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DERIVATIONS IN ŁUKASIEWICZ SEMIRINGS
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Abstract. An axiomatization of classical propositional logic is provided by means of Boolean
algebras which are term equivalent to Boolean rings. This is important because rings form a
classical part of algebra whose tools can be used for the investigations. The Łukasiewicz many-
valued logic was axiomatized via so-called MV-algebras by C. C. Chang in 1950’s. MV-algebras
are successfully applied in the logic of quantum mechanics and hence they are considered as
quantum structures. It is a natural question if also MV-algebras have their alter ego among
classical structures. For this reason the so-called Łukasiewicz semirings were introduced by
the first author and his collaborators in [3] – [4]. As shown, Łukasiewicz semirings are term
equivalent to MV-algebras and we can use with advantage several developed tools for their study.
In particular, we investigate derivations in semirings which were introduced formerly but here
these semirings are enriched by an involution.
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1. INTRODUCTION

The concept of derivation in rings was introduced already in the 1960’s. For semir-
ings, it was defined in J. S. Golan’s book ([9]). However, derivations were studied
also in lattices (see e.g. [7] and [11]). Let us note that bounded distributive lattices
are special semirings. Starting with 2010, several authors extended the study of de-
rivations to certain algebras forming an algebraic semantic for non-classical logics
including the logic of quantum mechanics. In this context let us mention the papers
[1] and [10]. It was shown in [5] that every MV-algebra can be converted into a so-
called Łukasiewicz semiring. The advantage of this approach is that we can apply
also methods from the theory of semirings. This was done by the authors in [6].

The main difference between our approach to derivations in Łukasiewicz semirings
and the approach by J. S. Golan in [9] is that in Łukasiewicz semirings we have a
unary operation such that addition can be expressed by both multiplication and this
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unary operation. Moreover, Łukasiewicz semirings are additively idempotent and
ordered by the induced semilattice ordering, see [1] – [4]. On the other hand, these
semirings are not lattices and hence we cannot use results and methods from [7] or
[11].

2. ŁUKASIEWICZ SEMIRINGS

We start with the following definition:

Definition 1. A Łukasiewicz semiring is an algebra R D .R;C; �; 0;0;1/ of type
.2;2;1; 0;0/ such that

� .R;C;0/ is a commutative monoid,
� .R; �;1/ is a commutative monoid,
� .xCy/ �´� x �´Cy �´,
� x �0� 0,
� xCx � x and xC1� 1,
� .x0 �y/0 �y � .y0 �x/0 �x,
� x � y implies y0 � x0,
� .x0/0 � x.

An algebra .R;C; �;0;1/ of type .2;2;0;0/ satisfying the first four conditions is called
a commutative semiring. So .R;C/ can be considered a join-semilattice and we
denote by � its corresponding partial order relation. We call it the induced order of
R. Put

x^y WD .x0Cy0/0

for all x;y 2 R. Since .R;C;0;1/ is a bounded join-semilattice and 0 is an antitone
involution on .R;�/, .R;C;^;0;1/ is a bounded lattice.

Example 1. The algebra RD .Œ0;1�;_;ˇ; 0;0;1/ with

x_y WDmax.x;y/;

xˇy WD .xCy�1/_0;

x0 WD 1�x

for all x;y 2 Œ0;1� is a Łukasiewicz semiring. Here Œ0;1� denotes the unit interval of
the real numbers.

Example 2. For every positive integer n the algebra Rn D .f0;1;2; : : : ;ng;_;ˇ;
0;0;n/ with

x_y WDmax.x;y/;

xˇy WD .xCy�n/_0;

x0 WD n�x

for all x;y D 0; : : : ;n is a Łukasiewicz semiring. Note that in this case the greatest
element is n.
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Example 3. Every Boolean algebra BD .B;_;^; 0;0;1/ is a Łukasiewicz semiring.

