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Abstract 

Spina bifida is a birth defect in which the vertebral column is open (bifid), often with spinal 

cord involvement. Clinically most significant is myelomeningocele (MMC; open spina 

bifida) in which the spinal neural tube fails to close during embryonic development.  The 

exposed neural tissue degenerates in utero, resulting in neurological deficit that varies with 

level of the lesion.  Occurring in around 1 per 1000 births worldwide, MMC is one of the 

commonest congenital malformations, yet its causation is largely unknown.  The genetic 

component of MMC is estimated at 60-70% but few genes have yet been identified, despite 

much information from mouse models.  Non-genetic risk factors include reduced folate 

intake, maternal anticonvulsant therapy, diabetes mellitus and obesity. Primary prevention by 

peri-conceptional folic acid has been demonstrated in clinical trials, leading to food 

fortification programmes in many countries. Prenatal diagnosis is by ultrasound enabling 

termination of pregnancy. Individuals who survive to birth have their lesions closed 

surgically, with subsequent management of associated defects, including the Chiari II 

malformation, hydrocephalus, and urological and orthopaedic sequelae.  Fetal surgical repair 

of MMC has been associated with improved early neurological outcome compared with 

postnatal operation.  MMC affects quality of life during childhood, adolescence, and into 

adulthood, posing a challenge for individuals, families and society as a whole. 

 

0. Introduction 

Spina bifida is a congenital malformation in which the spinal column is split (bifid) as a result 

of failed closure of the embryonic neural tube, during the fourth week post-fertilization.  In 

its commonest and most severe form, myelomeningocele (MMC; also termed open spina 

bifida or spina bifida aperta), the spinal cord is open dorsally, forming a placode on the back 

of the fetus or newborn baby that frequently rests on a meningeal sac (then named spina 
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bifida cystica 1).  The vertebrae at the level of the lesion lack neural arches, and so are 

incomplete dorsally. 

 

Individuals with MMC often exhibit motor and sensory neurological deficit below the level 

of the lesion. This may result in lower limb weakness or paralysis that hampers or prevents 

walking, and lack of sensation that enhances the risk of pressure sores.  Urinary and fecal 

incontinence occur frequently, as does hindbrain herniation (Chiari II malformation) and 

associated hydrocephalus which often requires shunting. Orthopedic abnormalities including 

talipes (club foot), contractures, hip dislocation, scoliosis and kyphosis are frequently 

observed. There is a strong correlation between the axial level of lesion and the degree of 

disability experienced by individuals with MMC. A 40-year follow-up of 117 children whose 

lesions were repaired in the UK during the 1960s and 1970s found only 17% survivors with 

lesions above the 11th thoracic vertebra (T11), whereas 61% were alive with lesions below 

the 3rd lumbar vertebra (L3) 2.  Significantly fewer survivors were community walkers, and 

were free of pressure sores, in the ‘above T11’ group compared with the ‘below L3’ group. 

 

The lifetime cost of a child born with MMC is estimated at over €500,000 ($600,000), of 

which 37% comprises direct medical costs with the remainder being indirect costs including 

special educational and care-giver needs, and loss of employment potential 3. In view of these 

life-changing health and economic consequences of spina bifida, considerable effort has been 

invested in exploring the pathophysiological mechanisms, finding better ways to treat and 

manage the condition and its consequences, and progressing towards the ultimate goal of 

primary prevention. This article considers the main areas of progress to date, and looks 

forward to developments that may further enhance the outlook for people with spina bifida. 
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I. Epidemiology 

Many epidemiological studies lump spina bifida together with the related defect anencephaly, 

and sometimes also with encephalocele, under the general term ‘neural tube defects’ (NTDs). 

Box 1 lists the pathological conditions that are usually considered to be NTDs.  Birth 

prevalence of NTDs has varied considerably over past decades 4 and continues to show 

substantial differences between geographical locations.  For example, the prevalence of 

NTDs in the USA and many European countries is estimated at 0.5-0.8/1000 births5 whereas 

prevalence in some regions of China has been reported to be more than 20 times higher 6. 

Assuming an average prevalence of one NTD case per 1000 births, with a global population 

of 7 billion and birth rate of 20 per 1000 population, this generates a figure of 140,000 NTD 

cases per year worldwide. Regions of higher NTD prevalence have uniquely shown 

disproportionately higher frequencies of rarer subtypes such as craniorachischisis and 

iniencephaly 7.  Further, within-country differences have been observed between racial and 

ethnic groups. For example, in the USA, Hispanics have higher spina bifida prevalence 8, and 

African-Americans have lower prevalence 9, compared with non-Hispanic whites.  

Prevalence differences in time and across geographic regions have been attributed to 

variations in ascertainment methods as well as to true differences in risk.  Indeed, 

ascertainment of NTDs is challenging based on antenatal screening procedures that can lead 

to diagnosis and subsequent pregnancy termination.  Omission of elective terminations 

clearly underestimates prevalence and may bias risk estimations in etiologic studies 10. 

EUROCAT, the European network of population-based registries for epidemiological 

surveillance of congenital anomalies, collects data on pregnancy terminations in addition to 

live and stillbirths, generating particularly comprehensive prevalence data for NTDs and 

other malformations. For the period 2003-2007, EUROCAT estimated the prevalence 
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(including chromosomally-related disorders) of ‘spina bifida’ and ‘NTDs’ at 0.51 and 0.94 

respectively per 1000 births, stillbirths and pregnancy terminations 11.   

 

It has long been known that both genetic and non-genetic factors contribute to NTDs.  

Heritability (the genetic component of risk) was estimated at 60-70% based on the relative 

proportions of individuals affected amongst siblings of index cases from prevalence surveys 

in the 1960s, in South Wales, Glasgow, and London 12. Fewer than 10% of NTD cases are 

syndromic, for example occurring in chromosomal disorders including trisomy 13 or 18, 

while the great majority are non-syndromic and exhibit a sporadic pattern of occurrence.  

Several lines of evidence support a multi-factorial causation model for non-syndromic NTDs, 

involving multiple genes and non-genetic factors 13.  The recurrence risk for siblings of an 

index case is 2-5%, therefore representing a 20 to 50-fold increased risk compared with the 

general population prevalence of ~1 per 1000.  Second- and third-degree relatives show lower 

recurrence risks than first-degree relatives, but still higher than unrelated individuals.  For a 

particular woman, her empirical recurrence risk after an affected pregnancy is approximately 

3%, rising to around 10% after two NTD pregnancies.  In twins, the concordance for NTDs is 

higher amongst same-sex twin pairs (monozygotic and dizygotic) than opposite-sex twins 

(only dizygotic).  The finding of a female excess among fetuses/infants with anencephaly, but 

not with spina bifida, has strongly suggested a sex-related genetic or epigenetic relationship 

14.  Finally, the NTD prevalence differences between ethnic groups have been reported to 

persist in some cases after migration to other geographical locations15.  Hence, considerable 

evidence points to a major genetic component in spina bifida causation, raising the question 

of which genes are implicated (see Section II). 
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Considering non-genetic factors, diminished folate status is undoubtedly the best known 

factor influencing NTD risk (see Section II for further detail).  Beyond folate, a number of 

other nutrients and nutrition-related factors have been linked with NTDs (Table 1).  The 

association with maternal obesity is particularly notable, and has been consistently reported 

in studies from a variety of populations worldwide 16.   Interestingly, these obesity-associated 

risks are stronger for spina bifida than for anencephaly 16-18 and may not be modified 

downward with folic acid use 19.  For spina bifida, elevated risks have been consistently 

observed across studies in the range of 1.5 to 3-fold.  In addition, severe obesity (body mass 

index > 35) has been associated with even larger risks indicative of a “dose-response” 

relationship linking obesity with spina bifida.   Underlying mechanisms that have been 

suggested include aberrant glucose control, oxidative stress, and metabolic syndrome 18.  

