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Abstract

The objective of this study is to investigate and apply forecasting techniques for the

Piraeus Port, the largest Greek seaport and one of the biggest in the Mediterranean

Sea. Recently, forecasting and predictions of port freight evolution have received an

increasing attention in ports management and logistics fields, due to the impact on

optimization or resource assignment produced.

There are many methods to perform these prediction, each one with its own limita-

tions and advantages. In order to achieve the objective of forecasting the port’s freight

future a method based on Monte Carlo experiments and Markov chains technique is

used to predict the port traffic. This methodology belongs to the time-series category.

To do so, it is required to pre-process the data provided by the port, investigate the

different paths to simulate the evolution of port’s freight, calibrate and validate the

model and finally perform the prediction for the port freight evolution in time.

The results show a method performance based on the comparison between three com-

monly used errors in forecasting models (Root Mean Squared, Mean Absolute and

Mean Absolute Percent errors).

Through this study, the prediction method is described and then applied to highlight

some future sight about the freight traffic evolution at the Greek port using real data

provided by itself. Different combinations of distributions and Markov chains are

compared to finally end up with a normal distribution with two states chain as the

best forecast model for the Piraeus case.
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Chapter 1

Introduction

1.1 Global container traffic

The traffic between ports and its continuous growing over the years show its impor-

tance on the industrial activity around the world, not only on the merchandise trade,

but also on globalizing the production processes.

Figure 1.1 shows the growing positive trend, only affected adversely during the start of

the global crisis, of the global traffic in TEUs (20 foot long, or 6.1 metres, intermodal

container):

Figure 1.1: Global traffic per year in TEUs. Source: World Bank data.

1
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Ports are the main infrastructure for this traffic. They play an important component

by linking of global trade (every mode of transport in the supply chain) with maritime

transport.

Nowadays, ports are handling around the 80 per cent of the global merchandise trade

and more than two thirds of its value, which is a huge impact on the global economy.

That is why ports need to be competitive and adapt to changes not only in the op-

erational efficiency but also in the economic, regulatory and institutional landscapes.

Trade evolution is driven by three basic variables: demand, supply and the policy

framework of the markets. This, of course, are the most simple way of defining how

the global trade is regulated. Going deeper on all of the variables, it can be stated that

trade depends on different factors such as demographics (population growth, urban-

ization, and others), governance (regulations, transparency) and economics (capital

flows, foreign investment, and many others). Port trade evolution is usually associ-

ated to the GDP of the country where the port is, and also to the neighbour countries.

The global trade received a big hit in late 2008 as the world economy took a sudden

and unexpectedly sharp downturn. Ports struggled to keep up with demand and to

survive to those years. As a result of a backdrop of weaker global demand and the

end of the global crisis, terminal operators have been reconsidering their capacity

expansion plans, which is a key factor in order to keep existing in the global leading

ports map. This means a great investment for ports and its investors which means

that need to be carefully analyzed.

One of the trends in order to provide knowledge about the future situations that a

port can live is to use forecasting techniques to determine how and when the expan-

sion plans need to be thought of.

The intrinsic connection between maritime transportation, international trade, and

globalization trends are strictly related to economy wellness as seen in Figure 1.1,

where a growing in TEUs traffic when economy is also growing can be clearly seen,

and a recession with the crisis. While predicting the future changes in global eco-

nomics is beyond study, it can assume a continuist trend from the last episodes.
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1.2 Piraeus port

The Piraeus port is the largest Greek seaport and one of the main ports in the

Mediterranean sea and Europe. The port is located in the city of Athens and it is

difficult to speak about when it was build, because this port has been serving the city

since around 450 years BC. Despite that, start of the port as it is known today can

be set in 1924 when major civil works started.

Today, the port has become a huge terminal both for transport and travel services

with an area of 39 square kilometres. With three container terminals, it has a capacity

for storing more than 6 million TEUs. Also, it is considered the largest passenger

port in Europe with a 2.8 kilometres quay length. Finally, the port is completed with

a cargo and an automobile terminals, beyond other services it offers. In Figure 1.2

port can be seen, with the passenger terminal at the front and the container one at

the far end.

Figure 1.2: Piraeus port aerial view. Source: Portopia international consortium.
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With about 19 million passengers annually, Piraeus occupies the third place world-

wide. It also occupies the 47th position at international level in cargo traffic and the

top position among all Eastern Mediterranean ports.

Piraeus port is a key element for the Mediterranean because of its strategic position

and infrastructure. It acts as the main gate for Hellenic imports and exports and as

a link for the trading between Europe, Asia and Africa, being part of the EMEA area

(Europe, Middle East, Africa, see Figure 1.3.

Figure 1.3: Major ports in EMEA region. Source: RREEF Research.

The port is managed by the Piraeus Port Authority (PPA) but in 2002 a concession

contract was signed between the Greek government and OLP SA company, under

which the Greek government grants for 40 years the exclusive right to use and ex-

ploitation of land, buildings and facilities of inland port area of PPA to OLP SA.

Due to the big hit the global crisis meant to Greece, the port closed its container

terminals during almost all the 2008 months, until the company Cosco Pacific signed

a contract for the terminals concession. This is going to be a big breach in the data

gathered by the port.
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1.3 Predictive modeling opportunities

One of the best ways for successful management of certain transport companies, spe-

cially when speaking about infrastructure, is traffic demand planning. The main

reason for it is that if there is a higher supply than demand it leads to the failure

in the utilization of port infrastructure and suprastructure, and to the lack of cost-

effectiveness, but it is also needed to be careful not to over-plan in order to avoid

misspending money.

The predictive models are very useful on this task. A definition of what a predictive

model is can be: ”Predictive modeling is a name given to a collection of mathematical

techniques having in common the goal of finding a mathematical relationship between a

target, response, or dependent variable and various predictor or independent variables

with the goal in mind of measuring future values of those predictors and inserting them

into the mathematical relationship to predict future values of the target variable.”

The utility of the predictive models is then clear by relating first and second para-

graphs above. Predictive models are a very useful tool in order to avoid misspending

valuable resources (optimization), or to take a decision on how to spend them (re-

sources assignment) to improve the incomes. There are different types of prediction

models that will discussed later in this study when defining the one to be performed

with Piraeus port case.

1.4 Objectives of the study

The main objective for this study is to perform a predictive analysis over the case of

Piraeus Port container traffic. With the collaboration of the Piraeus Port, real data

is available for this study in order to generate a forecast picture about the future

of the container traffic evolution on the port with the Monte Carlo experiments and

Markov chains technique method.

Objectives of the study can be briefly described in the following points:

1. Investigate the different ways of carrying out a predictive analysis, and choose
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the best fit for the type of data that the port has provided.

2. Develop the predictive model with the aid of MATLAB software.

3. Test and calibrate the predictive model and set-up alternatives within it with

the real data, performing convergence analysis.

4. Apply the best model and obtain results for the prediction of container traffic

of Piraeus port.

5. Highlight conclusions of all the carried out work, and observe which are the

weaknesses and strengths of it.

Definitely providing a good forecasting sight of the situation which can be useful to

the port is the aim of this study, without pretending to be the unique element to be

taken into account in a decision making framework.



Chapter 2

State of the art

Through this chapter, all the background behind the forecasting analysis is explained.

From the different ways to attack the case to how to calibrate and test them, for ex-

ample with different types of errors consideration.

