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A B S T R A C T

This paper proposes a methodology for leak detection and isolation (LDI) in pipelines based on data fusion from
two approaches: a steady-state estimation and an Extended Kalman Filter (EKF). The proposed method considers
only pressure head and flow rate measurements at the pipeline ends, which contain intrinsic sensor and process
noise. The LDI system is tested in real-time by using an USB data acquisition device that is implemented in
MATLAB environment. The effectiveness of the method is analyzed by considering: online detection, location as
well as quantification of non-concurrent leaks at different positions. The leak estimation error average is less than
1% of the flow rate and less than 3% in the leakage position. Furthermore, the incorporation of a steady-state
estimation shows that the solution of the LDI problem has improved significantly with respect to the one that only
considers the EKF estimation. An experimental analysis was also performed on the effectiveness of the proposed
approach for different sampling rates and for different leakage positions.

1. Introduction

In fluid distribution systems, automatic fault monitoring and diag-
nosis are of great relevance worldwide. The primary purpose of an
automatic pipeline monitoring system is to detect leaks, obstructions or
sensor faults as quickly as possible, with a minimum of instrumentation
and cost (Verde & Torres, 2017). In the case of leaks, these can cause
substantial economic losses, damage to the environment and health
risks. To size the problem, in water distribution networks the worldwide
percentage of volumetric leakage losses has been estimated at around
21%, although in countries such as Mexico it reaches an average value of
40% (OECD, 2016). Also in Mexico, the state-owned oil company Pemex
loses about two billion US dollars per year due to leaks in pipelines
caused by clandestine outlets of the so-called ‘‘huachicoleros’’, which
also pollute the environment and have caused explosions with the loss
of human lives (Hernández, 2017; Oswald, 2017).

There are several methods for the direct detection of leaks, which
are based on visual or palpable physical detection of the fluid such as
hardware-based or Computational Pipeline Monitoring (CPM) methods.
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Hardware-based methods depend heavily on the physical equipment
installed along the pipeline. On the other hand, CPM refers to software-
based systems that operate with limited instrumentation and provide
algorithmic tools that expand the possibilities of pipeline operators to
recognize anomalies that can help to detect the leaks (API, 2002). The
CPM tools are based on mathematical models of the pipeline and are
complemented with measurement data of some physical variables asso-
ciated with the flow process e.g. pressure, flow rate, and temperature,
among others.

Although it is unavoidable that a leak detection technique depends
on both, the mathematical models and the data processing, in the
literature usually distinguish two approaches. On the one hand, data-
driven detection methods that focus on the digital processing of signals
prioritizing the statistical analysis of measurements and can be con-
sulted in Mashford, Silva, Marney, and Burn (2009), Arifin, Li, Shah,
Meyer, and Colin (2018), Camacho-Navarro, Ruiz, Perez, Villamizar,
and Mujica (2015), Soldevila, Fernandez-Canti, Blesa, Tornil-Sin, and
Puig (2017). On the other hand, model-based methods incorporate
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Fig. 1. Experimental pipeline.

Fig. 2. P&I diagram of experimental pipeline.

dynamic equations based on physical principles (Delgado-Aguiñaga,
Besançcon, Begovich, & Carvajal, 2016; Torres, Verde, Besançon, &
González, 2014; Verde, 2001, 2004). There are also proposals for mixed
methods that combine intensive data processing and mathematical flow
models (Soldevila et al., 2016). Recently, comprehensive taxonomies
of leak detection systems were presented in Henrie, Carpenter, and
Nicholas (2016), Murvay and Silea (2012). According to these classi-
fications, our proposal is included within the model-based techniques.

In the leak diagnosis, not only it is important to detect the leak and
quantify it, but it is a priority to locate it as accurately as possible.
So, it is necessary to have algorithms that precisely determine the
location of the leak because it is not always visible from outside the
pipe. An error of a few meters in locating a leak in an underground
pipeline results in a significant cost for digging in a wrong area to repair
it (Delgado-Aguiñaga & Begovich, 2017). In practice, one circumstance
that limits the precise location of leakage using approaches based on
the deterministic dynamic models of the pipeline flow is the presence
of variable parameters in the mathematical model, which show a
nonlinear dependence on the flow rate and other physical factors such
as temperature (Dulhoste, Guillén, Besançon, & Santos, 2017). Other
complications occur because the signals obtained from the pressure and
flow sensors are generally noisy (Billmann & Isermann, 1987).

This paper proposes a methodology for detection, location, and
estimation of fluid leaks in a straight pipeline (without branchings) by
considering pressure and flow measurements at the pipeline ends. This
set-up is justified because many hydraulic and fuel transport networks
are instrumented in this way (Verde, Gentil, & Morales-Mené, 2013).
Considering the noisy characteristic of the available measurements, this
work is based on the proposal of Delgado-Aguiñaga, Besançon, and
Begovich (2015), when using an EKF estimator, but also it incorporates
the steady-state solution of the pipeline dynamic model to refine the
solution and it proposes a strategy to accelerate the convergence of
the iterative process. These added features are not only desirable but
necessary since real-time implementation requires fast and accurate
LDI methods. A feature that is highlighted is the live implementation
using conventional hardware and software, unlike most other works

referred in the literature that are limited to presenting simulation results
or offline calculations. A deep analysis concerning the sensitivity of
the system, its reliability and its accuracy in the location of the leaks
are commented. An exhaustive experimental analysis was performed
with 96 different leak scenarios, which illustrates the effectiveness and
applicability of the proposed method.

