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Abstract 1 

The efficacy of aripiprazole therapy and the risk of adverse reactions are influenced by substantial inter-2 

individual variability in aripiprazole metabolizing capacity. In vitro studies assigned the potential role in 3 

aripiprazole metabolism to CYP2D6 and CYP3A enzymes; therefore, the association between the steady-state 4 

aripiprazole plasma concentrations and patients’ CYP2D6- and CYP3A-status (CYP2D6, CYP3A4, CYP3A5 5 

genotypes and CYP3A4 expression) and/or co-medication with CYP-function modifying medications has been 6 

investigated in 93 psychiatric patients on stable aripiprazole therapy. The patients’ CYP2D6 genotype had a 7 

major effect on aripiprazole plasma concentrations, whereas the contribution of CYP3A genotypes and CYP3A4 8 

expression to aripiprazole clearance was considered to be minor or negligible. The role of CYP3A4 expression in 9 

aripiprazole metabolism did not predominate even in the patients with non-functional CYP2D6 alleles. 10 

Furthermore, dehydroaripiprazole exposure was also CYP2D6 genotype dependent. Dehydroaripiprazole 11 

concentrations were comparable with aripiprazole levels in patients with functional CYP2D6 alleles, and 35% or 12 

22% of aripiprazole concentrations in patients with one or two non-functional CYP2D6 alleles, respectively. The 13 

concomitant intake of CYP2D6 inhibitors, risperidone, metoprolol or propranolol was found to increase 14 

aripiprazole concentrations in patients with at least one wild-type CYP2D6*1 allele. Risperidone and 9-hydroxy-15 

risperidone inhibited both dehydrogenation and hydroxylation of aripiprazole, whereas metoprolol and 16 

propranolol blocked merely the formation of the active dehydroaripiprazole metabolite, switching towards the 17 

inactivation pathways. Patients’ CYP2D6 genotype and co-medication with CYP2D6 inhibitors can be 18 

considered to be the major determinants of aripiprazole pharmacokinetics. Taking into account CYP2D6 19 

genotype and co-medication with CYP2D6 inhibitors may improve outcomes of aripiprazole therapy. 20 

 21 
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Introduction 1 

 A patient’s response to a drug is highly influenced by his/her drug-metabolizing capacity. Genetic 2 

variations of drug-metabolizing enzymes can significantly modify the pharmacokinetics of a drug; thus, genetic 3 

polymorphism is considered to account for one of the main sources of inter-individual differences in drug 4 

metabolism and eventually in drug response (efficacy and/or safety) [1-3]. The non-functional or increased 5 

function mutations in drug-metabolizing enzymes lead to poor or rapid metabolizer phenotypes, whereas the 6 

wild-type allele is predicted to be translated to an enzyme with normal function. However, non-genetic factors, 7 

such as age, sex, disease and medication, can alter the expression or the activity of drug-metabolizing enzymes; 8 

therefore, homozygous wild-type genotype can be transiently switched into poor (or rapid) metabolism due to 9 

phenoconversion [4-7]. Consequently, the heritable traits determine only the potential for the expression of 10 

functional or non-functional enzyme, and non-genetic factors can give rise to altered phenotypes, resulting in 11 

genotype-phenotype mismatch. 12 

 The atypical antipsychotic aripiprazole is approved by the European Medicines Agency for treatment of 13 

schizophrenia as well as for treatment of moderate to severe manic episodes of bipolar I disorder [8-11]. 14 

Aripiprazole has unique receptor-binding properties acting as a partial agonist at dopaminergic D2 and 15 

serotonergic 5-HT1A receptors, and as an antagonist at 5-HT2A receptors [8, 9, 12]. It has advantages, such as 16 

lower risk of extrapyramidal symptoms, hyperprolactinemia, bodyweight gain, diabetes mellitus and sedation; 17 

however, the treatment discontinuation rate associated with aripiprazole inefficacy seems to be higher than that 18 

of olanzapine or haloperidol [10, 13-15]. Almost complete dopamine receptor occupancy (>85%) has been 19 

observed at the plasma concentration of 100-150 ng/ml, and the optimal serum concentrations that result in the 20 

best improvement and no or mild side effects in patients, have been suggested to range between 150 and 21 

300 ng/ml, whereas the risk of moderate to severe adverse effects increases at higher concentrations [16-19]. At 22 

the same dose, considerable variability in aripiprazole concentration can occur which can be attributed to the 23 

inter-individual differences in aripiprazole metabolism; therefore, therapeutic drug monitoring is recommended 24 

[19, 20]. 25 

Aripiprazole is extensively metabolized in the liver, forming the pharmacologically active 26 

dehydroaripiprazole as well as the inactive N-dealkyl-aripiprazole and two monohydroxy-metabolites [10, 21-27 

24]. The major metabolite dehydroaripiprazole displays similar pharmacological properties to the parent 28 

compound, contributing to the antipsychotic effect of aripiprazole; therefore, the sum of the parent drug and its 29 

dehydro-metabolite is often monitored [10, 17, 22, 25, 26]. CYP2D6 and CYP3A4 are primarily responsible for 30 

aripiprazole metabolism, which can entail the potential for high inter-individual variability in aripiprazole 31 

pharmacokinetics [17, 25, 27]. CYP2D6 is one of the most polymorphic cytochrome P450 enzymes with more 32 
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than 100 alleles identified (https://www.pharmvar.org/htdocs/archive/cyp2d6.htm). In Caucasian populations, 1 

several non-functional and reduced function CYP2D6 alleles as well as the whole CYP2D6 gene deletion 2 