There are many options to take into account when speaking about predictive model-

ing, so a brief touch over them is helpful to understand how a predictive model works

more than throwing random assumptions. With it, it is deeply defined the option

used for this case.

2.1 Predictive models scenario

From now on the study will focus on freight transport predictive models, since one of

these is going to be applied for the Piraeus port forecast.

Speaking about port traffic forecast, there are two different ways traditionally followed

by the specialists to perform their analysis, the GDP method and the ones based on

data and knowledge on field.

2.1.1 Gross Domestic Product method

The GDP method is based on one main assumption: economy determines the demand

for the freight. It is a simple but a correct assumption as it has been shown at Figure

7
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1.1 with the positive growing trend of the global traffic broken at the economic crisis

time. Nevertheless, it is not economy the only factor determining the evolution and

therefore simplifying the prediction to only this can lead to mistaken results. This

method works with multipliers and the GPD, for instance freight transport demand

growing twice the GPD, the key of it is to find the appropriate multipliers. Usually,

this method is combined with one of the following ones to improve its accuracy.

2.1.2 General techniques

This techniques are based on the expertise and the data obtained through the op-

eration in time, some of them using expertise and some others statistics. There are

three differentiated kinds of forecasting techniques, depending on what kind of data

they rely on, that can be classified:

1. Qualitative models: these are methods that rely on qualitative data such

as experts opinions, information about special events, and may or may not

take past into consideration. This is the reason why they are commonly used

when there is a lack of data for any reason. Some examples of this method

are: Visionary forecast, Market research, Panel consensus, Delphy method or

Historical analogy. These methods can be useful when there is no data or it is

desired to use non numerical data as well, it also incorporate the experience or

advising from experts. That fact can become a huge disadvantage, because if

one individual input is wrong and prevails, the whole method can fail.

2. Time series analysis: these kind of models rely entirely on historical data

and search patterns and changes in them. They are clearly statistical methods.

Since this study is going to use the historical data provided by the port, this is

going to be the way the forecast model is going to be developed.

Some examples for this method are: Exponential smoothing, Moving average,

X11, Box-Jenkins or Trend projections.

Time series analysis is one of the most well-known statistical techniques to make
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predictions assuming patterns will continue in the future. This can become an

advantage as it is shown in Figure 1.1 where it can be seen a clear growing trend,

but also a disadvantage when predicting turning points such as the global crisis.

That is the main vulnerability of these methods.

3. Causal models: these models rely on specific information about the relation-

ship that elements in a system may have and also taking special events into

account. These are the most sophisticated forecasting tools and they try to

express mathematically those relationships. Some examples are: Regression,

IO model, Leading indicator, Diffusion index or Econometric model. Their

strongest aspect is the finding of relationships between elements. Despite that,

these methods require a higher cost and time in regard to the other types.

Also, variables with insignificant coefficients are automatically discarded due to

the principles of econometric, and the relationship between elements can be in

constant changes.

In this study, a time-series method is the method selected to perform the forecast of

the container traffic in Piraeus port. The real data provided by the port is just the

monthly distribution of containers that come in and out of the port, and with that it

is useless to proceed with a causal or a qualitative method.

2.2 Model background

In this section the background for the predictive model that is going to be applied is

described. As stated in the previous section, and regarding to the type of data the

port has delivered, a time-series method is going to be used for the study’s purpose.

The idea of the process is to apply Markov chains combined with the Monte Carlo

experiment. With this, probabilities of going from positive container traffic growths

to negative or viceversa can be obtained from data, to finally use the Monte Carlo ex-

periment to generate forecast volumes based in the data distribution and the Markov

chains results.
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The methodology applied will be deeply explained in the next chapter. For this

section some basic concepts about the elements mentioned above are explained.

2.2.1 Markov chains

A Markov chain can be described as a series of states, U = u1, u2, ..., uN , and a process

starting in one of those states and jumping from one to another. Each move is called

step. For Piraeus case, that is a positive or a negative growth each month or year.

The process is at state ui and moves to uj with a probability pij which is not dependent

on the state previous to ui. Also, the process could remain at the same state, and

that would generate the probability pii. These probabilities p are called the transition

probabilities, and they are what it is needed to find in order to define the Markov chain.

An initial probability distribution, defined on U , specifies the starting state, usually

set by knowledge.

A simple example of a two states Markov chain can be seen at Figure 2.1. The states

are E and A. Each number besides an arrow represents the probability of the Markov

process changing from one state to another state in the way the arrow does. As an

example, if the state is currently A, the probability of remain at the same state for

the next step is 0.6.

Figure 2.1: Two states Markov chain. Source: Unknown (many sites).



Chapter 2. State of the art 11

The transition matrix of this example is the matrix that performs a square array of

all the probabilities involved on the chain:

T =

0.3 0.7

0.4 0.6

 (2.1)

Where the rows are the states of origin and the columns the end ones. For example

position (1, 2) in this case is the way from state E to A, with a probability of 0.7. As

it can be observed, the sum of all the probabilities with the same state as origin is 1,

this corresponds to the rows of the transition matrix.

There are many interesting theorems about the transition matrix and what can be

achieved with probability vectors, but as it is not going to be required for the Piraeus

port, it will not be shown in this study.

2.2.2 Monte Carlo experiment

The Monte Carlo experiment or Monte Carlo simulation is named after the Monte

Carlo borough in Monaco City, which is very famous due to its casino and gambling

games such as roulette or dices. The simulation comes precisely for the random

phenomena involved in those gambling games, generating random values each time a

user plays them. The Monte Carlo experiment is very useful when solving engineering

problems as it can deal with a large number of random variables, different distribution

types, and highly nonlinear engineering problems.

In this method, the properties of the distributions of random variables are investigated

by the use of simulated random numbers. Usually the asymptotic properties of an

estimator are known but its finite sampling ones are not.

Generally the Monte Carlo experiment is carried out following this simple scheme,

with possible variations:

1. Define a domain for the random samples.

2. Generate the random samples by following a probability distribution over the
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domain that can be obtained from previous data knowledge.

3. Apply a deterministic computation to all the inputs generated.

4. Gather the results.

A common use of the Monte Carlo simulation is to obtain the area of a figure, such

as the circle in Figure 2.2.

Figure 2.2: Monte Carlo experiment example. Source: StackExchange.

The figure is drawn over a domain and random points inside it are generated. For

instance, to know the value of π:

1. Define the domain as a square one by one

2. Generate random values with a uniform distribution.

3. Draw a circle with radius one.

4. The relationship between the number of points inside the circle and outside is

the same that between both areas respectively. Since it is known that a circle

has area πR2 and both radius and the square area are 1, the value of π can

directly be obtained.

There is no much more theory background at Monte Carlo experiment, as it is a basic

concept that can be tangled as much as the user wants with complex probability

distributions or more complex necessities than a simple area computation.
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2.3 Validation

Once the model is built, it is required to assess whether the results are interesting

or not. Since this is a predictive model, it is hard to evaluate if a prediction will be

valuable without knowing the future, but there is an easy solution when dealing with

the enough data and that is to perform predictions over real data and see how close

the predictions are.

For the models validation it is suggested to address to the errors computation. Ac-

cording to Peng et al (2009), in order to assess forecasting models, when they are

statistical models, it is recommended and commonly employed to compare three dif-

ferent errors:

• Root mean squared error (RMSE),

• Mean absolute error (MAE),

• and the Mean absolute percent error (MAPE).

