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1. Introduction

The exact inversion of square, nonminimum phase nonlinear systems was presented in,
amongst others, [1] and [2] for the continuous-time case, and in [3] for the discrete-time
case. The procedure is accomplished in three steps, namely (1) the transformation of
the nonlinear system to a special form, called the normal form, (2) the inversion of the
normal form, and (3) the structuring of the resulting inverse system’s state equation as a
linear system and partitioning the linear dynamics into stable and unstable parts via an
equivalence transformation. This partitioned, linear-like state equation is solved for the
bounded solution corresponding to a given desired output of the original nonlinear system
via Picard-like iteration. The essential purpose of the iteration is the accommodation of
the nonlinear effects of the inverse. Besides being iterative, the calculations are also non-
causal and, therefore, must be implemented off-line. The overall procedure is generally
referred to as stable inversion, and potentially finds application wherever the inverse of a
nonlinear, nonminimum phase system may be used off-line. Examples include achieving
exact output tracking in nonlinear, nonminimum phase systems (for example flexible
manipulators) by either feed-forward control [1] or iterative learning control (ILC; see [4]
for the discrete-time, nonlinear case).
This paper focuses on the situation where the system nonlinearity is of such a degree

that Picard iteration fails to converge and stable inversion thus fails to find a solution.
This situation is encountered in the paper for a system with polynomial nonlinearity.
Generally speaking, to solve the inverse system’s state equation via Picard iteration, we
effectively convert the first order difference equation to a fixed point problem. It is well
known that other iteration schemes besides Picard iteration may also be used to solve
the fixed point problem, notably Mann iteration [5] and Ishikawa iteration [6]. While
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these iteration schemes are known to display better convergence properties than Picard
Iteration in fixed point problems, they have not yet found application in stable inversion
for use when Picard iteration fails to converge. This paper investigates the use of Mann
iteration and Ishikawa iteration exactly for this purpose in the stable inversion of square,
nonlinear discrete-time systems.
The research is part of an investigation into the use of nonlinear, time-domain methods

in iterative learning control as used in response reconstruction for fatigue testing purposes
(and other purposes such as shock and vibration testing). In such tests the test specimen
in the laboratory is typically fitted with electrohydraulic actuators that are under PID
feedback control and that mimic the load application to the specimen in normal usage.
The goal is to reconstruct in the transducers on the laboratory test specimen desired
histories that are representative of normal usage of the structure. The reconstruction
is achieved with iterative learning control (ILC), which is an off-line learning control
algorithm that in principle calculates the actuator drive signals that reconstructs the
desired responses in the specimen transducers. ILC ideally uses an inverse model of the
test system in the algorithm. Under the common situation that ILC does not converge
over the entire desired test frequency band it is well-known that the more accurate the
inverse model, either the wider the frequency band will be over which convergence occurs,
or the more accurate the best results obtained prior to the onset of divergence will be.
With the actuator drive signals being sent to the PID controllers from a computer and the
responses that are measured in the specimen’s transducers being saved to the computer
disk, it follows that the entire stem between the drive signals and sensors outputs may be
modelled as a discrete time system, typically with black box models obtained by system
identification. For complex test specimens and sensors on relatively remote locations
on the test specimen it follows that the true system dynamics is usually nonlinear. A
nonlinear, discrete-time inverse model of the test system for use in ILC may be obtained
from nonlinear system identification. The classical and still most common approach is to
identify nonlinear ARX models, commonly referred to as NARX models [7]. After having
identified the model it needs to be inverted once for every iteration of ILC. This article
focuses on how to do this inversion, if not with exact accuracy (due to divergence of
stable inversion), then at least as accurately as possible.
The paper is organized as follows: In Section 2 the conversion of a smooth nonlinear

system to the normal form is briefly covered and in Section 3 the subsequent formulation
of the inverse system is briefly covered. Iterative solution of the inverse system for a
given output using different iteration methods is covered in Section 3. Finally, in sections
5 to 7 three examples are presented demonstrating the advantages of Mann iteration
over Picard iteration in stable inversion of NARX models, the use of low pass filters to
increase accuracy, and the use of different gain schemes in Mann iteration to increase
accuracy.

2. The Normal Form for MIMO Systems

Consider the square, multiple-input multiple-output (MIMO) nonlinear discrete-time
system

x(k + 1) = f(x(k), u(k)) (1)

y(k) = h(x(k)) , (2)

with u(k) ∈ �m, x(k) ∈ �n, y(k) ∈ �m and f and h analytic in their domains (and thus
smooth). Let (x◦, u◦) = ([0], [0]) be an equilibrium pair of the system. The output yi has
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local vector relative degree ri around the point (x◦, u◦) if

∂hi ◦ f l0 ◦ f(x(k), u(k))
∂uj(k)

= 0 (3)

for j = 1, . . . ,m, i = 1, . . . ,m, f0 = f(x(k), 0), order of iteration l = 0, . . . , ri − 2, and
all x in a neighbourhood of x◦, and there exists a ji ∈ {1, . . . ,m} such that

∂hi ◦ f ri−1
0 ◦ f(x(k), u(k))
∂uji(k)

∣∣∣∣∣
x◦,u◦

�= 0 . (4)

From Eq. 3 and Eq. 4 the derivative vanishes until the ri-th iteration, implying the
output is first influenced at time k+ ri by the input at time k. The vector relative degree
is a generalization of the relative degree of single-input single-output (SISO) systems,
which for linear time invariant (LTI) systems corresponds to the difference in degree
between the denominator and numerator polynomials (in terms of z). In discrete time
systems this difference translates into a delay between the input and the output, with
the number of time steps equal to the difference in degree. In practise in laboratory test
systems this may be caused by, for example, delay due to the analogue-digital (AD) and
digital-analogue (DA) conversion electronics. Define the input-output decoupling matrix
as

A(x(k), u(k)) :=

(
∂yi(k + ri)

∂uj(k)

)
i,j

=

(
∂hi ◦ f ri−1

0 ◦ f(x(k), u(k))
∂uj(k)

)
i,j

. (5)

Assume that

rank A(x(k), u(k))|x◦,u◦ = m , (6)

in which case the system is said to have vector relative degree (or characteristic number)
(r1, r2, ..., rm). Assume

0 ∈ Im(hi ◦ f ri−1
0 ◦ f(x(k), u(k))) . (7)

In order to derive a coordinate transformation with which to transform the system to
the normal form we select the vector

ξ(k) = (ξ(1)(k)
T
, . . . , ξ(m)(k)

T
)T (8)

ξ(i)(k) = (ξ
(i)
1 (k), . . . , ξ(i)ri (k))

T (9)

= (hi(x(k)), hi ◦ f0(x(k)), . . . , hi ◦ f ri−1
0 (x(k)))T (10)

= (yi(k), . . . , yi(k + ri − 1))T . (11)

The function vector ξ(k) has |r| :=∑m
i=1 ri functions. When |r| < n, an arbitrary set of

n̂ = n− |r| additional smooth functions

η(k) = (η1(k), . . . , ηn−|r|(k))T (12)
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S

may always be found such that the function vector

ψ(x(k)) = (ξT(k), ηT(k))T (13)

has a non-singular matrix at x◦, and therefore defines a local coordinate transformation
in a neighborhood of x◦ for the system. This coordinate transformation results in the
following system in the new coordinates:

ξ
(i)
1 (k + 1) = ξ

(i)
2 (k)

...

