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Abstract. We introduce PathGAN, a deep neural network for visual
scanpath prediction trained on adversarial examples. A visual scanpath
is defined as the sequence of fixation points over an image defined by
a human observer with its gaze. PathGAN is composed of two parts,
the generator and the discriminator. Both parts extract features from
images using off-the-shelf networks, and train recurrent layers to gener-
ate or discriminate scanpaths accordingly. In scanpath prediction, the
stochastic nature of the data makes it very difficult to generate realistic
predictions using supervised learning strategies, but we adopt adversarial
training as a suitable alternative. Our experiments prove how PathGAN
improves the state of the art of visual scanpath prediction on the iSUN
and Salient360! datasets.
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1 Introduction

When a human observer looks at an image, he spends most of his time looking at
specific regions [1I2]. He starts directing his gaze at a specific point and explores
the image creating a sequence of fixation points that covers the salient areas of
the image. This process can be seen as a resource allocation problem; our visual
system decides where to direct its attention, in which order, and how much time
will be spent in each location given an image.

Visual saliency prediction is the field of computer vision that focuses on es-
timating the image regions that attract human attention. The understanding
of this process can provide clues on human image understanding, and has ap-
plications in domains such as image and video compression, transmission, and
rendering. In order to train and evaluate saliency prediction models, there ex-
ist scientific datasets containing fixation points generated by human observers
when exploring an image without any specific task in mind. They are tradition-
ally captured with eye-trackers [3], mouse clicks [4], and webcams [5].

These fixation points have an important characteristic: stochasticity [6]. Dif-
ferent human observers can produce very different fixation points. Thus, re-
searchers in the field of saliency prediction have traditionally aggregated fixations
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of multiple observers to generate a consistent representation called saliency map
[7]. A saliency map is a single channel image obtained by convolving a Gaussian
kernel with each fixation. The result is a gray-scale heatmap that represents the
probability of each pixel in an image being fixated by a human, and it is usually
used as a soft-attention guide for other computer vision tasks.

Because fixations are aggregated over the temporal dimension, the saliency
map representation loses all the temporal information. Thus, information like
the parts of an image that are being fizated first is not retained. Recent studies
have shown some of the limitations of saliency maps and have raised the need
for a representation that is also temporally-aware [§]. In some situations saliency
maps fail to represent the relative importance of the different parts of an image,
giving more relevance to small regions with text where humans spend a long time
reading. We believe that the regions where a human first fixates might be more
relevant, therefore they should have more weight in a soft-attention represen-
tation. Another argument that favors temporally-aware saliency representations
is the recent explosion of Virtual Reality technologies. It has brought new chal-
lenges regarding the usage of omni directional images (360-degree images), and
it seems that solutions will depend on the use of temporal information.

Thus, there is an increasing demand for temporally-aware saliency repre-
sentations such as scanpaths, and algorithms that are capable of working with
them. Scanpaths as a temporally-aware saliency representation have received
recent attention [I10] and different datasets are available today.

Previous work on scanpath prediction shows that there are difficulties when
working with very stochastic data [6]. One of the problems that has been found
is that supervised learning algorithms using the MSE loss do not perform well for
this task because the final prediction tends to be the average of all the possible
predictions [I1]. When predicting scanpaths, the average prediction tends to be
always in the center. Recently, Goodfellow et al. [I2] proposed a framework to
create generative functions via an adversarial process, in which two models are
trained simultaneously: a generative model G that captures the data distribu-
tion, and a discriminative model D that estimates the probability that a sample
comes from the training data rather than G. The training procedure for G is to
maximize the probability of D making a mistake. This process allows models to
generate realistic predictions even when the data has very complicated distribu-
tions. This framework seems a suitable technique for the generation of realistic
scan paths.

This paper explores an end-to-end solution for omni directional scanpath pre-
diction using conditional adversarial training. We show that this framework is
suitable for this task and it significantly improves the performance. Our results
achieve state-of-the-art performance using a convolutional-recurrent architec-
ture, whose parameters are refined with a discriminator.