2.3.1 Root mean squared error (RMSE)

The RMSE is defined by the following formulation:

RMSE =

√√√√ n∑
i=1

(Yi − Y̆i)2)

n
(2.2)

The RMSE depends on the scale of the dependent variable. It should be used as

relative measure to compare forecasts for the same series across different models.

The smaller the error, the better the forecast.
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2.3.2 Mean absolute error (MAE)

The MAE is defined by the following formulation:

MAE =

n∑
i=1

∣∣∣Yi − Y̆i

∣∣∣
n

(2.3)

This error is also dependent on the scale of the dependent variable but it is less

sensitive to large deviations than the squared loss.

2.3.3 Mean absolute percent error (MAPE)

The MAPE is defined by the following formulation:

MAPE =

100
n∑

i=1

∣∣∣Yi−Y̆i

Yi

∣∣∣
n

(2.4)

This error computation is scale independent, which is an advantage from the other

two. However, MAPE has the problem of asymmetry and instability when the original

value is small. It is affected by:

1. Equal errors above the actual value result in a greater MAPE.

2. Large percentage errors occur when the value of the original series is small.

3. Outliers may distort the comparisons in empirical studies.



Chapter 3

Predictive model methodology

In this chapter, the methodology followed to obtain the final results of the predictive

model is discussed in order to allow the next chapter to show the results of the whole

forecasting process. The data provided by the Piraeus port is presented and how it

has been processed as well. After that, a scheme on what the MATLAB code has

been asked to do is also explained, jumping across the main keys that have been

dealt with, as for example the number of simulations, dealing with Markov chains,

the random value generation for the Monte Carlo simulation, and other issues.

The main path is the one described in the previous chapter, performing a time-series

predictive model with the combination of Markov chains and Monte Carlo simulation,

but within that there are many different ways to take and some of them have been

compared in order to obtain the best forecast traffic volumes possible.

3.1 Piraeus port data

Data process is the first step the predictive model needs before even starting to code

with MATLAB. This section shows everything related to the data provided by the

port, which consists fundamentally in container movements:

• Imports: number of TEUs received by the port to be stored at yard.

15
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• Exports: number of TEUs departing from the port yard with another port as

a destiny.

• Transhipment: number of TEUs involved in the operation of moving containers

from one transport mode to another (can be ship-ship or even railway and road).

Figure 3.1 shows the gross detail of all this operations yearly for the port. Import and

export are always considered together since it is interesting to see them as one and

compare it to the volume of transhipments. Usually, the import-export volume is the

one strongly related to the GDP and the evolution of economy whilst transhipment

is more unpredictable not following economy growths and recessions.

Figure 3.1: Piraeus yearly imports, exports and transhipments in TEUs. Source: Self
made.

There are two interesting notes that the port adds to this data:

• There was a a strong industrial action due to the global crisis that closed the

terminal some months between 2008 and 2009. This can be clearly seen as the

collapse in the purple line representing the total of TEUs traffic at the terminal

in Figure 3.1.
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• In 2010 an intra-port competition started with another provider. There is no

monthly data for the other operator, which is not a big deal since the study can

be based on just the provider that has been operating since 2002 and it is going

to produce less disturbance due to intern issues to each provider.

It is verified that the import-export volumes have more relationship with the economy

wellness: growing until the crisis, struggling some years after that, and finally starting

to grow again last years. Transhipment is more unpredictable and it is related to other

factors, it is seen at the graph that its growths and decreases are not in line with the

imports and exports trends. Port also provided monthly data for import, export and

transhipment for the periods 2003-2008 and 2011-2016 which are interesting to see:

Figure 3.2: Piraeus monthly imports, exports and transhipments in TEUs. Source:
Self made.

The break 2009-2010 in data is reflected in the graph. Again it is seen that the

transhipment is way more unpredictable as a trend for the future can be foreseen in

the import-export line. This will impact directly on the predictive model questioning

it if it can be applied for totals or transhipments and imports-exports separately.

There will be another point to take into account when dealing with monthly data:
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the seasonality demand. The fluctuations induced by the month or season of the year

that is going on can mean significant deviations from the global or yearly trend. It is

difficult to add this element into a time-series method but there are some other ways

to deal with it if this is very pronounced and really affects the forecast.

(a) Period 2003-2008 (b) Period 2011-2016

Figure 3.3: Piraeus monthly imports-exports in TEUs. Source: Self made.

Figures 3.3a and 3.3b show the monthly data for the import-export traffic. The two

periods are separated to have a better sight of the trends, since the second period is

in a lower scale TEUs order.

As it is seen in Figure 3.3a, there is a continued growing trend (despite a few collapses)

until the year 2008 when the crisis starts. Also in Figure 3.3b the slow recovery from

the crisis can be deducted, with a decreasing trend until the ends of 2015, moment

in which the port seems to be starting to recover again.

The other thing required from the data are the growths distributions, in order to apply

Monte Carlo experiment, it is needed to generate random numbers with a probability

distribution that can be obtained from the raw data. Figure 3.4 shows the histograms

for the growths of each type of traffic. The growths can easily be obtained with:

Growth =
Xi+1 −Xi

Xi

(3.1)

where X refers to the monthly or yearly data.
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(a) Imports (b) Exports

(c) Transhipments

Figure 3.4: Piraeus monthly growths histograms for each type of traffic. Source: Self
made.

All of the histograms are showing a possible normal distribution, most specifically

the imports and the exports (which reinforces the arguments given above). This is

going to be discussed when choosing the appropriate probability distribution in the

Monte Carlo experiment section.

With this global visualization of the data the next step is to start building a code for

the predictive model, and comparing the different ways to achieve it.
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3.2 Markov chains for the Piraeus case

Once the data process is finished, the MATLAB code starts by implementing it. It is

chosen which data is to be introduced, whether it is monthly, yearly and how many

time steps are wished. After that, the growths are computed with the formulation

shown at equation 3.1.

With this, the Markov chain has to be defined.

3.2.1 Two states Markov chain

It will consists on testing the probabilities of having positive or negative growths for

the year Xi+1, so a start can be a simple two states chain (positive and negative

growths) that will generate four probabilities:

• Positive to positive, PP.

• Positive to negative, PN.

• Negative to positive, NP.

• Negative to negative, NN.

And hence, the transition matrix of the chain would be:

T =

PP PN

NP NN

 (3.2)

Just to remember, all the rows of this matrix must sum up one, so for example

NP +NN = 1. Figure 3.5 shows the scheme of the previous transition matrix.
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Figure 3.5: Markov chain with two states case. Source: Self made.

This probabilities will be computed from the raw data growths that have been ob-

tained. With the use of conditionals at MATLAB, it is checked the growth of the step

i and the growth of the step i + 1, and successively for all the growths obtained in

order. With it the number of positive to positive, positive to negative and the rest of

it can be known, and just with a simple division find the probabilities. For example:

PP =
Number of positive to positive growth steps

Number of stepswith a positive origin
(3.3)

And similarly for the other states, the transition matrix is fulfilled for each case it is

wanted to test.

Once the transition matrix is defined, a growth matrix is generated with the size

[Number of time steps, Number of simulations], where the number of time steps re-

fer to how many months or years are to be predicted, and the number of simulations is

the number of times MATLAB will generate predictions in order to obtain the mean

of all of them.

