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Abstract

Kisspeptins (KPs) and their receptor (GPR54 or KiSS1R) play a key-role in regulation of the

hypothalamic-pituitary-gonadal axis and are therefore interesting targets for therapeutic interven-

tions in the field of reproductive endocrinology. As dogs show a rapid and robust LH response

after the administration of KP10, they can serve as a good animal model for research concerning

KP signaling. The aims of the present study were to test the antagonistic properties of KP ana-

logs p234, p271, p354, and p356 in vitro, by determining the intracellular Ca2+ response of

CHEM1 cells that stably express human GPR54, and to study the in vivo effects of these pep-

tides on basal plasma LH concentration and the KP10-induced LH response in female dogs.

Exposure of the CHEM1 cells to KP-10 resulted in a clear Ca2+ response. P234, p271, p354,

and p356 did not prevent or lower the KP10-induced Ca2+ response. Moreover, the in vivo stud-

ies in the dogs showed that none of these supposed antagonists lowered the basal plasma LH

concentration and none of the peptides lowered the KP10-induced LH response. In conclusion,

p234, p271, p354, and p356 had no antagonistic effects in vitro nor any effect on basal and kis-

speptin-stimulated plasma LH concentration in female dogs.

Introduction

Kisspeptins (KPs), peptides encoded by the KiSS1 gene, are key regulators of the hypotha-

lamic-pituitary-gonadal (HPG) axis. The human KiSS1 gene encodes a peptide of 145 amino

acids that can be cleaved into four peptides with a common C-terminal decapeptide terminat-

ing in RF-amide: KP54, KP14, KP13, and KP10 [1–3]. These four KPs are the natural ligands
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for KiSS1R, a G-protein-coupled receptor (also known as GPR54), and have the same binding

affinity to the receptor, indicating that the C-terminal 10 amino acid sequence has full intrinsic

activity for binding and activation [3–5]. GPR54 is known to be expressed in many mamma-

lian tissues, including brain, pituitary, pancreas, placenta, and smooth muscle of large blood

vessels, but the pivotal role of kisspeptin signaling is in reproductive endocrinology [3–7].

Activation of GPR54 by kisspeptins in the hypothalamus results in activation of GnRH neu-

rons and stimulates GnRH secretion [3,8,9]. Kisspeptins and their receptor play a key role in

negative and positive feedback effects of gonadal steroids on the hypothalamus. In contrast to

kisspeptin neurons, GnRH neurons lack receptors for sex steroids [4,10–12]. Sex steroids stim-

ulate or inhibit the KiSS1 mRNA concentration in the hypothalamus to mediate positive and

negative feedback, respectively [13]. A disruption of kisspeptin signaling, resulting from inacti-

vating mutations of the KiSS1R or KiSS1 gene, results in hypogonadotropic hypogonadism in

humans and mice [2,14,15]. Activating mutation of either of these genes is associated with pre-

cocious puberty in both man and woman [16–18]. Administration of exogenous KP results in

an increase in circulating concentrations of gonadotropins and sex steroids, as has been dem-

onstrated in many species including humans, goats, and dogs [19–22].

The development of kisspeptin antagonists contributed to an improved understanding of

the role of kisspeptin in the reproductive system. Roseweir et al. [23] developed several KP10

analogues and tested their effect on inositol phosphate (IP) release in Chinese hamster ovarian

(CHO) cells stably expressing the human GPR54. Peptide 234 (p234) had the most potent

inhibitory effect on IP release in vitro [23]. Intracerebroventricular administration of p234

resulted in delayed vaginal opening in rats (an indicator of puberty) and it prevented an

increase in the circulating LH concentration when it was co-administrated with KP10. How-

ever, p234 alone did not lower the basal plasma LH concentration in intact rats and mice.

Additionally, repeated peripheral administration of p271 (p234 with a penetratin tag to allow

passage through the blood-brain barrier) could prevent the post-castration rise in circulating

LH in male rats and it blunted the KP10-induced rise in plasma LH concentration in mice and

rats [23,24]. Furthermore, continuous intracerebroventricular administration of p271 inhib-

ited LH pulses in intact and ovariectomized ewes [25,26].

It is beyond question that KPs and their receptor play a key role in regulation of the HPG

axis. These peptides are therefore interesting targets for therapeutic interventions concerning

the endocrinological control of reproductive function in mammals. As female dogs exhibit a

robust rise in plasma LH, FSH, and estradiol concentrations after peripheral administration of

KP10 [22], they represent a good model in which to explore the in vivo effects of potential KP

agonists and antagonists.

The aims of the present study were to test the antagonistic properties of the kisspeptin

antagonists p234, p271, p354, and p356 on Ca2+ release in vitro, by using CHEM1 cells that sta-

bly express the human KiSS1R, and to determine the in vivo effect of these peptides on the

basal plasma LH concentration and the KP10-induced LH response in female dogs.

Materials and methods

Peptides

The following peptides were tested for antagonistic properties on the kisspeptin receptor: p234

((D-Ala)-Asn-Trp-Asn-Gly-Phe-Gly-(D-Trp)-Arg-Phe-NH2), p271 (Arg-Arg-Met-Lys-Trp-

Lys-Lys-Tyr-(D-Ala)-Asn-Trp-Asn-Gly-Phe-Gly-(D-Trp)-Arg-Phe-NH2) [24], p354 ((D-Ala)-

Tyr-Asn-Phe-Asn-Gly-Phe-Gly-(D-Trp)-Arg-Phe-NH2), and p356 ((D-Ala)-Tyr-Asn-Trp-Asn-

Gly-Phe-Gly-(D-Trp)-Lys-Phe-NH2). Peptide 354 and p356 are next generation analogs refining
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p234. They bind and inhibit kisspeptin action on inositol generation in the nanomolar range

(unpublished data).