Lemma 1. Let R D .R;C; �; 0;0;1/ be a Łukasiewicz semiring and a;b;c 2 R.
Then

(i) 00 D 1 and 10 D 0,
(ii) a �a0 D 0,

(iii) a � b implies a � c � b � c, and hence a �b � a^b, especially, a �a � a,
(iv) a � .aCb/0 D 0,
(v) aCb D ..a �b0/0 �b0/0,

(vi) a � b if and only if a �b0 D 0.

Proof.
(i) This follows immediately from the fact that 0 is the smallest and 1 the greatest

element of .R;�/ and that 0 is an antitone involution of .R;�/.
(ii) According to (i) we have a �a0 D .1 �a0/0 �a0 D .a �0/0 �0D 0.

(iii) a� b implies aCbD b whence a �cCb �cD .aCb/ �cD b �c, i.e. a �c� b �c.
Since a �b � a �1D a and a �b � 1 �b D b, we have a �b � a^b.

(iv) According to (iii) and (ii) we have a � .aC b/0 � .aC b/ � .aC b/0 D 0 and
hence a � .aCb/0 D 0.

(v) According to (iv), (i) and (ii) we have

aCbD ..a �.aCb/0/0 �.aCb/0/0D ...aCb/ �a0/0 �a0/0D ..b �a0/0 �a0/0D ..a �b0/0 �b0/0:

(vi) If a � b then according to (iii) and (ii) we have a � b0 � b � b0 D 0 showing
a � b0 D 0. If, conversely a � b0 D 0 then according to (v) and (i) we have
a � aCb D ..a �b0/0 �b0/0 D b.

�

An element a of R is called Boolean if a �aD a. This is equivalent to aCa0 D 1
and to a^ a0 D 0. Hence, a is Boolean if and only if a0 has this property. The
mentioned equivalence can be seen as follows: If a �aD a then aCa0 D ..a � .a0/0/0 �
.a0/0/0 D ..a � a/0 � a/0 D .a0 � a/0 D 00 D 1. If, conversely, aC a0 D 1 then a � a D
a � aC 0 D a � aC a � a0 D a � .aC a0/ D a � 1 D a. Let BoolR denote the set of all
Boolean elements of R. It is easy to see that BoolR is a subuniverse of .R; �; 0;0;1/.

An MV-algebra is an algebra .A;˚;:;0/ of type .2;1;0/ satisfying the following
identities:

.x˚y/˚´� x˚ .y˚´/;

x˚y � y˚x;

x˚0� x;

x˚1� 1;

:.:x/� x;

:.:x˚y/˚y �:.:y˚x/˚x:
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Here and in the following 1 WD :0. We define

x˝y WD :.:x˚:y/;

x_y WD :.:x˚y/˚y;

x^y WD :.:x_:y/

for all x;y 2 A. Then ˝ is distributive with respect to _. Moreover, for x;y 2 A
we define x � y if :x˚y D 1. Then .A;_;^;0;1/ is a bounded distributive lattice
whose induced order coincides with�. Moreover x � y implies:y �:x (x;y 2A).

It is known that Łukasiewicz semirings are in a natural one-to-one correspondence
with MV-algebras (cf. e.g. [2], [3] and [8]). For the convenience of the reader we
provide a short direct proof.

Theorem 1. If RD .R;C; �; 0;0;1/ is a Łukasiewicz semiring and

x˚y WD .x0 �y0/0

for all x;y 2 R then M.R/ WD .R;˚; 0;0/ is an MV-algebra. If, conversely, A D
.A;˚;:;0/ is an MV-algebra then R.A/ WD .A;_;˝;:;0;1/ is a Łukasiewicz semir-
ing. This correspondence is one-to-one.

