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1 Objectives

1.1 From basin-scale to regional design studies

The future of observing systems will see a major development of the Argo biogeochemical array
(BGC-Argo) according to Johnson and Claustre (2016).  The final  goal is to build a network of
BGC-Argo  floats  measuring:  oxygen  concentration,  nitrate  concentration,  pH,  chlorophyll-a
concentration,  suspended  particles,  and  downwelling  irradiance.  The  current  array,  based  on
classical Argo technologies, includes about 350 BGC-Argo floats (end of 2018) sampling vertical
profiles of the upper ocean down to 2000m depth every 10 days. Due to this still sparse array,
forecasting and reanalysis biogeochemical systems in operations today only use satellite ocean
color data (Gehlen et al., 2015; Ciavatta et al., 2014).

According to Johnson and Claustre (2016), a global array of about 1000 biogeochemical profiling
floats would provide the resolution needed to greatly improve our understanding of biogeochemical
processes and to enable significant improvement in ecosystem models. With an  endurance  of
four  years  for  a  BGC  float,  this  system would require the procurement and deployment of 250
new floats per year to maintain a 1000 float array. They consider that the full-scale implementation
of a global Biogeochemical-Argo system with 1000 floats could be feasible within a decade.

An incremental strategy for the development the global BGC array has started, involving several
prototype profiling float arrays deployed at the regional scale by various  countries, which are  now
operating.  Examples  include  the SOCCOM regional array in the Southern Ocean, the remOcean
in the North Atlantic Sub-polar Gyre, and others in the  Mediterranean  Sea, in the  Kuroshio
region  of  the North Pacific, and in the Indian Ocean.

As part of WP1.3, a design study based on OSSEs has been performed by CNRS and UKMO in
order to refine the design of the global BGC array in conjunction with ocean colour data in the
North Atlantic basin. The main conclusions derived from these experiments are: 

 Assimilating BGC-Argo float observations at the surface allows the reduction of the prior 
uncertainty where the use of satellite systems is limited due to cloudy conditions.

 The major gain on assimilating BGC-Argo floats is observed between 50 to 150 m, while 
the value of adding satellite ocean color data is mostly observed over the first 50 m

 The biggest impact of BGC-Argo data assimilation is in the Tropics, with a larger BGC-Argo
array required to effectively extend the influence of the assimilation.

As a result, the following recommendations were made regarding the BGC-Argo network in the
North Atlantic:

 A BGC-Argo array of the target size (1000 floats) would provide data that could be usefully 
exploited to improve ocean biogeochemical reanalyses.

 BGC-Argo observations are complementary to ocean colour data, providing information that
ocean colour data is unable to, but with more limited information about surface chlorophyll 
than ocean colour can provide.

 There is some evidence that a BGC-Argo array larger than the target size would allow the
data assimilation to better constrain the models, but this evidence is based on an initial
assimilation capability, and may or may not still hold if more effective methods of exploiting
the data are developed.

In order to refine the design of the BGC array at regional scales, the  AtlantOS WP5.3 is focusing
on spatial resolution and time sampling of the BGC-Argo observing system in the North Atlantic
sub-polar gyre. This regional focus was chosen as the subpolar North Atlantic is responsible for
>20% of net global ocean CO2 uptake with a strong annual signal that is not well measured or
understood. Moreover, the North Atlantic is undergoing dramatic change, including weakening of
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the  subpolar  gyre  and  increased  penetration  of  subtropical  waters.  Further,  we  decided  to
concentrate on the North Atlantic, since the development of a second regional application in the
South  Atlantic  at  high  resolution  would  have  involved  new  simulations  compared  WP1
achievements, requiring intensive ensemble simulations and computing resources not available in
the project.

Following and complementing the basin scale studies carried on for the WP1, the present work lies
Observing System Simulation experiments (OSSEs) by considering different observing systems
that combine BGC-Argo floats and satellite ocean color data from satellites.

1.2 WP5.3 task description
As specified in the DOW, the objective of this task is to investigate the defined “optimal sampling”
through an OSSE approach, relying on the methodology developed by Germineaud et al. (2019) as
part of WP1.3. We now focus on the Irminger basin between Iceland and Greenland (Fig. 1) with
increased resolution and extended parameter portfolio, and we assess the capabilities of different
couple  observing  scenarios  /  assimilation  scheme  to  reproduce  some  biogeochemical  fields.
Scenarios differ between them by the number of BGC-Argo deployed profiles and if satellite ocean
surface color is considered in the observing system or not. Those scenarios are also discriminated
on different  dates presenting  different  biogeochemical  features  (see section  2.3.1.  here  after).
From this study, recommendations are eventually formulated about which type of observing system
might be deployed depending on the season.

