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Inner capillary diameter of hypothalamic
paraventricular nucleus of female rat increases
during lactation
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Abstract

Background: The role of the endothelial cell (EC) in blood flow regulation within the central nervous system has
been little studied. Here, we explored EC participation in morphological changes of the anterior hypothalamic
paraventricular nucleus (PVN) microvasculature of female rats at two reproductive stages with different metabolic
demand (virginity and lactation). We measured the inner capillary diameter (ICD) of 800 capillaries from either the
magnocellular or parvocellular regions. The space occupied by neural (somas, dendrites and axons) and glial, but
excluding vascular elements of the neurovascular compartment was also measured in 100-μm2 sample fields of
both PVN subdivisions.

Results: The PVN of both groups of animals showed ICDs that ranged from 3 to 10 microns. The virgin group
presented mostly capillaries with small ICD, whereas the lactating females exhibited a significant increment in the
percentage of capillaries with larger ICD. The space occupied by the neural and glial elements of the neurovascular
compartment did not show changes with lactation.

Conclusions: Our findings suggest that during lactation the microvasculature of the PVN of female rats undergoes
dynamic, transitory changes in blood flow as represented by an increment in the ICD through a self-cytoplasmic
volume modification reflected by EC changes. A model of this process is proposed.
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Background
The blood brain barrier (BBB) in the central nervous
system (CNS) regulates the passage of nutrients, essen-
tial components and metabolic constituents between the
blood stream and the parenchymal tissue. Although local
neural activity is known to promote local blood supply
and is the basis of the so-called blood-oxygen level gra-
dient/dependency (BOLD) [1-3], the regulation of local
blood flow in the parenchyma of the CNS is not well
understood. Contraction of pre-capillary arterioles has
been suggested but so far without clear demonstration
[4]. Capillaries of the CNS do not have smooth muscula-
ture but contractility of pericytes associated with the
capillaries of peripheral tissue such as the retina, cardiac
and skeletal muscles has been observed [5-9], suggesting
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that contraction of these cells in the CNS can be a
mechanism of blood supply regulation [10-12]. However,
the finding that pericytes of the CNS lack the α-actin
protein isoform found in contractile cells [13], appears
to exclude their participation in CNS capillary contrac-
tion. Angiogenesis described during brain development
[14] has also been suggested as a mechanism of blood
flow increment, although without clear support in
normal adulthood or non-pathological contexts [15-18].
The endothelial cells (EC), pericytes and basal lamina
(anatomical constituents of the BBB), together with ele-
ments of the neurovascular compartment such as neu-
rons, astrocytes, and other glial cells, adapt themselves
to maintain homeostasis that promotes tissue survival
[19,20]. Although the endothelial cell can be considered
as an element which plays an important role in blood
flow regulation its participation has been little analyzed,
at least partly due to the intrinsic difficulty of its individ-
ual staining in capillaries of the CNS [21-23].
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Figure 1 Blood vessels of the rat brain. Upper photomicrograph
shows a representative unstained brain section illustrating networks
of highly interconnected blood vessels. Lower photomicrographs
show the inner diameter size (arrowheads) of three focused
capillaries. Scale bars: 100 μm and 10 μm respectively.
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However, in order to better understand the mechan-
isms that occur during local blood flow changes in the
CNS parenchyma, the role of capillary morphology
needs to be considered as an important issue. Electron
microscopy (EM) has provided knowledge of the capil-
lary wall constituents [24,25], but the small spatial range
of this method is a critical and important limitation of
this powerful tool, e.g. the size of a capillary endothelial
cell is still not known. Despite attempts to obtain mar-
kers enabling CNS capillary imaging or visualization of
capillary networks through extracellular tracers, fluores-
cent markers, diamine benzidine reaction, immunocyto-
chemistry as well as brain arterial injection with black ink
or venous plastic infusion [1,15,22-24,26], a complete view
of the morphology of CNS capillaries still is lacking. In
this respect, recently we proposed an alternative histo-
logical tool focused on detecting the relative space oc-
cupied by the capillary endothelial cell [27,28]. This
visualization through light microscopy is based on two
facts: first, the optical effect that reflecting light produces
in fixed and unstained capillaries, and second, evidence
provided by EM [24,25] showing that the internal wall of
CNS capillaries is exclusively constituted by the endothe-
lial cell. Using this procedure we found that changes in
capillary luminal area can be detected indirectly via
changes in the inner capillary diameter (ICD).
With the aim of investigating the participation of the

