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Abstract
Petri nets are a graph-based formalism appropriate to model
concurrent systems such as asynchronouscircuits or network pro-
tocols. Symbolic techniques based on Binary Decision Diagrams
(BDDs) have emerged as one of the strategies to overcome the
state explosion problem in the analysis of systems modeled by Petri
nets. The existing techniques for state encoding use a variable-
per-place strategy that leads to encoding schemes with very low
density. This drawback has been partially mitigated by using
Zero-Suppressed BDDs, that provide a typical reduction of BDD
sizes by a factor of two.

This work presents novel encoding schemes for Petri nets. By
using algebraic techniques to analyze the topology of the net,
sets of places “structurally related” can be derived and encoded
by only using a logarithmic number of boolean variables. Such
approach allows to drastically decrease the number of variables
for state encoding and reduce memory and CPU requirements
significantly.

1 Introduction
Petri nets (PN) are a graph-based mathematical formalism ad-
equate to describe, model and analyze the behavior of con-
current systems. PNs allow the description of sequential
and non-sequential behaviors (including concurrence and non-
deterministic choice). Since its introduction by C.A.Petri in 1962,
PNs have been extensively used in a wide range of areas such as
communication protocols and networks, computer architecture,
distributed systems, manufacturing planning, digital circuit syn-
thesis and verification, and high-level synthesis. In particular,
they play an increasingly important role in the synthesis and ver-
ification of digital asynchronous circuits [17, 10, 4]. and have
been recently proposed to specify and synthesize systems in hard-
ware/software codesign frameworks [9, 5].

Recently, it has been proposed an efficient enumerative tech-
nique for the analysis of bounded Petri Nets [8, 16]. The proposed
technique defines an isomorphism between PNs and Boolean al-
gebras. Each marking in the PN is described by means of boolean
variables, and the specification of its behavior by means of boolean
functions. The potential state explosion derived from the enumer-
ation of markings is managed by using Binary Decision Diagrams
(BDD) [2, 1]. Experiments show that large sets of encoded mark-
ings can be represented with small BDDs, and therefore PNs can
be efficiently analyzed manipulating those sets.

The existing techniques for the symbolic analysis of safe PNs
use naive schemes to encode the markings [8, 16]. Each place is
represented by means of a boolean variable that is asserted in case
the place is marked. This scheme results in a very sparse state
space. Zero-suppressed BDDs have been proposed to efficiently
handle this sparsity [18]. It is also well-known that the number of
encoding variables is one of the crucial factors that influence on
the efficiency of BDD techniques. Encoding schemes that reduce
the number of variables provide more compact representations,
and therefore allow the analysis of more complex systems.

In this work we propose a dense encoding scheme that re-

sults in an increased efficiency for the symbolic analysis of Petri
Nets. It is based on a drastic reduction of the number of variables
that produces very dense encodings. Moreover, such density is
achieved without introducing significant encoding overhead and
complexity in the analysis of the dynamic behavior of the net.

The paper is organized as follows. In Section 2 we review
some basic properties of PNs and sketch techniques for symbolic
analysis. Section 3 overviews the new method by means of an
example. The new encoding scheme is presented in Section 4.
Section 5 describes the basic booleanequations required for BDD-
based symbolic analysis. Experimental results are presented in
Section 6. Section 7 concludes the paper including a discussion
of the current and future scope of this work.

2 Petri nets

An ordinary Petri Net (PN) is a 4-tuple N = hP;T ;F ;M0i,
whereP andT are disjoint and finite sets of places and transitions,
F � (P � T )[ (T �P) is the flow relation, and M0 : P ! IN
is the initial marking. The set of places and transitions is called
the set of nodes of the net. The pre- and post-sets of nodes are
specified by a dot notation, where �u = fv 2 P[T j(v; u) 2 Fg

is called the pre-set of u, and u� = fv 2 P [ T j(u; v) 2 Fg is
called the post-set ofu. The pre-set of a place (transition) is the set
of input transitions (places). The post-set of a place (transition)
is the set of output transitions (places). A marking of a PN is
an assignment of a non-negative integer to each place. If k is
assigned to place p by marking M , we will say that p is marked
with k tokens, i.e. M(p) = k.