Regarding the delimitation of the conditions where the proposal
is applicable, only pipelines with pressurized flow are considered.
Furthermore, the topic of LDI in biphasic flows has not been considered
in this work, because the mathematical model used by the EKF would
change due to phase transitions, so the current proposal does not include
this possibility.

2. Materials and methods

2.1. Description and modeling of experimental pipeline

The experimental tests of the proposed method for leak detection
and localization that is presented in this work were carried out on a pilot
pipeline plant located at Laboratory of Hydraulics in the Tuxtla Gutiér-
rez Institute of Technology. This experimental pipeline is serpentine-
shaped (Fig. 1) with an equivalent length of 57.76 m and it is made
of 2-inch diameter PVC; the water is driven with a centrifugal pump
whose power is controlled by a frequency inverter. A more detailed
description of this pipeline setup is presented in Bermúdez, Santos-Ruiz,
López-Estrada, Torres, and Puig (2017).

A P&I diagram of the pipeline setup used is shown in Fig. 2. Industrial
pressure and flow-rate sensors/transmitters are located at the ends of the
system. These sensors provide the information that will be used as inputs
and outputs for the EKF estimator. Four manual gate valves in half-inch
tees are located at arbitrary positions to simulate leakages, which are
modeled as orifice outlets.

The signals from the pressure and flow transmitters are received
through 4–20 mA current loops connected to a 14-bit data acquisition
system (DAQ) with USB interface to MATLAB. As shown in Fig. 3, the
current signals are read in voltage form through 470Ω resistors at the



Fig. 3. Pressure/flow transmitters to DAQ electrical connections.

Table 1
Parameters of experimental pipeline.

Parameter Value

Length, 𝐿 57.76 m
Diameter, 𝑑 0.052 m
Relative roughness, 𝜀 2.47×10−4

Fluid (water) density, 𝜌 995.736 kg/m3

Kinematic viscosity, 𝜈 8.03×10−7 m2 /s
Wave speed, 𝑐 422.754 m/s
Gravity acceleration, 𝑔 9.782 999 m/s2

DAQ inputs. The wiring of the current loops is made with 20 AWG
twisted pair. A MATLAB GUI (graphical user interface) continuously
displays the pressure head and flow rate signals on the screen and it
shows alarms with the details of leaks when they occur. The diagnosis
software also includes data logging functions for the subsequent analysis
of results offline.

The leak detection and localization method proposed in this paper is
formulated from a dynamic model of the pipeline variables ℎ (piezomet-
ric head, a quantity proportional to the pressure) and 𝑞 (volumetric flow
rate). A set of first-order partial differential equations consisting of the
momentum Eq. (1) and the continuity Eq. (2) are derived in Chaudhry
(2014) applying the momentum and mass conservation principles to a
control volume considering a horizontal pipeline of constant diameter
𝑑 and cross sectional area 𝐴:
𝜕𝑞(𝑧, 𝑡)

𝜕𝑡
+ 𝑔𝐴

𝜕ℎ(𝑧, 𝑡)
𝜕𝑧

+
𝑓 (𝑧, 𝑡)
2𝐴𝑑

𝑞(𝑧, 𝑡) |𝑞(𝑧, 𝑡)| = 0, (1)

𝜕ℎ(𝑧, 𝑡)
𝜕𝑡

+ 𝑐2

𝑔𝐴
𝜕𝑞(𝑧, 𝑡)
𝜕𝑧

= 0, (2)

where 𝑧 is the position variable directed along the pipeline axis, from
the supply (inlet) to the delivery (outlet) point, and 𝑡 is the time variable
defined from an arbitrary clock reference. The above equations are
hyperbolic-type, so they describe the propagation of waves in the fluid.
The other literals in these equations are the friction factor 𝑓 , the wave
velocity 𝑐, and the acceleration due to gravity 𝑔.

To compute the friction factor 𝑓 , a prior value was determined via
the Darcy–Weisbach equation (Larock, Jeppson, & Watters, 1999) from
the pressure drop measured at a known length of the pipeline under
nominal operating conditions, which is equivalent to considering Eq. (1)
under steady-state conditions. Subsequently, the coefficient of relative
roughness 𝜀 of the pipeline was calculated from the prior value of the
friction by solving the Colebrook–White equation (Genić et al., 2011).
The current value of the friction in this work is calculated by using the
Swamee–Jain equation from the relative roughness calculated from the
prior fiction factor.