(CYP2D6*3, CYP2D6*4, CYP2D6*5, CYP2D6*6, CYP2D6*10, CYP2D6*41) commonly occur, leading to 3 

absent or non-functional protein or decreased expression. CYP2D6 gene duplication/multiplication of functional 4 

alleles, resulting in increased expression and CYP2D6 activity, has also been identified [2]. Genetic 5 

polymorphism of CYP2D6 is one of the main sources of inter-individual differences in metabolism of some 6 

CYP2D6 substrates, such as tricyclic antidepressants (desipramine, imipramine, nor-triptyline), fluoxetine, 7 

paroxetine, risperidone, venlafaxin, metoprolol [28, 29]; however, non-genetic factors like co-administration of a 8 

drug that acts as a CYP2D6 inhibitor can also influence CYP2D6 activity. Concomitant use of selective 9 

serotonin reuptake inhibitors (duloxetine, fluoxetine, paroxetine, sertraline) has been demonstrated to decrease 10 

aripiprazole metabolizing activity [30]. Therefore, both genetic variability and co-medication with CYP2D6 11 

inhibitors are recommended to take into account in aripiprazole dosing [18, 30, 31]. CYP3A4 activity also 12 

displays high inter-individual variability, which is partly attributed to genetic factors. CYP3A4*1B allele is 13 

assumed to increase CYP3A4 transcription; however, the clinical significance of CYP3A4*1B to CYP3A4 14 

activity is doubtful [32, 33]. CYP3A4*22 has been demonstrated to display low hepatic CYP3A4 expression, 15 

resulting in decreased CYP3A4 activity [34]. It has been suggested that the association between CYP3A4*22 and 16 

pharmacokinetic behaviour of CYP3A-substrates could be evaluated in combination with CYP3A5 genotype 17 

[35]. CYP3A5*3 allele results in splicing defect and non-functional CYP3A5 enzyme. Those individuals who 18 

have functional CYP3A5 enzyme are presumed to metabolize some CYP3A-substrates more rapidly than 19 

CYP3A5 non-expressers. Although genetic polymorphisms of CYP3A can influence CYP3A activity, non-20 

genetic factors, especially co-medication resulting in transient poor or rapid metabolism, may have much higher 21 

impact on aripiprazole pharmacokinetics. The potent CYP3A4 inducer carbamazepine has been reported to 22 

substantially decrease the plasma concentrations of both aripiprazole and its dehydro-metabolite, whereas 23 

CYP3A4 inhibitors (itraconazole, fluvoxamine) seem to increase aripiprazole exposure [23, 31, 36].  24 

For the estimation of patients’ aripiprazole-metabolizing capacity, CYP2D6 genotype, CYP3A-status 25 

(CYP3A4/5 genotype and CYP3A4 expression) and co-medication with CYP2D6 and CYP3A4 inhibitors or 26 

with CYP3A4 inducers should be considered. Although CYP genotypes can be simply identified by CYP2D6, 27 

CYP3A4 and CYP3A5 genotyping, the crucial task is the assessment of hepatic CYP3A4 activity. We have 28 

previously described a complex diagnostic system (CYPtestTM) that estimates CYP3A-metabolizing capacity by 29 

CYP3A4 expression in leukocytes. CYP3A4 mRNA levels in leukocytes were demonstrated to inform about the 30 

hepatic CYP3A4 activity [37]. The goals of the present study were to estimate the association between the 31 

patients’ drug-metabolizing capacity (CYP expression and CYP genotypes) and their aripiprazole therapy (dose, 32 

https://www.pharmvar.org/htdocs/archive/cyp2d6.htm
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aripiprazole plasma levels), and to analyze the influence of genetic factors and the non-genetic factor co-1 

medications on aripiprazole exposure. Taking into account patients’ CYP-status and current co-medication can 2 

contribute to the improvement of patients’ personalized medication and can predict the risk of outlying from the 3 

therapeutic concentration range. 4 

Materials and methods 5 

Patients 6 

Ninety-three inpatients at the Department of Psychiatry and Psychotherapy, Semmelweis University 7 

(Budapest, Hungary) were enrolled, and written informed consent was obtained from all participants. The study 8 

was approved by the Hungarian Committee of Science and Ethics. Adult patients (≥18 years) on stable 9 

aripiprazole dose for more than four weeks, displaying two identical concentrations at an interval of 14 days 10 

were included in the study. Patients’ demographic data and medication was recorded (Table 1). The aripiprazole 11 

therapy was applied according to the conventional clinical protocol, initiated at low dosage (7.5 mg/day), and 12 

subsequently titrated up to the target dose of 10-30 mg/day until the optimal response was achieved. Patients’ 13 

improvement was measured by repeated psychiatric interviews and reduction of both the total scores of PANSS 14 

(positive and negative syndrome scale) and CGI (clinical global impression). Aripiprazole dosage was recorded 15 

for four weeks before blood sampling for testing patients’ CYP-status and for drug assay. 16 

Assaying CYP-status 17 

Patients’ CYP-status was determined by CYP2D6, CYP3A4 and CYP3A5 genotyping and by analyzing 18 

CYP3A4 expression in leukocytes. Genomic DNA and leukocytes were isolated from the peripheral blood 19 

samples as previously described by Temesvári et al. [37]. Hydrolysis single-nucleotide polymorphism analysis 20 

for CYP2D6*3, CYP2D6*4, CYP2D6*6, CYP2D6*10, CYP2D6*41, CYP3A4*1B, CYP3A4*22 and CYP3A5*3 21 

was performed using TaqMan probes (BioSearch Technologies, Novato, CA). CYP2D6*5 (gene deletion) and 22 