Figure 1 : Area of interest in the North 
Atlantic

2 Material

2.1 Introduction
As mentioned in section 1.1, this study is based on an OSSEs strategy. This methodology is
complementary  to  Observing  System  Experiments  (OSEs)  also  known  as  data  denial
experiments,  that assess the impact of a real data set (i.e real observations) on analysis and
forecast  by  retrieving  them  from  the  observing  system.  Alternatively,  OSSEs  use  so-called
synthetic/simulated observations and allow theoretical studies of the impact of non-existing-yet
data sets. 
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In this study, the conventional OSSE methodology  has to be adapted to the use of stochastic
ensemble models, as developed by Garnier et al., (2016), to assimilate pseudo-data. One may
therefore consider a probabilistic approach as proposed by Germineaud et al. (2019) to take into
account the use of ensemble representations of possible “truth”. In their study, a cross-validation
algorithm is developed, in which each ensemble member is alternatively used as the “true state”
and sampled using two different BGC-Argo arrays, including their combined relationship with
satellite ocean color data. To evaluate in a probabilistic way a selection of observing scenarios,
we use a comprehensive set of verification tools in addition to RMS error diagnostics. Performing
this  new  type  of  OSSEs  may  require  demanding  computational  resources,  especially  for
experiments performed into a 4D context, limiting the number of possible scenarios to be tested. 

The experimental set-up considered in the regional design study is derived from the latter and
combines a 60 members PISCES biogeochemical numerical model (Aumont et al., 2015) with a
set  of  synthetic  observations  created  from  one  the  ensemble’s  member  using  a  Singular
Evolutive Extended Kalman (SEEK) filter implemented in the System of Sequential Assimilation
Modules (SeSAM) platform (Brankart et al. 2012). All these components are described hereafter.

2.2 BGC probabilistic modelling :
For monitoring and forecasting purposes, the effect of uncertainties due to various BGC model
imperfections (e.g. simplified biology, unresolved biological diversity, unresolved scales) has to
be properly simulated as it should play a key role in estimating the dynamical behavior of ocean
ecosystems. To better represent model uncertainties, Brankart et al. (2015) and Garnier et al.
(2016) investigated the use of an ensemble Monte Carlo approach based on the inclusion of
stochastic  processes  in  the  NEMO-PISCES  modelling  framework.  This  study  showed  the
potential  of such an approach by explicitly simulating the joint effects of uncertain biological
parameters and unresolved scales using a stochastic model  to  simulate an ensemble of  60
members into a 1/4° North Atlantic configuration.

2.2.1 The pysical-biogeochemical coupling
The ensemble simulations are based on the configuration described hereafter. NEMO (Nucleus
for European Modeling of the Ocean) is a physical model based on the primitive equations of the
ocean circulation. Here, it covers the North Atlantic region from 20°S to 80°N and from 98°W to
23°E. The spatial resolution at the equator is 1/4° and the vertical is described over 46 levels.
This horizontal resolution allows the model to be eddy-permitting and makes possible eddies that
are essential  for  the primary production (Levy et  al.,  2011;  Oschilles et  Garçon,  1998).  This
configuration has been extensively used in former studies such as Doron et al. (2011), Fontana
et al. (2013) or more recently Germineaud et al. (2019). For a deep insight into the NEMO model
system, the reading of Madec et al. (2016) is recommended. The physical model component is
forced at the air-sea interface by ERAinterim forcing fields. Biogechemical variables are driven
following the PISCES-v2 model (Aumont et al., 2015). Firstly developed to study global carbon
biogeochemistry,  PISCES is  now complex enough to represent  biological  behaviors in many
different  areas  (Aumont  and  Bopp,  2006).  The  24  biogeochemical  prognostic  variables  of
PISCES  are  clustered  in  4  main  compartments  :  The  phytoplankton,  the  zooplakton,  the
dissolved organic carbon and the particulate organic matter. Here the focus is set on the primary
production represented by chlorophyll-a. In the coupled NEMO/PISCES configuration used here,
biogeochemical variables are considered as tracers regarding the dynamic, and their evolution is
described byth advective-diffusive equation (eq.1) :