The wave velocity 𝑐 was estimated from the elastic properties of the
fluid and the pipe. The estimated values of the flow parameters in the
pipeline, as well as other properties and the experimental conditions,
are summarized in Table 1. The complete procedure for estimating these
values is described in Bermúdez et al. (2017).

In order to transform (1)–(2) into a simpler system of ordinary
differential equations, both equations are discretized in the spatial
variable 𝑧. Henrie et al. (2016) reports that the most used discretization

Fig. 4. Variables in the dynamic model of pipeline.

method, in model-based methods for real-time applications, is the finite
difference

(

𝜕𝑞
/

𝜕𝑧 ≈ 𝛥𝑞
/

𝛥𝑧
)

with a constant step size 𝛥𝑧. In contrast,
the method proposed here considers first-order finite differences with
variable step size, running through the complete pipeline in only two
steps, because the real-time execution needs to keep the computational
effort as low as possible. In this way, by dividing the continuous interval
𝑧 ∈

[

0, 𝐿
]

into a three-point discrete partition
{

𝑧𝑘
}

∶=
{

0, 𝑧𝑙 , 𝐿
}

, where
𝑧𝑙 represents the unknown leak position, and considering a leakage flow
rate 𝑞𝑙 = 𝜆

√

ℎ(𝑧𝑙 , 𝑡), the dynamic model of the pipeline is expressed by
the ODE system:

̇𝑞1 =
𝑔𝐴
𝑧𝑙

(

ℎ1 − ℎ2
)

−
𝑓
(

𝑞1
)

2𝐴𝑑
𝑞1 |

|

𝑞1|| , (3a)

ℎ̇2 = 𝑐2

𝑔𝐴 𝑧𝑙

(

𝑞1 − 𝑞2 − 𝜆
√

|

|

ℎ2||

)

, (3b)

̇𝑞2 =
𝑔𝐴

𝐿 − 𝑧𝑙

(

ℎ2 − ℎ3
)

−
𝑓
(

𝑞2
)

2𝐴𝑑
𝑞2 |

|

𝑞2|| , (3c)

where 𝑞1
def
= 𝑞(0, 𝑡), 𝑞2

def
= 𝑞(𝐿, 𝑡), ℎ1

def
= ℎ(0, 𝑡), ℎ2

def
= ℎ(𝑧𝑙 , 𝑡) and

ℎ3
def
= ℎ(𝐿, 𝑡). In the remainder of the paper, the alias ℎ𝑙 (‘‘ℎ at leak

position’’) will also be used to refer to ℎ2. The inlet pressure ℎ1 and the
outlet pressure ℎ3 are assumed to be known externally determined by
the pump power, but the pressure ℎ2 at the leak point and the inlet and
outlet flow rates (𝑞1 and 𝑞2) are unknown dynamic variables. The model
for 𝑞𝑙 is taken from the Torricelli equation for hole leakage (Verde et al.,
2013), and the absolute value in the square root of (3b) is included to
avoid domain errors when operating numerically with it. The coefficient
𝜆 depends on the diameter of the hole where the leak occurs and allows
us to size it.

Although theoretically 𝑧𝑙 can be located at any point between the
ends of the pipeline, in practice it is initially assumed at the midpoint,
but can be dynamically adjusted to match the actual position of the
leak. Fig. 4 shows the arrangement of the variables that constitute the
dynamic model, where ℎ1 and ℎ3 are assumed to be known inputs.

2.2. Leak diagnosis by using the EKF

The basic component for the proposed leak diagnosis system is an
Extended Kalman Filter (EKF), which allows estimation of leakage pa-
rameters

(

𝜆 and 𝑧𝑙
)

and filtering variations of measurement noise in the
pressure and flow signals. Basically, the Kalman Filter (Kalman, 1960) is
a state estimator that allows optimum calculation of unmeasured states



Fig. 5. Gaussian distribution of measurement noise.

in a linear dynamic system from a statistical characterization of the noise
at measured outputs. The EKF (Cox, 1964) is a generalization of Kalman
Filter for nonlinear systems presenting small or moderate nonlinearities,
as in the pipeline model.

The following stochastic linearized model is considered to apply
the EKF in a noisy nonlinear system with discrete-time deterministic
dynamic component 𝐱𝑘+1 = 𝛷

(

𝐱𝑘,𝐮𝑘
)

, for state transitions, and static
component 𝐲𝑘 = 𝜂

(

𝐱𝑘
)

, for measurements:

𝐱𝑘+1 = 𝐀𝑘 𝐱𝑘 + 𝐁𝑘 𝐮𝑘 + 𝐰𝑘, (4)

𝐲𝑘 = 𝐂𝑘 𝐱𝑘 + 𝐯𝑘, (5)

where 𝐱 are the states (variables that determine the system dynamics),
𝐲 are the noisy output measurements, 𝐰 is the process noise, and 𝐯 is the
measurement noise. It is assumed that both types of noise are zero-mean
and white Gaussian. The coefficients 𝐀 and 𝐁 are the Jacobian matrices
obtained from the derivatives of the transition function 𝛷, and 𝐂 is the
observation matrix related to the measurement function 𝜂.