PNs are graphically represented by drawing places as cir-
cles, transitions as boxes (or sometimes bars), the flow re-
lation as directed arcs, and tokens as dots. Figure 1 de-
picts a PN with the set of places P = fp1; : : : ; p7g, the set
of transitions T = ft1; : : : ; t7g, and the flow relation F =
f(p1; t1); (p1; t2); (t1; p2); : : :g. In the initial marking M0, place
p1 is marked.

A transition t is enabled in a marking M , denoted by M [ti,
when all places in �t are marked. An enabled transition in M
is allowed to fire. When it fires, it removes a token from each
place in �t and adds a token to each place in t�, reaching a new
marking M 0 (M [tiM 0). A marking M is reachable from M0 if
there is a sequence of firings t1t2 : : : tn that transforms M0 into
M (M0[t1t2 : : : tniM ), hence t1t2 : : : tn is a feasible sequence.
The set of reachable markings from M0 is denoted by [M0i.

The finite automata that contains the set of reachable markings
and all the possible firing sequences of a PN is called the reach-
ability graph. Figure 1.b depicts the reachability graph for the
PN previously presented in Figure 1.a. There are a total of eight
reachable markings in [M0i, each one represented by the subset
of marked places.

A PN is safe if no marking in [M0i can assign more than one
token to any place. This paper only covers the analysis of safe
PNs, although the extension to unsafe PNs is straightforward [16].
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Figure 1: (a) A Petri net with its initial marking, (b) its corresponding
reachability graph.

2.1 Algebraic analysis of Petri nets

Let us represent the sets P and T as vectors, [p1 : : : pjPj ] and
[t1 : : : tjT j], with some arbitrary order of places and transitions.
Given a subset of places R � P , �[R] denotes the characteristic
vector of R w.r.t. P , defined as,

�[R](p) =

n
1 if p 2 R
0 if p 62 R

The structure of a PN net can be represented by an incidence
matrix. The incidence matrix C : P � T ! f�1; 0; 1g is
defined as: 8t 2 T : C(�; t) = �[t�] � �[�t] A marking M
is represented as a jPj � 1 column vector [M(p1) : : :M(pjPj)],
where the ith element of M denotes the token count of pi. The
incidence matrix of PN depicted in Figure 1 is the following:

C =

0
BBBB@

�1 �1 0 0 0 0 1
1 0 �1 0 0 0 0
1 0 0 �1 0 0 0
0 1 0 0 �1 0 0
0 1 0 0 0 �1 0
0 0 1 0 1 0 �1
0 0 0 1 0 1 �1

1
CCCCA

with M0 = [1 0 0 0 0 0 0].
The interpretation of the incidence matrix is as follows. The

non-zero elements of each row indicate the effect of the cor-
responding transitions on the token count of the corresponding
place: input transitions put a token (1), whereas output transitions
remove a token (-1).

Given a markingM and a firing sequenceof transitions � such
that M [�iM 0 then

M
0
=M +C � ~� (1)

where ~� is the firing count vector, i.e. ~�[i] is the number of
occurrences of transition ti in �. Equation (1) is known as the
state equation of the PN.

2.2 Place-invariants and State Machines Components

Every solution X 2 QjPj of the equation XT
� C = 0 is said

to be a P-invariant [15]. A P-invariant I is called semi-positive
if I � 0 and I 6= 0. The support of a semi-positive invariant
I , denoted by hIi, is the set of places p satisfying I(p) > 0.
A semi-positive invariant I is minimal if no other semi-positive
invariant J satisfies hJi � hIi.

In the example of Figure 1, the vector I = [2 1 1 1 1 1 1]
is a semi-positive P-invariant. However it is not minimal. The
vectors I1 = [1 1 0 1 0 1 0] and I2 = [1 0 1 0 1 0 1] are minimal
semi-positive P-invariants1.

1Note that I = I1 + I2.