Other non-genetic factors that have been linked with NTDs include exposure to a variety of 

environmental factors including pollutants and personal toxicants (Table 1).  However, most 

of these factors have either not been consistently observed, were relatively infrequent in 

occurrence, or the associated magnitude in risk for the factor is not very large.  Thus, such 

factors are unlikely to explain a substantive proportion of the population burden of NTDs 20. 

 

II. Mechanisms and pathophysiology 

The primary disorder in the pathogenesis of MMC is failed neural tube closure in the 

embryonic spinal region, which leads to prolonged exposure of the open neural tube to the 

amniotic fluid environment.  Remarkably, the bifid neuroepithelium initially undergoes 

relatively normal neuronal differentiation, with development of spinal motor and sensory 

function even below the lesion level. As gestation progresses, however, the exposed spinal 

cord becomes haemorrhagic and neurons die as a result of toxicity of the amniotic fluid (Box 

2).  Axonal connections are interrupted, and function is lost 21.  Hence, neurological disability 
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in MMC is often considered a ‘two-hit’ process: failed neural tube closure followed by 

neurodegeneration in utero.  This has encouraged attempts to cover the spina bifida lesion 

during fetal development, in order to arrest or prevent the neurodegeneration in cases where 

closure has failed (see Section IV). 

 

Genetic factors.  More than 200 genes are required for successful neural tube closure in mice, 

with new examples of essential genes being described on a regular basis 22. These genes 

belong to a wide range of molecular pathways 23 and the mutants display a variety of NTD 

phenotypes that mimics the range of human NTD variants.  Exencephaly, the developmental 

precursor of anencephaly, is most commonly encountered after gene mutation in mice (over 

150 genes), but open spina bifida is also observed in more than 40 mutant strains, and is the 

only NTD in several cases 22, 24.  Sequencing of the coding regions of human orthologues for 

many of these genes has revealed rare missense (amino acid-altering) mutations in patients 

with NTDs, that are absent from unaffected individuals.  In particular, variants of genes in the 

planar cell polarity pathway (PCP), a non-canonical Wnt signalling cascade, have proven to 

be associated with a variety of NTDs 25.  This is particularly significant, since PCP gene 

mutations are potent causes of mouse NTDs, generating several phenotypes particularly the 

severe defect craniorachischisis 26.  A second group of NTD-associated genes are those 

encoding enzymes of folate one-carbon metabolism (FOCM). Methylene tetrahydrofolate 

reductase (MTHFR) is an enzyme generating 5-methyltetrahydrofolate, essential for 

conversion of homocysteine to methionine.  Its 677C>T variant, which results in the 

conversion of valine to alanine at codon 222, reduces the activity of this enzyme and the 

677TT genotype, in either mother or fetus, particularly when folate status is low, can be a risk 

factor for NTDs in populations of non-Latin origin 27. In mice, knockout of the Mthfr gene 

does not generate NTDs 28, raising a question over the specificity of this genetic association 
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with NTDs.  In contrast, mutations in genes of the glycine cleavage system, which reduce the 

activity of two mitochondrial enzymes of FOCM (GLDC and AMT), are also found among 

NTD patients 29 and in this case loss of function of the mouse orthologues produces NTDs 29 

(Pai et al, personal communication). Mitochondrial enzyme activity supplies 70% of the 

cell’s one-carbon units for metabolism, as formate molecules, and it seems possible that 

genetic variants in this pathway may prove to be important risk factors for NTDs. 

 

Non-genetic factors.  Although a variety of environmental factors have been linked with 

NTDs (Table 1), only a few clues exist to the pathogenic mechanisms. Moreover, it seems 

likely that non-genetic factors mainly influence neural tube closure when combined with a 

predisposing genotype. The anticonvulsant valproic acid (VPA) increases risk of NTDs by 

~10-fold when taken during the first trimester of pregnancy 30. Its potent histone deacetylase 

(HDAC) inhibitory activity may disturb the balance of protein acetylation and deacetylation, 

leading to neurulation failure 31.  The causation of NTDs by the fungal product fumonisin was 

demonstrated in studies of an ‘outbreak’ of NTDs in South Texas, linked to fungal 

contamination of tortilla flour 32. The production of NTDs by fumonisin exposure in rodent 

embryos has identified sphingosine phosphate metabolism as a key target of the toxin, 

potentially compromising folate utilization 33. In maternal diabetes mellitus, which 

predisposes to a range of birth defects including NTDs, hyperglycemia is the immediate 

cause of NTDs although its pathogenic mechanism is poorly understood.  One suggestion is 

disrupted expression of the Pax3 gene 34 whose loss of function itself leads to mouse NTDs.  

 

Embryonic pathogenesis of MMC.  Two distinct phases of neural tube formation occur in 

higher vertebrates: primary (closure) and secondary (canalisation).  In humans, primary 

neurulation is initiated at the boundary between future hindbrain and cervical spine on day 22 
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post-fertilization, from which level the neural tube ‘zips up’ bi-directionally into the 

hindbrain and down the spine.  Closure initiates separately at the rostral extremity of the 

forebrain and zipping proceeds backwards from this site to meet the wave of forward closure 

from the hindbrain.  Cranial closure is completed at the rostral neuropore on day 24 while 

spinal closure continues for a longer period, forming progressively lower levels of the 

neuraxis, until it finishes at the caudal (posterior) neuropore on day 26 35. This marks the 

completion of the spinal cord to the upper sacral level. 

 

NTDs can result from failure of any part of this sequence of neurulation events and are 

typically open defects, owing to the arrest of closure prior to fusion of the neural folds in the 

dorsal midline (Figure 1A-C). The most severe spinal defect is craniorachischisis, in which 

closure fails to be initiated on day 22 in humans, yielding almost completely open brain and 

spine.  Analysis of mice with mutations in PCP genes including Vangl2 have revealed a 

defect of late gastrulation. The process of convergent extension involves the intercalation of 

cells in the midline to lengthen and narrow the body axis but, when this fails in PCP mouse 

mutants, the body axis remains short and wide.  The neural folds are spaced abnormally 

widely apart and are physically unable to initiate closure 36.  If the embryo successfully 

initiates closure but fails subsequently in cranial neurulation, then anencephaly results. 

Failure of subsequent spinal neurulation generates open spina bifida lesions of varying size 

and axial level, depending on the stage at which the wave of ‘zipping’ closure arrests.  For 

example, Zic2 mutant mice fail early in spinal neurulation, owing to lack of dorsolateral 

neural plate bending 37, and display a large spina bifida from thoracic level downwards.  In 

contrast, spinal closure in the curly tail (Grhl3) mutant fails later, due to enhanced curvature 

of the body axis 38, producing a spina bifida confined to the lumbo-sacral region.  It is not yet 
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clear whether human spina bifida of differing axial extents also result from distinct genetic 

causes, as in mice. 

 

Pathogenesis of closed (skin-covered) spinal dysraphism.  Secondary neurulation is 

responsible for forming the neural tube in the low sacral and coccygeal regions, following 

closure of the caudal neuropore (Figure 1D).  The end of the embryo comprises the tail bud 

(also called the ‘caudal cell mass’) whose mesenchymal cell core progressively reorganises 

into longitudinal cell condensations. The most dorsal of these condensations undergoes 

‘canalisation’, converting the solid neural precursor into a hollow, epithelial secondary neural 

tube 35, 39. There is no ‘closure’ component in secondary neurulation, and so defects (‘closed 

spinal dysraphism’) are not open to the external environment, but skin-covered (Figure 1E, 

F).  The principal defect appears to be failure of the neural and mesodermal tissues to become 

distinctly specified and separated spatially.  Recent research has revealed a bipotential neuro-

mesodermal precursor cell lineage within the tail bud 40, explaining why this separation is 

sometimes incomplete.  The clinical observation that the distal spinal cord is often ‘tethered’ 

to surrounding tissues, in closed spinal dysraphism, can therefore be recognised as a disorder 

of secondary neurulation. However, the frequent and striking association of closed spinal 

dysraphism with intradural lipoma (Figure 1F) 41 is not well explained, and is yet to be 

reproduced in an animal model.   