In the experimental pipeline, spectral analysis determined that the
frequency components of the noise in the pressure and flow signals
are not limited to a specific frequency range but rather are distributed
almost evenly over the Nyquist interval

[

0, 12𝑓𝑠
]

, whose upper bound
depends on the sampling rate 𝑓𝑠. In addition, the statistical distribution
of the measurements at the nominal operating conditions of the pipeline
showed a nearly normal ‘‘flared’’ shape, as shown in Fig. 5 for the flow
rate signal. This features (whiteness and Gaussianity) of the noise and
the nonlinearity of the system (3a)–(3c) justifies the use of an EKF as a
state observer to estimate the leak parameters in the pipeline.

To do that, those parameters
(

𝑧𝑙 , 𝜆
)

are considered to be new state
variables with dynamics: �̇�𝑙 = 0, �̇� = 0, and which can be included
in the original state vector. Thus, the new augmented state vector is:
𝐱 =

[

𝑞1 ℎ2 𝑞2 𝑧𝑙 𝜆
]T =

[

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
]T.

In this way, the extended dynamic model of the pipeline-leak
assembly is formed by

�̇�1 =
𝑔𝐴
𝑥4

(

𝑢1 − 𝑥2
)

−
𝑓 (𝑥1)
2𝐴𝑑

𝑥1 |𝑥1|, (6a)

�̇�2 =
𝑐2

𝑔𝐴𝑥4

(

𝑥1 − 𝑥3 − 𝑥5
√

|𝑥2|
)

, (6b)

�̇�3 =
𝑔𝐴

𝐿 − 𝑥4

(

𝑥2 − 𝑢2
)

−
𝑓 (𝑥3)
2𝐴𝑑

𝑥3 |𝑥3|, (6c)

�̇�4 = 0, (6d)

�̇�5 = 0, (6e)

where the pressures at the ends of the pipeline are taken as control
variables of the dynamic model, so that the input vector is 𝐮 =

[

ℎ1 ℎ3
]T.

The conversion of (6a)–(6e) to an explicit discrete-time model
suitable to apply EKF was obtained by applying the improved Euler’s
method (also referred as Heun’s method) to this continuous-time model
that has the form �̇� = 𝜙(𝐱,𝐮):

𝐱𝑘+1 = 𝛷(𝐱𝑘,𝐮𝑘) = 𝐱𝑘 +
𝑇𝑠
2

(

𝜙
(

𝐱𝑘,𝐮𝑘
)

+ 𝜙
(

𝐱𝑘 + 𝑇𝑠 𝜙
(

𝐱𝑘,𝐮𝑘
)

,𝐮𝑘
))

(7)

Fig. 6. Measurement noise characterization.

The model required to apply the EKF is completed with the observa-
tion Eq. (8) that relates the state 𝐱 to the measurement 𝐲 =

[

𝑞1 𝑞2
]T:

[

𝑦1
𝑦2

]

=
[

1 0 0 0 0
0 0 1 0 0

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐂

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+
[

𝑣1
𝑣2

]

(8)

The uncertainty in the measurements is expressed by a diagonal
covariance matrix𝐑, whose components were determined by calculating
the variance in the values measured by each sensor during two minutes
for the nominal operating conditions (in steady state), in which it is
assumed that the arithmetic mean of the measurements represents the
true value and the variation around it is the noise, as shown in Fig. 6.
Thus

𝐑 = diag
([

𝜎2𝑞1 , 𝜎
2
𝑞2

])

(9)

The EKF estimator has been implemented in two MATLAB sub-
routines: TimeUpdate() that performs an a priori estimate (rough)
predicting the state value for the next time interval, and Measuremen-
tUpdate() that performs a posteriori (fine) estimate by incorporating the
most recent measurements. The implementation of the EKF algorithm is
as follows:

The Jacobian matrices in (15) are calculated numerically using finite
differences in each time step. The friction factor 𝑓 is also updated in
each EKF iteration for both flow rates, 𝑞1 and 𝑞2, to consider changes
in the flow regime due to leakage. Because the determination of 𝑓
from the implicit Colebrook–White formula (White, 2016) requires an
inner iteration, with additional computational effort, instead the explicit
approximation of Swamee–Jain Swamee and Jain (1976) is used, since
the simplification error is less than 0.2% under nominal operating
conditions:

𝑓 (𝑞) = 0.25

(

log10

(

𝜀
3.7

+ 5.74
(

𝐴𝜈
𝑞𝑑

)0.9
))−2

(21)

In practice, the residues adhere to the pipe walls reducing the
diameter 𝑑 and modifying the roughness 𝜀. However, the removal of
these residues is considered in the maintenance plan of the system. In
addition, the proposed methodology could eventually be updated by
some identification algorithm to dynamically adjust the roughness and
diameter.