A State Machine (SM) is a PN such that each transition has
exactly one input place and one output place. Given a PN N =

hP;T ;F ;M0i and a subset of places P 0
� P a new PN N 0

=

hP
0;T 0;F 0;M 0

0i can be generated as follows:

� T
0
= ft 2 �p [ p�jp 2 P 0

g

� F
0
= F \ ((P

0
� T

0
) [ (T

0
�P

0
))

� M 0

0(p) =M0(p) for every p 2 P 0.

The PNN 0 generated by a subset of places is said to be a State
Machine Component (SMC) of N if N 0 is a strongly connected
State Machine. Figure 2.e shows two SMCs generated from the
PN of Figure 1. The SMCs have been generated by the sets
of places fp1; p2; p4; p6g (invariant I1 = [1 1 0 1 0 1 0]) and
fp1; p3; p5; p7g (invariant I2 = [1 0 1 0 1 0 1]) respectively.

The places of an SMC are said to be covered by the SMC. A
PN is said to be decomposable into SMCs if there is a set of SMCs
that cover all places of the PN. It is known that some classes of
PNs are decomposable into SMCs [7]. In general, only a subset
of places can be covered by SMCs.

A key theorem for the contribution of this work is the follow-
ing.

Theorem 2.1 ([6])
Let N 0

= hP
0;T 0;F 0;M 0

0i be a State Machine Component of a
Petri Net N . Then �[P 0] is a minimal semi-positive P-invariant
of N .

Informally this means that the token count of an SMC is pre-
served for all reachable markings. As a consequence, if an SMC
contains only one token, then one and only one place of the SMC
will be marked in all reachable markings of the PN. This suggests
that efficient encodings can be found for SMCs.

Calculating SMCs that cover selected places can be efficiently
done by using linear programming techniques [14, 11]. An SMC
covering a place p can be obtained by computing a minimal semi-
positive P-invariant ISM that includes p, with the additional re-
striction of only containing one token in the initial marking M0.
This minimal P-invariant is computed by solving the linear system
of equations [11]:8><

>:
min ISM � 0
ISM �C = 0
ISM(p) � 1P

I(p) �M0(p) = 1

2.3 PN Symbolic Analysis

A marking in an ordinary and safe PN can be represented by a
set of places M = fp1; :::; pkg � P , where pi 2 M denotes
the fact that there is a token in pi . Let MP be the union of all
potential sets of places representing markings of a PN with jPj
places (jMP j = 2jPj).

The methods proposed so far to represent markings of a safe PN
[16, 18] have used the fact that each marking can be represented
by the characteristic function of a subset of places. Thus, by using
a boolean variable for each place, any of the 2jPj safe markings
corresponds to a minterm of BjPj . With an abuse of notation, let
us call pi the boolean variable representing the marking of place
pi.

The transition function � = (�1; :::; �jPj) for a transition t 2 T

defines how the contents of each place is transformed as a result
of firing t (M 0 = �(M; t)). �i(p1; : : : ; pjPj ; t) is a function only
defined for those markings in which t is enabled:

�i(p1; :::; pjPj; t) =

(
1 if pi 2 t�

0 if pi 2 �t and pi 62 t�

pi otherwise
(2)
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Figure 2: Encoding schemes: (a) one variable per place, (b) SMC-based, (c,d) with minimum number of variables. (e) two SMCs covering the PN.

The characteristic function of the set of markings in which
transition t is enabled,Et, is defined as:

Et =
^

pi2
�t

pi

The function � also induces a binary relation between mark-
ings. Thus MRtM

0 iff M 0 = �(M; t). By using two different
sets of variables, P = fp1; :::; pjPjg and Q = fq1; :::; qjPjg, to
represent the current and the next marking before firing a transi-
tion t, the characteristic function of Rt can be represented by a
transition relation2:

Rt(P;Q) =

jPj^
i=1

�
qi � �i(P; t)

�
Finding the set of markings M 0 that can be reached after fir-
ing transition t from any marking in the set M (the image
computation for transitions) is reduced to compute: M 0 =
9P [M � Rt(P;Q)] : The transition relation of the PN for the
calculation of all markings reachable after firing one transition is

R(P;Q) =
_
t2T

Rt(P;Q) (3)

Expression (3) suggests that R(P;Q) can be efficiently ma-
nipulated by representing it as partitioned transition relation in
disjunctive form [3].