 

Postnatal pathogenesis.  MMC is the main form of spina bifida associated with brain 

malformations and hydrocephalus. The main brain defects (Figure 2) involve the spectrum of 

anomalies related to the Chiari II malformation of the hindbrain in about 90% of cases 42. 

This is associated with a cerebellum of normal size developing in a small posterior fossa, so 

that the cerebellum herniates downward through the foramen magnum 43. Quantitative studies 

show a reorganization of the cerebellum, in which the anterior part is larger, the posterior-
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inferior regions are smaller, and there is no difference in the corpus medullare (cerebellar 

white matter) 44.  Cerebellar volume reduction is more associated with thoracic level spinal 

lesions than lumbar or sacral lesions, but both are reduced relative to controls 45. In addition, 

about 65% of cases exhibit distortion of the midbrain, often marked by tectal beaking, in 

which the colliculi fuse into a single ‘beak’ pointing posteriorly and invaginating into 

cerebellum. The medulla is elongated and kinked at the spino-medullary junction in about 

70% of cases 42. 

 

The basal ganglia and related subcortical structures are visibly normal on radiological review 

46. On quantitative macrostructural assessment, the hippocampus, but not the amygdala, is 

reduced in volume 47, and the putamen is enlarged. About a third to half of children with 

MMC have hypogenesis (under-development) of the corpus callosum involving either the 

splenium and posterior body or the rostrum 42. These anomalies suggest that the disruption of 

neural migration associated with MMC is prolonged into the second trimester, since the 

corpus callosum develops from 8-20 weeks prenatally 48. Quantitative studies of the corpus 

callosum show marked volume and integrity differences, especially posteriorly in cases with 

hypogenesis or severe hypoplasia 49. Reduced integrity has also been shown in the genu, but 

not in the anterior commissure 50. There is recent evidence that corpus callosal defects can 

also be associated with closed spinal dysraphism 51.  

 

Secondary consequences of MMC include hydrocephalus which results primarily from 

obstruction of cerebrospinal fluid (CSF) flow at the level of the fourth ventricle, with other 

contributing factors including aqueductal stenosis, venous hemodynamics and ependymal 

denudation. Cortical reorganization occurs around the area of ventricular dilatation. On 

quantitative studies, the frontal regions are enlarged and there is a reduction in the volume of 
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posterior cortical regions 52. Hydrocephalus stretches the white matter, which is most 

apparent in the thinned (hypoplastic) appearance of the corpus callosum 53. Diffusion tensor 

imaging of white matter structures shows that the integrity of the long association fiber tracts 

connecting posterior and anterior brain regions are consistently reduced relative to controls 54, 

55. Using the midbrain as a seed point, Williams et al 56 showed greater reduction in posterior 

white matter integrity than frontal pathways, especially in association with tectal beaking. 

 

Hydrocephalus exerts primarily a linear effect on cognitive and motor outcomes, reflecting 

the severity of white matter impairment 57. Deviations from normative standards for volumes 

of frontal versus posterior regions are associated with reductions in IQ and fine motor 

dexterity 58. The specific contributions of the Chiari II malformation may be under-estimated 

as factors in cognitive and motoric outcome. Chiari II is associated with eye movement 

difficulties as well as problems with the precision and timing of motor movements and 

rhythmicity 59. Attention deficit is common in MMC, reflecting problems with posterior 

attention systems involving orienting and arousal mediated by the midbrain, with tectal 

anomalies directly correlated with the severity of difficulties with stimulus control 60. In 

contrast, motor functions such as procedural learning and attention functions involving 

sustained attention and persistence are relatively preserved, possibly reflecting less 

impairment in the frontal-striatal regions and basal ganglia 59. The corpus callosum anomalies 

are associated with reduced interhemispheric communication and more general difficulties 

integrating information in language, reading, and social domains 61.  

 

These neurocognitive difficulties can be observed as early as 6 months of age 62, reflecting 

domain general deficits in timing, attention, and movement that affect the development of 

people with MMC across the life time. They lead to difficulties in learning to construct and 
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assimilate information (assembled processing) which contrast with relative strengths in 

associative and procedural learning (associative processing) that occur within outcome 

domains (Figure 3) 63.  

 

Intellectual disability is relatively infrequent, affecting perhaps 20-25% of people with MMC 

and often after complications of hydrocephalus. In US samples, Hispanic individuals have 

shown a greater frequency of impaired cognitive outcome, which correlates with a specific 

association of more frequent upper level MMC defects and growing up in poverty 45. The 

characteristic cognitive strengths and weaknesses associated with MMC are highly variable 

and poorly reflected by IQ scores. The strengths reflect preservation of associative processing 

and include procedural learning, word reading, vocabulary and the form of language, 

persistence, and social activation. These contrast with weaknesses in motor adaptability, 

language comprehension and pragmatics, and hypersociality. Sources of variability are the 

severity of the malformations and hydrocephalus, the treatment of hydrocephalus because of 

shunt obstruction and infection, and environmental factors involving socioeconomic status 63. 

Cognitive and motor outcomes are directly related to spinal lesion level, which reflects the 

association of more severe brain dysmorphology with higher level defects.  

 

III. Diagnosis, screening and prevention 

 

Biochemical diagnosis and screening.  Prenatal diagnosis first became possible in the early 

1970s, with the finding of an elevated concentration of alphafetoprotein (AFP) in amniotic 

fluid samples from pregnancies with anencephaly or MMC 64, 65. Subsequently, assay of 

acetylcholinesterase in amniotic fluid was also shown to be diagnostic 66.  While AFP 

measurement on amniotic fluid samples may be useful for high risk cases, the 1% chance of 
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miscarriage following amniocentesis limited its more general application.  The finding of 

elevated AFP concentrations in maternal serum samples in MMC 67 greatly enhanced the 

utility of AFP measurements and formed the basis of subsequent population screening 

approaches 68 . However, with the increasing use of routine second trimester anomaly 

scanning, biochemical screening for MMC is becoming redundant as ultrasound offers 

greater sensitivity and specificity.  The main indication for biochemical screening now is 

maternal obesity where it impairs detailed ultrasound examination of the fetal anatomy.  

 

Sonographic diagnosis. In parallel with the development of AFP diagnosis, the 1970s also 

saw improvements in ultrasound that led to non-invasive diagnosis of MMC and other NTDs 

69. Today, the fetal spine can be examined by ultrasonography in the sagittal, axial and 

coronal planes from late first trimester onwards, providing the principal and most accurate 

mode of prenatal diagnosis. For reliable detection of MMC, detailed systematic examination 

is required in all three planes along the entire length of the spine, from cervical to sacral. This 

degree of careful examination can detect the majority of cases of MMC, whereas skin-

covered (closed) lesions are rarely identified in utero. Figure 4 shows views of the normal 

spine juxtaposed with MMC to demonstrate the sonographic findings. The spinal lesion is 

most readily identified when examined in the sagittal plane (Figure 4A, B), particularly if 

associated with a meningocele or MMC when the cystic extension is often visible from the 

posterior aspect of the spine (Figure 4C, D). The presence of neural tissue within the sac can 

often be seen, although ultrasound cannot reliably exclude the presence of neural tissue. 