This paper is structured as follows. Section [2] reviews the state-of-the-art
models for visual saliency prediction and recent advances on conditional adver-
sarial networks. Section [3| presents PathGAN, our deep convolutional-recurrent
neural network, as well as the discriminator network used during the adver-
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sarial training. Section [4] describes the training procedure and the loss func-
tions used. Section [f]includes the experiments and results of the described tech-
niques. Finally, Section [6] discusses the main conclusions and future work. Our
results can be reproduced with the source code and trained models available at
https: //github.com /imatge-upc/pathgan.

2 Related Work

2.1 Visual Saliency Prediction

Saliency maps. Saliency prediction has received interest by the research com-
munity for many years. Thus seminal works by Itti et al. [I3] proposed consid-
ering low-level features at multiple scales and combining them to form a two-
dimensional saliency map. Harel et al. [14], also starting from low-level feature
maps, introduced a graph-based saliency model that defines Markov chains over
various image maps, and treat the equilibrium distribution over map locations
as activation and saliency values. Judd et al. in [I5] presented a bottom-up,
top-down model of saliency based not only on low but mid and high-level image
features. Borji [16] combined low-level features saliency maps of previous best
bottom-up models with top-down cognitive visual features and learned a direct
mapping from those features to eye fixations.

As in many other fields in computer vision, a number of deep learning so-
lutions have very recently been proposed that significantly improve the perfor-
mance. For example, the Ensemble of Deep Networks (eDN) [I7] represented
an early architecture that automatically learns the representations for saliency
prediction, blending feature maps from different layers. Their network might
be consider a shallow network given the number of layers. In [18] shallow and
deeper networks were compared. DCNN have shown better results even when
pre-trained with datasets build for other purposes. DeepGaze [19] provided a
deeper network using the well-know AlexNet [20], with pre-trained weights on
Imagenet [21] and with a readout network on top whose inputs consisted of some
layer outputs of AlexNet. The output of the network is blurred, center biased
and converted to a probability distribution using a softmax. Huang et al. [22],
in the so call SALICON net, obtained better results by using VGG rather than
AlexNet or GoogleNet [23]. In their proposal they considered two networks with
fine and coarse inputs, whose feature maps outputs are concatenated.

Li et al. [24] proposed a multi resolution convolutional neural network that is
trained from image regions centered on fixation and non-fixation locations over
multiple resolutions. Diverse top-down visual features can be learned in higher
layers and bottom-up visual saliency can also be inferred by combining informa-
tion over multiple resolutions. Cornia et al. [25] proposed an architecture that
combines features extracted at different levels of a DCNN. They introduced a
loss function inspired by three objectives: to measure similarity with the ground
truth, to keep invariance of predictive maps to their maximum and to give impor-
tance to pixels with high ground truth fixation probability. In fact choosing an
appropriate loss function has become an issue that can lead to improved results.
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Thus, another interesting contribution of Huang et al. [22] lies on minimizing
loss functions based on metrics that are differentiable, such as NSS, CC, SIM and
KL divergence to train the network (see [26] and [27] for the definition of these
metrics. A thorough comparison of metrics can be found in [28]). In Huang’s
work [22] KL divergence gave the best results. Jetley et al. [29] also tested loss
functions based on probability distances, being the Bhattacharyya distance the
one that provided the best results.

Scanpaths. The literature on the related task of scanpath prediction is much
smaller, but has received recent attention caused by the rise of VR and AR
technologies [30]. In [9], Cerf et al. concluded that human observers — when not
instructed to look for anything in particular — tend to fixate on a human face
within the first two fixations with a probability over 80%. Moreover, the consis-
tency of scanpaths increases when faces are present. Hu et al. [31] introduced a
model that predicts relevant areas of a 360-degree video and decides in which
direction a human observer should look for each frame. Some authors have also
focused on omni-directional images [30/3233].