capillary endothelial cell in the regulation of blood flow
fluctuations that occur in response to changes in neur-
onal activity, the present study was directed to quantify-
ing the internal diameter of capillaries in the anterior
hypothalamic paraventricular nucleus (PVN) in female
rats. We chose this nucleus since several of its physio-
logical aspects but not its microvasculature have been
intensely studied [29-35]. For example, it is well known
that the magno- and parvocellular regions via a neu-
roendocrine reflex are involved in oxytocin (OT) pro-
duction and release in response to mammary gland
sensory stimulation [36,37], and that the effect varies
according to the reproductive phase of the female rat
[33-35,37]. Thus, we decided to measure and compare
the capillary internal diameter during the diestrous
phase of virgin rats and during the lactation period of
mother rats. To ensure that the sensory information
received by the two groups was significantly different,
mammary glands of the mother rats were stimulated by
their pups suckling for two weeks of lactation, while vir-
gin rats had no stimulation.

Results
General microvasculature characteristics
Unstained brain sections from all animals were character-
ized by networks of highly interconnected blood vessels
with a wide range of calibers (Figure 1). In particular,
sections from the anterior hypothalamic region showed an
area of high capillary density corresponding to the PVN
[38]; clearly seen in six serial sections with an anterior-
posterior length of approximately 600 μm (Figure 2A).
This conspicuous density of capillaries could no longer be
visualized after cresyl violet staining (Figure 2B), since
application of the cover slip and permount modified
the optical effect that reflecting light produces on the
capillaries, thus impeding their visualization. However,
the stained neurons enabled us to confirm the exact
PVN location as well as the location of the magno- and
parvocellular regions (Figure 3).

Inner capillary diameter (ICD)
When for the virgin animals in diestrous phase (VIR
group) the ICD (μm) values from the magnocellular sub-
division of the left PVN were compared with those of
the right PVN there was no difference [F(7,64)=1.71,
P=0.12]. Similarly there was no difference when the
values from the parvocellular subdivision of the left PVN
were compared with those of the right PVN [F(7,64)=0.88,
P=0.52]. Also in the mother lactating animals (LAC
group) the ICD values of the left and right magnocellular
subdivisions did not differ [F(7,64)=0.14, P=0.95], nor in
the left and right parvocellular subdivisions [F(7,64)=1.5,
P=0.18]. Therefore, the data from each cellular subdivision
were combined. As shown in Figure 4, the VIR group pre-
sented ICDs ranging from 3 to 10 μm in both regions,
with most capillaries located in the 6-μm range, followed
by the 5- and 7-μm ranges, respectively. When the per-
centage values of the ICD magnocellular and parvocellular



Figure 2 Photomicrographs of transversal sections through the anterior hypothalamus of a female rat. A) High capillary density in the
hypothalamic PVN observed in six serial 100-μm unstained sections. B) The same six sections after cresyl violet staining; note that capillaries are
not visualized but stained neurons can be seen (for details see text). Scale bar: 200 μm.
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subdivisions were compared, they did not differ signifi-
cantly [F(7,64)=0.69, P=0.67]. In contrast, the LAC group
showed an ICD distribution that ranged from 4 to 10 μm
in both regions, with most capillaries located in the 7-μm
range followed by the 8- and 6-μm ranges, respectively.
Again, when the percentage values from the two regions
were compared, no difference was found [F(7,64)=0.34,
P=0.93]. Thus, as seen in Figure 4, the LAC group showed
a tendency towards a greater percentage of capillaries with
large ICD.
To clarify this observation and since there were no

significant differences between the measurements
obtained in the two PVN subdivisions of either group,
we decided to compare the data between the two ex-
perimental conditions by grouping the ICD measure-
ments into two capillary ranges: with small (3-6 μm)
and large (7-10 μm) diameters (Figure 5). This confirmed
that the LAC group had a significantly higher percentage
of large diameter capillaries compared to the VIR group
[One-way ANOVA: F(7,32)=23.05, *P < 0.05].