CYP2D6 duplication/multiplication were analyzed by TaqMan Copy Number Assay (ThermoFisher Scientific, 23 

Waltham, MA). Allele specific identification of CYP2D6 duplication was determined as previously described 24 

[38]. 25 

For assaying CYP3A4 expression, RNA was isolated from leukocytes, reverse transcribed into single-26 

stranded cDNA using the Maxima First Strand cDNA Synthesis Kit (ThermoFisher Scientific), and real-time 27 

PCR was performed using KAPA Fast Probes Mastermix (KAPA Biosystems, Cape Town, South Africa) and 28 

TaqMan probes (Microsynth AG, Balgach, Switzerland). The quantities of CYP3A4 mRNA relative to that of 29 

the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were determined. GAPDH 30 

expression is constant in all cells and independent of experimental conditions; therefore, its expression was set to 31 
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1 and CYP3A4 mRNA levels were normalized by GAPDH expression. Three categories of CYP3A4 expression 1 

were applied to describe low, normal and high expressers. The cut-off values for CYP3A4 mRNA levels in 2 

leukocytes have been previously established on the basis of the cut-off values for the hepatic CYP3A4 enzyme 3 

activities (nifedipine oxidation or midazolam 1’- and 4-hydroxylation). The cut-off values for CYP3A4 (10-6 and 4 

10-4) allowed a distinction between low, normal and high expressers [37]. 5 

Plasma concentrations of aripiprazole 6 

The blood samples of patients on stable aripiprazole therapy were taken between 8 and 9 am before the 7 

morning dose of aripiprazole (generally 12 hr since last drug intake). The steady-state condition was confirmed 8 

by reviewing the patient’s therapeutic history. The blood samples were taken at the same time for CYPtesting 9 

and for therapeutic drug monitoring. The analytical assay was validated for routine drug monitoring. The steady-10 

state plasma concentrations of aripiprazole and dehydroaripiprazole were determined by LC-MS/MS (liquid 11 

chromatography-tandem mass spectrometry). Chromatographic separation was performed using an Inertsil 12 

ODS-4 (75×2.1 mm, 3 µm) column (GL Sciences Inc., Tokyo, Japan) and mobile phases of acetonitrile and 13 

0.1% formic acid in gradient running mode. The samples in triplicates were analyzed using positive electrospray 14 

ionization and multiple reaction monitoring (MRM) mode for quantitation of the parent compound and its active 15 

metabolite (m/z [mass/charge] 448/285 and 448/176 for aripiprazole; m/z 446/285 and 446/216 for 16 

dehydroaripiprazole). Calibration plots for aripiprazole and dehydroaripiprazole were linear over the range of 17 

1-1000 and 1-500 ng/ml, respectively. The intraday and interday precision was less than 8%. Normalized 18 

aripiprazole concentrations were calculated by dividing the concentration values by the corresponding 24-h dose 19 

on a mg/kg basis. 20 

Inhibition of aripiprazole metabolism 21 

In vitro metabolite formation from aripiprazole was determined in human liver microsomes. Hepatic 22 

microsomal fraction was isolated from three tissue donors by differential centrifugation [39]. Protein content of 23 

microsomes was determined by the method of Lowry et al. [40], with bovine serum albumin as the standard. For 24 

aripiprazole metabolism, the incubation mixture contained the NADPH-generating system (1 mM NADPH, 25 

10 mM glucose 6-phosphate, 5 mM MgCl2 and 2 units/ml glucose 6-phosphate-dehydrogenase), human liver 26 

microsomes (1 mg protein/ml) and aripiprazole. After 60-min incubation, reactions were terminated by the 27 

addition of ice-cold acetonitrile. The amounts of aripiprazole metabolites (dehydroaripiprazole, N-dealkyl-28 

aripiprazole, monohydroxy-aripiprazole) produced were determined by LC-MS/MS. The analytical conditions 29 

were the same as described for the parent compound and dehydroaripiprazole measured in human plasma except 30 

for the MRM transitions (m/z 231/188 and 231/152 for N-dealkyl-aripiprazole; m/z 464/285 and 464/234 for 31 
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monohydroxy-aripiprazole). Inhibition of metabolite formation from aripiprazole was carried out in the absence 1 

and presence of risperidone, 9-hydroxy-risperidone, metoprolol or propranolol. Ki values (inhibition constants) 2 

were determined by using different concentrations of aripiprazole (10, 25, 50 µM) and potential CYP2D6 3 

inhibitors (1-50 µM). Ki values were calculated from Dixon plots of 1/velocity versus inhibitor concentration at 4 

the three aripiprazole concentrations. The type of inhibition and the apparent Ki values were estimated from the 5 

intercept of three lines of Dixon plots and expressed as the mean±SD of the intercepts. 6 

Data analysis 7 

Statistical significance of CYP3A4 expression, CYP2D6 and CYP3A5 genotypes as covariates of 8 

aripiprazole plasma concentrations was analysed by principal component analysis and partial least squares (PLS) 9 

modelling (SIMCA, MKS Umetrics AB, Umea, Sweden). Principal components are defined as linear 10 

combination of original variables and ordered by their contribution degree to the overall data set variability. PLS 11 

model is a multiple regression model that first transforms independent (input) and output variables with principal 12 

component analysis to remove correlations between the variables and then calculates optimal linear model in 13 

iterative procedure. Model coefficients analysis reveals original variables that provide significant information for 14 

the output variable prediction. Predicted vs measured plot shows how well the model describes the data. 15 