SalTiNet [6] proposed a deep learning approach that proposes a novel three-
dimensional representation of saliency maps: the saliency volumes. This data
structure captured the temporal location of the fixation across an additional
temporal axis added to the classic saliency maps. The final scanpath are gener-
ated by sampling fixation points from this saliency volumes and finally introduc-
ing a post-filtering stage. PathGAN also uses a deep neural model, but provides
a fully end-to-end solution where the model directly generates a scanpath, with
no need of any sampling nor post-processing.

2.2 Generative Adversarial Networks

The generation of a sequence of fixation points over an image with a Recur-
rent Neural Network (RNN) had been previously attempted in [6]. The authors
trained a RNN to minimize the L? loss between predicted and ground truth
scanpaths, but the resulting model tended to predict output fixations always in
the center, as this is the best option on average for that loss function. Similar
problems have been observed in other image prediction problems (e.g. piz2piz),
where blurred images where output as a result [B4TTI35].

The generation of diverse and realistic new data samples has received a lot of
interest thanks to the work of Ian Goodfellow et al. on Generative Adversarial
Networks (GANs) [12]. In this framework, two models are trained iteratively.
First, the generative model G tries to capture the data distribution. Second, the
discriminator model D estimates the probability that a given sample is synthe-
sized or real. During training, G tries to maximize the probability of fooling D.
This process can also be seen as if GANs learn a loss function to tell if a sample
is real or fake. Generated samples that are not realistic (e.g. blurry images, or
scanpaths with all the fixations in the center) will not be tolerated.

A popular variation of GANs are the Conditional Adversarial Networks
(cGANS) [36], where G' does not output a sample purely from a noise vector, but
it is also conditioned on a given input vector. In this setting, D needs to observe
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the conditioning vector to decide about the nature of the sample to be classified
into synthesized or real. There have been multiple variations around the cGAN
paradigm. Isola et al. [37] proposed ¢cGANs as a general purpose solution for
image-to-image translation tasks using a U-Net [38] architecture for the genera-
tor, and a convolutional PatchGAN [39] architecture for the discriminator. Reed
et al. bridge recent advances in the image and text fields and propose a GAN
architecture that is capable of generating plausible images of birds and flowers
from detailed text descriptions [40]. Mirza et al. conditioned GANs to discrete
labels in order to generate MNIST digits conditioned on class labels [41]. Gau-
thier et al. generates faces with specific attributes by varying the conditional
information provided to the network [42].

In our work, we adopt the cGAN paradigm to overcome the limitation re-
ported in [6] when trying to use a RNN for visual scanpath prediction. This
way, PathGAN proposes to train a RNN following an adversarial approach, in
such a way that the resulting generator produces realistic and diverse scanpaths
conditioned to the input image.

3 Architecture

The overall architecture of PathGAN is depicted in Figure[1] It is composed by
two deep neural networks, the generator and the discriminator, whose combined
efforts aim at predicting a realistic scanpath from a given image. The model is
trained following the cGAN framework to allow the predictions to be conditioned
to an input image, encoded by a pre-trained convolutional neural network. This
section provides details about the structure of both networks and the considered
loss functions.

3.1 Objective

GANSs are generative functions that learn a transformation from random noise
vectors z to output vectors y, G : z — y [12]. Conditional GANs learn a transfor-
mation from a given input vector x and random noise vector z, toy, G : x,z — y.
Therefore, the objective function of cGANs can be expressed as:

LCGAN(G7 D) = Ez,y[logD(xa y)] + Ex,z[log(l - D(I7 G(I, Z))]v (1)

where the generator tries to minimize the loss, while the discriminator tries to
maximize it.