3 Overview
The proposed encoding scheme is based on using the information
that can be known a priori from the PN structure. This information
allows to discard sets of unreachable markings and find more
efficient encodings for those that are still potentially reachable.

Multiple encoding schemes can be applied to model the same
system depending on the objectives of the application. The ratio
between the number of states in the system and the variables used
to represent each state defines the density of the encoding.

We now describe and compare different encoding schemes for
the example of Figure 1.a.

one variable per place: each marking is represented by the char-
acteristic vector of the marked places (see Figure 2.a). The
number of variables is jPj.

2Note that the operator a � b stands for a equivalent to b and it is defined as
a � b = ab+ a b.

optimal number of variables: the markings are arbitrarily en-
coded with dlog2 j[M0ije variables (see Figures 2.c and 2.d).

SMC-based encoding: each SMC with k places is encoded with
dlog2 ke variables. Each code corresponds to one place of
the SMC, the one containing the token. Figure 2.b shows
an encoding based on the SMCs SM1 and SM2 shown in
Figure 2.e. The encoding corresponds to p1 = 00, p2 = 10,
p4 = 01 and p6 = 11 for SM1 and p1 = 00, p3 = 10,
p5 = 01 and p7 = 11 for SM2.

Deriving optimal encoding schemes with minimum number
of variables is not a viable strategy because it requires knowing
the existing markings a priori, that it is in fact the problem that
was originally posed. Hence, the goal of this work is to propose
alternative encodingschemes for PNs, that lay in between the con-
ventional one-variable-per-place and the optimal schemes. The
proposed methodology should reduce the number of variables,
while maintaining a reasonable computation effort.

Besides minimizing the number of variables to represent reach-
able markings, the proposed scheme will also attempt to reduce
the switching activity of the transitions, in other words, reducing
the Hamming distance between adjacent markings of the reacha-
bility graph. The goal of this strategy is to take advantage of the
efficiency of “ad-hoc” BDD procedures that have been specially
devised for the manipulation of Petri nets (see Section 5.2).

Figures 2.c and 2.d depict two possible assignments using a
binary encoding scheme with three variables. The assignment
proposed in (c) requires switching 15=11 bits on average every
time a transition is fired, while the assignment in (d) requires
19=11 bits. Therefore encoding (c) would be preferable.

Next, the method proposed in this paper for encoding reachable
markings of PNs efficiently is sketched:

1. A set of SMCs of the Petri net is calculated. Algebraic
and linear programming techniques will be used for such
purpose. The primary goal will be to maximize the subset
of places covered by SMCs. The calculation of the SMCs is
out of the scope of this paper. We refer the reader to [14, 11]
for more details.

2. A SMC-based encoding is derived for the places covered
by SMCs. The rest of places are encoded by using the
conventional one-variable-per-place scheme.

3. Calculate the transition relation of the PN and the reachability
graph by using symbolic traversal techniques.

4 SMC-based encoding
The proposed encoding scheme is based on the fact that Petri nets
can be totally or partially decomposed into SMCs that contain



an invariant number of tokens. The places in each SMC can be
encodedseparately using a logarithmic encoding technique. After
combining the variables in each component, the result is a reduced
number of boolean variables compared to the conventional sparse
techniques.

We first describe how an SMC can be encoded by using an
optimal number of variables. Given this result, it is necessary to
determine the set of SMCs that allows to encode the overall PN
while minimizing the total number of required variables. Two
different algorithms to select the set of SMCs are proposed, a
simple algorithm that does not consider the interactions between
SMCs, and a more elaborated algorithm that takes into account
those interactions.

4.1 Encoding SMCs

Let Pi � P be the subset of places covered by one SMC Si
containing only one token. Since one and only one of the places
of Pi will be marked at each reachable marking, a logarithmic
encoding can be found for the places. Thus, any injective encoding
function ESi : Pi ! Bn, where n = dlog2 jPije, is appropriate.

