
Abstract

The importance of nanorods and nanotubes are presented in the
field of solar cell developments. The investigations of
nanostructured related efficiency- increasing processes in external
fields are more invited. A group theoretical method for the study
of electron states of semiconductors can be relevant to solar
energy too is proposed. For further applications a possible
extension is raised up.
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1. Introduction

Quasi –one-dimensional systems (Q1D), namely carbon
nanotubes (CNT), ZnO nanowires and nanorods and conjugated
polymers (CP) have great interests on the field of study of solar
cell applications nowadays thanks to the results of
Nanotechnology. One of the main ones is the detectability of the
so-called Carrier Multiplication process (CM) (or Multiply Exiton
Generation one ) in some CNT structures, for example in
photodiodas [1], or in (6,5) chirality tubes [2], in which a single
falling photon can create two or more electron-hole pairs
(excitons). With the help of this process  the so-called and
referencia-considered Shockley-Quisser (SQ) theoretical limit [3]
can be overcome. However the CM has been observed in bulk
semiconductors since 1950s [4] the contribution  of CM  for
efficiency-increasing is significant in the solar spectrum in
quantum-confined semiconductor nanocrystals (in bulk
semiconductors this contribution is insignificant) namely in
quantum dots – the possible applicability in solar energetics can
be originated from Nozik [5] – futhermore in the other type of
Q1D nanorods (for example PbSe) [4, 6] and graphene [2, 7-8].
The CM effect in CNTs - due to the fact that they have no direct
bulk counterparts- is also important in the understanding the
fundamental processes responsibile for the effect itself in the case
of those nanocrystals at which the effect is enhanced related to
their bulk counterparts. This is an open question yet [2]. Another
aspect of the importance of the usage of Q1D materials in solar
cells is in their technology known as vertically aligned nanowire
array. With the help of its oriented geometry high carrier
collection efficiency can be reached [9]. Xu et al. [10] gave a

generalized theoretical limit-for efficiency - maintaining the same
detailed balance principle on which stand the Shockley and
Quisser’s results- for nanostructured solar cells and proved its
equality to the case of the usage of optical concentrators in
Shockley and Quisser’s article (42%). Authors also gave
examples for published efficiences of the vertically aligned
nanowire-based PV cells (in Figure 1b in their paper). For CNTs
array (Figure 1.) as absorbent Bierman et al. [11] reported a solar
thermophotovoltaic device and discussed the implications of
surpassing the SQ limit. For ZnO nanowire arrays an important
example is given by Bi et al. [12] for MEH-PPV/ZnO hybrid solar
cell. Further solar cell applications are presented in Peng and
Qin’s [13] review (Figure 2).

Figure 1. Array of CNTs as solar absorbent in a solar
thermophotovoltaic device [11]

Figure 2. Schematic diagram of the nanowire-based dye-
sensitized solar cell [13]
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However the increasing of power efficiency is not the only
reason for developments, this is the case when solar cells are
needed to be installed onto uneven surfaces. For this installations
the CP based solar cells are suitable against to the traditional Si-
based ones. However the efficiency of polymer solar cells are much
lower than Si-solar cells there are some cases when this type of
solar cells gives the only result for using solar cells for example
installation onto top of tents or onto the surfaces of rucksacks or
onto the surfaces of human body thank to their flexibility.

2. Symmetry-based study of o1d solar cell materials

The above mentioned Q1D materials for solar cell applications
have special space symmetry described by the so-called line
group. Line groups are algebraical groups of Euclidean
symmetries leaving invariant a straight line conventionally the z-
axis. For the concreteness let us see polymers: they are built up
from monomers. Monomers have own symmetry: rotations,
mirrors and their combinations leaving the z-axis invariant. This
is the one of the 7 possible point groups, namely: "...Cn(successive
rotations Cn by 2π/n around z-axis), S2n, Cnh, Cnv, Dn (which
combine Cn with rotation by π/n followed by horizontal mirror
reflection, horizontal and vertical mirror plane and rotation U by
π around x-axis, respectively) and Dnd and Dnh (vertical mirror
reflection combined with S2n and Cnh)..." [14]. But (identical)
monomers are regurarly repeated along the z-axis (regularly
arrangement) and a monomer can ashieved from the previous one
not by pure translation but by screw axis or glide plane
(generalized translations). Every line group can be set up a
factorized form: L=ZP, where Z the set of generalized
transformations and P the point group of the monomer. The
generalized translations are needed to be combined with point
group operations for getting an algebraical group at the end of
procedure. There are infinitely many line groups gathered into 13
families. For example for polyacethylen- it was the one of the
first CP for solar cells and it is under theoretical studies nowadays
too [15] - the line group is L21 /mcm and this belongs to the 13th

family. The capital L refer to the line group structure, 21 means
that the generalized translation in this case a rotation by π around
z.axis followed by a translation  a/2 , the half of the translation
unit along z-axis (the symmetry element of it is a glide plane) the
point symmetry group consists of a σ h horizontal mirror ( in the
z=0 plane) and a σv vertical one (in the plan containig the
polymer), their products and powers. This point group is D1h. [16].
For getting the line group structure of CNTs we need to follow
the so-called rolling up procedure of graphene sheet with
identifying carbon atoms by the so – called chiral vector (Figure
3-6) [17].