All were produced by the American Peptide Company (APC, Sunnyvale CA, USA) at

>95% purity. Human KP10 (hKP10, Tyr-Asn-Trp-Asn-Ser-Phe-Gly-Leu-Arg-Phe-NH2), and

canine KP10 (cKP10, Tyr-Asn-Trp-Asn-Val-Phe-Gly-Leu-Arg-Tyr-NH2) were also purchased

from APC at>95% purity. All peptides were dissolved in Aquadest (MilliQ1, Millipore BV,

t]he Netherlands) to a stock concentration of 10−4 M. The stock solutions were further diluted

to the needed concentrations, with HBSS+++ (Hank’s Balanced Salt Solution (HBSS, Gibco,

Life Technologies, the Netherlands) supplemented with 10 mM HEPES (Gibco, Life Technolo-

gies, the Netherlands), 0.05% w/v Bovine Serum Albumin (BSA, A7030, Sigma Aldrich, the

Netherlands) and 2.5 mM probenecid (P8761, Sigma Aldrich, the Netherlands, using 500 mM

stock freshly prepared in 1 M NaOH). The peptides for in vivo use, were dissolved in dimethyl-

sulfoxide (DMSO) and water for injection to achieve a concentration of 200 μg peptide antago-

nist per ml. Final solutions contained 2% DMSO or less. The solution was then divided into 10

ml portions, stored at -20˚C, and thawed within one hour before use.

Flow cytometric calcium flux assay

In vitro analyses of the effects of kisspeptin and kisspeptin antagonists, were performed

using HTS032C cells (rat hematopoietic CHEM1 cells expressing endogenous Gα15 and,

stably expressing the human GPR54 receptor (Millipore BV, the Netherlands), CHEM1-

GPR54. Cells were counted and suspended in HBSS+++ at a concentration of 5�106 cells/

ml. To load the cells with the fluorescent dye ester they were incubated in HBSS+++

adjusted to a concentration of 2 μM Fluo-3 AM (Molecular Probes, Life Technologies,

the Netherlands) for 1h at 37˚C under agitation in the dark. After incubation, the cells

were washed by adding HBSS+++ to a volume of 10 ml followed by centrifugation (5

min, 150 x g) to remove excess of Fluo-3AM. The supernatant was discarded, the cell pel-

let was resuspended to 106 cells/ml in HBSS+++, and 225 μl labeled cells (106 cells/ml

HBSS+++) were pipetted into 5 ml high optical clarity polystyrene Round-Bottom Tubes

(Falcon 352052, Becton Dickinson, the Netherlands). The cells were aspirated by the flow

cytometer (FacsCalibur, Becton Dickinson, the Netherlands) and their fluorescence was

assessed by using the FL1 channel at 10 ms intervals during a total of 60 seconds, accord-

ing to the following procedure. During the first 10 seconds the baseline fluorescence due

to binding of spontaneously released Ca2+ to the ester into the Fluo-3–Ca2+-complex was

measured. Thereafter the tube was removed briefly and 25 μl peptide (see below) was

added, after which aspiration and analysis continued. For statistical analyses fluorescent

data recorded during the time interval 30–60 seconds after initiation of measurement

were used.

Calcium responses of CHEM1-GPR54 cells induced by human and

canine KP10

In order to construct a dose-response curve, CHEM1 cells were stimulated with 10−13 M to

10−5 M (10-fold dilution steps) of hKP10 and cKP10. Separate tubes were used for each con-

centration of KP10 starting with the lowest concentration (10−13 M) to prevent contamination

by residuals in the internal system of the flow-cytometer. In negative control tubes, 25μl HBSS

+++ was added to the cells after 10 seconds of baseline fluorescence measurement. Experi-

ments were performed 3 times. Representative flow cytometry results are depicted in Fig 1.
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Fig 1. FACS analysis of CHEM1-GPR54 cells before and after addition of human KP10. Representative results of FACS analysis of the

calcium flux after addition of different concentrations (10−13 to 10−5 M) of human KP10 to CHEM1-GPR54. P4 (0-10S) and P5 (30-60S) were

the time frames in which the fluorescence intensity of cells was registered and the means of baseline and stimulated levels were calculated.

Human KP10 was added during the gap between P4 and P5, 10–30 seconds after the start of the FACS analysis. The concentrations of

human KP10 are indicated in the upper right corner of each plot.

https://doi.org/10.1371/journal.pone.0179156.g001
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Antagonists impact on the human and canine KP10 induced calcium

responses of CHEM1-GPR54 cells

Initially the concentrations 10−13 M to 10−5 M of the four antagonists (p234, p271, p354, and

p356) were tested in the same manner as human and canine KP10 concentrations to determine

whether these peptides gave rise to an intrinsic calcium flux. We then assessed whether these

antagonists could compete with KP10 for its receptor. To test the effect of pre-incubation of

the cells with the antagonists (in increasing concentrations from 10−13 M to 10−5 M) on the

KP10 induced calcium response, the concentration of KP10 that resulted in a sub-maximum

calcium response was used. For both human and canine KP10, the concentration of 10−8 M

KP10 was located on the linear part of the sigmoid dose-response curve (Fig 2A and 2B) and

this concentration was considered to result in a sub-maximum calcium response. For this pur-

pose 25 μl quantities of the antagonists were added to 200 μl of Fluo-3 AM labelled cells (106

cells/ml) and incubated for 15 min. Next, after baseline measurements of fluorescence for 10

seconds in the flowcytometer, the tubes were briefly removed for the addition of 25 μl of 10−8

M KP10 and the measurement was continued. As a control, 10−8 KP10 was added to 200 μl

cells with 25 μl HBSS+++, that had not been exposed to an antagonist. Peptides p354 and p356

were tested three times with both human and canine KP10; while peptides p234 and p271 were

tested three times with human KP10 and once with canine KP10.

Animals

Thirteen adult anestrous Beagle bitches were used for this study. Six dogs with a median age of

89 months (range 43–122 months) were used as control group, receiving cKP10 without an

antagonist. Eight dogs with a median age of 52 months (range 31–116 months) were used for

the antagonist experiments. One dog was first used in the control group and 12 months later

for the antagonist experiments. Of the eight dogs used for the antagonist experiments, four

received p271, p354, and p356. In two of the eight dogs both p354 and p356 were tested, while

in the remaining two dogs only p271 was tested, in order to test every antagonist in 6 dogs.

The time between testing of different kisspeptin antagonists was at least 5 days (range 5–15

days) to ensure that there were no peptide residues. Kisspeptin antagonist p234 per se was not

tested in vivo because p271 is in fact p234 with a penetratin tag to enhance passage across the

blood-brain barrier, as has been described for use with peripheral administration [24].