For each position, a random number between zero and one is generated, and the pre-

vious time step growth is checked (whether it is positive or negative) so it is known

if the origin is a P or a N, and finally depending on the random number generated

select if the current step will be positive or negative. For example if the transition

matrix is:

T =

PP PN

NP NN

 =

0.6 0.4

0.7 0.3

 (3.4)

Then if the previous year is negative and the random number is 0.6 (<0.7) it falls

into NP case and the current year will have a positive growths. If the random number
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would have been 0.8 (>0.7) the current year would be negative due to the NN case.

Repeating this process the growths matrix can be easily fulfilled by MATLAB and

the Markov chain process is ended with its purpose achieved.

3.2.2 Four states Markov chain

One of the advantages of these Markov chains is that it can be defined in different

ways as the user desires. A more entangled way to do it is to define a four states

chain instead of two. Whether it is useful or not will be tested later, but it can be

of interest to see the impact of changing the Markov chain shape over the forecast

results.

The process is basically the same than in the two states Markov chain. The difference

is that there will be two new states. Since the growths are the interesting value, the

new distribution will also spin around them. For this new chain, to reach four states,

time steps are going to be considered as a pack of two, that will lead to the following

states: two positive steps, positive and negative steps, negative and positive and

finally two negative steps. With that, the probabilities can be seen in the transition

matrix:

T =


PPPP PPPN PPNP PPNN

PNPP PNPN PNNP PNNN

NPPP NPPN NPNP NPNN

NNPP NNPN NNNP NNNN

 (3.5)

With all rows summing up one. Figure 3.6 shows the scheme for the previous transi-

tion matrix.



Chapter 3. Predictive model methodology 23

Figure 3.6: Markov chain with four states case. Source: Self made.

The rest of the process is very similar. The probabilities of transition matrix, T , are

found from the data used, computing growths in pairs. Once the matrix is fulfilled,

the growth matrix can be generated again depending on number of steps (this time it

is mandatory to use an even number) and simulations, by checking the last two steps

and generating a random number [0,1] that falls into one of the probabilities of each

row of the matrix.

3.3 Monte Carlo experiment for the Piraeus case

Departing from the growth matrix obtained previously, a matrix which only indicates

if the time step to predict has a positive or a negative growth, it is now required to

transform it into a matrix with growth values, that means the predicted changes for

the predicted time steps.

This is going to be achieved through the Monte Carlo experiment. For it, a probability
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distribution of real data growths must be find. As it is shown in Figures 3.4a, 3.4b

and 3.4c it is very tempting to choose the normal distribution for the experiment,

and that can be a good first attempt.

Therefore, if the normal distribution is to be used, the mean and standard deviation

have to be obtained from the growths of the original data. Once the distribution

is determined, MATLAB is able to generate random values with that distribution.

With the growth matrix obtained from Markov chains, MATLAB generates random

growths (positives or negatives depending on what is in each position of the matrix)

based on the normal distribution. For example if the growth matrix is:

G =


1 1 1 0

1 0 1 1

0 1 0 0

0 0 1 1

 (3.6)

Being 0’s a negative growth for that time step and 1’s a positive one, then the Monte

Carlo simulation allows us to transform it into:

G′ =


345 234 234 −235

453 −43 353 25

−532 123 −1045 −535

−12 −534 124 657

 (3.7)

And the only last thing to do is to transform it into the TEU matrix:

TEU(1, n) = Data(end) ∗ G′(1, n) +Data(end) (3.8)

with n = Number of simulations, and Data(end) = Last TEU value in port data.

And:

TEU(t, n) = TEU(t− 1, n) ∗ G′(t, n) + TEU(t− 1, n) (3.9)
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With the TEU matrix, the forecast for the time steps t for the Piraeus port is obtained.

Finally the mean of all simulations is computed (mean of all rows) and the standard

deviation to show the results, that will be seen in the next chapter.

3.3.1 Other probability distributions

As commented above, there are multiple options for the Monte Carlo experiment. The

random value can be generated from all the probability functions existing. Neverthe-

less, there has to be a concordance between the data growths and the distribution,

since the best the distribution fits, the best predictive model should be expect.

In order to fit a distribution for a given data, MATLAB provides a function called

Distribution Fitter that automatically fits a variety of included distributions to the

data. An example can be seen in Figure 3.7 for a given data: This is an exponen-

Figure 3.7: Example of a data fitting distribution in MATLAB. Source: Self made.

tial distribution fit to a random data. The software also returns the most important

parameters. For instance:
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Distribution: Exponential

Log-Likelihood: 29.9637

Mean: 0.116199

Variance: 0.0135022

This is an interesting point since it allows to compare the fitting performance com-

paring the Log-Likelihood between distributions. There is also another index called

Akaike Information Criterion (AIC) that can be obtained and combined with the

Log-Likelihood for the comparison.

A function that compares every distribution for a given data has been used as well.

The function takes the data as an input and shows a classification from best to worst

distribution based on the combination of the Log-Likelihood (better the distribution

fit as bigger it is) and the AIC (better the distribution as smaller it is) criteria. Here

is an example of what the function returns when used with the same previous data:

Distribution Log-Likelihood AIC
Generalized Extreme Value 3.89E+01 -7.17E+01
Log-Logistic 3.86E+01 -7.32E+01
Inverse Gaussian 3.85E+01 -7.30E+01
Log-Normal 3.83E+01 -7.26E+01
Generalized Pareto 3.69E+01 -6.97E+01
Birnbaum-Saunders 3.63E+01 -6.86E+01
Weibull 3.33E+01 -6.27E+01
Gamma 3.14E+01 -5.88E+01
t-TocationScale 3.10E+01 -5.61E+01
Exponential 2.99E+01 -5.79E+01
Nakagami 2.48E+01 -4.55E+01
Logistic 1.12E+01 -1.84E+01
Normal -3.28E+00 1.06E+01
Uniform -9.80E+00 2.36E+01
Extreme Value -1.74E+01 3.89E+01
Rayleigh -2.40E+01 4.99E+01
Rician -2.40E+01 5.19E+01

Table 3.1: Results of applying function to the previous data set. Source: Self made.
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It can be observed that the exponential, which seemed a good distribution fit, is the

10th. So this function is useful to apply different distribution probabilities within the

Monte Carlo experiment.

With this, a result comparison between normal distribution and the best fit (output

from the function explained above) has been carried out in the next chapter, to see

if it is worth to fit different distributions for each set of data or just a normal one.

3.4 Number of simulations

It is also advisable to define the number of simulations that MATLAB code has to

deal with (this is the n dimension of most of the important matrices). For that,

some convergence tests have been carried out with different data sets, comparing

the predicted TEUs for same time step between code runs with different number of

simulations.

Figure 3.8: Convergence test with the same prediction and different number of sim-
ulations and time steps. Source: Self made.

At Figure 3.8 one of the convergence tests can be seen. Each line represents one of

the four time steps predicted (in this case, four years consecutive to the port data).

In the y-axis the number of TEUs predicted for different number of simulations.
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The number of simulations used for the convergence test for all the four time steps

have been: 1, 10, 100, 1000, 5̇000, 10000, 50000, respectively.

Each prediction is obtained from the mean of all the simulations (that means that

the last value for all time steps is the mean of 50000 values). It can be seen that for

each further time step, more simulations are needed in order to have a stable value.