Departure from the diagonal line indicates biased model and dispersion of points around the diagonal line shows 16 

how much of the total data variability can be explained by the model.  17 

The data of normalized aripiprazole concentrations and the dehydroaripiprazole/parent drug ratios in the 18 

patients were expressed as the median and range or mean±SD. Between-group-differences were calculated by 19 

the use of Kruskal–Wallis analysis of variance followed by Dunn’s multiple comparisons test. For the evaluation 20 

of co-medication with CYP2D6 inhibitors, the prevalence of outliers with exaggerated concentrations of 21 

aripiprazole (> 300 ng/ml) was compared in patients carrying CYP2D6*1 by the use of Fisher’s exact test. A P 22 

value of <0.05 was considered to be statistically significant. 23 

Results 24 

CYP-status and aripiprazole exposure 25 

Of 93 patients, 52 carried at least one non-functional (nf) or reduced function (red) CYP2D6 allele (nf: 26 

CYP2D6*3, CYP2D6*4, CYP2D6*4×N, CYP2D6*5, CYP2D6*6; red: CYP2D6*10, CYP2D6*41), and 5 27 

patients had functional CYP2D6 duplication (CYP2D6*1×N), presumably resulting in increased CYP2D6 28 

expression. Strong association was found between the patients’ CYP2D6 genotype and the normalized 29 

aripiprazole plasma concentrations (Fig. 1A). Significantly higher aripiprazole levels were observed in the 30 

patients with non-functional and reduced function CYP2D6 alleles (CYP2D6*1/nf, CYP2D6*1/red or 31 
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CYP2D6nf/nf, CYP2D6nf/red) than in those carrying homozygous wild-type genotype (CYP2D6*1/*1) or 1 

CYP2D6 duplication (CYP2D6*1/*1×N) (1421±384.3, 1379±466.5 or 2221±1003.7, 2191±682.7 vs 2 

494.3±158.3 or 543.6±148.7 (ng/ml)/(mg dose/kg bw), P<0.0001). Furthermore, significant differences in 3 

aripiprazole levels were found between the carriers of one and two non-functional or reduced function CYP2D6 4 

alleles (P<0.01). While the normalized aripiprazole concentrations were comparable in the patients with 5 

CYP2D6*1/*1 genotype and in those with CYP2D6 duplication (CYP2D6*1/*1×N); however, further 6 

confirmation is needed because of the relatively small number of patients with CYP2D6*1 duplication. The 7 

patients with CYP2D6*1/nf genotype displayed similar aripiprazole concentrations to those with CYP2D6*1/red; 8 

therefore, these patients were grouped as CYP2D6*1/mut. Furthermore, aripiprazole metabolizing capacity of the 9 

patients carrying CYP2D6nf/red was as low as those with CYP2D6nf/nf, assigning them to CYP2D6mut/mut 10 

group. Thereafter, CYP2D6mut was applied for CYP2D6*3, CYP2D6*4, CYP2D6*4×N, CYP2D6*5, 11 

CYP2D6*6, CYP2D6*10 and CYP2D6*41 alleles. 12 

To clarify the role of CYP3A enzymes in aripiprazole metabolism, the relationship between patients’ 13 

CYP3A-status and aripiprazole plasma concentrations was also investigated. Patients with CYP3A4*22 or with 14 

CYP3A4*1B allele (13/93) were predicted to display permanent low or high CYP3A4 mRNA expression; 15 

however, these alleles cannot explain the high inter-individual variability in CYP3A4 activity, and non-genetic 16 

factors, resulting in transiently altered metabolic capacity, are considered to substantially modify the expression 17 

of functional CYP3A4 gene. CYP3A4 expression assays revealed that most of the patients (>80%) expressed 18 

CYP3A4 at normal level (Table 1). Nevertheless, no association was found between the patients’ CYP3A4 19 

expression and the normalized aripiprazole plasma concentrations (Fig. 1B). Furthermore, the steady-state 20 

aripiprazole concentrations in the patients with functional CYP3A5 (CYP3A5*1) were similar to those in 21 

CYP3A5 non-expressers (CYP3A5*3/*3). It may be assumed that the role of CYP3A4 in aripiprazole 22 

metabolism predominates in patients with one or two non-functional CYP2D6 alleles. However, no differences 23 

in aripiprazole concentrations were observed between low and normal CYP3A4 expresser patients carrying 24 

CYP2D6*1/mut (1337.5±355.5 vs 1430.3±423.2 (ng/ml)/(mg dose/kg bw), P=0.5729). While those with 25 

CYP2D6mut/mut all expressed CYP3A4 at normal level; therefore, no conclusion could be drawn regarding the 26 

contribution of CYP3A4 to aripiprazole clearance. 27 

The plasma concentrations of dehydroaripiprazole widely varied in the patients (4.94 – 284 ng/ml); 28 

however, its formation appeared to be associated merely with the patients’ CYP2D6 genotype (Fig. 2), whereas 29 

the dehydroaripiprazole/aripiprazole concentration ratios were comparable in the patients expressing CYP3A4 at 30 

low, normal or high level (data not shown). The patients with homozygous wild-type genotype (CYP2D6*1/*1) 31 

or with CYP2D6 duplication (CYP2D6*1/*1×N) displayed significantly higher dehydroaripiprazole/aripiprazole 32 
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ratios than those who carried one or two CYP2D6mut alleles (0.9±0,191 or 0.967±0.310 vs 0.346±0.099 and 1 

0.232±0.085; P<0.0001). Furthermore, small but significant differences in aripiprazole dehydrogenation were 2 

observed between the patients with one and with two non-functional/reduced function alleles (P<0.001). 3 

To identify the major factors influencing aripiprazole steady-state concentration, the PLS model was 4 

constructed with input variables, such as patients’ bodyweight, aripiprazole daily dose, patients’ CYP3A-status 5 