Algorithm 1: EKF estimator for the leak parameters

1. Initialize the EKF with the starting values of state, �̂�−0 , and state estimation error covariance, 𝐏−
0 :

�̂�−0 = 𝐸(𝐱0) (10)

𝐏−
0 = 𝐸(𝐱0 − �̂�−0 )(𝐱0 − �̂�−0 )

T (11)

where �̂�−𝑘 is the estimated state before incorporating the measurements at the 𝑘-th sampling time. Thus, �̂�−0 is an arbitrary state estimate
before any measurement is made. In practice, �̂�−0 was taken from the nominal operating conditions of the pipeline:

�̂�−0 =
[

𝑞nom,
(

ℎ1,nom + ℎ3,nom
) /

2, 𝑞nom, 𝐿
/

2, 0
]T ,

where the subscript nom indicates values in nominal operating conditions without leakage.

2. For 𝑘 = 0, 1, 2,… (all discrete-time steps during operation), perform the following calculations:

2.1. Subroutine MeasurementUpdate: Calculate the Kalman gain 𝐊𝑘 and update the state and state estimation error covariance using
the measured data, observation matrix 𝐂 defined in (8) and previous estimates �̂�−𝑘 and 𝐏−

𝑘 :

𝐊𝑘 = 𝐏−
𝑘 𝐂T (𝐂𝐏−

𝑘 𝐂T + 𝐑
)−1 (12)

�̂�𝑘 = �̂�−𝑘 +𝐊𝑘
(

𝐲𝑘 − 𝐂 �̂�−𝑘
)

(13)
𝐏𝑘 =

(

𝐈 −𝐊𝑘 𝐂
)

𝐏−
𝑘 (14)

2.2. Subroutine TimeUpdate: Calculate the Jacobian matrix 𝐀𝑘 of the state transition function 𝛷 to update state estimation error
covariance and project the state forward in time:

𝐀𝑘 =
[

𝜕𝜙
𝜕𝐱

]

𝐱=�̂�𝑘
(15)

�̂�−𝑘+1 = 𝛷
(

𝐱𝑘,𝐮𝑘
)

(16)

𝐏−
𝑘+1 = 𝐀𝑘 𝐏𝑘 𝐀T

𝑘 +𝐐 (17)

In each discrete-time iteration, the diagnosis of the flow conditions in the pipeline is represented by the following three variables:

𝑞𝑙 ∶= 𝑥𝑘[5]
√

𝑥𝑘[2] Leak flow rate, double precision real-type (18)

𝑝𝑙 ∶= 𝑞𝑙 ≥ 𝑞nom
/

100 Flag for presence of leaks, boolean type (19)
𝑧𝑙 ∶= 𝑥𝑘[4] Leak location, double precision real-type. (20)

Regarding the condition (19), to avoid false alarms caused by instant
values of 𝑞𝑙 that may exceed the threshold 𝑞nom

/

100 due to numerical
transients in the dynamic model runs, the estimated leakage flow rate
used by the decision logic that discriminates leakage considers a moving
average of the estimates over 1 s time interval. For an integer sample rate
𝑓𝑠 [Hz], the estimated leakage flow in an arbitrary 𝑘th discrete time step
is given by

𝑞 (𝑘)
𝑙 = 1

𝑓𝑠

𝑓𝑠−1
∑

𝑖=0
𝜆(𝑘−𝑖)

√

ℎ(𝑘−𝑖)𝑙 . (22)

2.3. Improvements to EKF-based LDI by using a steady-state estimation

In the application of the EKF to detect real leaks in water
pipelines, Delgado-Aguiñaga and Begovich (2017) have reported some
inaccuracies in the estimates of the leak position with a discrepancy
of more than 100 m in some cases. To reduce these inaccuracies, the
proposed method refines the estimation output by considering a steady-
state solution of the dynamic model, which is incorporated when the
variables estimated by the EKF tends to reach stationary states.

When the estimated leakage 𝑞𝑙 is maintained for a considerable time
(user configurable, in the diagnosis software), the final estimate of the
flow and position leakage is refined from the steady-state model of the
pipeline:
𝐻𝑙 −𝐻1

𝑧𝑙
+

𝑓 (𝑄1)𝑄1|𝑄1|

2𝐴2𝑑𝑔
= 0, (23a)

𝑐2

𝑔𝐴𝑧𝑙

(

𝑄1 −𝑄2 − 𝜆
√

|𝐻𝑙|
)

= 0, (23b)

𝐻3 −𝐻𝑙
𝐿 − 𝑧𝑙

+
𝑓 (𝑄2)𝑄2|𝑄2|

2𝐴2𝑑𝑔
= 0, (23c)

where the capital letters 𝑄𝑘 and 𝐻𝑘 indicate steady-state values of
the dynamic variables 𝑞𝑘 and ℎ𝑘. Eqs. (23a)–(23c) were obtained from
the spatially discretized Eqs. (3a)–(3c) by replacing with zero the
time derivatives and using 𝛥𝑞

/

𝛥𝑧 to approximate the spatial partial
derivatives 𝜕𝑞

/

𝜕𝑧. The solution of this nonlinear system is obtained
using the iterative Levenberg–Marquardt (LM) algorithm (Moré, 1978).

