = x1 x3 x5 + x2 x3 x5 �[p12] = x3 x4�[p6] = x1 x2 �[p13] = x6 (x3 + x4)�[p7] = x5 (x1 + x2) �[p14] = x3 x4 x6the SMs will be used to encode p, whereas the other SMs will merely assign p acode already used for other places.Let us call Ip the SM used to encode place p. The characteristic function ofplace p (�[p] markings with p marked) is the following:�[p] = EIp(p) � ^p0 6=p: EIp (p)�EIp (p0)6=;EIp0 (p0) (4)The characteristic function for each place in Fig. 2 is shown in Table 2.5 Bounded PN EncodingThis section will show how invariants can be used to e�ciently encode anybounded PN. The goal is to characterize the number of tokens in each placeby using the information available in a given invariant. Each invariant describesthe distribution of tokens in its places for any reachable marking. However, theanalysis of token con�gurations inside a general invariant is more complex thatin a simple one-token SM-Component.To illustrate the proposed encoding scheme we will use the PN depictedin Fig. 1. This PN can be decomposed into the invariants in (1). A sparsescheme requires 10 Boolean variables to encode all places, resulting in a den-sity of DPN = dlog2(7)e=10 = 0:36.First, we will analyze which are the reachable markings characterized byeach invariant. A number of variables should be assigned to encode each invari-ant. However, once an invariant has been encoded, less variables are required

to encode the remaining invariants. We introduce a greedy methodology to se-lect which invariants should be encoded �rst, based on the variable reductionsobtained compared to the sparse scheme.5.1 Token Con�gurations in InvariantsLet us de�ne a token con�guration Ci as an integer assignment to places of aninvariant. A token con�guration can be total or partial. A total token con�gura-tion de�nes the token count for all places in the invariant, while a partial tokencon�guration only de�nes the count for a subset of places. Given the invariantI1 for the PN in Fig. 1, ffp1; 1g; fp2; 1g; fp4; 2gg is a total token con�guration,while ffp1; 1g; fp2; 0gg is a partial token con�guration.The exhaustive analysis of each invariant provides all possible token con�gu-rations that may correspond to potentially reachable markings. The generationof all potential token con�gurations can be represented as a tree (see Fig. 5),where each node corresponds to a place and the arc to each child is labeled withpossible token assignments. Each leaf in the tree represents a total token con-�guration. In general, we may generate the token con�gurations of an invariantthat has been partially encoded (e.g. see Section 4.3 for safe nets). The subsetof the invariant that has been already encoded will be depicted in a rectangularroot node in which each outgoing arc to its child is labeled with the number oftokens already assigned to places (in Fig. 5 no place has been encoded, hence 0is assigned to the root node and its arc). For both invariants I1 and I2 in (1)there exists 10 and 9 total token con�gurations respectively, as shown in Fig. 5.In order to characterize the token con�gurations that may lead to potentialmarkings, we de�ne the potential marking function for an invariant Ii as:PMIi : 2Pi�IN ! f0; 1g ;where Pi is the set of places in Ii. The PM function characterizes the tokencon�gurations Cj 2 2Pi�IN that satisfy (PMIi(Cj) = 1) or not (PMIi(Cj) = 0)the invariant, e.g. PMI1(fp1; 1gfp2; 0g) = 0 and PMI1(fp1; 1gfp2; 1gfp4; 2g) = 1(see Fig. 5). Let CIi be the set of potentially reachable total token con�gurationsin Ii.The combination of information from several invariants further improves thecharacterization of the potentially reachable markings. Basically, it is known thatany reachable marking must agree with all the invariants in the PN. Therefore,if a token con�guration does not exists in one invariant then it can not be validfor any other invariant of the PN.In Fig. 5, PMI1(fp1; 2g; fp2; 2g) = 1 but PMI2(fp1; 2g; fp2; 2g) = 0; thereforethe token con�guration ffp1; 2g; fp2; 2g; fp4; 8gg is not valid for I1 and we canupdate the PM function with PMI1(fp1; 2g; fp2; 2g; fp4; 8g) = 0. Similarly, thetoken con�gurations between the invariants in Fig. 5 indicates that, in fact,no marking with ffp1; 2g; fp2; 2gg, ffp1; 3g; fp2; 1gg or ffp1; 1g; fp2; 0gg couldexist. The corresponding arcs in the solution trees are eliminated (denoted byshadowed con�gurations in Fig. 5). We can conclude that each invariant has 8possible token con�gurations.