For this simulation in particular, around 8000 simulations is enough to reach the

convergence.

It is important to have this analysis in mind, not to be the most precise by choosing

8000 or 9000 simulations, but to see that a convergence is reached meaning that the

model is stable and does not give totally random predictions each time it changes the

number of simulations, which would mean that the model would have been useless.

Finally, to make this analysis possible MATLAB is needed to define a seed so that

the results of the analysis are the same if nothing is changed between runs (this is

because of dealing with random numbers generation). For that, the function rng in

MATLAB allows us to control the generation, extracted from MATLAB: ”Rng(seed)

seeds the random number generator using the non-negative integer seed so that rand,

randi, and randn produce a predictable sequence of numbers.”.

3.5 Process flow diagram

To sum up, a flow diagram with all the process is shown at Figure 3.9. It shows the

steps followed to reach the final prediction with the Monte Carlo experiments and

Markov chains techniques described previously.

The steps are placed in the same order as processed with MATLAB software. Diagram

can be seen at Figure 3.9.
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Figure 3.9: Flow diagram of the predictive model. Source: Self made.

Steps 1 to 3 refer to the data treatment and parameters definition. Steps 4 and 5

define the Markov chains by defining the number of growth cases desired (e.g. PP or

PPPP depending on how many chains are generated) and the transition matrix from

the data growth cases counting. Steps 6 and 7 generate the Monte Carlo experiments

by generating a forecast growth matrix (1’s and 0’s for positive and negative growths

respectively) based on the transition matrix probabilities and finally transforming it

into real growths based on a chosen distribution (e.g. normal distribution). Finally

step 8 produces the predicted TEUs matrix based on the growths previously computed

at step 7, and from it the mean of all simulations and the standard deviation. Step 9

is only considered if calibrating the model with real data, validating it based on the

error computation (RMSE, MAE and MAPE).
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Results of the predictive model

Through this chapter the results of the predictive model will be shown. All the

methodology applied to reach the results is explained in the previous chapter. Monthly

and yearly data has been used to produce them, and the different methods explained

above such as different probability functions or different Markov chains, just to find

the best forecast possible.

In order to compare between methods and to choose the best options, the main error

techniques have been used (refer to Chapter 2 for the basic knowledge).

4.1 Benchmark model

The first result comes with the simplest methodology described in the previous chapter

for the yearly data. The traffic values used come from Figure 3.1 as total values. The

prediction is made under a two states Markov chain and normal distribution for

random values generation in the Monte Carlo simulation. The result gives an idea of

how the predictive model is working and if the results are coherent.

This result is going to be produced from ten simulations so that all the simulations

can properly be seen.

30
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Figure 4.1: First prediction over next four years. Source: Self made.

The graph shows the real data provided by the port for the period 2002-2016 and the

four years prediction. The prediction is carried out from the 10 simulations, and all

of them can be seen as different colour lines. The mean (which is the final prediction

is the blue thicker line) and the standard deviation (green thicker lines wrapping up

the confidence area in gray) are also plotted.

It is hard to predict an exact number of TEUs traffic for the next years (blue line), but

the confidence area gives us an interval of the most probable TEUs traffic prediction.

The more years predicted, the wider the confident area is, this is completely logic

when thinking that each simulation can draw away more and more from the mean

trend.

It is also interesting to see some other middle points inside the code that have been

explained in the last chapter. Figure 4.2a in the next page shows the Markov chain

for each time step predicted over the 10 simulations (where 1 is positive growth and 0

is negative one). Figure 4.2b shows the amount of positive growths in each of the ten

simulations, and the mean of positive growing predicted years (somewhere around 1.4

positive growing years are predicted).



Chapter 4. Results of the predictive model 32

(a) Markov chain states for each simulation.

(b) Amount of positive years in each simulation.

Figure 4.2: Markov chains and growth predictions for each simulation. Source: Self
made.
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It is also possible to see the transition matrix generated for this two states Markov

chain:

T =

PP PN

NP NN

 =

 0.2 0.8

0.375 0.625

 (4.1)

And finally, to know that the Monte Carlo simulation has been performed over a

normal distribution random values with the parameters: µ = 0.19 and σ = 0.22.

The monthly data is also tested, in order to predict the year 2016 (12 months).

The data used is the period 2011-2015 (Figure 3.3b since there is a break and big

alterations before it.

Figure 4.3: First prediction over 2016 monthly. Source: Self made.

This time, the prediction is going on twelve time steps, and that is making the last

steps to have a useless confident area, since it is telling that nearly everything can

happen. The first months are in the line with the previous prediction. Also, this

time the data is closer to 0 and some of the prediction simulations which are getting

more negative growths than positive ones are falling into the negative zone, this can

happens as there is no limit established (which could be), so they are considered as

0 TEUs traffic.
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The monthly data is more difficult to use as a prediction since it has much more

variability and it is needed to predict 12 times more steps per year. But this data

can be useful for the calibration and comparison of methods, since it has much more

volume of TEUs traffic that are useful to fit probability distribution and for the

accuracy of Markov chains probabilities.

Once it is shown that the prelusive predictive model is working, it is time to try

different methods and to calibrate them in order to find the best and final predictive

model.

4.2 Probability distribution calibration

In this section, different probability distributions are tested. As explained in Chapter

3, MATLAB provides us with a distribution fitting tool, and with the combined use

of an automatic testing of all the distributions over any data set it is possible to find

the best fit for any given data set.

For this calibrations, monthly data is used as discussed above, since the amount of

data is twelve times bigger than the yearly data. Therefore, the first step is to check

the best fit for the 2011-2016 data set, but this time saving the last year (2016) for

result comparison and error computation. Also to be mentioned that data has to be

split between negative and positive growths, without this step only normal distribu-

tion can be fitted, so it loses all the interest.

Also, the normal distribution is going to be computed for the same amount of simu-

lation steps, since the objective of this calibration is to compare whether the normal

distribution or the best fit distribution (regarding MATLAB function) is the best

forecast.
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Figure 4.4 shows the distribution fitting for positive and negative growths over the

2011-2015 monthly data:

(a) Positive growths Generalized Pareto fitting. (b) Negative growths Weibull fitting.

Figure 4.4: Best fitting distributions for 2011-2015 monthly data. Source: Self made.

As it is shown in Figure 4.4, the best fits for the positive growths and negative ones

are a Generalized Pareto distribution and a Weibull one respectively. Also the normal

distribution is shown:

Figure 4.5: Normal distribution over all growths data. Source: Self made.

The parameters obtained from this fittings can be seen in Table 4.1. Parameters refer

to the distribution ones, for example in the normal distribution parameter 1 refers to

the mean and parameter 2 to the standard deviation. As it can be seen, the optimal
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fits given by MATLAB have a clearly better fitting values (log-likelihood and AIC)

becoming around twice better in both cases compared to the normal distribution.

Distribution Parameter 1 Parameter 2 Log-Likelihood AIC
Generalized Pareto -2.845e-01 1.924e-01 2.891e+01 -5.383e+01
Weibull 1.696e-01 1.625e+00 2.901e+01 -5.401e+01
Normal 5.863e-03 1.869e-01 1.525e+01 -2.650e+01

Table 4.1: Results of the curve fitting in MATLAB. Source: Self made.

Results of the forecast with Generalized Pareto and Weibull distribution look like

this:

Figure 4.6: Forecast with Generalized Pareto and Weibull distributions. Source: Self
made.