∂C
∂ t

=−∇ .(uC)⏞
A

−Kh∇ h
2C⏞

D h

+ ∂
∂ z (K z

∂C
∂ z )⏞

Dv

+SMS (C )                              (1)
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C  is  the  state  vector  including  the  24  PISCES  variables.  Terms  A,  Dh  and  Dv  represent
respectively the advection, the horizontal diffusion and the vertical diffusion computed by NEMO.
SMS is the ”Sources Minus Sink” of PISCES (see Garnier et al., 2016, Aumont et al., 2015).
Coupling is performed on-line and the configuration has endure a 3-year biogeochemical spin up
between January 2002 and December 2004.

2.2.2 From a deterministic model to a probabilistic ensemble
Despite  the  abilities  that  PISCES demonstrated  in  reproducing  relevant  fields  with  SeaWifs
ocean color satellite observations (Aumont et al. 2015, Auger et al. 2016) it still misses some key
chlorophyll  signals  that  are  observed  at  the  ocean  surface  from  satellites.  Since  these
uncertainties may come from many sources, it is hard to build specific parameterization for each
of  them.  Garnier  et  al.  (2016)  proposed to  explore  this  problem by introducing a  stochastic
parameterizations for 12 uncertainties (7 biogeochemical parameters and unresolved scales) to
simulate uncertainties and compare them to satellite observation uncertainties.

2.3 Observations

2.3.1 Real observations
Observations for ocean biogeochemistry are essentially satellite ocean color products (Johnson
et al. 2009) and as shown in WP1.3 it will be useful to combine these data to the new BGC-Argo
profiles  in  future  forecast/analysis  and  reanalysis  systems.  BGC-Argo  are  autonomous
instruments driven by currents (Johnson and Claustre 2016). As mentioned in section 1.1 they
measure  oxygen  concentration,  nitrate  concentration,  pH,  chlorophyll-a  concentration,
suspended particles, and downwelling irradiance. Profiles of these variables are measured down
to 2000 m every 10 days from depth to surface. Between two measurements the instrument
derives at the 1000 m depth. Here, only three of these variables are considered: Chlorophyll
concentration, Nitrates (NO3) concentration, and oxygen (O2) concentration.

2.3.2 Synthetic observations
Performing  OSSEs  requires  simulating  adequate  synthetic  observations.  They  need  to  be
adequate (i) to simulate the various possible situations that can occur in the real ocean, and (ii)
to simulate the various sources of observational errors.

(i) In standard OSSEs, one single nature run is used to simulate observations. This means that
the results can be dependent on the particular situation that was chosen as nature run. With an
ensemble simulation, we have the possibility to use each ensemble member as nature run, to
simulate a variety of possible observation datasets. Data assimilation is then performed with the
other members (those not used as nature run) to evaluate the scenarios. This method allows
evaluating the scenarios by browsing a sample of possible ocean situations, and provides an
ensemble of possible scores as a result.

(ii)  Observational  errors  include  the  measurement  errors  resulting  from  instrumental
imperfections and representativity errors resulting from all processes that are not resolved by the
modelling system. In our application,  it  is  quite difficult  to  anticipate,  the amplitude of  these
errors, this being especially true for representativity errors. The amplitude of the errors is thus
left as a free parameter, which is part of the description of the scenario to be evaluated.

This parameter is chosen to be the ratio between observation error standard deviation and the
standard deviation of the prior ensemble. This amounts to specifying the signal-to-noise ratio
that is assumed for each observation. This simple solution has also the advantage of not making

7



Optimal design of regional sampling based on OSSEs

the OSSEs too dependent of the realism of the spread of the prior ensemble (since we evaluate
the system as a function of the ratio between observation error and ensemble spread).

Moreover, since biogeochemical variables are non-Gaussian, this signal-to-noise ratio is applied
after  anamorphosis  transformation  (see next  section),  i.e.  after  the  nonlinear  transformation
transforming the non-Gaussian variables into Gaussian variables.

In  the design experiments carried out for this task, one member of the ensemble is selected
randomly as Nature Run (NR) and is perturbed using a Gaussian white noise (Fig. 2),  then
values are picked up at observations location. These values give the data set to be assimilated
using the other ensemble members.

a b

Figure 2 : Surface chlorophyll after anamorphosis transformation for the 20th of May (a) and 
the same N(0,1) Gaussian perturbed field used to simulate observations (b).