Given the need to ensure a rapid convergence of the LM proce-
dure, the iterative process is initialized with the approximate solu-
tion

(

𝑧(0)𝑙 ,𝐻 (0)
𝑙 , 𝜆(0)

)

obtained analytically from steady-state equations
(23a)–(23b) assuming a non-leak nominal friction factor 𝑓nom:

𝑧(0)𝑙 =
2𝐴2𝑑𝑔

(

𝐻1 −𝐻3
)

− 𝑓nom𝐿𝑄2
2

(

𝑄2
1 −𝑄2

2
)

𝑓nom
(24a)

𝐻 (0)
𝑙 =

𝑓nom𝐿𝑄2
1𝑄

2
2 + 2𝐴2𝑑𝑔

(

𝐻3𝑄2
1 −𝐻1𝑄2

2
)

2𝐴2𝑑𝑔
(

𝑄2
1 −𝑄2

2
) (24b)

𝜆(0) =
𝑄1 −𝑄2
√

𝐻 (0)
𝑙

(24c)

The steady-state solution
(

𝑧𝑙 , 𝑞𝑙 = 𝜆
√

𝐻𝑙

)

obtained from (23a)–
(23c), using the LM algorithm, is merged with the dynamic state
estimation obtained from the EKF observer using a Bayesian data
fusion (Klein, 2012). The data fusion procedure consists in taking a



Fig. 7. Data fusion scheme.

Fig. 8. General scheme of the LDI system.

moving weighted average of both estimates (steady-state and dynamic),
using the variances of both estimates as weighting factors. The variance
of the dynamic estimates, 𝜎2(d), is continuously updated within the
EKF algorithm; but the variance of the steady-state estimates, 𝜎2(s), is
approximated empirically in each discrete time-step from the rate
of change of leak variables. For this, a sigmoid function is used to
decreases 𝜎2(s) from 𝜎2(s),max to 𝜎2(s),min as the leakage dynamics passes
from the transient behavior to the steady state. The minimum values
of 𝜎2(s) were obtained experimentally from the uncertainty in the results
of the steady-state solution of a series of tests with stationary leaks. The
maximum value of 𝜎2(s) was arbitrarily set as 𝜎2(s),max ∶= 10000 𝜎2(s),min. The
formula used to combine the steady-state and dynamic estimates, 𝑥(s)
and 𝑥(d), generating a single estimate 𝑥, is

𝑥 =
𝜎2(d) 𝑥(s) + 𝜎2(s) 𝑥(d)

𝜎2(d) + 𝜎2(c)
, (25)

where 𝑥 ∈
{

𝑧𝑙 , 𝑞𝑙
}

indicates a decision variable for leak diagnosis. The
variance of the combined estimate is given by Raol (2016):

𝜎2 =
𝜎2(d) 𝜎

2
(c)

𝜎2(d) + 𝜎2(c)
. (26)

From a statistical viewpoint, and assuming randomness in steady-
state and dynamic estimation errors, Eq. (26) shows that the uncertainty
after combining both estimates is always lower than the individual
uncertainty of each one, which guarantees a final estimation more
accurate or, at least, less noisy. The data flow for the data fusion is
illustrated graphically in Fig. 7. The representation of a more slender
Gaussian in the output of merged data corresponds the fact that the
uncertainty in the combined estimate has been reduced.

Fig. 8 graphically shows the interactions between the physical
pipeline, its dynamic model operated by the EKF and its steady-state
model, within the diagnosis system.

The complete leak diagnosis procedure, as programmed in the
software, is summarized in Algorithm 2 .

Algorithm 2: General leak-diagnosis procedure

For Each discrete-time Do

1. Read the pressure and flow sensors/transmitters through
the DAQ system.

2. Compute the dynamic state estimation with EKF, as de-
scribed in Algorithm 1, and compute the steady-state es-
timation by solving (23a)–(23c) using the LM algorithm.

3. From the dynamic estimation, compute 𝑞𝑙 = 𝜆
√

ℎ̂𝑙 and the
actual change rate of 𝑞𝑙. Then, determine if the regime is
steady-state or transitional.

• If the regime is steady-state setting up the maximum
variance of steady-state estimates, Else adjust the
variance of the steady-state estimates according to
the change rate of 𝑞𝑙.

4. Compute the combined estimate for 𝑧𝑙 and 𝑞𝑙 by using data
fusion according to (25).

5. Decision logic for diagnosis purposes:

• If 𝑞leak ≥ 1
100 𝑞nom, trigger an alarm and show leak

information: 𝑧𝑙 and 𝑞𝑙. The user can change the
threshold to adjust the system sensitivity.