Proof. First assume RD .R;C; �; 0;0;1/ to be a Łukasiewicz semiring and define
x˚y WD .x0 �y0/0 for all x;y 2R. Then we have

.x˚y/˚´� ...x0 �y0/0/0 �´0/0 � ..x0 �y0/ �´0/0 � .x0 � .y0 �´0//0 �

� .x0 � ..y0 �´0/0/0/0 � x˚ .y˚´/;

x˚y � .x0 �y0/0 � .y0 �x0/0 � y˚x;

x˚0� .x0 �00/0 � .x0 �1/0 � .x0/0 � x;

x˚1� .x0 �10/0 � .x0 �0/0 � 00 � 1;

.x0/0 � x;

.x0˚y/0˚y � .....x0/0 �y0/0/0/0 �y0/0 � ...x0/0 �y0/0 �y0/0 � ...y0/0 �x0/0 �x0/0 �

� .....y0/0 �x0/0/0/0 �x0/0 � .y0˚x/0˚x:

Hence M.R/D .R;˚; 0;0/ is an MV-algebra. Conversely, let AD .A;˚;:;0/ be an
MV-algebra. Then .A;_;0/ is a commutative monoid. Moreover,

.x˝y/˝´�:.:.:.:x˚:y//˚:´/�:..:x˚:y/˚:´/�

�:.:x˚ .:y˚:´//�:.:x˚:.:.:y˚:´///� x˝ .y˝´/;

x˝y �:.:x˚:y/�:.:y˚:x/� y˝x;

x˝1�:.:x˚:1/�:.:x˚0/�:.:x/� x:

Hence, .A;˝;1/ is a commutative monoid, too. It is clear that the partial order rela-
tions in A and R.A/ coincide. Now for a;b 2 A, a � b implies :b � :a. Moreover,
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we have

.x_y/˝´� .x˝´/_ .y˝´/;

x˝0�:.:x˚:0/�:.:x˚1/�:1� 0;

x_x � x;

x_1� 1;

:.:x˝y/˝y �:.:.:.:.:.:x/˚:y///˚:y/�:.:.:.:x/˚:y/˚:y/�

�:.:.:.:y/˚:x/˚:x/�:.:.:.:.:.:y/˚:x///˚:x/�

�:.:y˝x/˝x:

This shows that R.A/ D .A;_;˝;:;0;1/ is a Łukasiewicz semiring. If
RD .R;C; �; 0;0;1/ is a Łukasiewicz semiring, M.R/ WD .R;˚; 0;0/ and R.M.R//D
.R;_;˝; 0;0;00/ then

x_y � .x0˚y/0˚y � .....x0/0 �y0/0/0/0 �y0/0 � ..x �y0/0 �y0/0 � xCy;

x˝y � .x0˚y0/0 � ...x0/0 � .y0/0/0/0 � x �y;

00 � 1;

i.e. R.M.R// D R. If, finally, A D .A;˚;:;0/ is an MV-algebra,
R.A/ WD .A;_;˝;:;0; 1/ and M.R.A//D ..A;˚1;:;0/ then

x˚1 y �:.:x˝:y/�:.:.:.:x/˚:.:y///� x˚y

and hence M.R.A//D A. �

Due to this correspondence, for every Łukasiewicz semiring RD .R;C; �; 0;0;1/,
.R;C;^; 0;1/ is a bounded distributive lattice.

We are going to show when an interval in a Łukasiewicz semiring can be converted
into a bounded lattice with an antitone involution.

Lemma 2. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring and b 2BoolR and
put

x� WD x0^b;

x\y WD .x�Cy�/�

for all x;y 2 Œ0;b�. Then .Œ0;b�;C;\;�;0;b/ is a bounded lattice with an antitone
involution.

Proof. Since b 2 BoolR, i.e. b^b0 D 0, we have

.x�/� D .x0^b/0^b D .xCb0/^b D .x^b/C .b0^b/D xC0D x

for all x 2 Œ0;b�. Obviously, � is antitone. The rest of the proof is clear. �
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Lemma 3. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring and a 2BoolR and
put

x� WD x0Ca;

x\y WD .x�Cy�/�

for all x;y 2 Œa;1�. Then .Œa;1�;C;\;�;a;1/ is a bounded lattice with an antitone
involution.