2.4 Data Assimilation scheme
OSSEs are highly dependent upon how observations are assimilated into the numerical model.
Suboptimal assimilation can indeed lead to underestimation of the possible benefit that can be
obtained from a given observation scenario. It can happen for instance that more information are
needed to obtain a given accuracy of the results. To obtain reliable conclusions, it is thus of
primary importance that the assimilation scheme be correctly designed and tuned.

In this work, the observational update of the prior ensemble is based on a square root version
(Bishop et al. 2001) of the ensemble Kalman filters (e.g. Evensen 2003). More specifically,  the
practical algorithm is based on the Singular Evolutive Extended Kalman (SEEK) initially proposed
by Pham et al. (1998), and further developed by Testut et al. (2003), and Brasseur and Verron
(2006).

A localization algorithm (Brankart et al. 2011) is also used to avoid unrealistic effects of spurious
long-range correlations. The assimilation of the synthetic observations is thus performed locally,
limited by a radius of influence set to 2 grid points (i.e., the distance at which the weight of the
observations  becomes  negligible).  This  radius  of  influence  is  based  on  various  sensitivity
experiments  which  aimed  to  obtain  the  best  assimilation  scores  (best  resolution  and  good
reliability).
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In this assimilation scheme, it is assumed that the prior ensemble displays a Gaussian probability
distribution, which is clearly not valid for biogeochemical variables. To cope with this difficulty, a
nonlinear  transformation  (anamorphosis  transformation)  is  applied  to  transform  the  marginal
distribution of every state variable into a Gaussian distribution (e.g. Bertino et al. 2003; Béal et al.
2010). Anamorphosis is a bijective transformation allowing a rebuild of assimilated fields into the
model space after the observational update has been applied on the transformed variables.

Anamorphosis is also used in this study to help simulating observation errors associated to the
various scenarios. Biogeochemical observation errors are indeed also non-Gaussian (otherwise,
negative observed concentrations would be possible), and this needs to be communicated to the
assimilations scheme (in which observation errors are also assumed Gaussian).  To do this,  a
straightforward solution is to simulate and parameterize observation errors on the transformed
variables rather than on the original variables. Transformed variables are indeed Gaussian, and
Gaussian observation errors are thus possible. In our study, this amounts to specifying the signal-
to-noise ratio in transformed space, rather than in the original space.

Technically, the assimilation scheme is implemented with the SeSAM software (Brankart et, al
2012).  SeSAM  allows  the  full  processing  of  the  assimilation  sequence  from  the  forward
anamorphosis  transformation,  to  the  observational  update  and  then  to  the  backward
anamorphosis to get the updated fields back in the NEMO/PISCES space.

3 Implementation

3.1 Geographical and temporal situation
The basin  selected for the design experiment is located between approximately 54°N and 67°N
northward and 21°W and 43°N westward, thus a 286° squared area (Fig.1). We decided to focus
on to different date, the 6th of April 2005 and the 20th of May 2005. In the basin, biogeochemistry
fields are very different at those two moments (Fig. 3a and 3b), The first date presents very low
values of CHL , NO3 and O2 with a very narrow spread in the ensemble (Fig. 4.a) and the second
one witnesses a bloom with much higher values and wider spread (Fig. 4.b). Those different dates
will allow us to determine the efficiency of an observing system depending on the oceanic situation.

3.2 Scenario strategy
To find recommendations for the future of the BGC-Argo array we chose to start from the less
dense BGC-Argo array (meaning no in situ float) to an array of 1 float/1°x1° density. x0_sat is the
scenario using only ocean surface color observations, it will highlight  the contribution of this kind of
measurement when it is considered among a more complete observing system. All the scenarios
presenting “sat” into their denomination also use satellite ocean surface color and will allow a study
of the complementarity between top and deep observations. To evaluate the impact of the BGC-
Argo itself,  4 arrays have been built,  first the x9 array presenting a scenario with 1 float/1°x1°
density and then retrieving some profiles to get x3, x1 and x025. This means that profiles of x025
are also present in the denser scenarios. The densification from x025 to x9 can be imagined in two
steps. X1 which presents a 1 float/3°x3° density that corresponds to the physical Argo array can be
obtained from x025 by adding simply new instruments. x3 and x9 will be hardly obtained by adding
new instruments since it involves a lot of them. But the profiling rate can rise up from 1 profile/10
days to 3 profiles/10 days and 9 profiles/10 days by implementing new functioning modes into the
futures  floats.  X3  assimilates  data  from a  3  floats/3°x3°  density  array  and  x9  data  from a  1
float/1°x1° density array. All those scenario and their denominations and features are summed up
in table 1.
The 4 different Argo arrays and satellite ocean color coverage used to build-up the scenarios are
presented in Figure 5.
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a b