(CYP3A4 genotype, CYP3A4 expression, CYP3A5 genotype), CYP2D6 genotype (Fig. 3A), and with the 6 

aripiprazole plasma concentration (ng/ml) as the output variable. The number of input variables was reduced to 7 

those with significant contribution regarding the distribution of centred and scaled model coefficients. The 8 

patients’ CYP3A4 genotype as an independent input variable was eliminated, because CYP3A4 expression 9 

reflects the influence of CYP3A4 genotype. While CYP2D6*1/*1 and CYP2D6*1/*1×N genotypes were 10 

combined, because these genotypes seemed to have similar effect on aripiprazole metabolizing capacity. The 11 

final PLS model inputs were aripiprazole dose, patient’s bodyweight and CYP2D6 genotype, creating the 12 

following equation: 13 

ccaripiprazole = 133.57-0.556*bw+8.77*D+constantCYP2D6 14 

where ccaripiprazole is aripiprazole plasma concentration predicted from the model (ng/ml), bw is the patient’s 15 

bodyweight (kg), D is the daily dose of aripiprazole (mg), and the constantCYP2D6 is -132.89 for CYP2D6*1/*1 or 16 

CYP2D6*1/*1×N genotypes, 32.52 for CYP2D6*1/mut, and 210.94 for CYP2D6mut/mut. R2 (0.82) and Q2 (0.8) 17 

of the PLS model indicated that the model had very good prediction power. The model also passed permutation 18 

test, further indicating that the output was highly sensitive on the input values, and thus had strong predictive 19 

power. The values of R2 and Q2 suggested that the majority (>80%) of the aripiprazole predose concentration 20 

variability originated from aripiprazole dose, patient’s bodyweight and CYP2D6 genotype, whereas less than 21 

20% of the variability remained unexplained by the model (Figure 3B). When removing CYP2D6 genotype from 22 

the model, only about 13% of aripiprazole concentration variability could be explained. 23 

Co-medication and aripiprazole exposure 24 

Of 93 patients, 15 patients were prescribed aripiprazole as monotherapy, whereas the majority of the 25 

patients received concomitant antipsychotic medication (clozapine, haloperidol, quetiapine or risperidone) or 26 

anticonvulsant drugs (clonazepam, valproic acid or lamotrigine) as adjunctive therapy. Thirty-six patients 27 

received beta-adrenergic blockers (propranolol or metoprolol) and ten were on metformin therapy. 28 

Co-medication with drugs known to inhibit CYP2D6 on aripiprazole plasma concentrations was assumed to 29 

modify aripiprazole clearance. In the patients with at least one CYP2D6*1 allele, the concomitant intake of the 30 

antipsychotic risperidone and/or of the beta-adrenerg blocker metoprolol or propranolol significantly influenced 31 
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the elimination rate of aripiprazole, whereas upon CYP2D6 inhibitor therapy, the normalized aripiprazole levels 1 

were unchanged in the patients with two CYP2D6mut alleles (Fig. 4). The mean aripiprazole concentrations were 2 

approximately 50% higher in patients with CYP2D6*1/*1 or CYP2D6*1/*1×N genotypes (P<0.0001) and 20% 3 

higher in the patients carrying CYP2D6*1/mut (P<0.05) as a consequence of CYP2D6 inhibitor co-medication. 4 

Furthermore, co-medication of patients carrying wild-type CYP2D6*1 allele with the CYP2D6 inhibitor 5 

risperidone, metoprolol or propranolol increased the prevalence of outlier patients with exaggerated 6 

concentrations of aripiprazole. Aripiprazole concentration higher than 300 ng/ml was observed more frequently 7 

in the patients under CYP2D6 inhibitor therapy than in those who received no CYP2D6 inhibitor co-medication 8 

(8/37 vs 2/44, P=0.0378). Independently from CYP2D6 inhibitor co-administration, all patients with two non-9 

functional/reduced function alleles (CYP2D6mut/mut) displayed exaggerated aripiprazole concentrations. 10 

Inhibitory effects of risperidone and its main metabolite 9-hydroxy-risperidone as well as of propranolol 11 

and metoprolol on aripiprazole metabolism were assayed in vitro in human liver microsomes (Table 2). 12 

Risperidone and 9-hydroxy-risperidone significantly reduced the formation of dehydroaripiprazole and 13 

monohydroxy-aripiprazole, and displayed competitive inhibition with the inhibitory kinetic constants (Ki) ranged 14 

between 8.4 and 13.9 µM. N-Dealkylation of aripiprazole was also inhibited by risperidone; however, the 15 

inhibitory constant was about one magnitude higher than for dehydrogenation or hydroxylation pathways. In 16 

contrast to risperidone, the beta-blocker metoprolol and propranolol behaved as competitive inhibitors merely 17 

towards dehydrogenation of aripiprazole, and did not inhibit hydroxylation and N-dealkylation pathways. 18 

Substantial differences in the inhibition of dehydroaripiprazole formation were observed between metoprolol and 19 

propranolol; the inhibitory constant for propranolol was 3.5-fold higher than for metoprolol, suggesting that 20 

metoprolol is a more potent inhibitor of dehydrogenation than propranolol.  21 

Co-medication with valproic acid was also considered as a non-genetic factor that can potentially 22 

modify aripiprazole metabolism by up-regulation of CYP3A4 expression. However, in the patients on adjunctive 23 

valproic acid therapy (N=11), neither aripiprazole plasma concentration nor CYP3A4 expression differed 24 

significantly from those on non-valproic acid therapy (data not shown). 25 

Discussion 26 

Due to high inter-individual variability of aripiprazole metabolizing enzymes, therapeutic drug 27 

monitoring for aripiprazole is recommended to reduce poor response or development of adverse effects [18-20]. 28 