The mean shows a very stable solution, and the confidence area is small enough to

be useful even at twelve steps prediction. The normal distribution shows a similar

graph so it wont be plotted.

The next step is to compare the results and compute the errors in order to determine

the best option for this case. Results can be seen in Table 4.2.
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Month
Real

(2016)
Predicted
Normal

Predicted
GP&W

Confidence
area

Normal

Confidence
area

GP&W
January 25046 24195 24194 4354 4247
February 21557 24225 24322 6077 5936
March 20078 24384 24456 7445 7266
April 22526 24566 24643 8673 8416
May 20170 24719 24765 9888 9554
June 1656 24845 24894 10891 10547
July 21690 25077 25075 11841 11521
August 25610 25222 25253 12781 12469
September 20971 25263 25379 13676 13258
October 25083 25357 25546 14746 14419
November 21418 25578 25738 15756 15241
December 38189 25791 26003 16823 16351

Table 4.2: Results (in TEUs per time step) comparison between Normal and Gener-
alized Pareto plus Weibull distributions. Source: Self made.

Results in bold are the closer predictions to real value.

Confidence area values represent ± std deviation and are colored in green if real value

falls into it, both methods are producing the same results in terms of it (which means

the prediction is acceptable). Only the 2016 June collapse is out and unpredictable

by the methods. Also RMSE, MAE and MAPE errors (explained in Chapter 2) are

computed:

Error Normal GP&W
MAE 5208.50 5255.33
MAPE 129.98 130.45
RMSE 8114.31 8121.63

Table 4.3: Compared RMSE (in TEU2), MAE (in TEU) and MAPE (percentage)
errors between Normal and Generalized Pareto plus Weibull distributions. Source:
Self made.

As it is shown, the Normal probability distribution is giving a better performance

regarding all three error computation (the lower value the better for all three er-

rors). Despite the other two distributions are better fits for the growth data, normal

distribution reaches a higher level of adaptation for the forecast model in this case.
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4.2.1 2003-2007 distribution calibration

Now the same procedure is followed with the intention of having a second view of

the calibration. The data set goes from 2003 to 2007 and the last year is used again

as real data for comparison. This time, however, the prediction starts at November

2006 in order to avoid the collapse that can be seen in Figure 3.2 since it induces the

predictive model to fail.

As for the comparison, again normal distribution is used, and the best fit for both

positive and negative growths data is a Generalized Extreme Value distribution re-

garding Log-Likelihood and AIC criteria.

Month
Real

(2007)
Predicted
Normal

Predicted
GeV

Confidence
area

Normal

Confidence
area
GeV

January 94586 90272 90857 22566 212780
February 82258 92357 87306 32805 552547
March 97305 94290 89953 41260 591217
April 98249 96268 92124 49047 637584
May 120303 98637 94947 57335 783376
June 110793 100542 97923 64429 817163
July 112635 103216 105721 72207 1036561
August 122744 105034 122648 79827 1821837
September 132857 106300 128843 86887 2133636
October 143082 108147 134196 95687 2058440
November 126466 110829 140333 106338 2096966
December 127380 113673 150907 116716 2277423

Table 4.4: Results (in TEUs per time step) comparison between Normal and Gener-
alized Extreme Value distributions. Source: Self made.

Error Normal GeV
MAE 14107.58 9815.33
MAPE 11.63 8.45
RMSE 17001.47 12343.08

Table 4.5: Compared RMSE (in TEU2), MAE (in TEU) and MAPE (percentage)
errors between Normal and Generalized Extreme Value distributions. Source: Self
made.

This time, the Generalized Extreme Value distribution has a better error performance.
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Despite that, the standard deviation (which defines the confidence area) is way too

much bigger than normal distribution. For example, in December 2007 the standard

deviation with the normal distribution is 116716 and for the generalized extreme value

2277423 which is a totally useless confidence area. So again, the normal distribution

should be used in this case.

4.3 Markov chain states calibration

In this section, the method described in Chapter 3 is tested, in order to figure out the

impact generated due to different Markov chain definitions. This test runs with a four

states Markov chain (PP, PN, NP and NN) regarding positive or negative growths.

The test is carried out for the same data set (predicting 2016 monthly) and with the

same number of simulations (10000).

Also, the calibrations are made with the results coming out from the normal distri-

bution and the generalized Pareto plus Weibull (best distribution fits for positive and

negative growths data respectively) ones in order to compare all of them.

Graphical results are very similar to the previous section so only the numbers are

going to be shown, which is the interesting part for comparative purposes.

As shown, the results are also very acceptable with small confidence areas which give

the most valuable point to the prediction. Also, the errors for the exact (mean) pre-

dictions are computed as usual:

Again normal distribution is giving best results in terms of error (despite that Gen-

eralized Pareto plus Weibull is not giving much worse results). Compared to a two

states Markov chain, the errors are very similar, with the four states chain giving best

results in all of the three errors, which is indicating that the increase of the states has

improved the prediction.
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Month
Real

(2016)

Predicted
4 states
Normal

Predicted
4 states
GP&W

Confidence
area

Normal

Confidence
area

GP&W
January 25046 23771 23782 4383 4249
February 21557 24036 24042 5855 5734
March 20078 23926 24014 6577 6566
April 22526 24276 24380 7524 7441
May 20170 24124 24220 8331 8269
June 1656 24676 24772 9373 9195
July 21690 24559 24746 10087 9966
August 25610 25008 25196 10987 10797
September 20971 24822 25061 11458 11380
October 25083 25261 25568 12218 12204
November 21418 25186 25407 12964 12759
December 38189 25663 25968 13956 13789

Table 4.6: Results (in TEUs per time step) comparison between Normal and Gener-
alized Pareto plus Weibull distributions with four states Markov chain. Source: Self
made.

Error Normal 4 states GP&W 4 states
MAE 5010.00 5080.00
MAPE 128.19 129.01
RMSE 7988.27 8006.21

Table 4.7: RMSE (in TEU2), MAE (in TEU) and MAPE (percentage) errors between
Normal and Generalized Pareto plus Weibull distributions with four states Markov
chain. Source: Self made.

4.3.1 2003-2007 Markov chains calibration

Again, the analysis is repeated for the 2003-2007 data set, which is less stable and

harder to predict, but which can help giving an overview of performance in terms of

comparison between methods.

Results and error computation are shown in Tables 4.8 and :

The generalized extreme value (best fit for positive and negative growths) is giving

again better results in terms of errors, despite that again the confidence area is really

useless as a prediction. For that, it can be said again that the normal prediction

should be considered since the confidence area, which is still big, can be acceptable.
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Error Normal 4 states GeV 4 states
MAE 10943.92 8158.33
MAPE 9.15 7.35
RMSE 13824.62 9906.94

Table 4.8: RMSE (in TEU2), MAE (in TEU) and MAPE (percentage) errors between
Normal and Generalized Extreme Value distributions with four states Markov chain.
Source: Self made.