p1

0 2 31

1 2 3 0

p2 p2 p2 p2

44

p4 p4 p4 p4 p4 p4 p4 p4 p4 p4

1 2 11 20

0 8 2 6 0 8 2 6

C0 C C C C C C C1 2 3 4 5 6 7

I1: 2p1 + 4p2 − p4 = 4 0

0

p1

0 2 31

1 2 3 10 10 0

2 1 0 2 1 0 1 0 0

p3 p3 p3 p3 p3 p3 p3 p3p3

p2 p2 p2 p2

2

C0 C C C C C C C1 2 3 4 5 6 7

I2: p1 + p2 + p3 = 3 0

0

Fig. 5. Token con�gurations for the invariants of the example in Fig. 1.Once we have determined the potential token con�gurations in each invariantwe can assign Boolean variables to encode each combination of tokens. Thenumber of variables required to encode the invariant is VIi = dlog2(jCIi j)e: Then,any injective encoding function EIi : CIi ! Mn (n = VIi) is appropriate toencode the invariant. Each di�erent total token con�guration must be assigneda unique minterm, i.e.8Cj; Ck 2 CIi ; j 6= k : EIi(Cj) � EIi(Ck) = 0 : (5)For the invariants in (1) we have to encode 8 di�erent token con�gurations,therefore dlog2(8)e = 3 variables are required for each invariant.Fig. 6 describes a Decision Diagram with one possible encoding of invariantI1 using three Boolean variables (denoted x1 : : : x3). Each one of the 8 totaltoken con�gurations (C0; : : : ; C7) is encoded by a di�erent assignment to variablesx1 : : : x3 (a di�erent minterm described by each branch of the tree). For example,

0 0 0 1 1 2 2 3

1 2 3 1 2 0 1 0

4 4

x3 x3 x3 x3

x2x2

x1

T F

T TF F

T T TF FFT F

I1

8 2 6 0 20

C0 C C C C C C C1 2 3 4 5 6 7

E (p1)

E (p2)

E (p4)

I1

I1

I1Fig. 6. DDs for the encoding of token con�gurations in I1.the token con�guration C4 = ffp1; 1g; fp2; 2g; fp4; 6gg is encoded as EI1(C4) =x1x2x3.5.2 Invariant Selection for Dense EncodingSimilarly to the techniques used for safe PNs, places that appear in di�erentinvariants do not need to be encoded multiple times. Each place must be encodedonly at one invariant. The invariant selection process can be formulated as aCovering Problem in which each place can be covered by an invariant or leftuncovered (using sparse encoding). The goal is to select a number of invariantsthat minimizes the total number of variables in the encoding.To avoid the inherent complexity of covering problems, a heuristic algorithmhas been derived to select in which invariant a place should be encoded. Basi-cally, we choose the invariant that requires less variables compared to the sparseencoding technique and that has less token con�gurations to have better controlof the minterm assignment process. Given the PN in Fig. 1(a), sparse encodingrequires 8 variables for invariant I1 and 6 variables for I2. Using the proposeddense encoding only 3 variables are required for each invariant. Invariant I1 willbe encoded �rst because we obtain an improvement of 5 variables with respectto the sparse technique.When each potential marking has been encoded it is possible to derive theencoding function EIi : P � IN ! Fn that characterizes when a place holds anumber k of tokens (n = VIi). This function is the union of total token con�gu-rations C that satisfy fp; kg 2 C, i.e.EIi(pj ; k) = _Cl2CIi : fpj ;kg2Cl EIi(Cl) :

x3 x3 x3

x2x2

x1

T F

T TF F

T T TF F F

0

0 1 1 2 2 3

x3 x3 x3 x3

x2x2

x1

T F

T TF F

T T TF FFT F

11 2 3 2 0 1 0

x3 x3 x3 x3

x2x2

x1

T F

T TF F

T T TF FFT F

00 4 8 2 6 4 2

(a)

E (p2)

E (p4)

I1
E (p1)

I1

I1

x3

x2

x1

T

T F

T F

T F

F

(b)

I1
E (p1,0)