Varying degrees of distortion of the spine, from virtually none to severe kyphoscoliosis, can 

also be seen in association with spina bifida. 
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Several cranial features are associated with spina bifida including a disproportionately small 

biparietal diameter for gestational age 70 and varying degrees of ventriculomegaly, which 

may occur in almost all fetuses by the third trimester but is present in up to 70% of cases in 

the second trimester 71.   In the late 1980s, the ‘lemon’ and ‘banana’ signs (Figure 4E-H) 

were described 72. These cranial signs have been a significant aid to prenatal diagnosis, since 

the head is examined routinely in all fetuses in the second trimester, whereas detailed spinal 

examination may be compromised by fetal position or other technical factors such as 

maternal habitus. However, recognition of the cranial signs should be an indication to ensure 

that detailed examination of the spine is undertaken and, in many units, may result in tertiary 

referral. Subsequent to the recognition of these cranial signs, routine second trimester 

ultrasound now detects around 90-98% of fetuses with MMC in countries offering routine 

second trimester anomaly scanning (Table 2)73. Whilst studies reporting detection rates using 

routine ultrasound scanning are now more than ten years old, and obesity is increasingly 

common in the obstetric population, ultrasound technology has improved significantly and 

there is no doubt that routine fetal anomaly scanning will continue to have a significant 

impact on the prenatal detection of neural tube defects, as previously 74. In the UK National 

Ultrasound Screening Programme the minimum standard for the detection of this anomaly 

following routine second trimester anomaly scanning is 90% (UK National Screening 

Committee; http://www.fetalanomaly.screening.nhs.uk/standards). 

 

The lemon sign refers to a loss of the convex outward shape of the frontal bones with mild 

flattening (Figure 4E, F), and is present in virtually all fetuses with MMC between 16 and 24 

weeks’ gestation. It is less reliable after 24 weeks, when present in only 30–50% of cases  

(Table 3)75-78. The banana sign refers to the shape of the cerebellum (Figure 4G, H) and is 

thought to be due to tethering of the spine with downward traction on the cerebellum (the 
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Chiari II malformation). It can be detected from 14 weeks onwards 79. Cerebellar 

abnormalities are present in 95% of fetuses irrespective of gestation. However, the cerebellar 

abnormality seen most commonly before 24 weeks' gestation is the banana sign (72%) 

whereas in later pregnancy the cerebellum is more often absent from view (81%) (Table 3) 80. 

 

Following the identification of spina bifida, detailed examination of the fetus is performed to 

look for other signs which may indicate an associated chromosomal or genetic syndrome, and 

to seek evidence of neurological damage, such as talipes or a dilated renal tract. Karyotyping 

is offered when other abnormalities are detected, or when other risk factors may suggest an 

associated chromosomal abnormality (e.g. advanced maternal age) 78, 81.  Prediction of spinal 

level of the lesion, with its prognostic significance, would be advantageous, and one study 

using 3-D ultrasound has reported an accurate sonographic estimation of the defect level to 

within one spinal segment in 86% of cases 82. However, anatomical level may not correspond 

to functional level, and ultrasound was not found to be predictive for postnatal mobility or 

intellectual function 83.  

 

Prevention. The prevention of NTDs by folic acid has been heralded as a modern public 

health success 84.  Nearly 40 years ago, Smithells and colleagues found that diets and 

postpartum blood levels of women who had a pregnancy affected by NTD were mildly 

deficient for selected micronutrients, including folate 85.  A folate-containing multi-vitamin 

supplement reduced the risk of NTD recurrence in women with a previously affected 

pregnancy 86.  Subsequently, the MRC randomized clinical trial of NTD recurrence 87, a 

randomised trial of NTD first occurrence 88, and a number of observational epidemiological 

studies, all provided evidence that folic acid supplements can prevent many NTD-affected 

pregnancies. Now, ‘high risk’ women, with a previous history of a NTD-affected pregnancy, 



17 
 

are recommended to take 4 mg folic acid while planning a pregnancy, whereas those at low 

risk are advised to take 0.4 mg 84. 

 

Concerns about the effectiveness of voluntary folate supplementation have led to folic acid 

fortification of staple foods and other policy promotions of folic acid in many countries. 

Mandatory folic acid fortification of cereal grain products in the USA began in January 1998, 

and has been associated with a reduction in prevalence of NTDs of approximately 25% 89. 

Implementation of mandatory fortification programs elsewhere, as in Chile 90, Costa Rica 91, 

Canada 92, South Africa 93 and Saudi Arabia 94 has been associated with similar or even 

greater reductions (e.g. >50%) in NTD prevalence, particularly spina bifida, whereas Brazil 95 

and Peru 96 did not report a reduced NTD prevalence after fortification programmes.  The 

relative amount of reduction in prevalence appears roughly correlated with the magnitude of 

the initial prevalence of NTDs. Some countries have also observed reductions in NTD 

prevalence after implementing programs of voluntary folic acid supplement use or 

fortification 97.   Considerable discussion remains around establishing national mandatory 

fortification programs in other countries, for example throughout Europe.  Some scientists 

have questioned whether these programs have gone far enough in reaching susceptible 

pregnancies 98 while others have expressed the need to balance the benefits of NTD 

prevention with possible risks for other parts of the population 99, 100.     

 

The underlying mechanisms by which folic acid facilitates NTD risk reduction remain 

unexplained 84.  Also unknown is why a substantial proportion of women who take folic acid 

supplements in the periconceptional period still experience NTD-affected pregancies.  Recent 

investigations have explored genetic variation in folate transport and metabolism 101-103 and 

the role of autoantibodies against the folate receptor, which are a possible cause of maternal 
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immunological response hampering folate uptake 104.  The small molecule inositol which is 

essential for a number of intracellular signaling pathways and is a building block for 

membrane phospholipids, can prevent mouse NTDs that do not respond to folic acid 105. 

Encouraging preliminary results with inositol supplements have emerged in humans 106, but 

need to be verified by clinical trial. 

 

IV. Management 

The management of MMC traditionally involves surgery within 48 h of birth. The child’s 

back is closed to minimize the risk of ascending infection that can result in meningitis. 

However, an earlier intervention involving fetal surgery has now been implemented in a 

number of centres, with promising results. 

 

Postnatal surgery and management.  Neonates with spina bifida are best managed 

following baseline imaging studies of the central nervous system, and subsequent 

serial head measurements to assess the velocity of head growth and the need for 

shunting.  Virtually all neonates with thoracic level lesions need a ventriculo-

peritoneal shunt, whereas around 85% of patients with a lumbar level lesion, and 

about 70% with a sacral lesion, require shunting 107.  Over the last five years, 

endoscopic third ventriculostomy with choroid plexus coagulation has become an 

alternative treatment for hydrocephalus associated with spina bifida, in highly 

selected cases 108.  Radiologic evidence of the Chiari II malformation is present in 

most individuals, and clinically symptomatic hindbrain herniation may affect up to 

30% of cases.  This manifests as apnea, swallowing difficulties, and stridor in a 

newborn baby, or headache, quadriparesis, scoliosis, and balance/coordination issues 



19 
 

in an older child. In severe cases, posterior fossa decompression surgery is indicated 

109. 

 

Orthopedic deformities are usually treated shortly after birth, with long-term follow-

up.  Patients are also monitored by ultrasonography and urodynamic studies to detect 

urological complications resulting from abnormal neurological bladder function. 

These include urinary retention with overflow and ureteric reflux which can lead to 

recurrent urinary tract infections and ultimately deterioration of renal function. 