PVN neurovascular compartment
When values (μm2) for the space occupied by neural
(soma, dendrites and axons) and glial (white area Figure 6),
but excluding vascular elements of the neurovascular
compartment were compared between PVN magno- and
parvocellular subdivisions from the VIR and LAC groups,
we found no significant differences between the two
groups [F(3,16)=2.69, P=0.08]; neural and glial elements
(white area) occupied approximately 30% of the space in
all the sample fields analyzed.

Discussion
Whereas the physiology and neuronal characteristics of
the PVN have been widely investigated [29-35], its
microvasculature has been much less so [29,39,40]. Mor-
phological changes such as glial retraction, neuronal
remodeling, c-Fos expression and electrophysiological
activity increment during lactation have been reported
[35,41-43], and there is no doubt that greater synthesis
and release of OT from both the PVN and supraoptic
nucleus occurs [33-35]. This could reflect an increment
in the local neural activity of these structures that in
turn promotes an increment in local blood flow [1-4]. In
the present study our results suggest that, at least in the
PVN, local blood flow increment could be via an incre-
ment in the ICD rather by an increase in outer capillary
diameter or angiogenesis. Our findings showing that the
area occupied by the neural and glial elements of the
neurovascular compartment did not change in virgin



Figure 3 Photomicrograph of a middle transversal section of
the PVN from a female rat. A) High capillary density visualized in
the still unstained section; note that the border of the nucleus is
easily identifiable. B) The same section after cresyl violet staining;
capillaries no longer visible but stained neurons can be seen. The
100 x100 μm squares delimit sampling fields within the parvocellular
(left) and magnocellular (right) subdivisions.

Figure 4 Percentage distribution of inner capillary diameters in the P
data obtained from the magno- and parvocellular regions of the virgin gro
which showed a tendency to have capillaries with larger internal diameters

Figure 5 Percentage of capillaries grouped in bins of 3-6 μm
and 7-10 μm internal diameter from virgin (VIR) and lactating
(LAC) animals. The VIR group as compared to LAC group showed a
significantly greater percentage of capillaries in the 3-6 μm bin,
while in the 7-10 μm bin the significantly greater percentage was
for the LAC group. Means ± SEM. F (7, 32)= 23.05; *P < 0.05.
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compared to lactating rats, suggest that angiogenesis is
not present. In addition, it has been suggested that com-
ponents of the capillary basal lamina such as laminin,
cablin, fibronectin and type IV collagen among others
[44-47] prevent the outer EC diameter from expanding.
In relation to our proposal that ICD increment pro-

motes increases in blood flow, we mention the following:
Local blood flow regulation in the parenchyma of the
CNS is not well understood [4-7,10-12]. However, capil-
lary contraction caused by swelling of EC with no
change in the external diameter of the capillary has been
previously suggested as an active mechanism of local
capillary constriction in peripheral tissue [48]. Thus, in
VN of virgin and lactating rats. Upper panels (white bars) represent
up. Lower panels (black bars) represent data from the lactating group,
(for more details see text). Means ± SEM.



Figure 6 Example of a 100x100-μm delimited field from the
magnocellular region of the PVN. The white painted area
represents the space occupied by neuronal and glial elements of
the PVN neurovascular compartment.