ξ
(i)
ri−1(k + 1) = ξ(i)ri (k)

ξ(i)ri (k + 1) = αi(ξ(k), η(k)) + βi(ξ(k), η(k), u(k))

i = 1, . . . ,m

η(k + 1) = q(ξ(k), η(k), u(k))

y1(k) = ξ
(1)
1 (k)

...

ym(k) = ξ
(m)
1 (k) (14)

This is the normal form for the MIMO system. By setting

ξ[1,m]
ri := (ξ(1)r1 , . . . , ξ

(m)
rm )T (15)

α := (α1, . . . , αm)T (16)

β := (β1, . . . , βm)T (17)

ξ
[1,m]
1 := (ξ

(1)
1 , . . . , ξ

(m)
1 )T (18)

the MIMO normal form may be written more compactly as

ξ[1,m]
ri (k + 1) = α(ξ(k), η(k)) + β(ξ(k), η(k), u(k)) (19)

η(k + 1) = q(ξ(k), η(k), u(k)) (20)

y(k) = ξ
[1,m]
1 (k) (21)

By the definition of vector relative degree (Eq. 6) it follows that β (Eq. 19) is a diffeo-
morphism and may be inverted for the unique u, giving the smooth mapping

u(k) = γ(ξ(k), η(k), ξ[1,m]
ri (k + 1)) (22)

= β−1(ξ(k), η(k), ξ[1,m]
ri (k + 1)− α(ξ(k), η(k))) . (23)
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The non-singular, nonlinear static state feedback u(k) = γ(ξ(k), η(k), v(k)), with
(ξ(k)T, η(k)T)T = ψ(x) and v(k) an external control signal, results in

ξ
(i)
1 (k + 1) = ξ

(i)
2 (k)

...

ξ
(i)
ri−1(k + 1) = ξ(i)ri (k)

ξ(i)ri (k + 1) = vi(k)

i = 1, . . . ,m

η(k + 1) = q(ξ(k), η(k), γ(ξ(k), η(k), v(k)))

:= f̄(ξ(k), η(k), v(k)) (24)

y(k) = ξ
[1,m]
1 (k) (25)

Proceeding exactly as in the case of SISO systems we observe that the feedback renders
the η(k) states unobservable and linearizes the observable part of the system, namely the
ξ states. Furthermore, we may define the zero output constrained dynamics as evolutions

with ξ(k) = [0] for all k (and thus v(k) = ξ
[1,m]
ri (k + 1) = [0]). The zero dynamics results

in zero output y(k) = ξ
[1,m]
1 (k) = [0], and is characterized by (from Eq. 24)

η(k + 1) = f̄([0], η(k), [0]) . (26)

The other concepts associated with the zero dynamics, namely the meaning of the zero
dynamics and the definition of minimum phase, carry over unchanged from the SISO
case.
Note that when the above assumption regarding the input-output decoupling matrix

fails, namely when (cf. Eq. 6) rank A(x(k), u(k))|x◦,u◦ �= m, an algorithm is available for

determining the zero dynamics [8], however in which the analysis is not generally local
in nature as is the case here.

3. The Inverse System

Given a bounded desired output yd(k), k ∈ Z, the stable inversion problem is to find
a desired state trajectory xd(k) and control input ud(k) satisfying Eq. 1, that are in the
sequence space l∞ (and thus bounded on k ∈ Z), and that by Eq. 2 results in y(k) = yd(k)
for the given system. (l∞ is a complete, normed vector space; see [9]. A complete, normed
vector space is also called a Banach space, and therefore l∞ is a Banach space). In this
study ud is also called the desired input. The desired state trajectory and input is found
as the bounded solution of the inverse system for the given desired output. We now focus
on obtaining the inverse system of the system in the normal form (Eq. 19 and Eq. 20).
The output equation of the inverse system is already available as the function h̄ = γ, γ

as defined in Eq. 23. With y(k) = yd(k) known, the vectors ξ(k) and ξ
[1,m]
ri (k + 1) follow

directly from their definitions. However, to determine u(k) we still need to determine
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η(k). To this end we substitute h̄ = γ into Eq. 20, giving the n̄ dimensional system

η(k + 1) = q(ξ(k), η(k), h̄(ξ(k), η(k), ξ[1,m]
ri (k + 1))) (27)

:= f̄(ξ(k), η(k), ξ[1,m]
ri (k + 1)) (28)

:= f̄(η(k),Ξ(k)) , (29)

in which Ξ(k) represents ξ(k) and ξ
[1,m]
ri (k + 1). The smoothness h̄ and q implies the

smoothness of f̄ . The inverse system is thus given by

η(k + 1) = f̄(η(k),Ξ(k)) (30)

u(k) = h̄(η(k),Ξ(k)) . (31)

with h̄ = γ as in Eq. 23. Now define

U(η(k),Ξ(k)) := f̄(η(k),Ξ(k)) −Aη(k) (32)

with

A :=
∂f̄(η(k),Ξ(k))

∂η(k)

∣∣∣∣
[0],[0]

(33)

A has l eigenvalues inside the unit circle and n̂ − l eigenvalues outside the unit circle.
The state dynamics, Eq. 30, may be restated as

η(k + 1) = Aη(k) + U(η(k),Ξ(k)) , (34)

which is structured like a linear system - a fact that is subsequently utilized in construct-
ing a bounded solution for the system. Noting the existence of a similarity transformation
that transforms A into the Jordan form, in the sequel we assume without loss in generality
that Eq. 34 is already in this form, for which

A =

[
As [0]