Bladder and urinary tract management often includes a combination of clean 

intermittent catheterization, pharmacological agents, and surgery 110.  Bowel function 

is not an issue in neonates, but older children require bowel management including 

the use of suppositories, enemas or laxatives 111, and the use of antegrade colonic 

enemas 112.   

 

Medical management of individuals with spina bifida is best provided through regular 

assessments by a multidisciplinary team, directed by a physician with training in the 

care of children with spina bifida, and including a coordinator with responsibility for 

patient follow-up. Additional team members include a nurse specializing in the care 

of children with multiple handicaps, a pediatric neurosurgeon, urologist, and 

orthopedic surgeon, a physical therapist, and a social worker.  Other subspecialists, 

for example a psychologist, may become involved if required in individual cases. 

Communication is vital between the multidisciplinary team members, and with the 

patient’s primary physician, who provides routine medical care including 

immunizations and continuing emotional support for the family.  Additional issues 

that may need to be addressed by the team include neurobehavioral development (see 
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Section V), mobility and means of locomotion, weight maintenance, skin care, and the 

avoidance of latex sensitization. 

 

Fetal surgery.  The rationale for fetal surgery 113 is that damage to the exposed spinal 

cord is progressive during gestation (see Box 2 and Section II): hence early repair of 

the lesion, in utero, may prevent continuing damage and improve clinical outcome. 

Additionally, spina bifida repair arrests the leak of CSF from the lesion, enabling 

reversal or resolution of hindbrain herniation 114-116.  

 

Pregnant mothers with a diagnosis of MMC, who consider in utero surgery, undergo 

extensive prenatal testing. This includes: obstetric evaluation; screening for genetic or 

chromosomal syndromes (see Section III); ultrasonography to assess lower extremity 

function, identify club foot anomalies and estimate the spinal level of the defect by 

localizing vertebral arch defects; fetal echocardiography; and ultrafast MRI to assess 

the presence or absence of hindbrain herniation, hydrocephalus, and any other brain 

abnormalities 117. 

 

The intraoperative and postoperative management algorithm for fetal MMC surgery 

118 involves maternal laparotomy followed by hysterotomy using a uterine stapling 

device, after which the fetus is positioned with the spinal lesion visible through the 

uterine wound (Figure 5).  The fetal heart is monitored by intraoperative 

echocardiography 119.  The cystic membrane of the MMC is excised and the 

attachments of the meninges to the skin and soft tissues are freed.  If possible, native 

dura is closed over the neural placode as a first layer, followed by creation and 

midline closure of paraspinal myofascial flaps. Skin flaps are widely mobilized and 
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closed to complete the repair although, when the skin cannot be closed primarily, an 

acellular human dermis graft is used to complete the closure. 

 

Successful in utero spina bifida repair was first reported in 1998 120, 121, and clinical 

experience grew rapidly thereafter, with promising results 114, 115.  In 2003, as the fetal 

surgery approach was becoming increasingly widespread, but without compelling 

proof of safety or efficacy, a prospective randomized clinical trial was initiated.  The 

objective of the National Institutes of Health (NIH)-supported Management of 

Myelomeningocele Study (MOMS) was to evaluate whether intrauterine repair of 

MMC between 19 and 25 weeks gestation improved outcomes compared with 

standard, postnatal neurosurgical repair 118.  Standardization of patient inclusion and 

exclusion criteria, and all prenatal and postnatal patient care protocols, was 

established at the three participating clinical centers: The Children’s Hospital of 

Philadelphia, Vanderbilt University, and the University of California, San Francisco.  

MOMS involved two primary outcomes: first, a composite of fetal or neonatal death 

or the need for ventriculoperitoneal shunt placement by the age of 12 months and, 

second, an assessment of mental development and motor function at 30 months of 

age.  A variety of secondary neonatal and maternal outcome measures were also 

examined such as complications of premature birth.  During the study, the 

investigators were blinded to the results: follow-up evaluation of the children and 

mothers was performed by an independent medical team of pediatricians and 

psychologists appointed and supervised by the Data Study and Coordinating Center at 

George Washington University. 
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In December 2010, enrollment was stopped by the Data Safety and Monitoring Board 

because of the efficacy of fetal surgery after recruitment and randomization of 183 of 

a planned sample of 200 patients.  Confirming the earlier, non-randomized results of 

patients who underwent fetal MMC repair, the MOMS trial showed a significant 

reduction of ventriculoperitoneal shunt placement at one year of age following fetal 

surgery (prenatal group: 40%; postnatal group: 82%). The trial also demonstrated an 

improvement in overall neuromotor function at 30 months of age by a variety of 

measures including the finding that 42% in the fetal surgery group were walking 

independently compared with only 21% in the postnatal surgery group.  This was 

despite the fact that on average, the prenatal surgery group contained higher and more 

severe MMC lesions than the postnatal group.  Hindbrain herniation was also 

significantly reversed in the fetal surgery group compared with the postnatal surgery 

group.  On the negative side, fetal surgery was associated with significant risks related 

to premature birth (average gestational age at delivery in the fetal surgery group was 

34.1 weeks gestation compared with 37.3 weeks in the postnatal surgery group). 

Moreover, about 25% of mothers in the fetal surgery group demonstrated evidence of 

thinning of the uterine wound at the time of cesarean delivery, and 10% showed 

partial (9%) or complete (1%) tissue edge separation at the hysterotomy site, although 

none had a hysterotomy rupture. 

 

A mother carrying a fetus with MMC, at less than 24 weeks gestation now has three 

choices: termination of pregnancy, continuation of the pregnancy with near-term 

cesarean section and postnatal repair, or prenatal surgery if she satisfies the criteria for 

this procedure (Box 3).  A study that used MOMS data and a financial model showed 

health care savings of $2,066,778 for every 100 cases of fetal spina bifida repair 
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performed 122.  Long-term follow-up is crucial to assess the durability of the initial 

benefits, and the NIH has funded a study of the MOMS trial patients at 6-10 years of 

age. The clinical experience with fetal MMC repair during the past 3 years, since the 

MOMS trial, has shown comparable results 123.  Institutional guidelines have been 

established for fetal MMC repair and, for patient safety and optimal outcome, fetal 

MMC surgery should be limited to high-volume fetal surgery centers with a 

committed multidisciplinary team of experts following a standardized patient care 

protocol 124.  A data registry to collate the outcomes for patients who undergo fetal 

MMC repair has been established by the North American Fetal Therapy Network 

(www.NAFTNet.org). 

 

V. Quality of Life 

MMC has a pervasive impact on the physical, neurocognitive, psychological and 

social functioning of affected individuals 125-127. 

 

Health-related quality of life (HRQOL). Children and adolescents with spina bifida 

have a reduced HRQOL compared with individuals without spina bifida and those 

with other chronic health conditions. These differences tend to be stable across age 

groups, sex, geographical location and time 128, 129. Although measures of spina bifida 

severity such as lesion level, continence status and outcomes of various surgical 

procedures tend not to be associated with HRQOL 129, 130, other factors are 

significantly associated, particularly the presence of shunted hydrocephalus and lack 

of mobility 131, 132. Other robust predictors of HRQOL effects include social class, 

pain levels, parenting stress, and other family factors 129, 133. 
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Psychosocial adjustment. During late childhood, people with spina bifida tend to 

exhibit higher levels of depressive symptoms and lower levels of self-concept than 

unaffected individuals 134-136. Children with spina bifida also exhibit social 

difficulties: they tend to be socially immature and passive, have fewer friends, be less 

likely to have social contacts outside of school, and to date less during adolescence 

134, 137, 138. Most of these difficulties appear to be maintained into young adulthood 135. 

During childhood and adolescence, individuals with spina bifida also tend to be more 

dependent on adults for guidance, less likely to exhibit behavioral autonomy at home 

and intrinsic motivation at school, and less likely to express their own viewpoints 

during observed family interactions 134, 139-141. 