All dogs were born and raised in the Department of Clinical Sciences of Companion Ani-

mals and were accustomed to the laboratory environment and procedures such as the collec-

tion of blood. They were housed in pairs in indoor/outdoor runs, fed a standard commercial

dog food once daily, and provided with water ad libitum.

All dogs were examined thrice weekly for swelling of the vulva and serosanguineous vaginal dis-

charge, signifying the onset of proestrus [27]. Plasma progesterone concentration was measured

thrice weekly from the start of proestrus until it exceeded 13–16 nmol/l, at which time ovulation is

assumed to occur [28–30]. Anestrus was defined as the period from 100 days after ovulation to the

onset of proestrus, as indicated by vulvar swelling and serosanguineous discharge.

Experimental design of in vivo study

Kisspeptin antagonists (50 μg/kg/h) were administered continuously for three hours via a cath-

eter in the cephalic vein. Two hours after the start of the infusion, a single bolus of cKP10

(0.5 μg/kg) was administered intravenously. Blood samples were collected from the jugular

vein by venipuncture at -40 min and 0 min before the antagonist infusion, and then every 30

In vitro and in vivo effects of kisspeptin antagonists on GPR54 activation
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Fig 2. Dose response curves of human and canine KP10 on CHEM1-GPR54 cells. Dose response curves of Ca2+

responses (median fluorescence; n = 3) of CHEM1-GPR54 cells for concentration ranges of human (a) and canine (b)

KP10. The error bars represents the range (min and max). * indicates a significant difference (P<0.05) compared to

the control (no KP10). ** indicates a significant difference between two consecutive concentrations.

https://doi.org/10.1371/journal.pone.0179156.g002
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min for two hours. After the administration of cKP10, blood samples were collected at 10, 20,

40, and 60 min (i.e., 130, 140, 160, and 180 min after the start of the antagonist infusion).

As a control, KP stimulation tests (without the administration of a kisspeptin antagonist)

were performed in six dogs. Blood samples were collected from the jugular vein by venipunc-

ture at -40 min and 0 min before, and then at 10, 20, 40, and 60 min after administration of

cKP10 (0.5 μg/kg). Plasma LH concentrations were measured in all blood samples.

Hormone assays

Plasma progesterone concentrations were measured thrice weekly during the follicular phase

to determine the ovulation period, using a I-125 radioimmunoassay previously validated for

ovulation timing [31]. The intra- and interassay coefficients of variation (CVs) were 6 and

10.8%, respectively, and the limit of quantitation was 0.13 nmol/l.

Plasma LH concentrations were measured with a heterologous radioimmunoassay vali-

dated for the dog, as described previously [32,33]. The intra- and interassay CVs for values

above 0.5 μg/l were 2.3 and 10.5%, respectively, and the limit of quantitation was 0.3 μg/l.

Data analysis

The effects of the various peptides on CHEM1-PGR54 cells were assessed by the Flowcyto-

metric calcium flux assay in order to construct a dose response curve for human and canine

KP10, to select an optimal dose of the KP10s for in vitro antagonist testing, and to determine

whether different concentrations of the antagonists (p234, p271, p354, and p356) resulted in

an intrinsic calcium response. The differences in the mean fluorescence intensity (as a measure

for the calcium response) before and after addition of the peptide were calculated and used for

statistical analysis using SPSS1 for Windows, version 22 (SPSS Inc., Chicago, USA). A multi-

variate general linear model was set up to analyze differences in calcium response between the

different concentrations, with Dunnett’s test as a post hoc procedure for the antagonists and

Bonferroni’s test for the agonists. A probability-probability plot of all used peptides showed

that the residuals of the ANOVA were normally distributed.

To analyze the effects of different concentrations of the KP antagonists on the calcium

response due to KP10 addition, the differences in fluorescence before and after KP10 were

calculated (the calcium response). The calcium response ratios were calculated as the cal-

cium response of the CHEM1-GPR54 cells pre-incubated with different concentrations of

KP antagonist and the control (the calcium response of the cells without KP antagonist).

These calcium response ratios were log transformed and used for further analysis by uni-

variate analysis of variance, with the Dunnett’s test as post hoc test. The calcium response

ratios were set as dependent variables and the different concentrations of the antagonists

and the two types of KP10 were used as fixed factors. The residuals were normally

distributed.

In both groups of dogs (experimental and control), the basal plasma LH concentration

was calculated for each dog as the mean of the values at –40 and 0 min before cKP10 or

antagonist administration. All LH values that exceeded the mean of all basal samples plus 3

SD were attributed to pulsatile secretion and were treated as outliers and excluded from sta-

tistical analysis. Log transformation of plasma LH concentrations was used because data

were not normally distributed. A linear mixed model was used to analyze differences in

plasma LH concentrations before and after KP10, with or without a kisspeptin antagonist

(group effects: p271, p354, p356, and controls), with Bonferroni correction. P<0.05 was

considered significant.
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Ethics of experimentation

This study was approved by the Ethical Committee of Utrecht University (DEC III.08.076)

conform Dutch legislation.

Results

Calcium responses of CHEM1-GPR54 cells induced by human and

canine KP10

The addition of KP10 to the CHEM1 cells containing high endogenous levels of the G protein

Gα15 and expressing human GPR54 resulted in a calcium response, the mean fluorescence

being dependent on the number of cells responding to KP10 (Fig 1). The dose-response curves

for human and canine KP10 are shown in Fig 2A and 2B, respectively. The EC50 of human

and canine KP10 is 1.2 nM and 8 nM, respectively. Since for both human and canine KP10 the

concentration of 10−8 M KP10 was located on the linear part of the sigmoid dose-response

curve, this concentration was used to test the effects of the antagonists on the KP10-induced

calcium response of the CHEM1 cells.

Calcium responses of CHEM1-GPR54 cells induced by KP antagonists

There was no significant intrinsic calcium response in the CHEM1-GPR54 cells at any of the

tested concentrations (10−13 to 10−5 M) of p234, p271, and p254. Only at the highest concen-

tration (10−5 M) of p356 a clear calcium response (P = 0.001) was observed (Fig 3).