Figure 3 : Chlorophyll distribution at the surface for the 6th of April 2005 (a) and the 20th of 
May 2005 (b).

a b

Figure 4 : Vertical profiles down to about 450m depth for the 6th of April 2005 (a) and the 20th 
of May 2005 (b) showing Nature profiles (black), ensemble median (red) and the area between 
quantiles 30 % and 70 % (shaded red).

1 float/6°x6° 1 float/3°x3° 3 floats/3°x3° 1 float/1°x1° Satellite Color

x0_sat yes

x025_sat yes yes

x1_sat yes yes

x3_sat yes yes

x9_sat yes yes

x025_nosat yes

x1_nosat yes

x3_nosat yes

x9_nosat yes

Table 1 : Names of scenarios and corresponding observing system
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a b

c d

e

Figure 5 : Argo positions used for the scenarios : x025 (a), x1 (b), x3 (c), x9 (d)   and satellite 
color coverage (e)
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3.3 Evaluation scores
To evaluate the impact of the density of the BGC Argo floats combined with satellite surface ocean
color  on the biogeochemistry fields at  different  dates,  we chose to use simple but  meaningful
scores. Because we are not using a deterministic model but a probabilistic one, we can not make
“field-to-field” comparisons. Thus we use the quantiles of the assimilated ensemble to compare it to
the Nature Run.
The first score is equivalent to the error usually considered when using deterministic models. Here
the median quantile ( q0.5 ) is compared to the Nature Run and gives us an idea of how far the
assimilated ensemble is from the truth. This score is called ϵ  and is computed as the spatial mean
of the difference between q0.5  and X t .

ϵ=q0.5−X t                                                                (2)

The second score illustrates the spread reduction of the ensemble after assimilation. Since in the
biogeochemistry space, the distribution is not Gaussian we use the score named interquantile ( ∂ q
)  between the 30% quantile  and the 70% quantile.  The score  is  presented neither  in  its  raw
formulation, nor relatively to the prior ensemble interquantile value ( Δq ). ∂ q  is computed as the
spatial mean of the difference between q0.7  and q0.3 .

∂ q=q0.7−q0.3                                                     (3)

Δq=
∂q

q0.7
p

−q0.3
P

                                                    (4)

q p stands for prior ensemble quantiles. Those metrics will be presented in level maps, profiles or
single values.

4 Results

4.1 Mean difference between median to Nature Run :
As a primary result, we focus first on ϵ , the  average difference between the median quantile and
the Nature Run. Profiles are shown down to 450 m on Figures 6.a and 6.b and down to 90m on
Figures 6.c and 6.d, for the two different dates. Values are normalized by the surface value of the
background value of the score (obtained without assimilation) to show not too small values. For the
6th of April this value is 1.4x10-2 mgChl.m-3 and for the 20th  of May it is -4.8x10-2 mgChl.m-3. The
closest  to zero the better  the results.  As a comparison,  the distance between the same score
obtained without assimilation is given by the continuous black line.

We first look at the results for the 6 th of April (Fig. 6a and c). Maximum values for ϵ  are reached at
the surface because because the largest chlorophyll  variations, and thus the largest simulated
uncertainties occur  close to the surface,  ϵ  then decreases with  depth and the results  for  all
experiments  tend  to  become equal  below 150  m depth.  All  the  scenarios  present  a  common
behavior showing constant ϵ  down to 20 m depth.
Figures 6a and c present three different groups of results : (i) two scenarios presenting a strong
reduction of  ϵ (purple lines), (ii) three intermediate scenarios and (iii) a group of three scenarios
that remain close to the background score (black line).