 

Family functioning. Research on families of children and adolescents with spina 

bifida 142 support a resilience-disruption view of family functioning 143. Although the 

presence of a child with spina bifida may disrupt normative family functioning, many 

families nevertheless adapt to such disruption and exhibit considerable resilience, 

exhibiting levels of family conflict similar to those with typically developing children. 

Between 10% and 15% of families containing children with spina bifida exhibit 

clinical levels of ‘family dysfunction’ 144, 145, but these rates are lower than the 35% 

dysfunctionality found amongst families of children with cerebral palsy 145. Families 

of children and adolescents with spina bifida from backgrounds of lower 

socioeconomic status are at particular risk for lower levels of family cohesion, 

supporting a cumulative risk view of such families 146. 

 

Although findings are mixed with respect to marital functioning among parents of 

children with spina bifida 147-149, the quality of the marital relationship prior to the 
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birth of the affected child is an important predictor of subsequent family adjustment. 

A meta-analysis of 15 studies 150 found medium to large negative effects for the 

impact of spina bifida on parents’ psychological adjustment, with somewhat larger 

effect sizes for mothers (d = 0.73) than for fathers (d = 0.54), as well as negative 

effects on parental stress levels and parenting quality 141, 151. Such parents feel less 

satisfied and competent as parents, feel more isolated, are less adaptable to change, 

and hold less optimistic views about the future than comparison parents 148, 152, 153. 

Parents who are single, older, socially isolated, from an ethnic minority or a low 

socioeconomic background are at particularly high risk of such outcomes 146, 154. 

Siblings of children with spina bifida are better adjusted when they are from families 

with more positive attitudes toward spina bifida, greater family satisfaction, and lower 

levels of sibling conflict 155. 

 

Adult outcomes. The mortality rate among young people with spina bifida is roughly 

1% per year from age 5 to 30, with the rate being highest among those with the 

highest level lesions 156, 157.  Among survivors, the quality of individuals’ health tends 

to decline from adolescence to young adulthood, presumably due to difficulties in 

navigating the transition to adult health care 158-160. Regarding psychosocial 

adjustment, emerging adults with spina bifida, like their younger counterparts, are at 

risk of depressive symptoms and anxiety 132, 161, but they are less likely to engage in 

risky behaviors such as alcohol use and multiple sexual partners, possibly due to their 

lower rates of social integration 162. Regarding educational and vocational outcomes, 

41-56% of young adults with spina bifida go to college compared with 66% of 

typically developing young people 131, 156, 163, 164. Moreover, recent studies report that 

only 36-48% of individuals with spina bifida are in full- or part-time employment 131, 
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159, 164-166, significantly lower than the rates in typically developing young people (e.g. 

75%; 163, 164, 167) and in those with other chronic conditions (e.g. 68-78% in asthma or 

cancer; 159, 168). Moreover, half of those with spina bifida who work have part-time 

positions and, thus, their annual salary is below the national average 131. 

 

With respect to relationship quality, 43-77% of individuals with spina bifida live with 

their parents 131, 156. Half (52-68%) have had a romantic relationship 131, although this 

rate is lower than in typically developing young adults 164, 169. The lowest level of life 

satisfaction is in the areas of romantic relationships, employment, and financial 

independence 131. Parents of young people with spina bifida are less likely to discuss 

issues of sexuality with their offspring 137, 170, and most affected individuals had an 

inadequate level of knowledge in this area 171. The high rate of obesity in this 

population (i.e., rates tend to be over 40%; 172), coupled with their continence issues, 

likely undermine young adults’ efforts to have romantic relationships 172, 173.  

Moreover, participation in leisure and recreational activities tends to be low, with over 

50% failing to participate at all 174. The commonest barriers are lack of motivation, 

lack of information, and time constraints 174. Younger individuals and those without 

shunts tend to participate more than older and more impaired individuals 175. 

 

More generally, the best predictors of successful navigation of young adult milestones 

appear to be condition-related (i.e. absence of hydrocephalus and good mobility 131), 

neuropsychological (e.g. executive functioning 164), personality-based (e.g. intrinsic 

motivation 164), familial (e.g. socioeconomic status, parental intrusiveness 164), and 

logistical (e.g. transportation, accessibility 176). Other factors include financial 

concerns including lack of health insurance 177, lack of job training and vocational 
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rehabilitation services, employment discrimination, stigmas related to physical 

appearance, and a lack of autonomy-related socialization during early childhood 173, 

178, 179. 

 

V. Outlook 

Spina bifida impacts individuals, their families, medical science and society in a variety of 

ways.  Looking forward, it is exciting to discern a number of areas in which our 

understanding of this multifaceted condition is likely to advance in the coming years, both 

enhancing our ability to promote primary prevention, and improving the lives of individuals 

who have spina bifida. 

 

Genetic basis. Unravelling the causation of spina bifida, like many other diseases, will be 

enhanced by the application of recently-developed high throughput genomic and epigenomic 

technologies.  Exome sequencing is already being applied on a small scale 180 but, even if 

causal genetic variants are identified in individuals or families with spina bifida, many are 

likely to be ‘private’ and not relevant to spina bifida causation in general.  Moreover, genetic 

risk may be imparted by non-coding DNA variants (e.g. enhancer polymorphisms) and 

specific epigenetic signatures 181, 182, neither of which is detected by exome sequencing. What 

is needed is a more broad-based approach to the unbiased identification of genomic or 

epigenomic alterations within groups of individuals with spina bifida (and other NTDs) 

compared with unaffected controls.  An international collaborative approach will be required 

for this type of study 182. With continued cost reductions and increase in speed of high 

throughput technologies, the application of more comprehensive and integrated ‘omics’ 

methodologies, including protein and metabolite detection and quantitation, seem likely to be 

implemented in the coming years 183. 
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Preventive action of folic acid. The mechanism by which folic acid prevents spina bifida and 

other NTDs remains unclear, and experimental studies will be aimed at elucidating this 

important aspect of primary prevention.  Exogenous folic acid may enhance embryonic cell 

proliferation through stimulation of pyrimidine and purine synthesis, and the finding of 

disordered embryonic cell proliferation in several mouse NTD models 184 supports such a 

role. In addition, folic acid may enhance the methylation of key macromolecules including 

DNA, which can affect embryonic gene expression, thereby contributing to the epigenetic 

regulation of early nervous system development 181, 182. A further possibility is that folic acid 

could in some cases be detrimental for neural tube closure, worsening fetal outcome and 

leading to miscarriage 185.  Such a detrimental effect, termed ‘terathanasia’, could in principle 

account for a reduced NTD prevalence in later pregnancy. Indeed, multi-generational 

treatment with high dose folic acid increased the frequency of NTDs in two genetic mouse 

strains 186, whereas NTD frequency in another strain was reduced by folic acid administration 

and increased by dietary folate deficiency 187, consistent with true primary prevention.  Once 

we are able to identify specific sub-groups of human spina bifida, for example from their 

genetic risk factors, then it may be possible to determine whether folic acid supplementation 

interacts heterogeneously with spina bifida in humans, as in mice. 