[0] Au

]
, (35)

with As consisting of Jordan blocks representing the l eigenvalues inside the unit circle,
and Au consisting of Jordan blocks representing the n̂ − l eigenvalues outside the unit
circle. The bounded state transition matrix for the linear matrix difference equation
η(k + 1) = Aη(k) is the n̂× n̂ matrix φ(k), k ∈ Z, given as

φ(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
Ak

s [0]

[0] [0]

]
, k > 0

[
[0] [0]

[0] −Ak
u

]
, k < 0 ,

(36)
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with

φ(0+) =

[
Is [0]

[0] [0]

]

φ(0−) =

[
[0] [0]

[0] −Iu

]
,

and Is and Iu the l× l and (n̂− l)× (n̂− l) identity matrices respectively. Assuming that
yd(k), and thus Ξ(k), k ∈ Z, is bounded, and that f̄(η(k),Ξ(k)) is bounded if η(k) and
Ξ(k) are bounded, it can be shown [3] that the bounded solution η(k) of Eq. 34 (and
thus Eq. 30) is equivalent to the bounded solution η(k), k ∈ Z, of

η(k) =

k−1∑
i=−∞

φ(k − i)U(η(i − 1),Ξ(i − 1))

+ φ(0+)U(η(k − 1),Ξ(k − 1))

+
∞∑

i=k+1

φ(k − i)U(η(i − 1),Ξ(i − 1)) . (37)

For convenience we will designate this solution of Eq. 34 more compactly as

η(k) =

∞∑
i=−∞

φ(k − i)U(η(i − 1),Ξ(i − 1)) . (38)

Define a non-causal linear operator G [9] to represent the linearly-structured system in
Eq. 34 as

η = GU(η,Ξ) . (39)

The procedure of obtaining the bounded solution, η(k), for Eq. 34, and thus Eq. 30, by
using the stable solution of φ(k) in Eq. 37 lies at the heart of stable inversion. Before
discussing the calculation of the bounded η(k), some norm definitions are in order. Pro-
ceeding as in [3], let || · ||1 and || · ||∞ denote the l1 and l∞ norms respectively on Z [9].
Also let

||η||∞ = max
i

||ηi||∞ , (40)

where i denotes the state vector element.
The function U(η(k),Ξ(k)) is said to be uniformly Lipschitz in a closed s neighbourhood

of ([0],[0]) in (η,Ξ) space with positive real constants (K1,K2) if an s > 0 exists such
that for all η1(k), η2(k), Ξ1(k) and Ξ2(k), all with || · ||∞ norms ≤ s, the following local
Lipschitz condition holds uniformly ∀k ∈ Z:

|| U(η1(k),Ξ1(k))− U(η2(k),Ξ2(k))||∞ ≤ K1||η1(k)− η2(k)||∞ +K2||Ξ1(k)− Ξ2(k)||∞ .
(41)
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Furthermore, define

||φ(k)||∞ = sup{||φ(k)c(k)||∞ : ||c(k)||∞ = 1} (42)

||φ||1 = n̂max
i,j

||φi,j(k)||1 (43)

where φi,j(k) is the (i, j)-th element of φ(k). Finally we note that

||GU(η,Ξ)||∞ = ||
∞∑

i=−∞
φ(k − i)U(η(i − 1),Ξ(i − 1))||∞

≤ ||φ||1||U(η,Ξ)||∞ . (44)

4. Iterative Solution of the Inverse

4.1. Introduction

The bounded η(k) satisfying Eq. 37, which is in the form of the solution of a linear system,
is iteratively obtained. (The linear system in this case is the nonlinear system Eq. 30,
which is a first order nonlinear difference equation, structured as a linear system in Eq.
34.) This is done by recasting Eq. 37 as a fixed point problem by performing iterative
searching of the fixed point of Eq. 39. Three of the available iteration schemes that may
be used for this purpose are now listed, namely Picard iteration, Mann iteration, and
Ishikawa iteration. Consider a mapping T : B → B, with B a non-empty, convex subset
of a normed spaceX. Picard iteration is defined by the sequence (η(m) : m ∈ Z), η(0) ∈ B,
with

η(m+1) = T (η(m)) . (45)

Mann iteration is defined by the sequence (η(m) : m ∈ Z), η(0) ∈ B, αm ∈ (0, 1], with

η(m+1) = (1− αm)η(m) + αmT (η
(m)) . (46)

The usual choice for αm in Mann iteration is αm = 1/(1 +m) or αm = 1/m.
Finally, Ishikawa iteration is defined by the sequence (η(m) : m ∈ Z), η(0) ∈ B,

αm ∈ (0, 1], βm ∈ [0, 1], with

η(m+1) = (1− αm)η(m) + αmT (μ
(m))

μ(m) = (1− βm)η(m) + βmT (η
(m)) .

(47)

Let η designate a fixed point of Picard iteration. Then

η = lim
m→∞ η(m) = lim

m→∞ η(m+1) ,

and by taking the limit on both sides of Eq. 46 we get

η = (1− αm)η + αmT (η) ,

from which it is clear (after simplification of this equation) that the fixed points of
Picard and Mann iteration are equivalent. It can also be shown that a fixed point of
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Picard iteration is also a fixed point of Ishikawa iteration.
Mann and Ishikawa iteration may be simplified by using constant scale factors αm = α

and βm = β. Clearly, if αn = 1 then Picard iteration is obtained from Mann iteration.
Furthermore, if βm = 0 then Mann iteration is obtained from Ishikawa iteration.

4.2. Picard Iteration Method

The adaptation of Eq. 37 for Picard iteration gives the sequence (η(m)(k) : m ∈ Z) with

η(0)(k) = [0]

η(m+1)(k) =
∑∞

i=−∞ φ(k − i)U(η(m)(i− 1),Ξ(i− 1)) .
(48)

This may be rewritten in operator form as (cf. Eq. 39)

η(m+1) = GU(η(m),Ξ) . (49)

If the sequence (η(m)) converges then

η(k) = lim
m→∞ η(m)(k) . (50)

Sufficient conditions for the convergence of the Picard iteration scheme (Eq. 48) are now
presented from [3], with slight modification to the uniqueness aspects, because of its
usefulness for subsequent theorems on Mann iteration:
Theorem 4.1: A unique solution η(k) ∈ l∞, k ∈ Z, of Eq. 30 exists and is obtained

by the Picard iteration of Eq. 48 if:

(1) f̄ is uniformly Lipschitz in an s neighbourhood of ([0],[0]) with Lipschitz constants
(K1,K2),

(2) ||φ||1K1 < 1,
(3) Ξ(k) ∈ l∞ with ||Ξ||∞ ≤ s, and
(4) (||φ||1K2||Ξ||∞/(1 − ||φ||1K1)) ≤ s.