Antagonists impact on the human and canine KP10 induced calcium

responses of CHEM1-GPR54 cells

The difference in the calcium responses between human and canine KP10 was not significant

(P = 0.09). Fig 4 shows the calcium responses due to addition of human KP10 to CHEM

1-GPR54 cells after pre-incubation at different concentrations of the different antagonists. The

differences in the calcium response ratio between the controls and all concentrations of

Fig 3. Dose response curves of p234, p271, p354 and p356 on CHEM1-GPR54 cells. Dose response curve of Ca2+ responses

(median fluorescence; n = 3) of CHEM1-GPR54 cells concentrations ranges of kisspeptin antagonist p234, p271, p354, and p356. The

error bars represents the range (min and max). * indicates a significant difference (P<0.05) from control (zero).

https://doi.org/10.1371/journal.pone.0179156.g003
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antagonists p354, p234, and p271 were not significant (P = 1.00). The calcium response ratio

of p356 was smaller than the negative control only at the highest concentration of 10−5 M

(P<0.001).

Effects of the antagonists on plasma LH concentration in female dogs

In order to understand how the kisspeptin antagonists would affect reproduction, anestrous

female dogs were exposed to the antagonists. The median plasma LH concentrations before

and during the kisspeptin antagonist infusion and before and after canine KP10 administra-

tion are shown in Table 1. The continuous intravenous administration of the antagonists

(p271, p354, and p356) did not cause significant alterations in basal plasma LH concentrations

(Fig 5). Administration of cKP10 resulted in a significant increase (P<0.001) in plasma LH

concentration in all bitches, in all groups. In all groups plasma LH concentration was maxi-

mum at 10 min after cKP10 administration and then decreased to basal levels at 60 min. The

median maximum increment in plasma LH concentration was 12.2 μg/L (range 4.7–18.2 μg/L)

during p271 administration; 8.1 μg/L (range 5.0–12.5 μg/L) during p354 administration;

8.1 μg/L (range 6.3–18.3 μg/L) during p356 administration, and 6.5 μg/L (range 2.8–24.7 μg/L)

in the control group. Differences in plasma LH concentration between the experimental

groups and the controls before and after cKP10 administration were not significant (P = 0.20).

Discussion

In the present study, the antagonistic properties of four peptides (p234, p271, p354, and p356)

were studied in vitro by using CHEM1 cells that stably express human GPR54 and in vivo by

using anestrous female dogs as a model to test antagonistic properties of these peptides on

basal and KP10-stimulated plasma LH concentrations. Since KP signaling is essential for nor-

mal functioning of the HPG-axis, KP and its receptor are interesting targets for therapeutic

interventions concerning reproductive function, such as induction of ovulation or contracep-

tion. The dog appeared to be particularly sensitive to exogenous KP10 and thus a good model

for KP inhibition studies such as testing antagonistic effects of KP analogs [22]. KP signaling is

also an interesting target for investigation of nonsurgical contraception in dogs.

Pet overpopulation and stray dogs cause major problems world-wide. A reduction in the

number of stray dogs will result in a decreased risk of dog bites and the incidence of rabies in

humans [34]. At present the only effective, reliable, and permanent method for contraception

in this species is gonadectomy. This procedure requires specially trained people, is time con-

suming and costly, is traumatic and presents surgical and anesthetic risks for the animal [35].

A nonsurgical method that results in lifelong contraception after a single treatment would be

of great value for sterilization of a large portion of the feral population within a relatively short

time. The present study is therefore of importance for both human and canine medicine.

Canine and human KP10 differ at two amino acid positions [22], but these differences do

not affect receptor activation, as both peptides resulted in similar calcium responses. The pep-

tide antagonists are KP10 analogs with substitutions at several positions, which should result

in good receptor binding affinity but reduced receptor activation [36]. None of the peptides

tested in the present study prevented or inhibited the KP10-stimulated calcium response and

thus receptor activation. This is in contrast to the findings of Roseweir et al. [23], who showed

that p234 resulted in a 93% inhibition of KP10-induced inositol phosphate (IP) production in

CHO cells that express GPR54. As both IP and Ca2+ can be used as a measure of receptor acti-

vation, the use of different methods in studying the antagonistic properties of p234 is not likely

to be the cause of the contradictory results between the study of Roseweir et al. [23] and the

present study. All peptides used in the present study were from the same batch, but different
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Fig 4. Calcium responses of CHEM1-GPR54 cells to human KP10 after incubation with different concentrations of p234, p271, p354 and p356.

The median (n = 3) Ca2+ response of CHEM1-GPR54 cells to the addition of 10−8 M human KP10 and 10−13–10−5 M of p234 (a), p271 (b), p354 (c), and

p356 (d). The error bars represents the range (min and max). * indicates a significant difference from control (no antagonist).

https://doi.org/10.1371/journal.pone.0179156.g004

Table 1. Median (and range) plasma LH concentrations (μg/L). * = min. after cKP10 administration.

Group Basal t = 30 t = 60 t = 90 t = 120 t = 130 / t = 10* t = 140 / t = 20* t = 160 / t = 40* t = 180 / t = 60*

controls 1.8 (1.3–

5.5)

n/a n/a n/a n/a 8.5 (5.1–26.8) 5.2 (4.0–11.9) 3.3 (2.5–5.2) 2.5 (1.3–3.5)

p354 4.2 (2.8–

6.7)

3.7 (2.1–

13.1)

3.2 (2.2–7.2) 3.6 (3.0–

6.3)

5.2 (2.6–

15.7)

13.5 (8.4–20.3) 10.0 (5.5–13.0) 6.4 (4.7–9.1) 4.7 (3.7–9.9)

p356 4.3 (2.8–

6.0)

4.1 (2.4–

12.8)

3.9 (2.2–7.7) 4.5 (2.8–

6.7)

4.9 (2.1–

10.4)

12.8 (9.1–23.1) 8.7 (7.1–13.4) 6.9 (3.7–12.8) 4.7 (3.6–12.8)

p271 4.0 (2.9–

5.9)

3.9 (2.2–5.4) 5.2 (2.5–

10.0)

4.5 (2.8–

6.3)

6.0 (3.2–7.5) 16.2 (9.3–24.1) 10.0 (5.7–12.6) 6.4 (4.8–8.8) 4.8 (3.5–7.3)

Median and range of plasma LH concentrations before and during antagonist p271, p354, and p356 infusion. At t = 120 min canine KP10 (0.5 μg/kg) was

administered intravenously. n = 6 dogs per group.

https://doi.org/10.1371/journal.pone.0179156.t001
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from the batch used by Roseweir et al. [23], which may explain different results. However, all

of the peptides used in the present study had >95% purity and in preliminary studies (unpub-

lished data) other batches of the peptides were used with similar results as described here. It is

therefore very unlikely that the lack of antagonistic properties of p234 was due to a poor batch.