Fig. 7. DDs for the encoding of places in I1.A multi-valued encoding function EIi : P ! IN�Fn is de�ned to characterizeall token assignments for each place, i.e.EIi(pj) =_8k [k � EIi(pj ; k)] :The token assignments in EIi(pj) can be e�ciently represented by means ofADDs. Each branch of an ADD describes a set of binary codes that are assignedto a certain integer value (the token count). Fig. 7(a) explicitly depicts the ADDsfor the characteristic function of places in I1, e.g.EI1(p1) = 0� (x1x2 + x1x2x3) + 1� (x1x2 x3 + x1x2x3) +2� (x1x2x3 + x1 x2x3) + 3� (x1 x2 x3) :EI1(p2) = 0� (x1x2x3 + x1 x2 x3) + 1� (x1x2x3 + x1x2 x3 + x1 x2x3) +2� (x1x2x3 + x1x2x3) + 3� (x1x2x3) :On the other side, BDDs are used to represent the subset of markings inwhich places have a particular token count. Each branch of a BDD describes aset of binary codes that either belongs to the set (if the leaf node is TRUE) ornot (the leaf is FALSE). Fig. 7(a) depicts the BDD for the the characteristicfunction of EI1(p1; 0) = x1x2 + x1x2x3.Once an invariant has been encoded the rest of invariants may need fewer vari-ables because some places have been already encoded. In the example, places p1and p2 have been already encoded by I1 and therefore fewer token con�gurationsneed to be described when considering I2. The number of tokens accumulated inp1+p2 can be easily computed by operating the ADDs corresponding to EI1(p1)and EI1(p2) [1], i.e.EI1(p1) + EI1(p2) = 1� (x1x2x3) + 2� (x1x2 x3 + x1x2x3 + x1x2x3) +

1

x3 x3

x2x2

x1

T F

T TF F

T FFT

2 1 0

0

(c)

1 2 3

p3 p3 p3

(b)

E (p3)

0 0 0 1 1 2 2 3

1 2 3 1 2 0 1 0

x3 x3 x3 x3

x2x2

x1

T F

T TF F

T T TF FFT F

1 2 3 2 3 2 3 3

(a)

I1

E (p1)

E (p2)

E (p1)+E (p2)I1 I1

I1

I2 C C C

2 1 0

0 1 2

E (p3)I2p1 + p2
I2: p1 + p2 + p3 = 3

Fig. 8. DDs that characterize the encoding of invariant I2 after encoding I1.3� (x1x2 x3 + x1x2x3 + x1 x2x3 + x1 x2 x3) :The result shows that only three token con�gurations exists for the additionof both places, corresponding to p1 + p2 = f1; 2; 3g (see Fig. 8(a)). Now, it isclear that the value of EI2(p3) can be implicitly derived according to invariantI2 : p1 + p2 + p3 = 3 (see Fig. 8(b)).The root node (p1+p2) of the token con�guration tree (see Fig. 8(b)) holds animplicit encoding due to the binary codes previously assigned to other invariants.We denote this encoding function as implicit encoding function E iIi : CIi ! Fmbecause assigns to each token con�guration a function that depends on all them Boolean variables already assigned in previously considered invariants. InFig. 8(a) we have that E iIi(C0) = x1x2x3, E iIi(C1) = x1x2 x3 + x1x2x3 + x1x2x3and E iIi(C2) = x1x2 x3 + x1x2x3 + x1 x2x3 + x1 x2 x3.Given the root encoding function, the remaining part of the invariants mayneed fewer variables because the conditions in (5) for the encoding function EIican be relaxed to:8Cj; Ck 2 CIi ; j 6= k : E iIi(Cj)EIi(Cj) � E iIi(Ck)EIi(Ck) = 0 : (6)Only those token con�gurations with encoding functions that may intersectshould be assigned a unique code (the implicit encoding already prevents someintersections). Hence, the number of variables for encoding is reduced to:VIi = �log2 ���Ci : 9 Cj ; i 6= j s:t: E iIi(Ci) � E iIi(Cj) 6= 0	��� :Finally, if Ip is the invariant used to encode place p, the multi-valued char-acteristic function �[p] of place p must combine the codes assigned in Ip withthe implicit information assigned from other invariants, i.e.�[p] =_8k 24k � _Ci2CIp : fp;kg2Ci E iIp(Ci)EIp(Ci)35 (7)