Month
Real

(2007)

Predicted
4 states
Normal

Predicted
4 states

GeV

Confidence
area

Normal

Confidence
area
GeV

January 94586 95904 96488 24261 315862
February 82258 97403 100199 37226 369659
March 97305 96616 93911 44211 344545
April 98249 100019 101171 51335 520114
May 120303 102727 99903 61063 493933
June 110793 105790 103429 70418 555306
July 112635 106438 104351 76609 578316
August 122744 109667 117042 85534 1255555
September 132857 110824 124483 92586 1379541
October 143082 114205 131350 102543 1485248
November 126466 115394 129982 110173 1552599
December 127380 118810 133749 118766 1634193

Table 4.9: Results (in TEUs per time step) comparison between Normal and Gen-
eralized Extreme Value distributions with four states Markov chain. Source: Self
made.

Again all error terms have been reduced compared to the two states Markov chain

2003-2007 results, which reinforces the previous analysis results.

4.4 Calibration with a different data set

Last tests will be run over data. As it is shown in 3.2 transhipment data induces

a instability for the whole. It might be interesting for the prediction to test it over

import+export data only, since it is more stable and as explained, time series methods

are specially recommendable with this kind of distributions. All the methods are

tested on different data (i/e instead of t+i/e), and the results are shown all together:
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Month Real
Predicted
Normal

Predicted
GP&t-Loc

Predicted
4 states
Normal

Predicted
4 states

GP&t-Loc
January 4359 5441 5450 5256 5271
February 5946 5465 5515 5532 5547
March 6994 5550 5603 5563 5573
April 7628 5647 5720 5721 5752
May 4702 5735 5814 5768 5842
June 356 5798 5913 5921 6007
July 5555 5910 6024 6006 6124
August 5133 5975 6134 6130 6276
September 4418 6011 6232 6183 6361
October 5185 6076 6329 6302 6522
November 5192 6181 6439 6393 6626
December 6512 6277 6566 6515 6800

Table 4.10: Results (in TEUs per time step) of imports and exports predictions for
all the methods (2016). Source: Self made.

Month
Predicted
Normal

Predicted
GP&t-Loc

Predicted
4 states
Normal

Predicted
4 states

GP&t-Loc
January 1344 1320 1324 1298
February 1872 1902 1760 1698
March 2330 2326 2164 2112
April 2759 2805 2552 2490
May 3202 3240 2859 2849
June 3557 3686 3281 3213
July 3938 4061 3672 3569
August 4261 4616 3989 3985
September 4588 5119 4284 4365
October 5004 5440 4597 4836
November 5449 5818 4939 5286
December 5884 6290 5293 5624

Table 4.11: Results for confidence areas of all methods for imports and exports (2016).
Source: Self made.
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Error
Predicted
Normal

Predicted
GP&t-Loc

Predicted
4 stats
Normal

Predicted
4 stats

GP&t-Loc
MAE 1364.00 1434.92 1401.17 1509.42
MAPE 144.07 148.14 147.59 151.54
RMSE 1899.43 1967.39 1952.96 2022.69

Table 4.12: Error comparison between all methods for imports and exports (2016).
Source: Self made.

For this data set, the best distribution fits were found to be Generalized Pareto (for

positive growths) and t-Location (for negative growths).

As expected, the prediction is working way better with these data sets (only im-

port+export container traffic) and it can be seen just having a look at the errors.

The confidence areas are behaving well, with acceptable values, only miss-predicting

the 2016 June collapse.

The normal prediction, but for two-states Markov chain, is the best prediction in

terms of errors this time. Regarding exact prediction (means), the generalized Pareto

plus t-Location with two states chain is giving the most precise results, but checking

confidence areas, the normal prediction has a narrower one and hence a more useful

one.

4.4.1 2003-2007 data calibration

Same analysis is carried out for the 2007 monthly prediction but with only imports

and exports traffics. With this data set, the best distribution for the positive growths

is a Log Logistic distribution and for the negative ones the Generalized Extreme Value

one.
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Month Real
Predicted
Normal

Predicted
LogL&GeV

Predicted
4 states
Normal

Predicted
4 states

LogL&GeV
January 85803 64363 63358 61457 59247
February 65202 66074 63624 66546 64457
March 72754 68086 64548 67013 62555
April 69644 70280 64994 71231 65886
May 71632 72485 65007 71533 63720
June 69041 74729 65995 75980 67637
July 68936 77230 67466 76221 66831
August 70595 79429 71858 80668 72826
September 72152 81200 73760 80731 71209
October 76687 83543 74408 85185 75663
November 66646 86464 75472 85513 74682
December 68175 89140 77441 90501 79017

Table 4.13: Results (in TEUs per time step) of imports and exports predictions for
all the methods (2007). Source: Self made.

Month
Predicted
Normal

Predicted
LogL&GeV

Predicted
4 states
Normal

Predicted
4 states

LogL&GeV
January 16615 49428 13976 57516
February 24767 89164 24462 71495
March 31846 106651 29436 71061
April 38297 123787 37456 98059
May 45353 136047 42240 88524
June 51393 154356 51272 110391
July 57644 180461 56521 120836
August 64010 371162 65568 240364
September 71028 474484 68631 223790
October 80307 467577 76348 250830
November 91351 477867 82455 249459
December 100180 504584 91397 276782

Table 4.14: Results for confidence areas of all methods for imports and exports (2007).
Source: Self made.
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Error
Predicted
Normal

Predicted
LogL&GeV

Predicted
4 stats
Normal

Predicted
4 stats

LogL&GeV
MAE 8997.67 5938.50 9640.33 6312.92
MAPE 12.47 8.01 13.30 8.45
RMSE 11632.19 8284.98 12358.99 9495.45

Table 4.15: Error comparison between all methods for imports and exports (2007).
RMSE (in TEU2), MAE (in TEU) and MAPE (percentage).Source: Self made.

This time the best error performing prediction is the one with two chain states and

the log logistic plus generalized extreme value prediction. The comparison between

these results and the 2016 data set results is very similar to the previous comparison

with transhipment traffic included: this prediction is worse since the data is more

unstable.

Regarding to confidence areas, again the only useful ones are the ones produced by

the normal distribution, and the two states normal method seems to be a bit better

than the four states one.

4.5 Final forecast approach

The objective of this section is to sum up all the calibration results obtained through

the previous ones, and with them be able to take a decision on which method can

fit the yearly data sets (transhipment included and without it). Once the decision

is taken, provide with the two final predictions for the Piraeus port case as the final

result of this study.

All the previous results have been condensed in the form of the three errors that

have been computed for each method. Regarding Peng (2009) and other forecasting

articles, the errors are the decision maker over which method is best for each case.

Despite that, other elements can obviously taken into account since the performance

of confidence areas.
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Method MAE MAPE RMSE
Normal 5208.50 129.98 8114.31
GP&W 5255.33 130.45 8121.63

4 states Normal 5010.00 128.19 7988.27
2016

T+I/E
4 states GP&W 5080.00 129.01 8006.21

Normal 1364.00 144.07 1899.43
GP&t-Loc 1434.92 148.14 1967.39

4 states Normal 1401.17 147.59 1952.96
2016
I/E

4 states GP&t-Loc 1509.42 151.54 2022.69
Normal 14107.58 11.63 17001.47

GeV 9815.33 8.45 12343.08
4 states Normal 10943.92 9.15 13824.62

2007
T+I/E

4 states GeV 8158.33 7.35 9906.94
Normal 8997.67 12.47 11632.19

LogL&GeV 5938.50 8.01 8284.98
4 states Normal 9640.33 13.30 12358.99

2007
I/E

4 states LogL&GeV 6312.92 8.45 9495.45

Table 4.16: Comparison between all methods tested performances based in errors for
Transhipment (T), Import (I) and Export (E) in different periods. RMSE (in TEU2),
MAE (in TEU) and MAPE (percentage). Source: Self made.