The first group presenting the best scores gathers the two x9 scenarios with and without ocean
surface color assimilations. The 1 float/1°x1° density is enough to outperform the only surface color
data scenario (x0_sat) and when those two observing systems are associated (x9_sat) we obtain
the best upgraded solution.
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The intermediate group is composed by other scenarios assimilating ocean surface color.  The
interesting feature of this group is that BGC-Argo data assimilation (x025_sat, x1_sat and x3_sat)
do  not  reduce  the  score  of  x0_sat  and  even  slightly  degrades  it.  This  may  highlight  some
incoherence or wrong hypothesis in the data assimilation scheme that need to be explored.

The third and last group includes all the last scenarios that do not assimilate ocean surface color.
Here,  assimilating  BGC-Argo  profile  do  not  lead  to  satisfying  results  and  even  degrades  the
background ϵ .

a b

c d

Figure 6 : Average difference between median quantile and Nature for the 6th of April (a, c) 
and the 20th of May (b, d). Down to 450m (a, b) and zoomed in down to 90m (c, d). Values are 
normalized by pre assimilation surface median i.e 1.4x10-2 mgChl.m-3 for the 6th of April and 
-4.8x10-2 mgChl.m-3 for the 20th of May.

Then, we consider the date of the 20th of May (Fig, 6b and d). Higher values are reached at the
surface for the Argo-only scenarios and then scores reach zero with depth and become equal
slightly higher than previously (about 80m).

Two distinguishable groups of scenarios can defined: (i) the four scenarios that do not assimilate
ocean surface color and (ii) the four twins that use those satellite observations.

The first group presents highest scores, x025_nosat is almost equal to the background score and
then  there  is  no  clear  tendency because  of  new BGC-Argo  profiles  assimilation.  x1_nosat  is
equivalent to x9_nosat and x3_nosat gives the less effective score reduction.
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The second group is composed by scenario assimilating ocean surface color. Here again, there is
no clear impact of what BGC-Argo profiles bring to the solution. Indeed, the densest scenarios
(x3_sat and x9_sat) are equivalent, such as the sparsest (x0_sat and x025_sat) and the best score
is obtained with a 1 float/3°x3° density (x1_sat).

Those first results show that whatever the Argo array density, using surface ocean color gives the
better  ϵ  compared  to  the  background  ensemble.  Increasing  the  Argo  float  density  up  to  1
float/1°x1° (x9 scenarios)  only gives better results in April  when model values and chlorophyll
vertical gradients are weaker. In April, adding Argos to the x0_sat scenario tends to degrade  ϵ
until enough profiles are assimilated (x9_sat scenario) and in May, first profiles seem to give better
results (x1_sat) but too many profiles lead to an increase of ϵ .

Because we use ensemble, not only distance to Nature Run needs to be evaluated, one important
feature is the spread of the new assimilated ensemble, studied hereafter.

4.2 Ensemble interquantile reduction :

We now focus on ∂q , the average difference between the 30% quantile and the 70% quantile.
Profiles are shown down to 450 m on Figures 7.a and 7.b and down to 90 m on Figures 7.c and
7.d, for the two different dates. Values are normalized by the surface value of the background
value of the score to show not too small values. For the 6th of April this value is 4.5x10-2 mgChl.m-3

and for the 20th  of May it is 2.8x10-1 mgChl.m-3. The closest to zero the better is the result. As a
comparison, the background value of ∂q is given by the continuous black line.

For the 6th of  April  (Fig.  7a and c)  we notice that upper layers (down to 20 m depth) present
constant ∂q and then all scenarios present a decreasing score with depth. All simulations seem
to  become equal  around  300  m depth  and  they  all  present  a  better  score  compared  to  the
backward ensemble score.

Here, three groups can be distinguished: (i) two scenarios presenting a strong reduction of ∂q
(purple lines), (ii) five intermediate scenarios and (iii) a group of two scenarios that remain close to
the background score (black line).

The  first  group  includes  the  two  denser  scenarios  (x9)  with  and  without  ocean  surface  color
assimilation. Assimilating a 1 float/1°x1° density BGC-Argo array with ocean surface color gives
the best upgraded solution.