4.2 Selecting SMCs

The number of variables required to encode a PN will directly
depend on the selected SMCs. Given that the same place may
be covered by different SMCs, the density of the encoding may
decrease because different sets of variables are used to encode the
same place at those components. To achieve a dense encoding it is
important to select a set of SMCs that minimize the over-encoding
of common places.

As an example, consider a PN with one of the SMCs covering
4 places. However 3 out of these 4 places are already covered
by other SMCs. If we strictly apply the SMC-based encoding,
we would require two additional variables for the new SMC. On
the other hand, encoding the only uncovered place with only one
variable would result in a smaller total number of variables.

Let SM = fSig be a set of SMCs that (totally or partially)
cover the places of the PN. The problem of finding an optimal
subset of SM to encode the PN can be formulated as a Unate
Covering Problem[13] as follows:

1. Let us take SM [ P as the set of covering objects and P as
the set of covered objects. Each Si covers a subset of places
Pi � P . Each place pi 2 P covers itself.

2. For each Si 2 SM , define cost(Si) = dlog2jPije.
3. For each pi 2 P , define cost(pi) = 1.
4. Find a minimum cost cover of SMCs and places.

4.3 Example

To illustrate the proposed encoding scheme we will use the PN
depicted in Figure 4 as example. This PN has 14 places, 22
reachable markings and can be decomposed into six SMCs that
cover all places (see Figure 3). The following minimum cost
encoding (with density D = 5=10 = 0:5) can be found:
� SM1 covering places fp1; p2; p6; p8g (2 variables).
� SM3 covering places fp9; p10; p12 ; p14g (2 variables).
� SM4 covering places fp9; p11; p13 ; p14g (2 variables).
� The rest of places encoded with one variable per place (p3,
p4, p5 and p7).

4.4 Improved encoding

The encoding scheme presented in the previous section can be
further improved by taking into account that some place may be
covered by more than one SMC. In that case, the place can be over-
encoded, resulting in a less dense encoding scheme. Intuitively,
each place only needs to be encoded once even though it can be
covered by several SMCs.

The improved encoding scheme can be implemented as fol-
lows. Let us assume that a subset of SMCs, fS1; : : : ; Si�1g is
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Figure 4: PN for two dining philosophers (two instances of p4 are depicted
for clarity).

already used to encode some places of the PN. Let us include now
a new SMC Si covering the places Pi. We can partition Pi into
two subsets Pi = Pcov [ Pnew. Pcov contains all those place
already covered by fS1; : : : ; Si�1g, whereas Pnew contains the
places only covered by Si .

A valid encoding forSi would be any function ESi : Pi ! Bn ,
where n = dlog2 jPnewje, such that for p; p0 2 Pnew and p 6= p0:
ESi(p) 6= ESi (p

0).
Note that for each place p 2 Pnew there may be a set of places

Pp with the same code as p, i.e.

Pp = fp
0
2 PcovjESi(p) = ESi(p

0
)g

This ambiguity is only apparent since the marking of p can be
determined by the marking of the other SMCs encoding the places
of Pp. The calculation of the characteristic function correspond-
ing to each place will be discussed in the next section.

An example on how to use the improved encoding scheme will
be presented in Section 5.4.

5 Symbolic Model Checking
This section describes how the characteristic functions for places
and transition functions are derived. These functions are the basic
elements to execute BDD-based symbolic traversal algorithms for
the analysis of the PN.

5.1 Characteristic functions of places

In general, every place p can be covered by several SMCs. By
using the improved encoding approach presented in Section 4.4,
only one of the SMCs will be used to encode p, whereas the other
SMCs will merely assign p a code already used for other places.

Let us call Sp the SMC used to encode place p and XSp =

x1 : : : xk the set of variables used to encode the places of Sp . The
characteristic function of place p (markings with p marked) will
be the following:

�[p] = (XSp = ESp(p)) �
^

p0 6=p:ESp (p)=ESp (p
0)

XS0

p
= ES0

p
(p0) (4)

Informally, A place p is marked when some of the places with
code ESp (p) is marked in Sp (first factor of the product) but none
of the places with the same code is marked in their corresponding
encoding SMCs (second factor of the product).