From here, the results for all methods for yearly data sets (2002-2016 with and without

transhipments) are summarized in Tables 4.17 and 4.18. Having a look at them and

taking into account Table 4.16, the decision can be made. Analysis are also a 10000

simulation steps.

Mean predicted (TEUs) 2017 2018 2019 2020
Predicted Normal 251486 231172 213319 198198
Predicted GeV&IG 7.67e+31 3.05e+39 2.93e+39 3.11e+39
Predicted Normal 4 states 318019 298000 237897 232144
Predicted GeV&IG 4 states 6.86e+32 3.24e+41 3.11e+41 2.72e+41

Standard deviations 2017 2018 2019 2020
Predicted Normal 79605 102685 117964 129856
Predicted GeV&IG 7.57e+33 3.05e+41 2.93e+41 3.10e+41
Predicted Normal 4 states 58332 110652 115865 125108
Predicted GeV&IG 4 states 5.66e+34 3.24e+43 3.11e+43 2.64e+43

Table 4.17: Results for the four year prediction (including transhipments) of all meth-
ods. Source: Self made.
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Mean predicted (TEUs) 2017 2018 2019 2020
Predicted Normal 37746 35066 31207 28449
Predicted GP&Beta 38496 36472 33165 30764
Predicted Normal 4 states 39085 36564 32645 29704
Predicted GP&Beta 4 states 39897 38045 34572 32240

Standard deviations 2017 2018 2019 2020
Predicted Normal 14960 18399 20322 21926
Predicted GP&Beta 14517 18127 20485 22195
Predicted Normal 4 states 15427 17252 20127 20645
Predicted GP&Beta 4 states 14862 16772 19717 20237

Table 4.18: Results for the four year prediction (without transhipments) of all meth-
ods. Source: Self made.

With all the information, seems that the clear option is to use a normal distribution

(for its performance in error terms and confidence areas), with a very similar yield

between a two states and a four states Markov chain.

Since data is made out of yearly information and it only consists in 15 real values,

the choice in this case is the prediction with a two states Markov chain

and normal distribution. The reason to pick this between the two and four states

chain is that the four states chain reduces the growth probability information to a

half of the two states chain, and it is better to exploit the few data that is available

this time.

Final predictions for Transhipment+Import+Export and Import+Export traffic up

to four years from last available data are plotted in Figures 4.7a and 4.7b.
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(a) Prediction for T+I/E data for the next four years.

(b) Prediction for I/E data for the next four years.

Figure 4.7: Four years prediction for the Piraeus port. Source: Self made.
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Conclusions and future work

The objectives of the study have been accomplished in order to define the most suit-

able predictive model for the Piraeus port case. The model, a time-series analysis

based one, has been successfully adapted to produce results supported on the combi-

nation of Markov chains and Monte Carlo experiment. The decision on which method

to use falls into the comparison between techniques briefly described in the Chapter

2 which indicates that the time-series is the best analysis for this data.

Data provided by the port shows, as expected, that the transhipment traffic induces a

volatile behavior over the total traffic which is translated in an increase of the overall

error computation, since volatility worsens the performance of a time-series based

model.

Results given can be considered useful as a help on decision making for the Piraeus

case. This can be confirmed by two factors. One fact is that the model validation

based on the errors computation is proving that it is working properly according to

other studies validations (Peng et al, 2009; Grifoll, 2018) values. For example, Peng

et al compare different forecasting methods and the best fit is giving a 5442.80 TEU

MAE 3.09% MAPE and 6029.89 TEU2 RMSE, which are higher than some of this

study predictions. The other fact is that the confidence areas in most of the cali-

brations are good enough (narrow enough and with the real solution inside it) to be

considered for decision making.

49
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Time-series forecast models rely directly on the past data, and from two main dif-

ficulties have arisen. In one hand the lack of a broader yearly data set forced the

method to be calibrated under monthly data, which is a solution that worked but

not the desired one since monthly data induces a lot more instability, seasonality and

irregularities than the yearly data, which is a decisive factor for a method such as

time-series that increases drastically its performance without these difficulties. In

this particular model, the Markov chains probabilities are more accurate as the data

available gets larger, and Monte Carlo experiment distributions are more reliable as

well. On the other hand, the irregularities produced even in yearly data due to the

global crisis in 2008, and even the lack of monthly data for that year are considerably

damaging the efficiency of the model.

Despite that, the results were pretty acceptable and other conclusions can be high-

lighted from the calibration tests. First, the increase in Markov chain states seemed

to be a good improve for the model, this can be due to the increase of the transition

matrix size and the consequent larger distribution for probabilities (more cases and

its probabilities induced more accuracy). Nonetheless it is required a broad data set

in order to reach a decent level of precision in each case probabilities, and for this

reason it was decided not to be used for the final yearly prediction which relies on

a shorter data set than the monthly one. Second, the chose of distributions for the

Monte Carlo experiment showed that the normal distribution had a better perfor-

mance overall. The need of splitting the data into negative and positive values in

order to test distribution fittings reduced the data pool, and with it the distribution

fits loses reliability, which sometimes lead to nonsense results. The normal distribu-

tion in this case showed to be more regular and stable in model results performance.

Despite this, this is an element that depends entirely on the data, so it needs to be

decided and tested for each case.

In terms of simulations, the increase of it to produce a better mean and confidence

areas (standard deviation) show a convergence after a determined number. This is a

requirement in order to qualify this method as a working one, and also it useful to
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know the number of simulations needed to reach stability and to invest the minimum

computational cost.

It has also been checked that the increase in steps to be predicted is reducing the

reliability of the solution. This refers to the quick growth of the confidence area when

the time interval for the prediction is increased. It is another decision to make where

the frontier between useful and useless predictions lays, for example when the sum of

the mean prediction and the standard deviation is bigger than a determined percent-

age of the mean itself, and this should be based on experience.

The utility of this time-series based method, allows the user to obtain more valuable

results beyond the prediction itself, and those are probability distributions for the

predicted times, histograms and other interesting statistical profitable benefits that

have not been analyzed for the purposes of this study.

The final conclusion is that the normal distribution combined with a two

states Markov chain for smaller data amounts and the normal distribution

with a four states Markov chain for larger data sets are the best forecast

models produced in the study in terms of error performance (all results

shown at Table 4.16. For the final prediction (yearly and therefore small data set)

a normal distribution two states chain has been used.

This conclusion is supported by Table 4.16 which summarizes the error analysis for

all the tested methods (for import and export, and for transhipment also, for both

predictions 2007 and 2016).

In the line of future research for this predictive model, there are points that could

be improved. First of all, it would be very profitable to study if there is any relation

between the optimum data amount (or minimum) and the performance of Markov

chains (probabilities reliability) and the adaptation of Monte Carlo experiment distri-

butions. Specially for the probabilities, it would be interesting a convergence analysis

regarding the increase of data amounts.

Finally it would be a promising improvement to combine this method with other

variables. Two of them can be highlighted: the use of the GDP method in order to
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implement the economy effect over the traffic (which is very determinant) and the

use of a decomposition technique of the data in different curves (the trend and the

irregularities, seasonality and cyclical components) which is a common used technique

in the time-series methods.
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