Multi-objective loss functions. Previous works has found useful to mix
the GAN’s loss function with another traditional loss such as the Euclidean
distance [34]. In this case, the task of the discriminator remains unchanged, but
the generator is forced to output samples that are close to the ground truth
(in terms of L? distance). We found that this setting improved stability and
convergence rate of the adversarial training. As it will be explained in the next
section, each prediction of our model contains four dimensions. The L? distance
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Fig. 1: Overall architecture of the proposed convolutional-recurrent model

is computed using all four dimensions. We called this parameter content loss,
and it is defined as:

L12(G) = Euy:lly — G(x, 2)|]- (2)

The final formulation of the loss function for the generator during adversarial
training is:

L = Legan(G, D) + aLp2(G). (3)

In Equation |1} (1 — D(G(z, z)) represents the probability of the generator
fooling the discriminator. Thus, we expect the loss to decrease as the chances
of fooling the discriminator increase. In our experiments we used the hyperpa-
rameter a = 0.05. It is also important to note that z plays an important role
making the output of the generator non-deterministic [43]. During the training
of the discriminator the content loss is not used.

3.2 Generator

The generator reads images as input and outputs a variable length sequence of
predicted fixation points. In addition to the coordinates of the fixation points,
our model has an end-of-sequence (EOS) neuron to encode the scanpath vari-
able length behavior. This neuron has values between [0, 1] and represents the
probability of having reached the end of the sequence. Thus, each prediction
of our model contains a fixation point (composed by a spatial coordinate and
a timestamp) and an EOS parameter [z,y,t, EOS]. At training time, we train
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on fixations of a scanpath until we reach the EOS, and at test time we predict
scanpath fixations until we reach the EOS.

We propose a convolutional-recurrent architecture that learns its filter pa-
rameters to predict scanpaths. Figure|l|illustrates the architecture of the model,
composed of 49 million free parameters. The generator is composed of two parts.
First, high-level image features are extracted using a convolutional neural net-
work for image recognition named VGG16 [44] pre-trained on the ImageNet
dataset [21]. Then, resampling of the VGG16 activations is performed with an
Average Pooling layer to a fixed size representation. This allows the usage of this
model with different image sizes and different types of datasets. Finally, a re-
current module composed of 3 fully connected LSTMs with tanh activation and
1,000 hidden units is used to generate a variable length scanpath. Batch normal-
ization layers are placed after each recurrent layer to improve convergence and
accelerate learning.

3.3 Discriminator

Figure[l]also shows the architecture and layer configuration of the discriminator.
This network predicts if a given scanpath is synthesized or not, and this decision
is conditioned to the associated image.

It is clear that knowledge of the image that a scanpath corresponds to is es-
sential to evaluate quality. Moreover, previous work has shown that conditioning
the discriminator function to the input significantly increases the performance,
sometimes preventing the generation from collapse [37]. In our architecture, the
discriminator has two input branches; a branch where a scanpath is read, and a
branch where the image is read. This allows discriminating whether a scanpath
is realistic for a given image. The features of the two branches are concatenated.

Briefly, the discriminator function is based on a recurrent architecture where
the scanpath fixations are read sequentially. The network is composed of a
VGG16 module that extracts image features, and three recurrent layers in-
terspersed with batch normalization layers. The recurrent layers contain 1000
hidden units and a tanh activation. Similarly to the generator, the VGG16 ac-
tivations are resampled with an Average Pooling layer to a fixed size represen-
tation. The recurrent layers all use tanh activations, with the exception of the
final layer, which makes use of a sigmoid activation.

4 Training

The weights of the model have been learned with an objective function that com-
bines an adversarial loss and a content loss [37]. The content loss follows a simple
approach in which the generated and ground truth fixation points are compared
using the L? norm (or mean square error). The adversarial loss depends on the
probability of the generator fooling the discriminator.

We trained the PathGAN architecture on two datasets. First, the network was
trained using the iSUN dataset, which contains 6,000 training images. Then, the
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filter weights were fine-tuned on omni directional images using the Salient360
dataset, which has 40 training images. For validation purposes, we split the
training data into 80% for training and the rest for validation. Notice that for
each gradient update a single scanpath is used.