Poor solubility of the peptides could also result in a lack of effects but all were found to be

quickly and apparently completely dissolved in the protocol used in this study and there were

no visible residues in the vials.

Although several studies have shown that some of the used antagonists, particularly p234,

have antagonistic properties on the KiSS1R in vitro (and ex vivo) [23,36–39] and in vivo in

mice [23], rats [24,40,41], sheep [26,42,43], monkeys [44], and fish [45], the present study did

not demonstrate antagonist activity of these peptides. The failure of the antagonists to exhibit

activity in the current study therefore presents a conundrum. Since there are differences in the

sequence of the canine KP receptor and KP10 it is possible that the antagonists bind poorly

even though KP10 itself appears to bind well based on the efficacious stimulation of LH. We

are unable to make a judgement on these possibilities in the absence of pharmacokinetic and

binding studies which were not conducted in the current study.

In the present study, CHEM1-GPR54 cells in suspension were used, in contrast to the study

of Roseweir et al. [23], where adherent CHO cells were used for testing the antagonistic effects

of KP antagonists (including p234). In order to rule out that the effects of KP analogs are influ-

enced by the method of cell culture, preliminary studies has been performed by using adherent

CHEM1-GPR54 cells and a calcium flux assay (unpublished data). In those preliminary stud-

ies, human- and canine KP10 induced a clear calcium response, but this response could not be

Fig 5. The plasma LH concentration during kisspeptin antagonist infusion and single canine KP10 administration. The median plasma LH

concentration (μg/L) during continuous infusion of 50 μg/kg/h of different KP antagonists and the controls. n = 6 dogs per group. At t = 120 min 0.5 μg canine

KP10/kg was administered intravenously. The antagonist infusion started at t = 0 min and lasted until t = 180 min (grey bar). The arrow indicates the time of

cKP10 administration.

https://doi.org/10.1371/journal.pone.0179156.g005
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inhibited by p234 or p271. The amount of repeats was too low to perform statistics and to pub-

lish. A major advantage of flow cytometry with cells in suspension is that it is less time-con-

suming and therefore it is possible to retrieve a large quantity of data in a relatively short time.

The fact that the adherent cell line showed similar effects of both the KP agonists and p234 on

CHEM1-GPR54 cells as the results in the present study, a lack of antagonistic effect appears

not due to the use of cells in suspension.

Since peptide antagonists must compete for receptor (GPR54) occupation with the agonist,

KP10, a superior binding affinity and a more rapid receptor on-rate of KP10 might hide antag-

onistic effects. Therefore, the cells were incubated with the antagonist for 15 min before the

agonist, KP10, was added. Furthermore, a wide range of concentrations of the antagonists

were tested to determine whether they could compete with KP10. The concentration of 10−8

hKP10 is the same as that used in the study of Roseweir et al. [23] and it resulted in a submaxi-

mal calcium response and should be ideal for the purpose of competitive binding studies.

Addition of one of the peptides, p356, resulted in an intrinsic calcium response at the high-

est concentration (10−5 M p356). The difference in the intracellular calcium concentration

before and after KP10 addition was therefore smaller. This explains the significantly lower

KP10-induced calcium response ratio than observed for other concentrations and other pep-

tides, which however was not due to an antagonistic effect of p356.

In keeping with the in vitro results of the present study, none of the supposed antagonist

peptides had an antagonistic effect in vivo in anestrous bitches. The kisspeptin antagonists

were administered intravenously in a dose of 50 μg/kg/h, and had no effect on either the basal

plasma LH concentration during the continuous administration or on the KP10-induced LH

response. These findings are in line with a previous study in female dogs [46]. In contrast,

antagonistic effects at doses comparable to those used in the present study have been reported

in rats. Adult male rats received an intraperitoneal injection of 5 nmol p271 every hour for

three hours. The last dose of p271 was combined with an intraperitoneal or intracerebroventri-

cular injection of KP10. The KP10-induced LH response was absent after intraperitoneal injec-

tion and was blunted after intracerebroventricular administration [24]. These results may

suggest species-related differences in the effects of KP antagonists.

Other studies with p271 in adult castrated male dogs and adult anestrous bitches conducted

at our facilities, using an experimental design comparable to that in the present study, were

performed with doses of up to 600 μg/kg/h. These doses also had no effect on plasma LH con-

centration in the castrated male dogs or on the KP10-induced LH response in the female dogs

(unpublished data). It is therefore unlikely that the lack of antagonistic effects is related to the

dose of 50 μg/kg/h used in the present study.

Sensitivity to exogenous KP10 differs according to the stage of the reproductive cycle, as

has been shown in rats, ewes, bitches, and women [19,46–48]. In the bitch, the highest

KP10-induced LH response was obtained during anestrus and the lowest was during the follic-

ular phase [46]. It is possible that the effects of a KP antagonist also differ among the cycle

stages. However, p271 administration to bitches during different stages of the estrous cycle

(including anestrus, the follicular phase, and during two stages of the luteal phase) did not

result in a decrease in the basal plasma LH concentration nor did it lower the KP10-induced

LH response [46]. Consequently, it appears unlikely that the other peptides (p234, 354, and

356) will have antagonistic effects in dogs during stages of the estrous cycle other than

anestrus.

Our findings therefore suggest caution in utilisation of these antagonists across species in
vivo and different signaling monitoring systems. It is imperative to thoroughly characterise

binding kinetics and signaling of antagonists at the receptor of interest, metabolic clearance

In vitro and in vivo effects of kisspeptin antagonists on GPR54 activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0179156 June 26, 2017 12 / 16

https://doi.org/10.1371/journal.pone.0179156


rates and modes of administration. The current study is therefore of value in alerting research-

ers to this.