Proof. Since a 2 BoolR, i.e. aCa0 D 1, we have

.x�/� D .x0Ca/0CaD .x^a0/CaD .xCa/^ .a0Ca/D x^1D x

for all x 2 Œa;1�. Obviously, � is antitone. The rest of the proof is clear. �

Theorem 2. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring and a;b 2BoolR,
assume a � b and put

x� WD .x0Ca/^b;

x\y WD .x�Cy�/�

for all x;y 2 Œa;b�. Then .Œa;b�;C;\;�;a;b/ is a bounded lattice with an antitone
involution.

Proof. This follows from the fact that .R;C;^/ is a distributive lattice. �

Remark 1. Theorem 2 remains valid if one defines x� WD .x0^b/Ca for all x 2
Œa;b�. Note that .x0^b/Ca � .x0Ca/^b for all x 2R.

3. DERIVATIONS

Although Łukasiewicz semirings are in a one-to-one correspondence with MV-
algebras, we do not define derivations like in [1] or [10] since there the MV-operation
˚ is used instead of C. Hence also our results differ essentially from those obtained
in the mentioned papers.

Now we can adopt the definition of a derivation from [9].

Definition 2. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring. A derivation on
R is a mapping d from R to R satisfying the following identities:

d.xCy/� dxCdy;

d.x �y/� .dx/ �yCx � .dy/:

Let DerR denote the set of all derivations on R, for every a 2 R let Nda denote the
mapping from R to R defined by Nda.x/ WD a �x for all x 2 R and let id denote the
identical mapping from R to R. We call a derivation d on R principal if it is of the
form Nda for some a 2 R. Hence 0 D Nd0 and id D Nd1 are principal derivations. For
any mapping d from R to R define Fixd WD fx 2R j dx D xg.
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Here and in the following we write dx instead of d.x/ if no confusion can arise.

Lemma 4. Let R D .R;C; �; 0;0;1/ be a Łukasiewicz semiring, a;b 2 R and
d;d1;d2 2 DerR. Then

(i) Nda 2 DerR,
(ii) d0D 0,

(iii) da � a,
(iv) a � b implies da � db,
(v) a � .d1/� da,

(vi) d1D 1 if and only if d D id,
(vii) .d1a/ � .d2b/C .d1b/ � .d2a/� .d1 ıd2/.a �b/ where ı denotes the composi-

tion of mappings,
(viii) d1 ı d2 2 DerR if and only if for all x;y 2 R we have

.d1x/ � .d2y/C .d1y/ � .d2x/� ..d1 ıd2/x/ �yCx � ..d1 ıd2/y/.

Proof.
(i) This is clear.

(ii) We have d0D d.0 �0/D .d0/ �0C0 � .d0/D 0.
(iii) According to (ii) and Lemma 1 (ii) we have

.da/ �a0 � d.a �a0/D d0D 0

and hence .da/ �a0 D 0 whence da � a according to Lemma 1 (vi).
(iv) a � b implies da � daCdb D d.aCb/D db.
(v) We have a � .d1/� d.a �1/D da.

(vi) If d1 D 1 then a D a � .d1/ � d.a � 1/ D da � a according to (iii) showing
d D id. The converse is trivial.

(vii) We have

.d1a/ � .d2b/C .d1b/ � .d2a/�

� .d1a/ � .d2b/C .d1b/ � .d2a/C ..d1 ıd2/a/ �bCa � ..d1 ıd2/b/D

D .d1.d2a// �bC .d2a/ � .d1b/C .d1a/ � .d2b/Ca � .d1.d2b//D

D d1..d2a/ �b/Cd1.a � .d2b//D d1..d2a/ �bCa � .d2b//D d1.d2.a �b//D

D .d1 ıd2/.a �b/:

(viii) According to the proof of (vii) we have

.d1 ıd2/.a �b/D .d1a/ � .d2b/C .d1b/ � .d2a/C ..d1 ıd2/a/ �bCa � ..d1 ıd2/b/:

�

Lemma 5. Let R D .R;C; �; 0;0;1/ be a Łukasiewicz semiring and d 2 DerR.
Then the following are equivalent:

(i) d is principal,
(ii) dx D x � .d1/ for all x 2R, i.e. d D Ndd1.
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Moreover, if x^ .d1/� x � .d1/ for all x 2R then d is principal.