The spatial positions of the fixations were normalized to [0, 1]. Moreover,
when training on the Salient360 dataset, input images were downsampled to fit
the dimensions of 300 x 600 prior to training. We also subtracted the mean pixel
value of the training set from the image’s pixels to zero center them.

The architecture was trained using the RM Sprop optimizer with the follow-
ing settings: Ir = 107%, p = 0.9, ¢ = 10~% and without decay.

Our network took approximately 72 hours to train on six NVIDIA Tesla
K80 GPU using the Keras framework with Tensorflow backend. At test time it
generates approximately 4 scanpaths per second. Figure |2 shows the evolution
of the validation set accuracy during the adversarial training.

Our networks train on a minibatch size of m = 100, and after trying various
combinations, we settled on the generator doing 8 gradient updates, while the
discriminator does 16 for each iteration. At train time, the generator is first
bootstrapped by training only on the content loss for a duration of 5 epoch.
Then, the adversarial training begins.

This architecture was designed considering the amount of training data avail-
able, and multiple strategies were introduced to prevent overfitting. In the first
place, the convolutional modules initialized from the VGG16 model were not
fine-tunned, decreasing the number of training parameters. Second, the input
images were resized to a smaller dimension, and dropout noise was introduced
at training time. We also used dropout noise (p = 0.1) on the recurrent layers.

Probability of the Discriminator succeding
mmm Probability of the Generator fooling the discriminator

el

Probability of the Discriminator succeding
mmm Probability of the Generator fooling the discriminator

5 100 125 150 175 0 b 50 75 100 125 150
terati terati

(a) Training with adversarial and content loss (b) Training only with adversarial loss

Fig. 2: iSUN validation set accuracies for training with GAN+MSE vs GAN on
varying number of epochs.
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5 Experiments

PathGAN was assessed and compared from different perspectives. First, we eval-
uated the performance on traditional images using the iSUN dataset. Second,
we show quantitative performance results on omni directional images using the
Salient360 dataset.

5.1 Datasets

The network was initially trained on the iSUN dataset [45] that contains 6,000
training images, and its performance is benchmarked in Section [5.3] Then, the
network was fine-tuned to predict scanpaths on omni directional images using
the Salient360 dataset, which contains 60 training images with data obtained
from head and eye movements from the human observers.

It is worth noticing that our use of omni directional images in this network
implies an important simplification. We assume that omni-directional images
are similar to traditional flat images, just with a bigger size. This presents ad-
vantages like being able to reuse the same architecture, and easily fine-tune it,
and this strategy has been previously successful [6]. Nevertheless, it neglects the
characteristic of omni directional images where points that are close to opposite
corners are spatially close.

5.2 Metrics

The similarity metric used in the experiments is the Jarodzka algorithm [46].
This metric presents different advantages over other common metrics like the
Levenshtein distance or correlating attention maps. In the first place, it pre-
serves the overall shape, direction and amplitude of the saccades, the position
and duration of the fixations. Second, it provides more detailed information on
the type of similarity between two vectors. This metric has been recently used in
the Salient360, scanpath prediction challenge at ICME 2017 [10]. The implemen-
tation of the metric for omni directional images was released by the University
of Nantes [47]. This code was adapted to compute the Jarodzka metric for con-
ventional images on the iSUN dataset.

The ground truth and predicted scanpaths are then matched 1-to-1 using
the Hungarian algorithm to obtain the obtain the minimum cost. The presented
results compare the similarity of 40 generated scanpaths with scanpaths in the
ground truth.

5.3 Results

Comparison with state-of-the-art PathGAN is compared using the iSUN
and Salient360! datasets. Table [I] compares the performance on omni direc-
tional images using the Jarodzka metric, against other solutions presented at
the Salient360! Challenge [10], which took place at the IEEE ICME 2017 con-
ference in Hong Kong. The results of the participants were calculated by the
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organization, on a test set whose ground truth was not public at the time. Al-
though at the time of writing this test set is public, our model has only been
trained on the training set. These results indicate the superior performance of
PathGAN with respect to the participants.