5.2 Toggling activity

Moving from one marking M1 to another marking M2 results in
switching some variables from 0 to 1 and some variables from 1 to
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SMC / place SM1 SM3 SM2 SM4 p4 p5
variables x1x2 x3x4 x5 x6 x7 x8

p1 = 00 p9 = 00 p1 = 0 p9 = 0 p4 = 1 p5 = 1

Encoding p2 = 01 p10 = 01 p3 = 0 p11 = 0

p6 = 11 p12 = 11 p7 = 1 p13 = 1

p8 = 10 p14 = 10 p8 = 1 p14 = 1

Table 1: PN encoding.

0. Implementing the firing of one transition with BDD operations
can be reduced to toggling some variables in the BDD. Informally,
toggling one variable can be performed by simply interchanging
the then and else arcs of the nodes labeled with the variable.

We will omit the details on how this is performed. We refer the
reader to [18] for a similar approach implemented for BDDs and
Zero-suppressed BDDs. The important aspect of this strategy is
that minimizing the switching activity for each transition results in
a speed-up of BDD operations for that transition. Therefore, one
of the goals of the encoding scheme is to minimize the number of
toggling bits for each transition.

The strategy used in this work is based on using a Gray-like
encoding for the places of each SMC component in such a way
that the firing of a transition will only produce the toggling of one
of the variables used to encode the SMC.

5.3 Transition functions

Given the encoding for each of the places of a Petri net, we
only need now to derive the expressions for the transitions func-
tions to be able to perform a symbolic traversal and calculate the
reachability graph.

The enabling function Et for each transition t is simply ob-
tained as follows:

Et =
^
p2�t

�[p] (5)

Let us now derive expressions for �i(X; t), corresponding to
variable xi of the encoding. Let us call S = hP

0;T 0;F 0;M 0
0i

the SMC using variable xi for encoding. In case t 2 T 0 (covered
by S), let us call p the output place of t in S, i.e. fpg = t� \ P 0.
Thus, the transition function, partially defined over the markings
in which t is enabled, is the following:

�i(X;t) =

(
1 if t 2 T 0 and �[p]) xi
0 if t 2 T 0 and �[p]) xi
xi if t 62 T 0

(6)

�[p1] = x1 � x2 �[p8] = x1 � x2
�[p2] = x1 � x2 �[p9] = x3 � x4
�[p3] = x5 � (x1 + x2) �[p10] = x3 � x4
�[p4] = x7 �[p11] = x6 � (x3 + x4)
�[p5] = x8 �[p12] = x3 � x4
�[p6] = x1 � x2 �[p13] = x6 � (x3 + x4)
�[p7] = x5 � (x1 + x2) �[p14] = x3 � x4

Table 2: Characteristic functions for the places.

Informally, the value of xi will not change if t is not covered
byS, and will take the corresponding encodingvalue of the output
place of t in S otherwise. The transition function for variables
corresponding to places not covered by SMCs is identical to the
one described by equation (2).

5.4 Example (cont.)

The conventional sparse encoding scheme requires 14 variables
for encoding each place of the PN in Figure 4. In Section 4.3 an
encoding with 10 variables was proposed. We now propose an
improved encoding.

Figure 3 shows all SMCs of the PN. The encodingdescribed by
Table 1 can be derived for the places of the PN. The characteristic
function for each place is shown in Table 2. In total, 8 variables
are required.

Initially, SM1 and SM3 are taken as SMCs with all places
not covered by previously selected SMCs. Next, SM2 and SM4
cover some new places but partially overlap with SM1 and SM3.
In Table 1, codes in boxes correspond to places encoded by the
SMC. Finally, places p4 and p5 are encoded with one variable
each, since no reduction in variables can be obtained by using
new SMCs.

Note that each SMC is encoded using a Gray-like strategy
according to the adjacency of the places in the SMC. This strategy
allows to reduce the toggling activity of the variables for each
transition.