Figure 7 Diagram illustrating our model of the organization of
a capillary in the CNS. A) Size of the capillary luminal area when
the endothelial cell cytoplasmic volume is reduced. B) The capillary
luminal area when the endothelial cell cytoplasmic volume is
increased. Note that the outer capillary diameter does not change
(for more detail see text). As, astrocyte; Ax, axon; BL, basal lamina; EC,
endothelial cell; Ne, neuron.
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accordance with our findings of significant changes in
the ICD of PVN microvasculature in the LAC group, we
take up this idea again to offer an account of how fast,
regional, and reversible control of blood supply in the
CNS might occur. Changes in the ICD might take place
via modifications of EC cytoplasmic volume; when this
decreases the capillary lumen increases (Figure 7A), and
the time needed for cytoplasmic transport of substances
from the luminal to the abluminal side of the membrane
decreases. It is known that the reduction or increase in
either local blood supply or the bidirectional “blood ↔
parenchyma” transport of metabolic constituents depends
upon the EC which, together with the basal lamina,
constitute the capillary wall [25,47]. Accordingly, when
the cytoplasmic volume increases, the capillary lumen
decreases (Figure 7B), causing cytoplasmic transport of
metabolites from the luminal to the abluminal side
of the membrane to be slowed. There are a wide variety
of factors that modify intracellular osmolarity, thereby
promoting changes in cytoplasmic EC volume. Organic
osmolytes, taurine, cyclosporine, water, some hormones
such as vasopressin (VP) or OT, and free radicals have
all been implicated in mechanisms of cell volume regu-
lation [49-53]. Thus, it is possible that neurons and/or
astrocytes could modulate their own capillary blood
supply as well as the transport and supply of metabolic-
ally important substances via such factors.
In addition, it is currently thought that transport of

water-soluble molecules across EC is accomplished by
the continuous formation of plasmalemma vesicles fol-
lowed by detachment and fusion to the membrane on
the other side of the cell or by transport of cytoplasmic
vesicles moving from one surface to the other without
membrane fusion [47,54,55]. Either of these mechanisms
of intracellular transport could be present in the capillary
EC and depending on the luminal-abluminal distance the
cytoplasmic transport time could be faster or slower. This
could represent a dynamic and plastic mechanism by
which constantly changing neuronal needs are rapidly
met. As physiological changes associated with chronic
dehydration, hemorrhage, stress condition as well as
pregnancy and parturition [33,56], are associated with
the synthesis and release of OT or VP from the PVN
and supraoptic nucleus, then, based on our results, we
should not reject the idea that a similar dynamic mech-
anism of blood flow regulation in response to such
stimuli might occur.
Finally, it is well-known that during lactation proges-

terone (P4) and prolactin (PRL) reach high levels in the
blood stream [33]. Since PRL has been implicated in OT
release [57,58], this hormone could be a potential candi-
date to participate in PVN blood flow regulation.
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Conclusions
Our findings suggest that during lactation the microvascu-
lature of the PVN of female rats undergoes dynamic,
transitory changes in blood supply represented by an
increment in the ICD through self-cytoplasmic volume
modification reflected by EC changes. This is relevant
to consider from the pharmacological point of view,
since changes in cytoplasmic volume in the EC could
help to increase blood flow and in this way facilitate
the metabolic exchange between capillaries and the
CNS parenchyma.

Methods
Animals, groups, and experimental rationale
All experimental procedures comply with the requirements
of the Institutional Ethical Committee of the Universidad
Veracruzana, which is in agreement with the official
Mexican regulations (NOM-062-ZOO-1999). In addition
the international guidelines for the production, care, and
use of laboratory animals from The Society for Neurosci-
ence, USA, were considered.
We used adult female Wistar rats, bred and main-

tained in the vivarium at the Instituto de Neuroetología,
Xalapa, Veracruz. They were kept on a 14:10 light/dark
cycle with free access to rat chow (Harlan, Mexico) and
water. Given that our aim was to investigate possible
changes in the microvasculature of the PVN under dif-
ferent demands for OT secretion, we divided the animals
randomly into two groups: virgin females and mother
rats. The virgin females were housed in two collective
cages (44 × 34 × 20 cm) with 5 animals in each. Their
estrous cycle was determinated by vaginal smears and
after two regular consecutive estrous cycles, 5 rats were
chosen to be perfused during their diestrous-2 phase
(n=5) (VIR group) (they were approximately 140 days
old). Mother lactating rats (n=5) (LAC group) were kept
with eight pups each in individual cages (37 × 27 ×
17 cm). On the 14th day of lactation pups were separated
from their mother and maintained in an incubator dur-
ing 4 h, returned to their mother for a 30-min suckling
period, after which the mother was perfused (also when
approximately 140 days old). The pups were placed with
a nursing dam to minimize animal sacrifice.