Condition 2 implies that Eq. 48 is a contraction ([9] between η(m) and η(m+1). Condition
4 implies that

||φ||1(K1s+K2||Ξ||∞) ≤ s .

This is basically an extension of condition 2 for the additional variable Ξ since, when
||Ξ||∞ → 0 this becomes ||φ||1K1 ≤ 1, which is satisfied by condition 2. Theorem 2.1 thus
essentially says that if Eq. 37 is a contraction mapping, then Picard iteration converges
to the unique fixed point. In the sequel we show that when this is the case Mann iteration
also converges. However, when ||φ||1K1 > 1, and Eq. 37 is therefore not a contraction,
we do not have a general condition of convergence for either Picard, Mann or Ishikawa
iteration.

4.3. Mann Iteration Method

Consider again a mapping T : B → B, with B a non-empty, convex subset of a normed
space X. For the case where T : B → B is a contraction, i.e. there exists an L < 1 such
that the Lipschitz condition

||Tx− Ty|| ≤ L||x− y||
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is satisfied for all x, y ∈ B, the convergence of Picard, Mann and Ishikawa iteration is
proved in Rhoades et al. (2003). However, as in the case above for Eq. 37, when T is L-
Lipschitz with L > 1 (and therefore not contractive), we do not have a general condition
of convergence of either Picard, Mann or Ishikawa iteration. Convergence conditions for
Mann or Ishikawa iteration do exist for some special cases though:

• When T : B → B is a nonexpansive with B a non-empty, closed, convex subset of
a real Banach space X. (An operator T : B → B is nonexpansive if ||Tx− Ty|| ≤
||x− y|| is satisfied for all x, y ∈ B.)

• When T : X → X is a uniformly continuous, strongly accretive operator with X
an arbitrary real Banach space. (An operator T : X → X is strongly accretive if
||x− y|| < ||x− y + s(Tx− Ty)|| is satisfied for all x, y ∈ X and s > 0.)

• When T : X → X is φ-strongly accretive and X a real, uniformly smooth Banach
space.

• When T : B → B is a uniformly continuous, strong pseudocontraction with B a
nonempty closed convex bounded subset of an arbitrary real Banach space X. (An
operator T : B → B is a strong pseudocontraction if there exists a t > 1 such that
||x− y|| ≤ ||(1 + t)(x− y)− tr(Tx− Ty)|| is satisfied for all x, y ∈ B and r > 0.)

• When T : B → B is a uniformly continuous pseudocontraction with B a nonempty
closed convex bounded subset of an arbitrary real Banach space X. This is however
for a different type of iteration not covered in this study.

The situation that is encountered in most of the theoretical examples in the sequel is
that Mann iteration (as well as Picard iteration) diverges for a variety of values of αn,
suggesting that none of the above-mentioned special cases apply.
The following two theorems are both a result of this research. The first (Theorem 2.2)

gives sufficient conditions for the convergence of Mann iteration in stable inversion in
rather empirical terms. While of little practical use, it is used to show in the second
(Theorem 2.3) that Mann iteration at least converges under weaker conditions than Pi-
card iteration in stable inversion. The theorems are useful in the situation where solution
of the inverse system model is not contractive and Picard iteration is likely to diverge,
because it implies that at least Mann iteration still has a chance to converge, or can rea-
sonably be expected to give more accurate best results prior to divergence than Picard
iteration.
The adaptation of Eq. 38 for Mann iteration gives the sequence (η(m)(k) : m ∈ Z) with

η(0)(k) = [0]

η(m+1)(k) = (1− αm)η(m)(k) + αm
∑∞

i=−∞ φ(k − i)U(η(m)(i− 1),Ξ(i − 1)) .
(51)

In the sequel we will assume a constant αm = α. Eq. 51 may be restated in operator
form (using a constant α) as

η(m+1) = (1− α)η(m) + αGU(η(m),Ξ) (52)

= (1− α)η(m) + αGU (m) , (53)

in which we defined U (m) := U(η(m),Ξ). The adaptation for Ishikawa iteration is done in
a similar way. Before deriving convergence conditions some definitions are in order, for
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which we assume k ∈ Z. As before, define (using Eq. 53)

H(m) := η(m+1) − η(m) (54)

= (1− α)(η(m) − η(m−1)) + αG(U (m) − U (m−1))

= (1− α)H(m−1) + αH̃(m) , (55)

in which we defined

H̃(m) := G(U (m) − U (m−1)) . (56)

Taking the norm of H̃(m) we have (using Eq. 44 and Eq. 41):

||H̃(m)||∞ = ||G(U(η(m),Ξ)− U(η(m−1),Ξ))||∞

≤ ||φ||1||U(η(m),Ξ)− U(η(m−1),Ξ)||∞

≤ ||φ||1K1||η(m) − η(m−1)||∞

= ||φ||1K1||H(m−1)||∞ . (57)

Define s̃m ≤ ||φ||1K1 such that

||H̃(m)||∞ = s̃m||H(m−1)||∞ . (58)

Taking the norm of H(m) (Eq. 55) and defining Fm(α, η(0)) ∈ [0, 1] we get

||H(m)||∞ = Fm((1− α)||H(m−1)||∞ + α||H̃(m)||∞)

= Fm((1− α)||H(m−1)||∞ + αs̃m||H(m−1)||∞)

= sm||H(m−1)||∞ , (59)

in which we defined sm as

sm := Fm(1− α+ αs̃m) . (60)

Theorem 4.2: A solution η(k) ∈ l∞, k ∈ Z, of Eq. 30 exists and is obtained by the
Mann iteration of Eq. 51 if the following conditions are satisfied:

(1) f̄ is uniformly Lipschitz in an s neighbourhood of ([0],[0]) with Lipschitz constants
(K1,K2),

(2) ||sm||∞ < 1,
(3) Ξ(k) ∈ l∞ with ||Ξ||∞ ≤ s, and
(4) (||φ||1K2||Ξ||∞/(1 − ||φ||1K1)) ≤ s.
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Proof: Let k ∈ Z. Clearly η(0) ∈ l∞ and ||η(0)||∞ ≤ s. Suppose η(m) ∈ l∞ and ||η(m)||∞ ≤
s. Taking the norm of Eq. 52 we get (using conditions 1 and 4):

||η(m+1)||∞ ≤ (1 − α)||η(m)||∞ + α||GU(η(m) ,Ξ)||∞

≤ (1 − α)||η(m)||∞ + α||φ||1(K1||η(m)||∞ +K2||Ξ||∞)