6. Save measurement data, steady-state and dynamic esti-
mates, and diagnostics, for offline visualization or analysis.

End For

3. Experimental results and discussion

Since the effectiveness of EKF depends fundamentally on the process
model and a correct statistical characterization of the noise, the validity
of the dynamic model was verified before the leak diagnosis system
was tested using the RMS error to quantify the discrepancy between



Fig. 9. Convergence of the EKF when locating a leak at position 𝑧2 = 12.87 m, induced at time 𝑡 = 300 s.

Fig. 10. Convergence of the EKF when locating a leak at position 𝑧3 = 25.30 m, induced at time 𝑡 = 300 s.

the experimental measurements and the dynamic model of the pipeline-
leak system. Considering the estimated pipeline parameters shown in Ta-
ble 1, the error in the model (3a)–(3c) with respect to the measurements
in the physical plant resulted in 𝑒RMS = 0.24% for steady-state without
leakage, and 𝑒RMS = 0.41% during transients caused by leakage.

The complete LDI algorithm was initially tested at two different
sampling rates, 100 Hz and 1000 Hz. The main difference in the results
of these two cases is that at 100 Hz the EKF estimator presents some
convergence problems at the pipeline ends. These problems become
more important as the sampling rate decreases, making it difficult to
locate the leak and it causes both false positives and false negatives.
The correctly detected leakage rate was 100% for leaks at positions 2,
3 and 4 of the experimental pipeline. For position 1 only 75% were
correctly detected at 1000 Hz, none in this position was detected by
EKF at 100 Hz. The state estimates with the EKF were obtained with the

noise variances 𝐐 = diag
([

1 × 10−5, 1 × 10−2, 1 × 10−5, 2500, 1 × 10−6
])

and 𝐑 = diag
([

5 × 10−3, 5 × 10−3
])

. Figs. 9 and 10 show the convergence
of the EKF in the estimation of the leakage parameters for induced
leaks in valves L2 and L3 of the experimental pipeline. As described
in Algorithm 2, the variation observed in the estimated values 𝑧𝑙 and 𝜆
is smoothed by a data fusion procedure with the steady-state solution
when they are displayed in the user interface of the diagnosis program.
Fig. 11 shows a screenshot of a typical leak diagnosis session, and
Fig. 12 graphically shows the observer performance on the leak location,
before and after incorporating the steady-state estimate. The smoothing
variation on 𝑧𝑙 incorporating the steady state solution corresponds to
a reduction near of 78% compared with the EKF approach. In other
words, only the 22% of the variation remains after the data fusion. This
residual variation can be attributed to measurement noise and unknown
dynamic components of the process that were not modeled. Regarding



Fig. 11. Snapshot of a diagnosis session.

Fig. 12. Improvements in leak location when incorporating the steady-state
solution.

Table 2
Summary of leak location results for 𝑓𝑠 = 1000 Hz.

Real position Number of
tests (*)

Average estimated
position

Position
error

𝑧1 = 2.36 m 4 7.25 m 8.5%
𝑧2 = 12.87 m 4 13.59 m 1.3%
𝑧3 = 25.30 m 4 26.34 m 1.8%
𝑧4 = 41.14 m 4 42.68 m 2.7%

(*) The same number of runs were also performed without leaks, and no false
alarms were presented.

the estimation of 𝑧𝑙, the accuracy was improved by 0.69% with respect
to the use of the EKF alone, which represents an important improvement
with respect to the reported method in Delgado-Aguiñaga et al. (2015).

Table 2 summarizes the results on the accuracy of the leak location;
errors are presented as percentages of pipeline length. The error in the
leak location increases near the ends of the pipe, so the errors reported in
Table 2 are large for leaks that were intentionally induced near the ends.
In all successful cases, the error in the calculated leakage flow rate did
not exceed 1% of the nominal flow rate in the pipeline. All tests were
performed under turbulent flow conditions, 22 000 ≤ Re ≤ 115 000. A
centrifugal pump was used to set the Reynolds number in that interval.

It is important to mention that a loss of accuracy, on the leak
location, was observed near to the pipeline inlet (𝑧𝑙 → 0) when the
sampling rate was decreased from 1000 Hz to 100 Hz. A larger set of
experiments were performed for frequencies lower than 100 Hz. The
results for a set of 96 experiments are summarized in Table 3. As

Table 3
Effectiveness in the leak location for different sampling rates, within a 3% of
maximum error.

Sampling rate
𝑓𝑠 = 1∕𝛥𝑡

Leak positions

𝑧1 = 2.36 m 𝑧2 = 12.87 m 𝑧3 = 25.30 m 𝑧4 = 41.14 m

1000 Hz 75% 100% 100% 100%
500 Hz 0% 100% 100% 100%
100 Hz 0% 100% 100% 100%
50 Hz 0% 100% 100% 100%
10 Hz 0% 0% 75% 50%
5 Hz 0% 0% 0% 0%

can be observed, when the sampling rate decreases the percentage
of effectiveness decreases as the leakage location approaches either
ends of the pipeline. For sampling rates less than 5 Hz, no results are
shown because the EKF does not converge due to the short length of
the experimental pipeline. However, the EKF has already been applied
earlier with lower sampling rates in a real long pipeline, as reported
in Delgado-Aguiñaga and Begovich (2017). Table 3 only shows the
results obtained with the experimental prototype because it was possible
to arbitrarily vary both the leak location and the sampling rate.