6 Experimental Results
The efficiency of the proposed encoding technique will be mea-
sured in terms of the BDD node count reduction to represent the
reachability set of the PNs, and the speed-up for that computa-
tion. Two experimental scenarios will be analyzed. First, number
of variables, BDD sizes and CPU times are compared between
the conventional sparse encoding and the proposed dense encod-
ing schemes. Second, the improvements achieved by using the
more dense code representation offered by ZDDs (as proposed
by Yoneda et al. [18]) are compared against the dense encoding



PN Sparse encoding Dense encoding
name markings V BDD CPU V BDD CPU

muller-30 6:0 � 107 120 4475 585 60 1315 32

muller-40 4:6 � 1010 150 4897 7046 80 2339 131

muller-50 3:6 � 1013 200 - t.o. 100 3651 449

phil-5 8:5 � 104 65 640 2 35 155 3

phil-8 7:8 � 107 104 2933 12 56 373 19

phil-10 7:4 � 109 130 1689 90 70 425 285

slot-5 1:7 � 106 50 492 14 25 131 5

slot-7 7:9 � 108 70 807 109 35 239 9

slot-9 3:8 � 1011 90 - t.o. 45 400 110

Table 3: Comparison between sparse and dense encoding schemes.
PN ZDD [18] Dense encoding
name markings V ZDD CPU� V BDD CPU

DMEspec8 7:8 � 105 137 32178 14 85 1748 12

DMEspec9 3:5 � 106 154 71602 39 94 2544 20

DMEcir5 8:5 � 105 491 92214 622 249 47952 418

DMEcir7 9:0 � 107 687 504324 10205 347 394334 7584

JJreg-a 1:8 � 106 251 952246 2326 122 17874 836

JJreg-b 1:1 � 105 248 181701 42 120 24355 397

Table 4: Comparison between ZDD compaction and dense encoding
schemes (� CPU times for ZDD usage HP-9000 (120MHz, 650MB)).

scheme. CPU times have been obtained by executing the algo-
rithms using the BDD library developed by David Long [12] on a
Sun SPARC 20 workstation (128MB).

6.1 Sparse v.s. dense encoding

Table 3 shows the experimental results obtained onto a number
of scalable PNs (Muller pipeline, dining philosophers and slotted
ring protocol) when using both sparse (one variable per place) and
dense encoding schemes. Columns labeled V show the number of
boolean variables required for each type of encoding. Columns
labeled BDD show the final size of the reachability set. Since it is
well known that BDD size strongly depend on variable ordering,
no special initial order has been used, while dynamic reordering
has been applied at each iteration for both encoding schemes.
Columns labeled CPU denote the total computation times for
both schemes, including the encoding time itself, which roughly
takes 1% of the total computation time in most cases.

The results show a variable reduction around 50% and a BDD
node reductions ranging from 2 to 4. CPU times are also reduced
at least one order of magnitude for muller and slot. Even with
the BDD node reduction, the computation time increases for phil.
This is produced by the cost of variable reordering, due to an
extremely bad initial order for this set of benchmarks. Deriving
good initial orders is still an open line of research.

6.2 ZDDs v.s. dense encoding

Using ZDDs instead of BDDs allows a more compact represen-
tation of data without requiring any special encoding strategy.
The results in Table 4 show a number of PNs with BDD and
ZDD sizes for the reachability set, and computation times as
published in [18]. We have executed those benchmarks in our
framework obtaining results for both the sparse and dense encod-
ing schemes. The experimental results show important variable
reductions (around 40%) that result in significant BDD node re-
ductions compared to ZDDs [18].

7 Conclusions
As PNs become more popular in the specification, synthesis and
analysis of concurrent systems there is an increasing need of
manipulating them in an efficient way.

This paper has presented an encoding scheme that drastically
improves the efficiency of symbolic methods for the analysis of
PNs. The structural theory is the key basis for this scheme, which
allows to immediately identify sets of markings that will never

be reachable. This study is based on the identification of State
Machine components with only one token. The efficiency of the
encoding scheme lies on the fact that two places in the same State
Machine component will never be marked simultaneously.

The structural theory of PNs goes beyond the theory of P-
invariants and State Machines components. Although the struc-
ture is not enough for a detailed analysis of the PN, it provides
crucial information that can be efficiently combined with symbolic
enumeration techniques. The authors are now studying a more
general framework that combines the efficiency of the structural
theory with the accuracy of the symbolic enumeration techniques.
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