In that case no additional variables are required to encode p3. The encodingfor �(p3) can be created as �(p3) = 3� (EI1 (p1) + EI1(p2)) [1], i.e.�(p3) = 0� (x1x2 x3 + x1x2x3 + x1 x2x3 + x1 x2 x3)1� (x1x2 x3 + x1x2x3 + x1x2x3) + 2� (x1x2x3) :The overall encoding process can be described as follows:1. Compute the potentially token con�gurations for each invariant.2. Encode the invariant that provides the maximum variable decrease withrespect sparse encoding and minimal number of token con�gurations.3. Eliminate invariants with all places already encoded.4. Update the token con�guration trees for the remaining invariants.5. Repeat from 2 until all places have been encoded.The encoded reachability graph for the PN in Fig. 1(a) is shown in Fig. 4(b).6 Computation of Potentially Reachable MarkingsInvariants not only provide an e�cient mechanism to encode places in a PN,but o�er an initial approximation of the RS. Any reachable marking must agreewith the initial marking at any invariant of a PN. Therefore every invariant canbe used to divide the Boolean space into a set of potentially reachable markingsand a set of unreachable markings.The general situation that we consider arises whenever binary codes are leftunallocated to any potential token con�guration. Given a general invariant Ii :a1p1 + : : : + ampm = N , the characteristic function �[Ii] of all markings thatsatisfy that equation is constructed by:1. Operating the characteristic function �(pi) of all places in the invariant, i.e.Ppj2Pi ai � �[pj];2. In the resulting function, all leaf nodes that are equal to N correspond tomarkings that satisfy the invariant (�[Ii] = [N �Ppj2Pi ai � �[pj] = 0]).Since any reachable marking has to satisfy all the invariants, the upper boundof the RS is obtained as the conjunction of the characteristic functions for allinvariants.The characteristic function for one token SM-Components can be easily com-puted by operating the characteristic function of each place. Given an invariantIi, when a place pj 2 Pi is marked (�[pj] = 1) the rest of places cannot bemarked; hence, the characteristic function is computed as:�[Ii] = Xpj2Pi �[pj] � [Xpk2Pi;k 6=j �[pk]] :Approximations of the RS computed by using structural information im-proves the symbolic analysis of the PN in two ways:

Table 3. Comparison between sparse and dense encoding schemes for safe PNs.PN Sparse encoding Dense encodingname P T RS V nTR nRS CPU Ninv Nnodes V nTR nRTR nRS CPUmuller10 40 20 4:2� 102 40 180 770 1 10 40 20 140 123 189 1muller20 80 40 2:5� 105 80 360 3188 9 20 80 40 280 241 668 3muller30 120 60 6:0� 107 120 540 6694 51 30 120 60 480 426 1390 13phil5 65 50 8:5� 104 65 330 639 2 15 125 25 644 459 158 2phil10 130 100 7:4� 109 130 660 7805 40 30 250 50 1284 914 433 24phil15 195 150 6:4� 1014 195 990 87419 700 45 375 75 1924 1369 708 124slot5 50 50 1:7� 106 50 330 673 14 10 50 25 325 283 129 5slot10 100 100 3:8� 1011 100 660 2516 1006 20 100 50 650 581 460 309Table 4. Comparison between sparse and dense encoding schemes for bounded PNs.PN Sparse encoding Dense encodingname P T RS V nTR nRS CPU Ninv Nnodes V nTR nRS CPUproc1 8 8 7 11 107 29 0 4 41 5 131 12 0robot1 17 8 1:6� 102 28 208 389 1 11 222 12 99 58 1robot2 15 6 4:8� 101 24 149 243 1 10 69 6 817 9 1robot12 24 14 1:3� 103 40 358 1330 2 13 9465 18 647 141 7{ A set of markings that is known to be unreachable o�ers a number of binarycodes to be used as don't care set. The BDD representation of functionsinvolved in the symbolic analysis can be simpli�ed by using this don't careset. In particular, the size of the transition relation and the RS of the PNcan be reduced.{ The potential RS approximations may already provide enough informationto determine if the properties under analysis are satis�ed in a positive ornegative way without requiring the symbolic traversal of the PN.7 Experimental ResultsThe e�ciency of the proposed encoding technique is measured in terms of reduc-tions achieved for number of variables, BDD nodes to represent the transitionrelation and the RS of the PN, and CPU computation times.Table 3 compares the results of symbolic traverse after both sparse and denseencoding of several safe PNs based on the general invariant-based algorithm.Scalable examples have been used. Muller describes a Muller pipeline with n-stages, Phil describes n competing philosophers, Slot a model for the slotted-ringprotocol with n stages. We have analyzed the results obtained by using a sparseencoding (labeled Sparse) and a dense encoding with set of minimal invariantscomputed with algebraic techniques (labeled Dense). For both cases we providethe number of Boolean variables required by the encoding (V), the number ofBDD nodes to represent the transition relations (nTR) and the RS (nRS), andthe computation times (CPU). Additionally, for the dense encoding we providethe number of invariants that have been used (Ninv) and the total number oftoken assignments generated along the encoding process (Nnodes). When using