≤ (1 − α)s + α||φ||1(K1s+K2||Ξ||∞)

≤ (1 − α)s + αs

= s . (61)

Thus, by induction η(m) ∈ l∞ and ||η(m)||∞ ≤ s for all m. Furthermore, from condition
2 and Eq. 59 it follows that ||H(m)||∞ < ||H(m−1)||∞, and by the ratio test the series∑∞

m=0 ||H(m)(k)||∞ is convergent. Hence

η(m)(k) =

m−1∑
j=1

H(j)(k) , (62)

k ∈ Z is a Cauchy sequence in l∞. Since l∞ is complete (l∞ is a Banach space), every
Cauchy sequence in l∞ converges to an element of l∞, and therefore {η(m)(k)} converges
(in the || · ||∞ norm) to an element of l∞. Denote this limit element as η(k), k ∈ Z. Now,
for a ηa, ηb ∈ l∞ it follows that

||(1 − α)ηa + αGU(ηa,Ξ)− ((1− α)ηb + αGU(ηb,Ξ))||∞
= ||(1 − α)(ηa − ηb) + αG(U(ηa,Ξ)− U(ηb,Ξ))||∞
≤ (1− α)||(ηa − ηb)||∞ + α||G(U(ηa,Ξ)− U(ηb,Ξ))||∞
≤ (1− α)||ηa − ηb||∞ + α||φ||1K1||ηa − ηb||∞
= (1− α+ α||φ||1K1)||ηa − ηb||∞ ,

implying the uniform continuity of (1− α)η + αGU(η,Ξ) with respect to η, from which

(1− α)η + αGU(η,Ξ) = (1− α) lim
m→∞ η(m) + αGU( lim

m→∞ η(m),Ξ)

= lim
m→∞((1− α)η(m) + αGU(η(m),Ξ))

= lim
m→∞ η(m+1)

= η . (63)

Thus η is the fixed point of (1−α)η +αGU(η,Ξ) and therefore of Eq. 38, which implies
that η(k) is the solution of the inverse system’s state equation, Eq. 30. ♦
Note that Theorem 2.2 do not prove uniqueness as in Theorem 2.1, mostly because of

the restrictive nature of the definition of Fm. The reason for this choice of Fm (and sm)
is to cover all mechanisms contributing to the possible convergence (or less aggressive
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divergence) of Mann iteration compared to Picard iteration when the latter diverges, i.e.
when ||φ||1K1 ≥ 1 and Eq. 49 is thus not contractive. Substituting ||φ||1K1 ≥ 1 into s̃m
in sm, we observe that the resulting quantity S = 1−α+α||φ||1K1 ≥ 1 is already smaller

than ||φ||1K1, before considering that s̃m ≤ ||φ||1K1. Further noting that F
(m)
H ≤ 1, it

is clear that Condition 2, Theorem 4.2 represents a weaker convergence condition than
Condition 2, Theorem 4.1. Even if condition 2, Theorem 2.2 fails, Mann iteration may
still converge because it is a sufficient condition. If it does not converge, in view of the
above considerations it is reasonable to expect better approximate inversion results than
with Picard iteration. The following theorem formalizes these issues:
Theorem 4.3: The convergence conditions in Theorem 4.2 for Mann iteration are

weaker than the convergence conditions in Theorem 4.1 for Picard iteration since

• if condition 2, Theorem 4.1 is satisfied, then the condition 2, Theorem 4.2 is also
satisfied,

• if condition 2, Theorem 4.1 is violated then condition 2, Theorem 4.2 may still be
satisfied, and

• if condition 2, Theorem 4.2 is violated, then condition 2, Theorem 4.1 is also vio-
lated.

Proof: (1) In this case s̃m ≤ ||φ||1K1 < 1. Since α ∈ (0, 1], it follows that s̃m ≤ 1− α+

αs̃m < 1. Noting that F
(m)
H ≤ 1 in Eq. 60 it follows that sm < 1, and thus ||sm||∞ < 1.

(2) In this case s̃m < ||φ||1K1 ≥ 1. If s̃m < 1, then s̃m ≤ 1−α+αs̃m < 1 ≤ ||φ||1K1, and
thus sm < 1 ≤ ||φ||1K1, implying convergence by Condition 2. If 1 ≤ s̃m ≤ ||φ||1K1, then
1 ≤ 1−α+αs̃m ≤ s̃m ≤ ||φ||1K1, and again sm ≤ ||φ||1K1. Therefore ||sm||∞ ≤ ||φ||1K1,
and condition 2 may still be satisfied, or have less aggressive divergence than Picard
iteration.
(3) If ||sm||∞ ≥ 1, then there exists an m such that sm ≥ 1, implying by Eq. 60 that

1 ≤ 1− α+ αs̃m ≤ s̃m. Recalling that s̃m ≤ ||φ||1K1, it follows that ||φ||1K1 ≥ 1. ♦

4.4. Filter Incorporation

The results of subsequent theoretical examples show that when stable inversion diverges,
incorporating a zero phase low pass filter in the iteration my improve the accuracy of
the best results prior to divergence, or even lead to convergence. This is done here by
incorporating the filter, which is designated F in operator form, into the inverse system’s
solution formula, Eq. 39, as follows:

η = FGU(η,Ξ) . (64)

F is a linear operator representing a zero phase filter based on the causal discrete time
filter F0 (i.e. in the frequency domain F is represented by |F0(e

jωTs)|2). We can adapt
Eq. 64 for fixed point iteration in the same way as was done for Eq. 39, resulting in the
following modified iteration schemes: Picard iteration:

η(m+1) = FGU(η(m),Ξ) (65)

Mann iteration:

η(m+1) = (1 − αm)η(m) + αmFGU(η(m),Ξ) (66)
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Ishikawa iteration:

η(m+1) = (1− αm)η(m) + αmFGU(μ(m),Ξ)

μ(m) = (1− βm)η(m) + βmFGU(η(m),Ξ) (67)

Note that F above is closely associated with G, and therefore impacts the convergence
conditions in Theorem 4.1 and Theorem 4.2 in the same way that GU does. On the
practical side, note also that the filter implementation here is of digital low pass filters
implemented in the time domain; an alternative frequeny domain implementation in
which the FFT frequency band is truncated is in all likelihood also possible, but not
tried here.