CYP2D6 and CYP3A4 have been reported to be involved in aripiprazole metabolism, and the association 29 

between CYP2D6 genotype and steady-state concentrations of aripiprazole has been demonstrated by several 30 

authors, whereas the impact of CYP3A polymorphisms (e.g. CYP3A5 and CYP3A4 genotypes) on aripiprazole 31 
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pharmacokinetics has not been clearly proved [31, 41, 42]. Although CYP3A5*3, the most frequent allele in 1 

Caucasians, is associated with loss of CYP3A5 expression and a consequence of no enzyme activity, and 2 

CYP3A4*1B and CYP3A4*22 lead to altered expression of CYP3A4, the substantial inter-individual variability 3 

in CYP3A activity cannot be explained exclusively by genetic polymorphisms. CYP3A5 is expressed in the liver 4 

at much lower concentration than CYP3A4 (approximately 1% and 30% of the total hepatic CYP content, 5 

respectively) [2]; however, the functional CYP3A5 enzyme can display much higher affinity towards certain 6 

CYP3A substrates, such as tacrolimus, than CYP3A4, and CYP3A5 expresser patients carrying CYP3A5*1 can 7 

metabolize tacrolimus more rapidly than those with CYP3A5*3/*3 genotype [43]. Current studies have reported 8 

that CYP3A5 and CYP3A4 polymorphisms hardly had an impact on aripiprazole pharmacokinetics [44, 45]; 9 

however, drawing conclusion from CYP3A genotypes on the potential role of CYP3A enzymes in aripiprazole 10 

metabolism is considered to be the limitations of these studies. CYP3A4 activity seems to be influenced by non-11 

genetic factors rather than by genetic polymorphisms. The non-genetic factors, such as age, hormonal status or 12 

transcriptional induction by CYP3A-inducers, such as carbamazepine or valproic acid, can mask the effect of 13 

genetic factors on CYP3A4 expression [2, 46]; therefore, for the categorization of the patients regarding 14 

CYP3A4 expression, more useful information can be obtained from CYP3A4 mRNA levels than from 15 

CYP3A4-genotyping. CYP3A-metabolizing capacity determined by CYP3A4 expression in leukocytes was 16 

demonstrated to inform about the hepatic activity towards CYP3A substrates, such as ciclosporin, tacrolimus or 17 

clonazepam [43, 47]. 18 

Our findings confirmed the results previously reported in the literature that CYP2D6 genotype has a 19 

major impact on aripiprazole plasma concentrations normalized by the dose [42, 44, 45, 48]; however, some 20 

overlap in the aripiprazole metabolizing activity between CYP2D6 genotypes was observed. The aripiprazole 21 

metabolizing capacity of CYP2D6nf/red patients was as reduced as that of the individuals carrying two non-22 

functional CYP2D6 alleles (CYP2D6nf/nf), despite the fact that intermediate and poor metabolizer phenotypes 23 

were assigned to CYP2D6nf/red and CYP2D6nf/nf, respectively [49]. The aripiprazole plasma concentrations in 24 

CYP2D6*1/nf genotype group were close to those subjects carrying CYP2D6*1/red, but significantly different 25 

from those with two functional alleles (CYP2D6*1/*1), although these individuals with CYP2D6*1/nf, 26 

CYP2D6*1/red or CYP2D6*1/*1 were listed in the same normal CYP2D6 metabolizer phenotype. Furthermore, 27 

the patients with CYP2D6*1/*1N genotype predicted to be ultra-rapid metabolizers displayed aripiprazole 28 

concentrations similar to the normal metabolizer patients with CYP2D6*1/*1. Our results confirm the findings of 29 

Hendset et al. [48] predicting similarly reduced aripiprazole metabolizing activity of CYP2D6red and CYP2D6nf 30 

alleles. The present study was the first that attempted to investigate the association between aripiprazole plasma 31 

concentrations and the patients’ CYP3A-status (CYP3A4 expression together with CYP3A5 genotype). CYP3A 32 
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activity estimated from the patients’ CYP3A-status did not appear to significantly influence aripiprazole 1 

clearance. Principal component analysis of the patients’ drug-metabolizing capacity parameters as well as of 2 

demographic and aripiprazole dosing data also identified CYP2D6 genotype as the main factor in aripiprazole 3 

elimination, whereas the contribution of CYP3A activity to aripiprazole pharmacokinetics may be minor or 4 

negligible. Following repeated administration of aripiprazole, dehydroaripiprazole exposure was also found to be 5 

CYP2D6 genotype dependent. Dehydroaripiprazole plasma concentrations were comparable with aripiprazole 6 

levels in the patients carrying CYP2D6*1/*1 or CYP2D6*1/*1×N genotype, whereas the patients with one or 7 

two non-functional CYP2D6 alleles displayed dehydroaripiprazole concentrations at 35% or 22% of aripiprazole 8 

levels, respectively. This means that in patients with non-functional CYP2D6 alleles, the higher plasma 9 

concentrations of aripiprazole were associated with a decrease in dehydroaripiprazole concentrations. 10 

The potential role of CYP2D6 in aripiprazole clearance, clearly demonstrated by the strong association 11 

between the patients’ CYP2D6 genotype and the plasma aripiprazole concentrations or the dehydro-12 

metabolite/aripiprazole ratios, also means that aripiprazole pharmacokinetics can be sensitive to potential 13 