The intermediate group is mainly composed by ocean surface color data assimilating scenarios
(x3_sat, x1_sat, x025_sat and x0_sat). It shows the improvement brought to the system by the
satellite observations when it is combined with BGC-Argo profiles. But it is interesting to notice that
x3_nosat shows better results at the surface compared to the no-Argo (x0_sat) and the actual
BGC-Argo  array  (x025_sat)  scenarios  and  also  gives  a  better  solution  at  depth  after  20  m
compared  to  a  1  float/3°x3°  scenario  (x1_sat).  Improving  the  array  density  leads  here
systematically  to  an  improvement  of  the  scores.  Concerning  ∂q ,  assimilating  a  sufficient
number of BGC-Argo profiles can be better than using a coarser array with ocean surface color.

The third group is only composed by two scenarios that do not assimilate ocean surface color,
x1_nosat and x025_nosat. Here again, a better BGC-Argo array density gives better results. The
actual BGC-Argo array (x025_nosat) is almost ineffective when compared to the background score
value.
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Then, for the 20th of May (Fig. 7b and d), there is no constant score along the first vertical levels.
All simulations seem to become equal between 100 m and 15 0m that is much higher than in April
and all experiments show near to zero values higher on the vertical.

There is no clear separation between the experiments but it is still possible to distinguish those
which degrade the no-BGC-Argo scenario (x0_sat) and those which improve it.

The first ones, x025_nosat, x1_nosat and x3_nosat remain between the background score values
and the no Argo scenario scores. It shows once again that assimilating new BGC-Argo profiles
impacts positively the ensemble spread reduction. Comparatively to the previous situation (6th of
April)  the  profile  density  in  x3_nosat  (3floats/3°x3°)  do  not  give  better  results  compared  to
scenarios  which  assimilate  ocean  surface  color  (x0_sat  and  x025_sat).  It  shows  how  the
assimilation system can be sensitive to the biogeochemical situation.
All the remaining scenarios assimilate ocean surface color except x9_nosat. This scenario gives
the second best result but it is, this time, quite similar to x3_sat. Once again it shows the sensitivity
of the system to the biogeochemical situation. Otherwise, x9_sat shows the best ∂q reduction
since this scenario assimilates the most of observations.

a b

c d

Figure 7 : Average difference between 30 % quantile and 70 % quantile for the 6th of April (a, 
c) and the 20th of May (b, d). Down to 450m (a, b) and zoomed in down to 90m (c, d). Values 
are normalized by pre assimilation surface median i.e 4.5x10-2 mgChl.m-3 for the 6th of April 
and 2.8x10-1 mgChl.m-3 for the 20th of May.

To get a better illustration of this sensitivity to the biogeochemical conditions we now consider the
surface Δq plotted relatively to the Argo density (Fig. 8). On this figure, black lines are relative to
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the 6th of April and red lines to the 20th of May. Dotted lines illustrate assimilating ocean surface
colors and crossed lines stand for assimilating BGC-Argo-only scenarios. This shows more clearly
how adding new profiles reduces the ensemble spread as we saw previously but the interesting
feature is how satellite color and BGC-Argo observations assimilation impact experiments as a
function of the initial state of the ocean.
On the one hand, without satellite observations (no sat scenarios, crossed lines), we notice that
BGC-Argo assimilation is much more efficient for the 6th of April rather than the 20th of May . It
means  that,  compared  to  the  background  ensemble,  Argo  float  assimilation  allows  a  better
reduction of the spread in quiet periods of the biogeochemical cycle.

 

Figure 8 : Average difference between 30 % quantile and 70 % quantile for the 6th of April 
(black) and the 20th of May (red) at the surface relative to the density of BGC-Argo array. 
Dotted lines represent satellite colour assimilation scenarios and crossed ones stands for 
no satellite colour assimilation scenarios.

On the other hand, when we look at satellite assimilating scenarios we see that scores are better
for the 20th of May  compared to the 6th of April. Figure 9 maps helps to figure out this behaviour.
Looking at Figures 9a and 9c, representing respectively the no BGC-Argo scenario (x0_sat) Δq
for the 6th of April and the 20th of May. Those two maps clearly put in evidence the differences
between the two dates considering ensemble spread reduction when assimilating ocean color.
During an intense biogeochemical episode spread is reduced more efficiently where observations
are available compared to a period with a much less productive situation. On the opposite, while
looking at maps plotted on Figures 9b and 9d, presenting respectively x3_nosat scenario Δq for
the 6th of April and the 20th of May we notice that BGC Argo floast produce a larger ensemble
spread reduction close to  observations during a calm episode rather than during a bloom.