5. Example 1: Mann Iteration and Low Pass Filtering - Deterministic
Signal

In this example the advantages of using Mann iteration and low pass filtering is demon-
strated for a short-duration deterministic signal. First, however, the ability of both Picard
and Mann iteration to converge without using a low-pass filter is demonstrated when the
system is operated in a relatively low level of nonlinearity regime.
Consider the following NARX system [10]

y(k) = θ1u(k − 4) + θ2u(k − 5) + θ3u(k − 6) + θ4y(k − 6)
θ5u(k − 5)y(k − 4) + θ6u(k − 5)u(k − 6)y(k − 4)
+θ7u(k − 5)2u(k − 6)y(k − 5) ,

(68)

with

(θ1, . . . , θ7) = (0.150, −1/12, −1/6, 1/6, −4.0, 6.0, 11.0) . (69)

This kind of nonlinear system may readily be obtained from nonlinear system identifica-
tion methods [11]. When converted to the nonlinear state space formulation, then to the
normal form, and finally inverted, this system gives rise to the following inverse system:

η1(k + 1) = C1(k) η1(k) + C2 η2(k) + C3(k) η1(k) η2(k) + C4(k) η1(k)
2 η2(k) + C0(k)

η2(k + 1) = η1(k)

u(k − 5) = η1(k) (70)
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k = 1, . . . , N , with

C0(k) =
1

θ1
y(k)− θ4

θ1
y(k − 6)

C1(k) = −θ2
θ1

− θ5
θ1
y(k − 4)

C2 = −θ3
θ1

C3(k) = −θ6
θ1
y(k − 4)

C4(k) = −θ7
θ1
y(k − 5) .

A sample frequency of 250 Hz is assumed where relevant.
The desired response in question is obtained as the response of Eq. 78 to the following

relatively short deterministic signal, ud(k):

ūd(k) =

⎧⎨
⎩

0, 1 ≤ k ≤ 25
cu(sin(2π(k − 31)/20) + 1), 25 < k ≤ 46
0, 46 < k ≤ 146

(71)

ũd = F̄0.16ūd (72)

ud = CT ũd (73)

F0.16(z) =
0.02287z4 + 0.09148z3 + 0.13722z2 + 0.09148z + 0.02287

1.00z4 − 1.412z3 + 1.123z2 − 0.40807z + 0.06321
(74)

CT =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 1 ≤ k ≤ 12
0.5 sin(2π(k − 13)/24 − π/2) + 0.5, 12 < k ≤ 24
1, 24 < k ≤ 122
0.5 sin(2π(k − 123)/24 + π/2) + 0.5, 122 < k ≤ 134
0, 134 < k ≤ 146

(75)

with cu = 0.165, the second equation in operator format, and F̄ a non-causal linear
operator representing the zero phase version of the low pass filter F (z) with cut frequency
40 Hz (0.16 times the sample frequency). CT as given by Eq. 75 is essentially a sinusoidal
taper function. Two cases are performed in this example, namely for cu = 0.25 (Case 1)
and cu = 0.445 (Case 2). A corresponding desired output trajectory yd(k) was generated
for the two ud(k) by applying each ud(k) to the original system (Eq. 68).
We focus on the stable inversion of Eq. 68, i.e. attempting to determine the bounded

solution of Eq. 70 by stable inversion for the given y(k) = yd(k) for the two cases. This
will be achieved by searching the bounded solution of Eq. 70 by using either Picard or
Mann iteration. The desired u(k) may be obtained from the best achieved solution of
η as u(k) = η1(k + 5) (cf. Eq. 70). The percentage error between ud(k) and the input
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calculated during iteration m of stable inversion, namely u(m)(k), is defined as:

err1(u
(m)) := 100

∑N
k=1 |u(m)(k)− ud(k)|∑N

k=1 |ud(k)|

= 100
||u(m)(k)− ud(k)||1

||ud(k)||1 . (76)

Similarly

err1(y
(m)) := 100 ||y(m)(k)− yd(k)||1/||yd(k)||1 . (77)

When stable inversion converges towards the desired input signal, the last iteration may
be used for the final results. When it diverges, the results of the ‘best’ needs to be chosen.
Since the purpose of stable inversion (and ILC) is the determination of an unknown input
signal, the percentage error between ud(k) and the inputs calculated during successive
iterations is not normally available. One approach to circumventing this problem is to
evaluate some norm of the calculated input signal for successive iterations, and choose
an iteration number based on the behavior of this norm over successive iterations. This
is referred to here as the input (or u) - based iteration selection strategy.
Another strategy for selecting the final iteration number is to calculate the output

signals that are predicted by the system for the successive, calculated input signals,
evaluate the percentage error (or other norm of the error) of each with respect to the
desired output signal, and select the iteration number giving the smallest output signal
error. This is called here the output (or y) - based iteration selection strategy, and is the
one used in these examples (unless specified otherwise).
The results of stable inversion for the two cases using Picard and Mann iteration is

shown in Table 1. For Case 1 both approaches converge even without using a low pass
filter in iteration. For Case 2 both approaches diverge when not using a low pass filter
in iteration, with Mann iteration faring only slightly worse than Picard iteration for the
input, but far better for the output. When using a low pass filter with cut frequency at
100Hz in Case 2, Picard iteration still diverges with virtually no improvement from the
result obtained without the filter (see Fig. 1). Mann iteration however experiences an
oscillatory convergence with best results that are nearly identical to the desired input
and output (see Fig. 2).
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Table 1. Example 1: Results of the stable inversion using Picard and Mann iteration. M is the iteration resulting

in minmerr1(u(m)), i.e. M = argminmerr1(u(m)).

Case Iteration αm minmerr1(u
(m)) err1(y

(M)) M = Iter. Comment
type [%] [%] No.

1 Picard 1 0.0 0.0 34 –
1 Mann 0.05 0.0 0.0 33 –

2 Picard 1 23.9 523 1 –
2 Mann 0.2 29.3 27.7 3 –
2 Picard 1.0 23.6 503 31 100Hz L.P. Filter
2 Mann 0.1 0.9 1.0 391 100Hz L.P. Filter
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6. Example 2: Mann Iteration and Low Pass Filtering - Random Signal

In this example the advantages of using Mann iteration and low pass filtering are demon-
strated for a random signal. While the better accuracy of Mann iteration is demonstrated,
it is also shown that to achieve convergence, and therefore exact tracking, requires the
use of both Mann iteration and a low pass filter in this case.
Consider the following NARX system:

y(k) = θ1u(k − 4) + θ2u(k − 5) + θ3u(k − 6) + θ4y(k − 4)
θ5u(k − 5)y(k − 4) + θ6u(k − 5)u(k − 6)y(k − 2)
+θ7u(k − 5)2u(k − 6)y(k − 1) ,