CYP2D6 inhibitors. Multi-drug therapy is often applied for patients with psychiatric disorders; thus, 14 

combination of antipsychotics and/or of antipsychotics with antidepressants or with drugs for the treatment of 15 

comorbid medical conditions can increase the risk of pharmacokinetic drug interactions. Selective serotonin 16 

reuptake inhibitors are often prescribed with antipsychotics to treat depressive periods; however, many of them 17 

(such as paroxetine, fluoxetine, sertraline or duloxetine) are strong CYP2D6 inhibitors resulting in transient poor 18 

metabolism of CYP2D6 substrates due to phenoconversion [30]. Aripiprazole clearance was significantly 19 

decreased by co-administration of the CYP2D6 inhibitor paroxetine or fluoxetine [31, 50]. In the present study, 20 

none of these selective serotonin reuptake inhibitors was applied because of an increased risk of akathisia. Co-21 

medication with risperidone, metoprolol and propranolol was nevertheless assumed to modify aripiprazole 22 

metabolism, because these drugs are CYP2D6 substrates and have the capability to inhibit CYP2D6 activity [51-23 

54]. We have observed that concomitant use of risperidone, metoprolol or propranolol was associated with an 24 

increase in aripiprazole concentration. Risperidone was demonstrated to be an inhibitor of aripiprazole 25 

dehydrogenation and hydroxylation pathways, displaying inhibitory potencies (Ki) similar to that was reported 26 

for the CYP2D6-selective bufuralol 1’-hydroxylation (6.9±4.1 µM) [51]. Eap et al. [55] found risperidone to be a 27 

weak in vivo inhibitor of dextromethorphan O-demethylation catalysed by CYP2D6; however, the patients 28 

involved in the study received risperidone dose lower than usual. The inhibitory potency of the main risperidone 29 

metabolite, 9-hydroxy-risperidone, towards dehydrogenation and hydroxylation of aripiprazole was found to be 30 

similar to that of risperidone. This means that the hydroxylation of risperidone did not abolish the inhibition of 31 

aripiprazole metabolism. Furthermore, 9-hydroxy-risperidone is a pharmacologically active metabolite and has 32 
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been marketed as paliperidone [56]; therefore, co-medication with paliperidone may be expected to increase 1 

aripiprazole plasma concentrations as well. The presence of metoprolol or propranolol also decreased 2 

aripiprazole metabolism; however, metoprolol was found to be more potent inhibitor than propranolol. Using 3 

various CYP2D6-selective substrates, such as bufuralol or dextromethorphan, in vitro inhibitory potencies (IC50) 4 

of metoprolol and propranolol towards CYP2D6 have been reported to be within the same order of magnitude 5 

(varied between 2.5 and 9.8 µM) [52-54]. Although metoprolol was concluded to be a clinically not relevant 6 

inhibitor of venlafaxin metabolism [57], Kirschbaum et al. [18] have found a significant increase in aripiprazole 7 

blood concentration in patients treated with metoprolol which is in line with our results. From in vitro inhibition 8 

parameters, Turpeinen et al. [54] estimated relatively high in vivo CYP2D6 inhibition percentage for propranolol 9 

(32%). In the current study, these beta-adrenerg receptor blockers inhibited merely the formation of the active 10 

dehydroaripiprazole metabolite, and did not influence hydroxylation and N-dealkylation pathways. Since 11 

N-dealkyl-aripiprazole and hydroxy-aripiprazole are inactive metabolites, the inactivation pathways may become 12 

the principal route of aripiprazole metabolism upon co-medication with metoprolol or propranolol, resulting in 13 

potential modification of aripiprazole efficacy. Aripirazole has been reported to have a significantly higher risk 14 

of akathisia compared to other second generation antipsychotics [58], and beta-adrenerg receptor blockers, such 15 

as propranolol or metoprolol, are frequently used in the clinical management of antipsychotics induced akathisia 16 

[59]. The fact that co-administration of aripiprazole and beta-blockers is common, underlines the clinical 17 

significance of our findings. Co-medication with risperidone, metoprolol or propranolol was found to entail 18 

higher prevalence of exaggerated aripiprazole concentrations which may increase the risk of moderate and 19 

severe side effects developing more frequently above 300 ng/ml [18]. 20 

One of the limitations of the present study is that it investigated the pharmacokinetic interactions of 21 

relatively weak CYP2D6 inhibitors with aripiprazole; however, not only the simple co-administration of 22 

aripiprazole with risperidone or with beta-blockers, but the multiple combinations of these drugs are also 23 

frequent which might substantially reduce CYP2D6 function. Due to the fact that this was a naturalistic study, 24 

the number of patients treated with CYP2D6 inhibitors was low; however, the relatively narrow range of 25 

aripiprazole blood concentrations (primarily in CYP2D6*1/*1 group) indicated that these three drugs have 26 

similar inhibitory potential on CYP2D6 and on aripiprazole metabolism in vivo. For acceptable statistical 27 

analysis, we pooled the inhibition data which is another limitation of the present study and further investigation 28 

is required to confirm our findings. Although the genetic variations of transporter components responsible for the 29 

absorption, distribution and elimination of many drugs (e.g. ABCB1) were not investigated, the present study 30 

attempted to clarify the functional role of CYP2D6 and CYP3As as well as to identify some potentially 31 

interacting drugs in aripiprazole clearance. Our findings demonstrated that patients’ CYP2D6 genotype primarily 32 
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influenced steady-state aripiprazole plasma concentration and dehydroaripiprazole formation, whereas 1 

contribution of CYP3A4 to in vivo aripiprazole clearance was considered to be minor or negligible. Additionally, 2 

co-administration of CYP2D6 inhibitors, such as risperidone, metoprolol or propranolol, was found to modify 3 

aripiprazole exposure in patients carrying wild-type CYP2D6*1 allele. Our results suggest that patients’ CYP2D6 4 

genotype and co-medication with CYP2D6 inhibitors can be considered to be the major determinants of 5 

aripiprazole pharmacokinetics. However, further studies should be performed to clearly demonstrate whether 6 

taking into account patients’ CYP2D6 genotype and co-medication with CYP2D6 inhibitors can improve 7 

outcomes of aripiprazole therapy. 8 
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Table 1. Patients’ demographic and clinical characteristics 1 