In conclusion, the KP antagonists p234, p271, p354, and p356 did not have antagonistic

effects on CHEM1-GPR54 cells, nor did the peptides p271, p354, and p356 have antagonistic

effects in anestrous dogs. Based on the effects p356 on the CHEM1-GPR54 cells, it can be con-

cluded that this peptide is a partial agonist rather than an antagonist.
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receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons

and fertility. Neuron 2006; 52(2):271–80. https://doi.org/10.1016/j.neuron.2006.07.023 PMID:

17046690

11. Mikkelsen JD, Bentsen AH, Ansel L, Simonneaux V, Juul A. Comparison of the effects of peripherally

administered kisspeptins. Regul Pept 2009 Jan 8; 152(1–3):95–100. https://doi.org/10.1016/j.regpep.

2008.10.001 PMID: 18940206

12. Roseweir AK, Millar RP. The role of kisspeptin in the control of gonadotrophin secretion. Hum Reprod

Update 2009 Mar-Apr; 15(2):203–212. https://doi.org/10.1093/humupd/dmn058 PMID: 19109311

13. Smith JT, Clay CM, Caraty A, Clarke IJ. KiSS-1 messenger ribonucleic acid expression in the hypothal-

amus of the ewe is regulated by sex steroids and season. Endocrinology 2007; 148(3):1150–7. https://

doi.org/10.1210/en.2006-1435 PMID: 17185374

14. Lapatto R, Pallais JC, Zhang D, Chan Y, Mahan A, Cerrato F, et al. Kiss1-/- mice exhibit more variable

hypogonadism than Gpr54-/- mice. Endocrinology 2007; 148(10):4927–4936. https://doi.org/10.1210/

en.2007-0078 PMID: 17595229

15. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism

due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 2003

Sep 16; 100(19):10972–10976. https://doi.org/10.1073/pnas.1834399100 PMID: 12944565

16. Teles M, Bianco SDC, Brito V, Trarbach E, Kuohung W, Xu S, et al. A GPR54-activating mutation in a

patient with central precocious puberty. N Engl J Med 2008; 358(7):709–15. https://doi.org/10.1056/

NEJMoa073443 PMID: 18272894

17. Rhie Y, Lee K, Ko J, Lee W, Kim J, Kim H. KISS1 gene polymorphisms in Korean girls with central pre-

cocious puberty. J Korean Med Sci 2014; 29(8):1120–5. https://doi.org/10.3346/jkms.2014.29.8.1120

PMID: 25120323

In vitro and in vivo effects of kisspeptin antagonists on GPR54 activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0179156 June 26, 2017 14 / 16

https://doi.org/10.1074/jbc.M104847200
https://doi.org/10.1074/jbc.M104847200
http://www.ncbi.nlm.nih.gov/pubmed/11457843
https://doi.org/10.1056/NEJMoa035322
https://doi.org/10.1056/NEJMoa035322
http://www.ncbi.nlm.nih.gov/pubmed/14573733
https://doi.org/10.1007/400_2007_050
https://doi.org/10.1007/400_2007_050
http://www.ncbi.nlm.nih.gov/pubmed/18193176
https://doi.org/10.1210/er.2009-0005
http://www.ncbi.nlm.nih.gov/pubmed/19770291
https://doi.org/10.3109/19396368.2011.651555
http://www.ncbi.nlm.nih.gov/pubmed/22376279
https://doi.org/10.1007/s00125-006-0343-z
http://www.ncbi.nlm.nih.gov/pubmed/16826407
https://doi.org/10.1124/pr.110.002774
http://www.ncbi.nlm.nih.gov/pubmed/21079036
https://doi.org/10.1523/JNEUROSCI.5486-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20573904
https://doi.org/10.1016/j.yfrne.2011.01.001
http://www.ncbi.nlm.nih.gov/pubmed/21216259
https://doi.org/10.1016/j.neuron.2006.07.023
http://www.ncbi.nlm.nih.gov/pubmed/17046690
https://doi.org/10.1016/j.regpep.2008.10.001
https://doi.org/10.1016/j.regpep.2008.10.001
http://www.ncbi.nlm.nih.gov/pubmed/18940206
https://doi.org/10.1093/humupd/dmn058
http://www.ncbi.nlm.nih.gov/pubmed/19109311
https://doi.org/10.1210/en.2006-1435
https://doi.org/10.1210/en.2006-1435
http://www.ncbi.nlm.nih.gov/pubmed/17185374
https://doi.org/10.1210/en.2007-0078
https://doi.org/10.1210/en.2007-0078
http://www.ncbi.nlm.nih.gov/pubmed/17595229
https://doi.org/10.1073/pnas.1834399100
http://www.ncbi.nlm.nih.gov/pubmed/12944565
https://doi.org/10.1056/NEJMoa073443
https://doi.org/10.1056/NEJMoa073443
http://www.ncbi.nlm.nih.gov/pubmed/18272894
https://doi.org/10.3346/jkms.2014.29.8.1120
http://www.ncbi.nlm.nih.gov/pubmed/25120323
https://doi.org/10.1371/journal.pone.0179156


18. Mazaheri A, Hashemipour M, Salehi M, Behnam M, Hovsepian S, Hassanzadeh A. Mutation of kisspep-

tin 1 gene in children with precocious puberty in isfahan city. Int J Prev Med 2015; 6:41–41. https://doi.

org/10.4103/2008-7802.156839 PMID: 26015864

19. Dhillo WS, Chaudhri OB, Thompson EL, Murphy KG, Patterson M, Ramachandran R, et al. Kisspeptin-

54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle

in women. J Clin Endocrinol Metab 2007; 92(10):3958–3966. https://doi.org/10.1210/jc.2007-1116

PMID: 17635940

20. Hashizume T, Saito H, Sawada T, Yaegashi T, Ezzat AA, Sawai K, et al. Characteristics of stimulation

of gonadotropin secretion by kisspeptin-10 in female goats. Anim Reprod Sci 2010 Mar; 118(1):37–41.