(78)

with

(θ1, . . . , θ7) = (0.150, 0.50, 0.50, 1/6, −2.0, 6.0, 11.0) . (79)

A sample frequency of 250 Hz is assumed. A desired input trajectory, ud(k), is constructed
as a random signal with a bandwidth of at most about 50 Hz, and a corresponding desired
output trajectory yd(k) is generated by applying ud(k) to the system (Eq. 78). We focus
on the stable inversion of this system for the given yd(k). When converted to the nonlinear
state space formulation, then to the normal form, and finally inverted, this system gives
rise to the following inverse system:

η1(k + 1) = C1(k) η1(k) + C2 η2(k) + C3(k) η1(k) η2(k) + C4(k) η1(k)
2 η2(k) + C0(k)

η2(k + 1) = η1(k)

u(k − 5) = η1(k) (80)

k = 1, . . . , N , with

C0(k) =
1

θ1
y(k)− θ4

θ1
y(k − 4)

C1(k) = −θ2
θ1

− θ5
θ1
y(k − 4)

C2 = −θ3
θ1

C3(k) = −θ6
θ1
y(k − 2)

C4(k) = −θ7
θ1
y(k − 1) .

The percentage error of the calculated inputs with respect to ud(k) is again calculated as
in Example 1 (as well as for the calculated outputs). Stable inversion is now performed
for model and desired output as is, and thereafter with a low pass filter incorporated in
the iteration. The results of stable inversion using Picard and Mann iteration for the two
situations (with and without the filter) is presented in Table 2.
For stable inversion without the low pass filter both iteration schemes are divergent,

but with Mann iteration much more accurate than Picard iteration. The iteration error
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for the calculated input is shown in Fig. 4 for the iteration schemes. For stable inversion
with a low pass filter with a cut frequency of 50 Hz Picard iteration is still divergent, but
Mann iteration is now convergent. The iteration error for the calculated input is shown
in Fig. 5 for the iteration schemes, and the best calculated input in Fig. 6 for Mann
iteration showing the impact of the 50 Hz low pass filter to be virtually imperceptible.
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Table 2. Results of stable inversion. M is the iteration resulting in minmerr1(u(m)), i.e. M = argminmerr1(u(m)).

Case Iteration αn minmerr1(u
(m)) err1(y

(M)) M = Iter. Comment
type [%] [%] no.

1 Picard 1.0 36.5 200.9 1 No filter
1 Mann 0.5 9.4 6.1 4 No filter

2 Picard 1.0 36.1 204.8 1 50Hz L.P.F.
2 Mann 0.5 0.7 0.4 100+ 50Hz L.P.F.
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7. Example 3: Evaluation of Various Mann Iteration Gain Strategies

In this example the advantages of using Mann iteration and low pass filtering is demon-
strated for a random signal, however, whereas in examples 1 and 2 a constant gain was
used in Mann iteration, in this example various strategies for the gain in Mann itera-
tion are evaluated, including iteration-dependent gains, and time-dependent gains. The
iteration-dependent gain strategy involves a monotonically decreasing sequence of gain
values, while the time-dependent gain strategy is essentially an amplitude dependent
formula (intended to interrupt the process of local divergence, which is a frequent oc-
currence). It is found that the most accurate results are achieved when employing a
combined iteration-dependent and time-dependent gain.
In Example 3 we focus on the stable inversion of the same system as in Example 2,

namely Eq. 78, however with a larger-amplitude ud(k) and corresponding yd(k) (Fig. 7).
In view of the polynomial nature of the system this generally implies the system is now
operated in a more nonlinear regime. Once again, the percentage error between signals
is calculated as in Example 1. In a subsequent chapter on ILC we will attempt to invert
this system for this yd(k) by means of ILC. (Recall that ILC iteratively employs stable
inversion.) We will compare the success of inversion of this system via ILC with that
of the ‘single pass’ stable inversion in this example, the latter serving as a base line for
the comparison. Three approaches to handling the gain in Mann iteration will be tried,
namely constant gains, monotonically decreasing gain sequences, and time-varying gains
(either constant or decreasing):

(1) Preliminary trials using constant gains: Noting that if αm = 1 we recover Picard
iteration from Mann iteration and, in turn, if βm = 0 we recover Mann iteration
from Ishikawa iteration, it follows that Ishikawa iteration for all combinations of
constant αm = α and βm = β (each varying over regular intervals) includes both
Mann iteration (also with constant αm) and Picard iteration. A mapping for the
minimum iteration error for the input signal achieved with Ishikawa iteration for
different combinations of α and β is shown in Fig. 8. A low pass filter of 50 Hz
was used. The curve β = 0 thus represents Mann iteration, and the point α = 1
and β = 0 represents Picard iteration. Clearly Ishikawa iteration (evaluated using
a constant α and β) does not significantly improve on the best results that may
be obtained with Mann iteration (evaluated at the same α), while Mann iteration
does represent a significant improvement on Picard iteration. For the remainder of
this study we will therefore focus on Mann iteration only during stable inversion.
Noting in Fig. 8 that the accuracy of stable inversion is greater for smaller values
of α (and β), in the remainder of the example we therefore focus on smaller values
of α in particular. We will also employ a zero phase low pass filter with a suitable

cut frequency in stable inversion and set η
(0)
i (k) = 0 for all k and i.

(2) Systematic trials using constant gains: Firstly we evaluate the stable inversion
results that are obtained using constant gains over a range of values. For this we
use a 50 Hz zero phase low pass filter, a y-based iteration selection strategy (as
before), and limit the number of iterations to at most 10000. The whole exercise
is repeated for a 70 Hz and 90 Hz filter, and for no filter. The best results are
summarized in Table 3 (constant gain, time-independent case). The most accurate
calculated u signal has an error of 27.6%, and the corresponding output signal an
error of 26.0%.

(3) Using monotonically decreasing gain sequences: Next we evaluate the stable in-
version results that are obtained using monotonically decreasing gains (αn). [12]
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suggest the following prototype formula for αn, n ≥ 0:

αn =
1

1 + n
,

which we generalize here as follows:

αn = n0
α0 − αlim

(n+ 1)ν + (n0 − 1)
+ αlim , (81)

n ≥ 0 and α0 the initial value of αn (i.e. at n = 0). Using a 50 Hz zero phase
low pass filter a rough optimization exercise of the stable inversion results for αlim,
n0 and ν indicates best results are obtained for αlim between 0.0001 and 0.0005,
n0 = 2 and ν = 1. In the sequel therefore we will use

αn = 2
α0 − αlim

n+ 2
+ αlim , (82)

n ≥ 0. Using a 50 Hz zero phase low pass filter, a y-based iteration selection
strategy, at most 10000 iterations, and various combinations of α0 and αlim, with

α0 ∈ {−1.0,−0.7,−0.5,−0.3,−0.1,−0.05}

and

αlim ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}

gives best stable inversion results as in Table 3 (decreasing gain, time-independent
case). Note that the most accurate calculated u signal is 16.8%, and when simulated
back through the system gives an output error of 12.4%. Clearly the use of a
decreasing gain sequence gives more accurate stable inversion results, but at the
cost of larger numbers of required iterations, and therefore takes longer. Results
obtained using a 70 Hz, 90 Hz and absent zero phase low pass filter are also shown
in the table.