Figure [3] compares the performance of PathGAN with different baselines
and another state-of-the-art model on the iSUN dataset. To accurately test the
performance of the best scanpath prediction model of the Salient360! Challenge
2017 on the iISUN dataset, we fine-tuned it. Figure [4]illustrates how the Jarodzka
performance of PathGAN evolves during training.

id Jarodzkal
a Random positions and number of fixations 0.71
b Random positions and GT number of fixations  0.45
¢ Sampling ground truth saliency maps 0.31
d Interchanging scanpaths across images 0.23
e SalTiNet 0.69
f PathGAN without content loss 0.42
g SalTiNet (fine-tuned on iSUN) 0.40
h PathGAN 0.13

(a) Mean performance on iISUN with the Jarodzka metric
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Fig.3: Comparison on iSUN between the state-of-the-art and baselines. The
distribution of results and the mean performance are depicted. Lower values are
better.
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Fig.4: iSUN validation set Jarodzka evaluation on varying number of mini-
batches.
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Wuhan University SJTU SaltiNet PathGAN
Jarodzka | 5.9517 4.6565 2.8697 0.74

Table 1: Comparison with the best submissions to the ICME 2017 Salient360!
Lower values are better.

Content-loss gain The performance gain that comes with the use of a content-
loss based on MSE was analyzed from different perspectives. Figure 2]shows that
the content loss (mentioned in Section significantly improves convergence.
In our experiments, we have not been able to achieve convergence without using
the MSE loss. Table |3| illustrates that these improvements are also reflected in
the Jarodzka metric.

Qualitative results Our model’s performance has also been explored from
a qualitative perspective by observing the generated scanpaths on the iSUN
dataset and on the Salient360! dataset (Figures |§| and . Notice the diversity of
results given the generative nature of the model, based on the drop out ratio in
the LSTM.

Another way of assessing the behaviour of our model is by comparing the
distributions of generated and ground truth fixations. Figure [5| compares the
distribution of spatial locations where the model fixates on the iSUN’s validation
dataset. We observe that the model correctly finds a center-bias.

(a) Ground truth distrubtion (b) Predicted distribution

Fig. 5: Comparison of generated and ground truth spatial distribution of fixations
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6 Conclusions

Most of the work that has been done in the field of saliency estimation focuses
on aggregating fixations from multiple observers and the prediction of saliency
maps. Thus, it does not pay any attention to the temporal dimension of saliency
estimation. This paper addressed a task that is closer to what a human does
when observing an image: scan path prediction. This task presents several chal-
lenges, such as the complicated distribution of the data, and we address them
accordingly.

We presented PathGAN, an end-to-end model capable of predicting scan-
paths on ordinary and omni-directional images using the framework of condi-
tional adversarial networks. Our experiments show that this architecture achieves
state-of-the-art results on both scenarios. Moreover, this model has the follow-
ing desirable characteristics: 1) the probability of a fixation is conditioned to
previous fixations; and 2) the length of the scanpath, the duration of each fixa-
tion, and the spatial position of the fixations are treated as conditioned random
variables.

Finally, we want to note that the use of this model with omni-directional
images assumes the simplification that an omni-directional image is similar to a
traditional image, but with a larger size. While this presents advantages, it also
has a drawback: it neglects the characteristic of omni-directional images where
points that are close to opposite corners are spatially close.

Future work could aim to solve the issue mentioned above, or could try to
include top-down task specific information during training. Our results can be
reproduced with the source code and trained models available at https://github.
com/imatge-upc/pathgan.
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Fig. 6: Examples of predictions and ground truth on the iSUN dataset.
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Stimuli Prediction

S

Fig. 7: Examples of predictions on the Salient360! dataset. The stimuli has the
ground truth annotated.
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