https://doi.org/10.1016/j.anireprosci.2009.05.017 PMID: 19574004

21. George JT, Anderson RA, Millar RP. Kisspeptin-10 stimulation of gonadotrophin secretion in women is

modulated by sex steroid feedback. Hum Reprod 2012; 27(12):3552–3559. https://doi.org/10.1093/

humrep/des326 PMID: 22956346

22. Albers-Wolthers KHJ, De Gier J, Kooistra HS, Rutten VPMG, Van Kooten PJS, De Graaf JJ, et al. Iden-

tification of a novel kisspeptin with high gonadotrophin stimulatory activity in the dog. Neuroendocrinol-

ogy 2014; 99:178–189. https://doi.org/10.1159/000364877 PMID: 24902774

23. Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, et al. Discovery of

potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neu-

rosci 2009 Mar 25; 29(12):3920–3929. https://doi.org/10.1523/JNEUROSCI.5740-08.2009 PMID:

19321788

24. Pineda R, Garcia-Galiano D, Roseweir A, Romero M, Sanchez-Garrido MA, Ruiz-Pino F, et al. Critical

roles of kisspeptins in female puberty and preovulatory gonadotropin surges as revealed by a novel

antagonist. Endocrinology 2010; 151(2):722–730. https://doi.org/10.1210/en.2009-0803 PMID:

19952274

25. Smith JT, Li Q, Yap KS, Shahab M, Roseweir AK, Millar RP, et al. Kisspeptin is essential for the full pre-

ovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinol-

ogy 2011 Mar; 152(3):1001–1012. https://doi.org/10.1210/en.2010-1225 PMID: 21239443

26. De Bond J, Li Q, Millar R, Clarke I, Smith J. Kisspeptin signaling is required for the luteinizing hormone

response in anestrous ewes following the introduction of males. PLoS ONE 2013; 8(2):e57972. https://

doi.org/10.1371/journal.pone.0057972 PMID: 23469121

27. Schaefers-Okkens AC KH. Ovaries. In: Rijnberk A KH, editor. Clinical Endocrinology of Dogs and Cats.

2nd ed.: Schlutersche; 2010. p. 203–234.

28. Concannon P, Hansel W, Mcentee K. Changes in LH, progesterone and sexual behavior associated

with preovulatory luteinization in the bitch. Biol Reprod 1977; 17(4):604–13. PMID: 562686

29. Wildt DE, Panko WB, Chakraborty PK, Seager SW. Relationship of serum estrone, estradiol-17beta

and progesterone to LH, sexual behavior and time of ovulation in the bitch. Biol Reprod 1979; 20

(3):648–58. PMID: 572240

30. Okkens AC, Bevers MM, Dieleman SJ, Willems AH. Shortening of the interoestrous interval and the life-

span of the corpus luteum of the cyclic dog by bromocryptine treatment. Vet Q 1985; 7(3):173–6.

https://doi.org/10.1080/01652176.1985.9693979 PMID: 4049714

31. Okkens AC, Dieleman SJ, Bevers MM, Lubberink AA, Willemse AH. Influence of hypophysectomy on

the lifespan of the corpus luteum in the cyclic dog. J Reprod Fertil 1986; 77(1):187–192. PMID:

3723467

32. Nett TM, Akbar AM, Phemister RD, Holst PA, Reichert LE, niswender GD. Levels of lutenizing hormone,

estradiol and progesterone in serum during the estrous cycle and pregnancy in the beagle bitch

(38491). Proc Soc Exp Biol Med 1975; 148(1):134–9. PMID: 1168909

33. Kooistra HS, Okkens AC, Bevers MM, Popp Snijders C, van Haaften B, Dieleman SJ, et al. Concurrent

pulsatile secretion of luteinizing hormone and follicle-stimulating hormone during different phases of the

estrous cycle and anestrus in beagle bitches. Biol Reprod 1999; 60(1):65–71. PMID: 9858487

34. Reece JF, Chawla SK. Control of rabies in Jaipur, India, by the sterilisation and vaccination of neigh-

bourhood dogs. Vet Rec 2006; 159(12):379–83. PMID: 16980523

35. Rhodes L. E-book: Contraception and Fertility Control in Dogs and Cats. 1st ed. Available from www.

acc-d.org: Alliance for Contraception in Cats and Dogs; 2013.

36. Roseweir A, Millar R. Kisspeptin antagonists. Adv Exp Med Biol 2013; 784:159–186. https://doi.org/10.

1007/978-1-4614-6199-9_8 PMID: 23550006

37. Millar RP, Roseweir AK, Tello JA, Anderson RA, George JT, Morgan K, et al. Kisspeptin antagonists:

unraveling the role of kisspeptin in reproductive physiology. Brain Res 2010 Dec 10; 1364:81–89.

https://doi.org/10.1016/j.brainres.2010.09.044 PMID: 20858467

In vitro and in vivo effects of kisspeptin antagonists on GPR54 activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0179156 June 26, 2017 15 / 16

https://doi.org/10.4103/2008-7802.156839
https://doi.org/10.4103/2008-7802.156839
http://www.ncbi.nlm.nih.gov/pubmed/26015864
https://doi.org/10.1210/jc.2007-1116
http://www.ncbi.nlm.nih.gov/pubmed/17635940
https://doi.org/10.1016/j.anireprosci.2009.05.017
http://www.ncbi.nlm.nih.gov/pubmed/19574004
https://doi.org/10.1093/humrep/des326
https://doi.org/10.1093/humrep/des326
http://www.ncbi.nlm.nih.gov/pubmed/22956346
https://doi.org/10.1159/000364877
http://www.ncbi.nlm.nih.gov/pubmed/24902774
https://doi.org/10.1523/JNEUROSCI.5740-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19321788
https://doi.org/10.1210/en.2009-0803
http://www.ncbi.nlm.nih.gov/pubmed/19952274
https://doi.org/10.1210/en.2010-1225
http://www.ncbi.nlm.nih.gov/pubmed/21239443
https://doi.org/10.1371/journal.pone.0057972
https://doi.org/10.1371/journal.pone.0057972
http://www.ncbi.nlm.nih.gov/pubmed/23469121
http://www.ncbi.nlm.nih.gov/pubmed/562686
http://www.ncbi.nlm.nih.gov/pubmed/572240
https://doi.org/10.1080/01652176.1985.9693979
http://www.ncbi.nlm.nih.gov/pubmed/4049714
http://www.ncbi.nlm.nih.gov/pubmed/3723467
http://www.ncbi.nlm.nih.gov/pubmed/1168909
http://www.ncbi.nlm.nih.gov/pubmed/9858487
http://www.ncbi.nlm.nih.gov/pubmed/16980523
http://www.acc-d.org
http://www.acc-d.org
https://doi.org/10.1007/978-1-4614-6199-9_8
https://doi.org/10.1007/978-1-4614-6199-9_8
http://www.ncbi.nlm.nih.gov/pubmed/23550006
https://doi.org/10.1016/j.brainres.2010.09.044
http://www.ncbi.nlm.nih.gov/pubmed/20858467
https://doi.org/10.1371/journal.pone.0179156