From the results summarized in the contingency Table 3, it can be
observed that there exist a relationship between the maximum time step
𝛥𝑡 and the minimum length step 𝛥𝑧 affecting the leak location. This link
was calculated taking a weighted average on the sampling rates that
mark the effective leak-detection boundary (bold font in Table 3), using
the percentages of effectiveness as weights 𝑤𝑖, which can be expressed
by:

𝛥𝑧
𝛥𝑡

|

|

|

|boundary
=

∑

boundary 𝑤𝑖
𝛥𝑧
𝛥𝑡

∑

boundary 𝑤𝑖
= 936.32, (27)

where 𝛥𝑡 represents the time-step used on sampling and 𝛥𝑧 is the
distance from the leak position to the nearest pipeline end according
to spatial discretization described in Section 2.1. Given that the spatial
discretization of the pipeline contains two values of 𝛥𝑧, which are 𝑧𝑙 and
𝐿− 𝑧𝑙, the leak detection condition (27) is reformulated, in terms of the
sampling rate 𝑓𝑠 and the leak position 𝑧𝑙 as:

min(𝑧𝑙 , 𝐿 − 𝑧𝑙) 𝑓𝑠 ≥ 936.32. (28)

The constraint (28) that imposes a lower limit on the sampling rate
(upper limit on the sampling period) to locate leaks at a certain distance,
which can be explained due to the discretization error inherent to all
finite difference schemes such as those used in Section 2.1 to discretize



Fig. 13. Convergence region of leak estimator. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

in space and time the partial differential equations that model the
flow on which the EKF estimator is based. In particular, for hyperbolic
PDEs such as (1)–(2), it has been determined that a condition for the
convergence of explicit discretization methods is that the spatial and
temporal discretization steps satisfy the so-called Courant–Friedrich–
Lewy (CFL) stability condition (Belytschko & Mullen, 1978; Chaudhry,
2014):

𝛥𝑧 ≥ 𝑐 𝛥𝑡, (29)

which shows that to guarantee the convergence of the numerical
solution, the size of the time-step must decrease as the size of the
length-step decrease. This dependence between the resolutions of time
and length domains is shown graphically in Fig. 13. The continuous
curve represents the theoretical limit imposed by the CFL condition, for
different combinations of 𝛥𝑧 and 𝛥𝑡 in the experimental pipeline. The
percentage of effectiveness in the leak location of the proposed method
has been superimposed as a color map. Because the experimental grid
consists of only 24 points (those corresponding to Table 3), the remain-
ing values on the grid were obtained by interpolation. Additionally,
the level curves corresponding to effectiveness of 75% and 98% have
been plotted, along with two isolated points that correspond to typical
leakage scenarios, one where the implementation of the proposed
method managed to locate the leakage and the other one where it was
not possible because the combination leakage-distance/sampling-period
was outside the limits of convergence. For example, considering a leak
in the valve L2 at 𝑧 = 25.30 m, the estimated effectiveness decreases
from 100% (blue dot in Fig. 13) to less than 75% (red dot) when the
sampling rate changes from 50 Hz to 8 Hz.

4. Conclusion and remarks

An online EKF-based leak detection and location system for pipelines
has been described in this paper. The dynamics of the transported fluid
has been modeled in a spatial partition of only three points along
the pipe, with the position of the leak at the variable midpoint. The
application of EKF produced good results in an experimental pipeline.
In general, the EKF estimator converges correctly to the flow rate of
the leak, although it was determined that this methodology presents
problems of convergence to the position of the leak near the ends of
the pipeline. This deficiency is explained by the dependence between
temporal and spatial step sizes, as established by the CFL condition.
Theoretically, the convergence of the LDI system near the pipeline ends

can be improved by decreasing the sampling period, but in practice
limitations were found because the real-time implementation requires a
processing time between each time step and also because most SCADA
systems in real water distribution systems do not operate at very high
sampling rates. In order to improve the leak detectability near the
pipeline ends, without the requirement to decrease the sampling period,
an alternative that can be explored in future work is the reformulation
of the EKF algorithm to use implicit discretization methods or a finite
difference scheme of higher order.

Incorporating the steady-state solution into the diagnosis procedure
allows a more accurate leak location than when only the EKF output
is used. Also, initialization of the steady-state calculations with the
analytical solution under nominal conditions allowed rapid convergence
within the sampling period required for real-time implementation. The
improvement in the accuracy achieved by combining the EKF output
with the steady-state estimate may seem, at first glance, insignificant
(less than 1%, less than one meter in the prototype pipeline). However,
if a full-scale pipeline is considered, this small percentage improvement
would result in several meters, which is equivalent to considerable
monetary and time savings when locating and repairing the leak in the
case of underground pipelines.
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