This may suggest that a less intense and stratified situation will be more sensitive to BGC Argo
observations compared to ocean color assimilation and during a bloom period, satellite ocean color
observation will brought larger spread reduction when teamed up with BGC float.

The previous results indicate that thinking about the future of the biogeochemical observing system
means to think about  what  is  observed but  also  when.  The following recommendations try to
answer these questions and propose some evolutions for the future of the BGC-Argo array.
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a b

c d

Figure 9 : Δq at the surface for the 6th of April (a, b) and the 20th of May (c,d) for the x0_sat 
scenario (left) and the x3_nosat scenario (right)

5 Recommendations and conclusions
The  previous  results  shown  how the  observing  system  impacts  the  chlorophyll  analysis  in  a
probabilistic ensemble model simulation. By considering two different dates and thus, two different
biodynamical states, it is now possible to identify guidelines to help in the future development of
the biogeochemical  observing network.  Those  recommendations  are  presented from the  most
general and obvious ones to more event-adapted situations. Our conclusions should however be
considered with some caution as the robustness of the ensemble BGC data assimilation system
still needs to be improved. The last paragraph therefore suggests improvements or modifications
that might be done as a follow-up of this study.

First, considering a BGC-Argo network with a constant density, an even partial coverage of surface
ocean color helps to reduce both the mean difference of ensemble median to NR state, and the
ensemble  spread  around  the median.  Whatever  the  considered  biogeochemical  regime to  be
monitored, satellite observations bring very substantial information about the system state. The
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future BGC observing systems should therefore fully rely on ocean color satellite missions, as they
already do presently.

The second recommendation is about the density of the BGC-Argo array. The study clearly shows
that an array densification up to a 1 float/1°x1° will lead to a strong ensemble statistical constraint
to fit with the NR. This theoretical array will be difficult to build at global scale since it would require
about 9 times the number of actual physical Argo profiling floats, i.e. almost 36000 instruments to
be deployed all over the globe. In consequence, a 1 float/3°x3° array, meaning that all physical
Argo floats would be equipped with biogeochemical sensors, can already be considered as a very
good alternative. This study also shows that the concept of a network built on an hypothesis of
homogeneous coverage in space is probably not realistic, and therefore local or regional scales
should be taken into account more closely.

Following the latter, the third recommendation mixes considerations related to satellite ocean color
and BGC-Argo communication  capabilities.  Results  show that  depending on the date and the
biodynamical state of the ocean, either satellite or BGC-Argo observations may dominate the other.
On the one hand, in quiet conditions with low biogeochemical activity, it appears that the system is
much more sensitive to satellite observations rather than BGC-Argo profiles. On the other hand,
during bloom periods a high density array (1 floats/1°x1°) without satellite, gives almost equivalent
results to an equivalent BGC-Argo / satellite scenario during the quiet period (Fig. 8). This suggest
that  it  might  be useful  to  consider  a denser  array during bloom events.  It  is  now possible  to
implement functioning modes in  BGC-Argo that  can be switched remotely allowing up to daily
profiling rate capabilities. This could be facilitated by a change from slow, one-way Service Argos
communications  to  faster,  two-way  Iridium  communication  mode.  This  capability  should  be
exploited  with  more  integrated  intelligence,  combining  real-time  information  delivered  by  both
operational monitoring systems and in situ measurements. A kind of easier solution would also be
to identify regions of  interest  regarding biogeochemistry and using these areas to launch new
profilers during the bloom periods. Combined with a higher profiling rate it may allow the array to
reach almost a 1 float/1°x1° density. Alternate solutions could be imagined such as launching short
life sensor profiling instruments during a short period with the same rate as classical Argo (~10
days).  This  solution  would  require  to think  about  the process and meaning of  launching non-
sustainable instruments in the ocean.

Eventually, one also needs to mention that those results are highly system and model-dependent.
Indeed, the model itself should be modified to present a more realistic spread compared to the
observing measurement errors. The present ensemble was not spread enough, therefore a new
ensemble,  designed  specifically  for  observing  systems  design  studies  should  be  generated.
Concerning  the  assimilation  method,  the  time-dependent  aspect  of  the  problem  was  not
considered, all observations are assumed to be made at the same time. The probabilistic model
did not cover a full year, thus it was not possible to study a wide range of biogeochemical situations
such as the fall bloom. The same kind of study should therefore be carried out while taking this
time-dependency parameter in full consideration. 
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