(4) Time-varying gains: The above procedure may be repeated using a time-varying
gain with the aim of suppressing the localised radical signal growth over successive
iterations that often result in divergence of stable inversion. Various approaches
exist for designing such a gain function that is dependent on the local magnitude
of a signal for a given iteration as a function of time and on the nominal value of αn.
These approaches tend to be highly empirical in nature and are therefore not further
elaborated on here. The best results obtained with this formula are presented in
Table 3 (for both a constant nominal αn and decreasing nominal αn, the latter
once again obtained for various combinations of filter frequency, α0 and αlim). The
best results obtained with iteration-independent, time-varying gains represent an
improvement over the results of Case 2 and Case 3. The best results obtained with
decreasing, time-varying gains represent the best stable inversion results thus far
for this system and the given desired output signal. These results demonstrate the
advantage of allowing αn to be time-varying, for both both iteration-independent
and iteration-dependent nominal values of αn.
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Table 3. Best results of stable inversion of Eq. 78. uerr = minmerr1(u(m)). yerr = err1(u(M)), where M is the
iteration resulting in minmerr1(u(m)), i.e. M = argminmerr1(u(m)).

Iteration type Filter cut uerr yerr M = Iter. Comment
αn freq. [Hz] [%] [%] no.
Iteration-independent 50 27.6 26.0 13 αn = 0.1
Time-independent 70 33.4 31.7 913 αn = 0.001

90 37.7 33.4 808 αn = 0.001
(None) 66.0 55.0 492 αn = 0.001

Iteration-dependent 50 16.8 12.4 10000 α0 = 0.05, αlim = 0.0001
Time-independent 70 29.7 25.4 3697 α0 = 0.05, αlim = 0.0001

90 35.6 27.9 3160 α0 = 0.05, αlim = 0.0001
(None) 65.7 51.7 234 α0 = 0.05, αlim = 0.0001

Iteration-independent 50 15.7 10.3 3776 αn = 0.001
Time-varying 70 19.5 14.5 12 αn = 0.5

90 26.2 16.1 423 αn = 0.01
(None) 46.4 46.6 3 αn = 0.3

Iteration-dependent 50 13.3 8.1 8327 α0 = 0.05, αlim = 0.0005
Time-varying 70 18.8 15.1 85 α0 = 0.5, αlim = 0.005

90 28.4 13.5 3244 α0 = 0.3, αlim = 0.0001
(None) 48.6 38.6 18 α0 = 0.3, αlim = 0.0005
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8. Discussion

The paper outlines a method for the inversion of nonlinear systems, with the immedi-
ate application that is presented here being the inversion of nonlinear models obtained
by system identification for use in ILC in laboratory test systems. This capability can
potentially find extensive use in response reconstruction for purposes of road simulator
fatigue tests (with the desired response trajectory a field measured response) or shock
and vibration tests (using a synthetic desired response).
For routine application in this way the methods presented here need to be implemented

systematically and generically, which is very possible and has indeed been done by the
first author in a Matlab based software package (used for both the the numeric work
and the graphic user interface) utilizing National Instruments AD and DA hardware. To
this end the nonlinear system can be limited to an input-affine (or control-affine) NARX
system, which can readily be identified using non-iterative least squares, and (if needed)
subsequently converted to state space form. In fact, completing the process to obtain the
inverse state space model reveals convenient connections and similarities to the original
NARX model, ultimately enabling the intermediate state space step to be skipped in
practice.
The disadvantage to limiting the nonlinear system to NARX models, and indeed to

using the stable inversion method in the first place, is that it is limited to smooth
nonlinear models (as NARX models are). That doesn’t imply the method is not useful
in more general systems featuring non-smooth nonlinearity, because such systems can
indeed be approximated with smooth systems, allowing ILC to compensate for the model
deficiencies via its learning capacity (which is well known to be able to account for a
certain level of system nonlinearity when, for example, using a linear model).
Recommendations for further research on stable inversion:

• The time dependent gain employed in Mann iteration in stable inversion was found
to be of value. There are many possibilities for the design of the time-dependence
function, and the best approach need to be found.

• This research didn’t devote much attention t‘o the use of Ishikawa iteration in stable
inversion. Further work is needed to investigate the possible utility of Ishikawa
iteration in improving the results of stable inversion of NARX models, including
the use of iteration dependent and time dependent gains.

• Theorem 4.3 for showing that Mann iteration converges under weaker conditions
than Picard iteration may be improved with further research, possibly leading to
or requiring changes to Theorem 4.2.

• This paper omits the details of conversion of an identified NARX model to the
corresponding state space form (details may be found in [14]) on the grounds that
it is routine, however there is scope for tailoring the analysis presented here and
extending it for the NARX-derived state space formulation specifically.

9. Conclusions

The use of Mann iteration and a low pass filter was introduced for stable inversion. In
the examples for stable inversion of NARX models Mann iteration clearly gave better
results than Picard iteration, with best results achieved when the Mann iteration gains
were both iteration dependent and time varying. The value of using a low pass filter in
stable inversion was also clearly showed in the examples.
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Figure 1. Ex. 1, Case 2: Iteration error for calculated input signal for Picard and Mann iteration.
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Figure 2. Ex. 1, Case 2: Best u(i)(t) for Mann iteration.
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Figure 3. Exp. 2: ud(t) and yd(t).
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Figure 4. Exp. 2 (no low pass filter): Iteration error of calculated inputs for Picard and Mann iteration.
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Figure 5. Exp. 2 (50Hz low pass filter): Iteration error of calculated inputs for Picard and Mann iteration.
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Figure 6. Exp. 2 (50Hz low pass filter): Best u(i) for Mann iteration.
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Figure 7. Exp. 3: ud(t) and yd(t).
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Figure 8. Minimum iteration error for the input using a constant α and β, for Ishikawa iteration.
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