  N % 
Patients  93  
Sex, male/female  41/52 44.1/55.9 
Diagnosis    

 Schizophrenia 85 91.4 
 Bipolar disorder 8 8.6 

Age (year)*  31 (18; 65)  
Bodyweight (kg)*  80 (47; 145)  
Aripiprazole daily dose (mg)*  15 (5; 30)  
Serum levels (ng/ml)    

 Aripiprazole* 193 (6.2; 819)  
 Dehydroaripiprazole* 86.8 (4.9; 284)  

CYP genotype    
CYP2D6 CYP2D6*1/*1 36 38.7 

 CYP2D6*1/nf** 26 28.0 
 CYP2D6*1/red*** 14 15.0 
 CYP2D6nf/nf** 7 7.5 
 CYP2D6nf/red*** 5 5.4 
 CYP2D6*1/*1xN 5 5.4 

CYP3A4 CYP3A4*1/*1 80 86 
 CYP3A4*1/*1B 4 4.3 
 CYP3A4*1/*22 9 9.7 

CYP3A5 CYP3A5*1/*3 8 8.6 
 CYP3A5*3/*3 85 91.4 

CYP expression    
CYP3A4 low expressers 14 15.0 

 normal expressers 77 82.8 
 high expressers 2 2.2 

Co-medication no 15 16.1 
 clozapine 30 32.2 
 haloperidol 8 8.6 
 quetiapine 12 12.9 
 risperidone  16 17.2 
 clonazepam 20 21.5 
 valproic acid 11 11.8 
 lamotrigine 3 3.2 
 propranolol 21 22.6 
 metoprolol 15 16.9 
 metformin 10 10.8 
*median (min; max); **CYP2D6nf: *3, *4, *5, *6 and *4xN; ***CYP2D6red: *10 and *41 2 
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Table 2. Ki values (µM) for in vitro inhibition of aripiprazole metabolism by risperidone, 1 
9-hydroxy-risperidone, propranolol and metoprolol* 2 

 Risperidone 
9-Hydroxy-
risperidone 

Propranolol Metoprolol 

Dehydroaripiprazole 8.4±2.64 9.3±2.97 48.2±9.16 13.4±2.80 

Hydroxy-aripiprazole 9.1±1.70 13.9±0.26 - - 

N-dealkyl aripiprazole 57.0±7.11 - - - 

*In vitro inhibition of aripiprazole metabolism was carried out at three different 3 
concentrations of aripiprazole (10, 25, 50 µM) and eight concentration points of risperidone, 4 
9-hydroxy-risperidone, propranolol or metoprolol (1-50 µM) using hepatic microsomes of 5 
three tissue donors. 6 

  7 
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 1 

Figure legends 2 

Fig. 1: The influence of the patients’ CYP2D6 genotypes (A) and CYP3A-status (CYP3A5 genotype and 3 

CYP3A4 expression) (B) on aripiprazole plasma concentrations. 4 

nf: non-functional CYP2D6 variations (*3, *4, *5, *6 and *4N); red: reduced function 5 

variations (*10 and *41); N: allele duplication; : CYP3A5*1 carrier; *: P<0.01; **: P<0.0001 6 

Fig. 2: The influence of the patients’ CYP2D6 genotypes on dehydroaripiprazole/aripiprazole concentration 7 

ratios.  8 

mut: non-functional and reduced function CYP2D6 alleles (*3, *4, *5, *6, *4N, *10 and *41); 9 

N: allele duplication; *: P<0.001; **: P<0.0001 10 

Fig. 3: PLS model for aripiprazole plasma concentration. (A) Principal component analysis with input variables 11 

of aripiprazole daily dose/patients’ bodyweight, patients’ CYP3A-status (CYP3A4 expression, 12 

CYP3A5 genotype), CYP2D6 genotype; (B) Aripiprazole plasma concentrations predicted by the PLS 13 

model. 14 

To simplify the data for the PLS modelling, some of the CYP2D6 genotype groups were combined 15 

and three CYP2D6 genotype groups were created, CYP2D6*1/*1 (for CYP2D6*1/*1 and 16 

CYP2D6*1/*1N), CYP2D6*1/mut (for CYP2D6*1/nf and CYP2D6*1/red) and CYP2D6mut/mut 17 

(for CYP2D6nf/nf and CYP2D6nf/red). 18 

Fig. 4: The effect of co-medication with CYP2D6 inhibitors (risperidone, metoprolol or propranolol) on patients’ 19 

aripiprazole plasma concentrations. Boxes with the line inside represent the range and median, 20 

whereas the whiskers are for minimum and maximum values. The number of patients (N) in each 21 

group is also indicated. In CYP2D6*1/*1 and *1/*1N group, co-medication with CYP2D6 inhibitor 22 

risperidone, metoprolol and propranolol was for 7, 7 and 8; in CYP2D6*1/mut group, 7, 7 and 10; in 23 

CYP2D6mut/mut group, 2, 1 and 3, respectively. 24 

mut: loss-of-function CYP2D6 allele; N: allele duplication; *: P<0.05; **: P<0.0001 25 

 26 
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