38. Verma S, Kirigiti M, Millar R, Grove K, Smith MS. Endogenous kisspeptin tone is a critical excitatory

component of spontaneous GnRH activity and the GnRH response to NPY and CART. Neuroendocri-

nology 2014; 99(3–4):190–203. https://doi.org/10.1159/000365419 PMID: 25011649

39. Liu X, Porteous R, d’Anglemont de Tassigny X, Colledge W, Millar R, Petersen S, et al. Frequency-

dependent recruitment of fast amino acid and slow neuropeptide neurotransmitter release controls

gonadotropin-releasing hormone neuron excitability. J Neurosci 2011; 31(7):2421–2430. https://doi.

org/10.1523/JNEUROSCI.5759-10.2011 PMID: 21325509

40. Grachev P, Li X, Lin Y, Hu M, Elsamani L, Paterson S, et al. GPR54-dependent stimulation of luteinizing

hormone secretion by neurokinin B in prepubertal rats. PLoS ONE 2012; 7(9):e44344–e44344. https://

doi.org/10.1371/journal.pone.0044344 PMID: 23028524

41. Li X, Kinsey Jones J, Cheng Y, Knox AMI, Lin Y, Petrou N, et al. Kisspeptin signalling in the hypotha-

lamic arcuate nucleus regulates GnRH pulse generator frequency in the rat. PLoS ONE 2009; 4(12):

e8334–e8334. https://doi.org/10.1371/journal.pone.0008334 PMID: 20016824

42. Goodman R, Maltby M, Millar R, Hileman S, Nestor C, Whited B, et al. Evidence that dopamine acts via

kisspeptin to hold GnRH pulse frequency in check in anestrous ewes. Endocrinology 2012; 153

(12):5918–27. https://doi.org/10.1210/en.2012-1611 PMID: 23038740

43. Smith J, Li Q, Yap K, Shahab M, Roseweir A, Millar R, et al. Kisspeptin is essential for the full preovula-

tory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology

2011; 152(3):1001–1012. https://doi.org/10.1210/en.2010-1225 PMID: 21239443

44. Guerriero K, Keen K, Millar R, Terasawa E. Developmental changes in GnRH release in response to

kisspeptin agonist and antagonist in female rhesus monkeys (Macaca mulatta): implication for the

mechanism of puberty. Endocrinology 2012; 153(2):825–836. https://doi.org/10.1210/en.2011-1565

PMID: 22166978

45. Zmora N, Stubblefield J, Wong T, Levavi Sivan B, Millar R, Zohar Y. Kisspeptin Antagonists Reveal Kis-

speptin 1 and Kisspeptin 2 Differential Regulation of Reproduction in the Teleost, Morone saxatilis. Biol

Reprod 2015; 93(3):76–76. https://doi.org/10.1095/biolreprod.115.131870 PMID: 26246220

46. Albers-Wolthers CHJ, de Gier J, Rutten V P M G, van Kooten P J S, Leegwater PAJ, Schaefers Okkens

AC, et al. The effects of kisspeptin agonist canine KP-10 and kisspeptin antagonist p271 on plasma LH

concentrations during different stages of the estrous cycle and anestrus in the bitch. Theriogenology

2016; 86(2):589–95. https://doi.org/10.1016/j.theriogenology.2016.02.009 PMID: 27020879

47. Roa J, Vigo E, Castellano JM, Navarro VM, Fernández-Fernández R, Casanueva FF, et al. Hypotha-

lamic expression of KiSS-1 system and gonadotropin-releasing effects of kisspeptin in different repro-

ductive states of the female rat. Endocrinology 2006; 147(6):2864–2878. https://doi.org/10.1210/en.

2005-1463 PMID: 16527840

48. Smith JT, Saleh SNH, Clarke IJ. Seasonal and cyclical change in the luteinizing hormone response to

kisspeptin in the Ewe. Neuroendocrinology 2009; 90(3):283–291. https://doi.org/10.1159/000227806

PMID: 19590160

In vitro and in vivo effects of kisspeptin antagonists on GPR54 activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0179156 June 26, 2017 16 / 16

https://doi.org/10.1159/000365419
http://www.ncbi.nlm.nih.gov/pubmed/25011649
https://doi.org/10.1523/JNEUROSCI.5759-10.2011
https://doi.org/10.1523/JNEUROSCI.5759-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21325509
https://doi.org/10.1371/journal.pone.0044344
https://doi.org/10.1371/journal.pone.0044344
http://www.ncbi.nlm.nih.gov/pubmed/23028524
https://doi.org/10.1371/journal.pone.0008334
http://www.ncbi.nlm.nih.gov/pubmed/20016824
https://doi.org/10.1210/en.2012-1611
http://www.ncbi.nlm.nih.gov/pubmed/23038740
https://doi.org/10.1210/en.2010-1225
http://www.ncbi.nlm.nih.gov/pubmed/21239443
https://doi.org/10.1210/en.2011-1565
http://www.ncbi.nlm.nih.gov/pubmed/22166978
https://doi.org/10.1095/biolreprod.115.131870
http://www.ncbi.nlm.nih.gov/pubmed/26246220
https://doi.org/10.1016/j.theriogenology.2016.02.009
http://www.ncbi.nlm.nih.gov/pubmed/27020879
https://doi.org/10.1210/en.2005-1463
https://doi.org/10.1210/en.2005-1463
http://www.ncbi.nlm.nih.gov/pubmed/16527840
https://doi.org/10.1159/000227806
http://www.ncbi.nlm.nih.gov/pubmed/19590160
https://doi.org/10.1371/journal.pone.0179156