We wish to study these materials in the presence of external
uniform magnetic field. The reasons of our choice are the
following: solar cells are under investigations in the presence of
external magnetic field both experimenetally and theoretically
nowadays [18-22]. However, there are no symmetry-based
considerations of solar cells using Q1D materials in external
magnetic field to our knowledge. In the field of study of quantum
confined nanostructures, namely quantum dots (QD), quantum
wells (QW) [23], superlattices (SL) [24] for solar cell applications
have great importance but the investigation of CM processes in
the presence of external magnetic field has no already received
enough attention yet. Beside these facts some important research
work have been already published about Q1D materials in
constant external magnetic field. For example Trencsényi et al.
[25] analyzed the bond connected hexagon chain structures of
polyphenylene type of materials placed in perpendicular field to
the surface containing the system. This structure is of some CP
like PPV whose derivates (for example MEH-PPV as above,

MDMO-PPV) are the one of the most frequently applied
materials at polymer based solar cells. For the future applications
the Dzyaloshinsky and Kats’s [26] result about magnetic field
induced order (superconductivity) in Q1D materials might be
decisive. 

Figure 3. The types of generalized translations 
of line groups [16]

Figure 4. The so-called orbits of the line groups. [16]

Figure 5. The structure of trans-polyacetylene [16]

Figure 6.The elementary cell (shaded) and the chiral vector c
and angle θ of graphene [17]

Our considerations are based on Tronc and Smirnov’s [27]
symmetry methods worked out for various semiconductor types
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in the presence of external uniform magnetic field. The usages of
symmetry methods mean a powerfool tool for generating the so-
called (optical) selection rules for transitions between electron
states allowed by the symmerty of the systems. The symmetry
method name means that we have to deal with the symmetry
group of the Hamilton operator (Hamiltonian) of the system, with
a group of operators representing some coordinate transformation
which commute with Hamiltonian .The main problem in the field
of study of an electron being in a crystal potencial in the presence
of external magnetic field that however a uniform field does not
destroy the translational invariance of the system physically the
operators of pure geometrical translations did not commute with
Hamiltonian and these operators do not belong to the symmetry
group of Hamiltonian. Brown [28] showed that multiplying with
Peierls’s phase factor they will have already been commute with
it. In this case the representation of the usual translation group
will become projective and the symmetry group form a so-called
ray group. In the other way Zak [29, 30] defined an operator
group (not a ray group) which is homomorphic to the usual
translation group and commute with Hamiltonian.of the electron
immersed to a crystal in magnetic field. This two constructions
will be the same in the finite case and called by Magnetic
Translation Group (MTG). But this method do not treat with point
symmetry operations and its application for concrete
semiconductor structure can be problematic. For this difficulty
Tronc and Smirnov [27] gave a method. (A group-theoretical
extension for the case of all the admissible rotations, reflections
and time reversal is given by Tam [31] too.) Let us see the
„General Considerations” of Tronc and Smirnov [27] (sec 2.) in
more detail:

The Schrödinger equation  for an electron in the crystal
potential V(r) placed in external magnetic field:

where H is the Hamiltonian, A is the vector potential of the
magnetic field, p is the momentum operator(=iћ grad), ŝ the spin
oprator, j the eigenvalue index and n enumerates the eigenstates
of the same energy.