 

Primary prevention. Finding ways to prevent more cases of spina bifida is a priority for 

future research and public health implementation.  Folic acid food fortification will be 

extended to countries where this is not currently practised 98.  Moreover, several adjunct or 

alternative supplementation strategies are under active consideration.  Supplements 

containing vitamin B12, a co-factor in folate one-carbon metabolism, may further reduce the 

frequency of NTDs 188.  In addition, some NTDs may fail to respond to exogenous folic acid 
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owing to defects in the intervening metabolic enzymes required to transfer one-carbon units 

to key downstream metabolites. In this case supplementation with alternative folates, such as 

5-methyl tetrahydrofolate 189, or with key downstream molecules such as nucleotide 

precursors 190, may enhance primary prevention.  Apparent ‘folate non-responsiveness’ is 

increasingly observed, as women continue to experience spina bifida-affected pregnancies 

despite taking folic acid supplements.  This likely reflects an embryonic defect that cannot be 

‘corrected’ by altering folate one-carbon metabolism, and quite different preventive strategies 

may be required.  Prominent amongst these is the use of inositol, which can prevent NTDs in 

a mouse strain that is folate non-responsive 105 and has proven well tolerated and associated 

with normal fetal outcomes in a group of women at high risk of spina bifida 106. A pilot 

randomized clinical trial of inositol, alongside folic acid supplementation, is underway in the 

UK.  

 

Fetal surgery with stem cells.  Building on the success of the MOMs clinical trial (Section 

III), studies are beginning to evaluate the effect of introducing stem cells into the open spinal 

cord at operation.  If stem cells are able to differentiate into neurons or glia, to replace 

damaged cells or those that have died within the lesion, then neurological function might be 

enhanced after birth.  To date, these studies have transplanted stem cells into rat fetuses with 

MMC, induced by maternal administration of retinoic acid, and into sheep fetuses with 

artificially created MMC. Mesenchymal stem cells (MSCs), neural stem cells (NSCs) and 

skin-derived induced pluripotent stem cells (iPSCs) treated to enhance neural crest cell 

differentiation, were all shown to survive for variable periods after transplantation 191-193.  

Importantly, biodegradable tissue scaffolds have been successfully inserted at fetal operation, 

enabling cells to be seeded and established on the scaffold prior to transplant 193. On the other 

hand, the goal of using autologous (i.e. host-derived) amniotic fluid stem cells (AFSCs) for 
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transplantation, in order to minimise the risk of graft rejection, may prove problematic as 

AFSCs from human fetuses with spina bifida fail to deposit collagen type I, and show 

reduced collagen-related gene expression compared with AFSCs from normal fetuses 194.  A 

further stem cell-related advance has been the demonstration that autologous bone marrow-

derived stem cells can be used, together with a tissue scaffold, to enable bladder tissue 

engineering, as a possible replacement for the surgical procedure of enterocystoplasty, in 

which bowel wall is used to reconstruct the bladder: a procedure commonly performed in 

children with MMC.  As with all new stem cell-related therapies, a great deal of work will be 

needed, both in vitro and in animal models,  to develop optimum protocols for both efficacy 

and safety, before stem cell transplants can be considered in human fetuses. Furthermore, to 

maximise effectiveness of any potential in-utero treatment early sonographic diagnosis will 

be needed, and will require development of routine sonographic screening programmes 

delivered around 12 weeks gestation.  

 

Psychosocial developments and interventions. Several domains in the lives of individuals 

with spina bifida need further research. This is exemplified by the current lack of family-

based interventions for families of young people with spina bifida 142, in contrast to the 

extensive literature in this area for other chronic physical conditions (e.g. type 1 diabetes). 

Although few randomized clinical trials (RCTs) have been reported in any of the salient 

psychosocial domains (e.g. quality of life, social skills, independent decision making, 

depressive symptoms), a recent study found that goals management training reduced anxiety 

and psychological distress in a small randomized study of adults with spina bifida 195. A 

manualized summer camp-based intervention has also been developed that targets 

independence and social skills among children, adolescents, and young adults with spina 

bifida. The intervention included: collaborative (i.e. parent and camper) goal identification, 
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group sessions consisting of psycho-education and the acquisition of cognitive tools, and goal 

monitoring by camp counselors. Goals for each camper included a medically-related goal 

(e.g. catheterizing independently) and a social goal (e.g. making a new friend during camp). 

Statistically significant gains occurred in individualized goals and in the independent 

management of spina bifida-related responsibilities, with medium effect sizes 196. Such gains 

were maintained at 1 month follow-up, and the findings have been replicated with larger 

effect sizes 197. Progress towards objective evaluation of such interventions could 

significantly improve the lives of individuals with spina bifida. 
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Figure legends 

 

Figure 1. Overview of neural tube defects. 

Schematic representation of several neural tube defects (NTDs). Spina bifida occulta is found in up to 

10% of people and usually occurs in the low spinal region. Closed spinal dysraphism has many 

variants, including lipomyelomeningocele, low-lying conus and thickened filum terminale. CSF, 

cerebrospinal fluid. 

 

Figure 2. Neurulation and the origin of open and closed spinal bifida.  

(a) Schematic transverse sections showing the process of primary neurulation, which involves 

bending of the neural plate, convergence of the neural folds and closure of the neural tube.  

(b) A histological section through the open spinal neural folds of an unaffected human embryo 

(Carnegie stage 12, 26 days post-fertilization), showing the closing neural tube during primary 

neurulation.  

(c) Failure of the neural groove to close in the low spinal region in the fourth week after fertilization 

leads to myelomeningocele (also termed open spina bifida).  

(d) Schematic sagittal sections showing the process of secondary neurulation, which involves 

condensation of the caudal eminence, followed by the formation of the lumen (canalization), 

completion of secondary neurulation and regression of the tail. This process finalizes in the sixth 

week after fertilization.  

(e) A histological section through an unaffected human embryo (Carnegie stage 13, 30 days post-

fertilization), showing formation of the secondary neural tube (nt) through canalization.  

(f) Failure of the secondary neural tube to separate from non-neural tissues (tethering) leads to closed 

spinal dysraphism, in this case with massive lipoma. no, notochord; np, neural plate; so, somite. 

 

Figure 3. MRI appearance of brain dysmorphology in myelomeningocele.  

Mid-sagittal MRI images of a typically developing child (parts a, d and g), a child with 

myelomeningocele and a hypoplastic corpus callosum (parts b, e and h) and a child with 



myelomeningocele and a hypogenetic corpus callosum (parts c, f and i). T1-weighted MRI images 

(parts a–c) that reveal a downward shift of the cerebellum (cb) in the children with spina bifida, 

representing the Chiari II malformation. Also note the tectal beaking (t) and the structural 

abnormalities in the corpus callosum (cc). Diffusion imaging tractography (parts d–i) showing 

connectivity emanating from the corpus callosum. This connectivity is divided into anterior (frontal; 

blue) and posterior (yellow) segments (parts g–i). Note the relative preservation of frontal 

connectivity in the individuals with spina bifida. There is a greater and more aberrant pattern of 

connectivity in the child with the hypogenetic corpus callosum. Images courtesy of K. Bradley 

(University of Houston, Texas, USA) and J. Juranek (University of Texas Health Science Center at 

Houston, USA). 

 

Figure 4. Myelomeningocele and associated cranial signs on ultrasonography.  

Diagnostic ultrasonography images of normally developing fetuses and fetuses with 

myelomeningocele. Compared with the regular, parallel vertebrae covered with skin in a normal fetus 

(part a), the spine is protruding from the vertebral column in myelomeningocele (arrow, part b). The 

low spinal view of a normal fetus (part c) shows the cauda equina within the vertebral canal, whereas 

in spina bifida, a protruding meningeal cyst is visible (arrow, part d). In a typically developing fetus, 

the skull has a regular, smooth frontal appearance (part e). By contrast, cranial signs that accompany 

myelomeningocele include the lemon sign, which is due to scalloping of the frontal bones (arrows, 

part f). Of note, the size of the anterior horn is also marked in part f. Compared with the dumb-bell 

shape of the unaffected fetal cerebellum (part g), the banana sign seen in myelomenigocele is 

characterized by a convex-shaped cerebellum (arrows, part h). 