Histology
Under an i.p. overdose of sodium pentobarbital anesthesia
(40 mg/kg), animals were transcardiacally perfused using
50 ml of a 0.9% saline solution and 300 ml of fixative at
4°C (4% paraformaldehyde, 1% glutaraldehyde, 0.002%
calcium chloride and 3.2% sucrose, diluted in 0.1 M phos-
phate buffer pH 7.4). To minimize the effects of anoxic
conditions and perfusion pressure on vessel diameters, the
perfusion procedure was standardized in all animals
(Masterflex pump 77200, 100 strokes-min, 0.25 ml/
stroke calibration). Brains were rapidly removed into
fresh fixative for 12 hr. They were then mounted on a
vibratome (EMS OTS-4000) and 100-μm serial trans-
versal sections were cut. Sections at the anterior hypo-
thalamus level [38] were collected in 0.1 M phosphate
buffer, mounted on gelatinized slides and dried at room
temperature for immediate microscopy analysis (sec-
tions remained unstained) (Figures 2A and 3A). After-
wards, sections were stained using the Nissl technique
(0.04% cresyl violet, pH 3.4) and prepared with a cover
slip and permount for histological confirmation of the
PVN borders as well as for identification of the magno-
and parvocellular regions (Figure 3B).

Inner capillary diameter (ICD)
The unstained sections were examined at 20X and 40X
magnification under a light microscope (Olympus CX31)
equipped with a video camera (CoolSNAP-Pro, Media-
Cybernetics, Inc) for image storage. The condenser
lenses were aligned to assure that Koehler illumination
was optimal. Measurements were made using Image-Pro
plus v.6 software (MediaCybernetics, Inc). The capillar-
ies were clearly visualized, as well as their ICD (Figure 1
lower panel). When the ICD was larger than 10 μm, we
considered it as a vessel instead of a capillary [59] and
excluded it from our analysis. In the sections corre-
sponding to the PVN middle area (see Figure 3), 20
capillaries from each magno- and each parvocellular
subdivision from both sides were randomly selected and
focused to measure their ICDs. A total of 80 measure-
ments per animal were obtained and thus 400 measure-
ments for each group.
Considering the criteria used in other studies where a

morphometric analysis was done [60,61] the percentage
distribution of capillaries was organized according to in-
dividual ICDs for each PVN region (magno- or parvocel-
lular) and for each group of rats. Also, in the present
work the mean ICD percentage distribution was calcu-
lated and categorized according to bins, with an ICD
range of 3-6 and 7-10 μm each.

PVN neurovascular compartment
After the analysis of ICDs, the area occupied by the
neural and glial elements of the PVN neurovascular
compartment in the magno- and parvocellular regions
within each group (10 fields per group) was measured in
a field of 10, 000 μm2 by painting them out so as to
exclude the intravascular space (Figure 6).

Statistical analysis
The percentage of PVN capillaries distributed according
to the ICD size and the space occupied by neural and
glial elements of the neurovascular compartment were
both analyzed using a one-way ANOVA. Tukey's HSD
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post-hoc test was applied when necessary and statistical
significance set at P < 0.05. Data were analyzed using
SPSS Statistics v.18 software (IBM). Descriptive statistics
are expressed as means ± SEM.

Abbreviations
BBB: Blood brain barrier; CNS: Central nervous system; EC: Endothelial cell;
EM: Electron microscopy; ICD: Inner capillary diameter; LAC: Lactating group;
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VIR: Virgin group; VP: Vasopressin.
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