Let us choose the  form of vector potential in the symmetric
gauge:

Let be a general element of the symmetry group of the crystal
g=(R|a), which labels the rotation R as the coordinate
transformation followed by the translation a. The „symmetry
element” expression means that V(r) crystal potential do not
changes under this operation.This is the same case at the last term
of the Hamiltonian since does not depend on r. The action of the
symmetry element of the crystal on the geometrical space vectors
can be written in the form: r→g -1 r =R-1(r-a). From the fact that
the scalar product of two vectors does not change under orthogonal
transformations and after the acting of operation g the
transformation R-1 „can be raised up” from the expressions for p
and A , the change in the expression of the Hamiltonian is solely:

At this time the Hamilton operator in the Schrödinger equation
acts on Ψ j,n (g -1 r.). But this change can be reached in the starting
Schrödinger equation with a gauge transformation too. Since B=
rotA = rot (A+grad f(r)),where f(r) an arbitrary function of
coordinates if add to A the gradient of:

According to the teaching of quantum mechanics  the
Schrödinger equation remain unchanged if we carry out at the
same time a transformation on the wave function:

Thus to every g symmetry element of the crystal belongs a C(g)
matrice which represents it. From this procedure one can see the
structure of the elements of  the symmetry group of the
Hamiltonian : after the geometrical transformation r→g -1 r ,
where g=(R|a) and RB=B, we have to carry out a gauge
transformation with f’ (r)= -f(r), since A(r-a+a)=A(r) remain
unchanged and we returned to the starting Hamiltonian. The
elements of this group labeled by g*.the group itself labelled by
G*. G* contains magnetic translations as subgroup. Tronc and
Smirnov [27] pointed out that for the g*. elements the
representation of matrices are projective 

and

This method has other solutions for obtaining the so-called
irreducibile representations (IR) for the symmetry group of the
Hamiltonian of bulk materials than MTG theory’s ones. For
example in the case of two symmetry operations with lattice
translations are in (a1,a3) , where a3 is in the direction of magnetic
field do not commute in contrast with the theory of MTG.

The authors applied their results of their model namely the
symmetry groups of bulk semiconductors with the wurtzit and
zinc blende structure and for the related nanostructures as well
such as SLs, QWs and QDs under magnetic field directed paralel
or perpendicular to some symmetry elements (symmetry axis ,
mirror plane).

From the viewpoint of our research the most interesting results
are about Q1D rods and tubes related to bulk materials with
wurtzite structure specially for the ZnO nanorods and nanotubes
[32]. Their space symmetry are described by the so-called rod
groups a subperiodic (1-periodic) subgroups of 3-periodic 3-
dimensional space groups [33]. We can get a rod group from the
related space group by keeping translations only in the direction
of z-axis. The order of rotations or screw axis can only be 1,2,3,4
and 6. The point symmetry of them is the same as ones of their
space groups [34]. For generating optical selection rules
conventional group theoretical methods can be used just by
referring to the corresponding space groups – for example the so-
called little group method known as subgroup one [27, 32]. But
this method for CNTs whose space symmetry described by
general line groups – rod groups are considered as special line
groups- due to the lack of bulk counterparts were mentioned at
the beginning of this paper cannot be used, there are no „global”
space groups related to their space symmetries. It seems to us that
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this is an essential open problem yet. At this point can become
relevant the mathematical study of projective representations of
line groups which one is almost completely missing in the
literature. (This idea is suggested by the second author of this
paper.) A short description are in the Evarestov’s book [34].

3. A possible extension of Tronc and Smirnov’s method

Since the Tronc and Smirnov [27] method contains the theory of
MTGs- but came to another result for generating IR of symmetry
group of Hamiltonian- can be raised naturally the extension of it
to the case when external electric field is present too. This type
of generalization of the theory of MTG is given by Ashby and
Miller [35], in which the Hamiltonian contains space and time
periodic potencials. too (However Tronc and co-workers
discussed the power of the electric field on the symmetry of ZnO
nanorods and tubes and referred to Ashby and Miller [35] too did
not considered the cases of time-varying fields). For the solar cell
applications would be essential to study the case of the light wave
falling onto the semiconductor. If so a perturbing term of this
form:

where „m” is the free electronic mass, ω is the frequency of the
radiation, E is the magnitude of the electric field, and ε is the unit
vector in the direction of the field will appear in the Hamiltonian
[36].

Our task is to find translation-type operators commuting with
the perturbated Hamiltonian which translations are in not purely
in the space but in the time too according to Ashby and Miller’s
[35] ideas. Arising from these ones the time-periodicity leads to
the restrictions for possible magnitude of the electric field and
because of this fact we have to proceed carefully.

4. Conclusions

However the Q1D materials have a great importance in the
efficiency-increasing developments of solar cells but the added
external magnetic field investigations of them have no enough
attention. The investigations of CM processes are hoped to extend
for the case of the presence of external magnetic field. The Tronc
and Smirnov’s symmetry method is a usefool tool for studying
solar cells using Q1D materials under external uniform magnetic
field. For more general cases as of the CNTs the research of the
mathematical theory of projective representations of line groups
would be fruitful. For further solar cell applications the extension
for the case of falling electromagnetic wave onto the
semiconductors wuold be a possible way.
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