 

Figure 5. Fetal surgery for spina bifida.  

When a human fetus with spina bifida reaches 22 weeks of gestation, the mother and fetus can 

undergo surgery to repair the fetal spinal lesion. First, a hysterotomy is made in the mother by a 

uterine stapler, exposing the myelomeningocele lesion and neural placode (part a). This is followed 

by closure of the myelomeningocele lesion using a dural and myofascial flap (part b). 



 

Figure 6. Quality-of-life concerns across developmental stages in patients with spina bifida. 

Schematic representation of the main quality-of-life concerns for individuals with spina bifida. 

 

Figure 7. Folate metabolism and possible interventions.  

Maternal supplementation with folic acid prevents many cases of spina bifida, most probably through 

its regulation of epigenetic modifications (methylation) and/or cell proliferation (through a role in the 

synthesis of purines and pyrimidines) in the embryo, although the exact mechanism is incompletely 

understood. However, defects in enzymes involved in these pathways might mean that folic acid 

supplementation alone is inadequate and point to the need to supplement with other metabolites 

(green boxes). Thus far, mutations in the genes encoding several enzymes involved in the folate one-

carbon metabolism pathway (especially in the gene encoding 5,10-methylenetetrahydrofolate 

reductase (MTHFR); maternal and fetal mutations) and the glycine cleavage system (which produces 

formate in the mitochondria; fetal mutations only) have been definitively associated with increased 

risk of spina bifida. Solid arrows indicate the key metabolic reactions. Dashed arrows indicate 

metabolic pathways that involve multiple reactions. 



 
Table 1. Modal cognitive strengths and weaknesses in spina bifida 
 
Mode  Strengths in associative 

processing 
Weaknesses in assembled 
processing 

Perception  Categories and faces  Representations  
Language  Vocabulary and grammar  Constructing meaning  
Reading  Decoding  Comprehension  
Mathematics  Number facts  Algorithms  
Behaviour  Sociability  Adaptation  
 
 
 
  



 
Table 2. Detection rate of cranial markers of spina bifida by ultrasonography 
 
 
 Abnormality 
Study Lemon sign Small, banana-

shaped cerebellum 
Ventriculomegaly Microcephaly 

Nicolaides et 
al.73  

100% (n = 54)  95% (n = 21)  62% (n = 70)  86% (n = 66)  

Campbell et al.230  100% (n = 26)  95% (n = 26)  65% (n = 26)  54% (n = 26)  
Nyberg et al.74  93% (n = 14)  NR  NR  NR  
Thiagarajah et 
al.76  

100% (n = 16)  100% (n = 16)  69% (n = 16)  63% (n = 16)  

Van den Hof et 
al.79  

98% (n = 107)  96% (n = 107)  NR  NR  

Bahlmann et al.77  88.6% (n = 588)  97% (n = 588)  46% (n = 588)  70% (n = 588)  
Total  91% (n = 815)  97% (n = 758)  49% (n = 700)  71% (n = 696)  
 
NR, not reported. *Percentage of abnormalities detected per total number (n) of fetuses with spina 
bifida.  
  



 
Table 3. Detection of spina bifida at the time of a routine ultrasonograpy 
 
Study  Study period  Location  Spinal 

abnormalities* 
Smith and Hau231  1989–1994  Scotland  92% (n = 87)  
Boyd et al.232  1991–1996  Oxford, UK  98% (n = 46)  
Shirley et al.233  1986  Hillingdon, UK 100% (n = 3)  
Chitty et al.234  1988–1989  Luton, UK  100% (n = 5)  
Luck235  1988–1991  Ascot, UK  100% (n = 2)  
Papp et al.236  1988–1990  Hungary  91% (n = 44)  
Total  NA  NA  94% (n = 187)  
 
NA, not applicable. *Percentage of spinal abnormalities detected per total number (n) of fetuses with 
spina bifida  
 



Text boxes 
 
Box 1. Potential risk factors for neural tube defects  

Maternal nutrition  
 Alcohol use198  
 Caffeine use199  
 Low folate intake200  
 Low dietary quality201  
 Elevated glycaemic load or index202  
 Low methionine intake203  
 Low serum choline level204  
 Low serum vitamin B12 level205  
 Low vitamin C level206  
 Low zinc intake207  
 
Other maternal factors  
 Smoking198  
 Hyperthermia208  
 Low socio-economic status209  
 Maternal infections and illnesses210  
 Pregestational insulin-dependent diabetes211  
 Pregestational obesity17  
 Psychosocial stress212,213  
 Valproic acid use214  
 
Environmental factors  
 Ambient air pollution215,216  
 Disinfectant by-products in drinking water217  
 Indoor air pollution218  
 Nitrate-related compounds219  
 Organic solvents220  
 Pesticides221,222  
 Polycyclic aromatic hydrocarbons223  
  



Box 2. Evidence for progressive injury of the exposed spinal cord in utero  
 
 Pathological examination of the spinal cords of stillborn human fetuses with myelomeningocele 

demonstrate varying degrees of neural tissue loss at the site of the defect, but normal-appearing 
dorsal and ventral horns proximal of the lesion1,224.  
 

 Serial sonographic observations of human fetuses with myelomeningocele show progressive 
deterioration of leg movements during gestation225,226.  
 

 In hemimyelocele, half of the dysraphic spinal cord is devoid of dura and openly exposed to the 
intrauterine environment; the corresponding lower extremity shows impaired function, whereas 
function is normal or only mildly diminished in the extremity connected to the covered part of the 
spinal cord227.  
 

 In animal models, staged series of fetuses with myelomeningocele have demonstrated gain of 
neurological function even after the lesion has formed, followed by loss of this function. This 
finding correlates with a progressive loss of spinal cord tissue integrity21,228.  
 

 Human amniotic fluid develops a sudden toxicity at 34-weeks’ gestation, as judged by cell death 
in organotypic cultures of rat spinal cord229.  

  



 
Box 3. Surgical treatments for myelomeningocele  
 
 Choroid plexus coagulation: the cerebrospinal fluid (CSF)-producing choroid plexus is coagulated 

endoscopically to prevent further CSF production, which otherwise exacerbates the 
hydrocephalus.  
 

 Ventriculoperitoneal shunt: a shunt is inserted to drain CSF from the brain ventricles into the 
peritoneal cavity.  
 

 Ventriculostomy: a small perforation is made in the thinned floor of the third ventricle, allowing 
movement of CSF out of the blocked ventricular system and into an adjacent space that is 
normally filled with CSF.  

  



Box 4. Inclusion and exclusion criteria for fetal repair of myelomeningocele 
 
Inclusion criteria  

 Maternal age of at least 18 years  
 Gestational age at randomization of between 19 weeks 0 days and 25 weeks 6 days  
 Normal karyotype  
 S1-level lesion or higher  
 Confirmed hindbrain herniation on prenatal ultrasound and MRI  

 
Exclusion criteria  

 Multiple-gestation pregnancy*  
 Additional fetal anomalies unrelated to spina bifida*  
 Fetal kyphosis ≥30 degrees*  
 Placenta previa*  
 Incompetent and/or short (<20 mm on ultrasonographic scan) cervix‡  
 History of spontaneous early birth (singleton delivery at <37 weeks of gestation) ‡  
 Maternal–fetal rhesus group isoimmunization‡  
 Insulin-dependent pregestational diabetes‡  
 Obesity defined by a body mass index of ≥35‡  
 Positive for HIV, hepatitis B virus or hepatitis C virus‡  
 Uterine anomaly‡  
 Another serious maternal medical condition‡  
 Psychosocial limitations‡  
 Lack of support‡  
 Inability to comply with travel and follow-up‡  

 
*Fetal or pregnancy-related factor. ‡Maternal factor114. 
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