the potentially reached markings to simplify the TR of the PN the number ofBDD nodes is also presented (nRTR).The experiments show that 50% variable reductions or better can be ob-tained. The inuence of these results is evident on the number of BDD nodesto represent the RS (70% to 90% are obtained) and on the computation times(40% to 80% speedups are achieved). Conversely, the number of BDD nodes torepresent the transition relations may even increase due to the complexity of theencoding assignments. The computation of the potentially reachable markingsalso help to further reduce the size of the TRs between 10��30%.Table 4 compares the results of symbolic traverse after both sparse and denseencoding of a few bounded PNs. The examples describe several robot controlautomatons. Again 50% variable reductions can be obtained. The inuence ofthese results is also quite signi�cant on the number of BDD nodes to representthe RS. However, the increase in the number of nodes to represent the transitionrelations may reduce the computation speed-ups. Further research is needed inthat direction. From the robot12 example it can also be seen that in same casesthe number of token con�gurations may be even bigger that the reachable states.Heuristics must be derived to avoid exploring invariants with large number ofcon�gurations.8 ConclusionsThis paper has presented encoding techniques that improve the e�ciency ofsymbolic methods for the analysis of PNs. Structural PN theory provides sets ofP-invariants to identify interrelations among places, which allows to immediatelyidentify sets of unreachable markings. These techniques alleviate the complexityof the existing symbolic techniques for the calculation of the exact reachabilityset.The structural theory of PNs goes beyond P-invariants. Although the struc-ture is not enough for the exact analysis of a PN, it provides information thatcan be e�ciently combined with symbolic analysis. Future work intends to de-rive a general framework to combine the e�ciency of the structural PN theorywith the accuracy of the symbolic techniques.AcknowledgmentsThis work has been partially funded by CICYT TIC 98-0410 and ACiD-WG (ESPRIT21949). We thank anonymous reviewers for their useful comments.References[1] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo,and F. Somenzi. Algebraic decision diagrams and their applications. InProc. ICCAD, pages 188{191, November 1993.

[2] K. S. Brace, R. E. Bryant, and R. L. Rudell. E�cient implementation of aBDD package. In Proc. DAC, pages 40{45, 1990.[3] F. M. Brown. Boolean Reasoning: The Logic of Boolean Equations. KluwerAcademic Publishers, 1990.[4] R.E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transactions on Computers, C-35(8):677{691, August 1986.[5] Jerry R. Burch, Edmund M. Clarke, D. E. Long, Kenneth L. McMillan, andDavid L. Dill. Symbolic model checking for sequential circuit veri�cation.IEEE Trans. on CAD, 13(4):401{424, 1994.[6] G. Chiola Compiling Techniques for the Analysis of Stochastic Petri Nets. In4th Int. Conf. on Modeling Techniques and Tools for Computer PerformanceEvaluation, pages 11{24, September 1989.[7] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge UniversityPress, Cambridge, Great Britain, 1995.[8] J. Desel, K.P. Neuendorf, and M.D. Radola. Proving nonreachability bymodulo-invariants. Theoretical Computer Science, (153):49{64, 1996.[9] C.M. Fiduccia and R.M. Mattheyses. A linear time heuristic for improvingnetwork partitions. In Proc. DAC, 1982.[10] M. Hack. Analysis of production schemata by Petri nets. M.s. thesis, MIT,February 1972.[11] G. J. Holzmann. An Improved Protocol Reachability Analysis TechniqueSoftware Practice and Experience, 18(2):137{161, 1988.[12] R. Kannan and A. Bachem. Polynomial algorithms for computing the smithand hermite normal forms of an integer matrix. SIAM J. Comput., 4(8):499{577, 1979.[13] K. Lautenbach. Linear algebraic techniques for place/transition nets. InW. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Mod-els and Their Properties, Advances in Petri Nets 1986, volume 254 of LNCS,pages 142{167. Springer-Verlag, 1987.[14] E. J. McCluskey. Minimization of boolean functions. Bell Syst. TechnicalJournal, (35):1417{1444, November 1956.[15] G. Memmi and G. Roucairol. Linear algebra in net theory. In W. Brauer,editor, Net Theory and Applications, volume 84 of LNCS, pages 213{223.Springer-Verlag, 1980.[16] TadaoMurata. Petri nets: Properties, analysis and applications. Proceedingsof the IEEE, 77(4):541{574, April 1989.[17] E. Pastor and J. Cortadella. E�cient encoding schemes for symbolic anal-ysis of petri nets. In Proc. Design, Automation and Test in Europe, pages790{795, Paris (France), February 1998.[18] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri net analysisusing boolean manipulation. In 15th Int. Conf. on Application and Theoryof Petri Nets, volume 815 of LNCS, pages 416{435. Springer-Verlag, June1994.[19] T. Yoneda, H. Hatori, A. Takahara, and S. Minato. BDDs vs. Zero-Suppressed BDDs: for CTL symbolic model checking of petri nets. In Proc.of Formal Methods in Computer-Aided Design, volume 1166 of LNCS, pages435{449. Springer-Verlag, 1996.