Proof. The equivalence of (i) and (ii) is clear. If, finally, x^ .d1/� x � .d1/ for all
x 2R then

dx � x^ .d1/� x � .d1/� d.x �1/D dx

for all x 2R and hence d D Ndd1. �

Lemma 5 shows that the Łukasiewicz semiring from Example 3 has only principal
derivations since in this semiring multiplication coincides with lattice meet.

It was shown in [10], Lemma 5, that basic algebras have only principal derivations.
We are going to show that this is not the case for Łukasiewicz semirings. In these
semirings there exist non-principal derivations, see the following example.

Example 4. Consider the Łukasiewicz semiring RD .f0;a;b;c;1g;C; �; 0;0;1/with
the following operations:

C 0 a b c 1

0 0 a b c 1

a a a b c 1

b b b b c 1

c c c c c 1

1 1 1 1 1 1

� 0 a b c 1

0 0 0 0 0 0

a 0 0 0 0 a

b 0 0 0 a b

c 0 0 a b c

1 0 a b c 1

x 0 a b c 1

x0 1 c b a 1

The principal derivations look as follows:

x 0 a b c 1
Nd0x 0 0 0 0 0
Ndax 0 0 0 0 a
Ndbx 0 0 0 a b
Ndcx 0 0 a b c
Nd1x 0 a b c 1

However, there exists a derivation d of R which is not principal, namely the follow-
ing:

x 0 a b c 1

dx 0 0 0 a a

The Łukasiewicz semiring considered in Example 4 is isomorphic to the Łuka-
siewicz semiring R4 from Example 2. The following proposition shows that the
situation described in Example 4 can be generalized to Rn for arbitrary n > 1.

Proposition 1. For each n> 1 the Łukasiewicz semiring Rn has the non-principal
derivation d defined by

d.x/ WD

�
0 if x < n�1
1 otherwise:
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Proof. Let a;b 2 f0; : : : ;ng. Then d.a_b/D .da/_ .db/ since .f0;1; : : : ;ng;�/
is a chain. Moreover,

d.aˇb/D

�
0 if aCb < 2n�1
1 otherwise;

.da/ˇb D

�
0 if a < n�1 or b < n
1 if a � n�1 and b D n;

aˇ .db/D

�
0 if a < n or b < n�1
1 if aD n and b � n�1:

Hence d 2 DerRn. Since

Nda.b/D

�
0 if b � n�a
b� .n�a/ otherwise;

d is not principal. �

For the unary operation 0, we can prove the following theorem:

Theorem 3. Let R D .R;C; �; 0;0;1/ be a Łukasiewicz semiring and d 2 DerR.
Then

(i) dx0 D .dx/0 for all x 2R if and only if d D id,
(ii) .dx/ � .dx0/� x � .dx0/� x0 � .dx/� 0 and hence dx0 � .dx/0 for all x 2R,

(iii) if a 2 BoolR then daCda0 D d1,
(iv) d..d1/0/� .d1/^ .d1/0,
(v) if d1 2 BoolR then d..d1/0 �x/D 0 for each x 2R.

Proof.
(i) If dx0 D .dx/0 for all x 2R then for all x 2R we have x D .x0/0 � .dx0/0 D
..dx/0/0 D dx � x according to Lemma 4 (iii) and hence d D id.

(ii) Due to Lemma 4 (iii) and Lemma 1 (iii) and (ii) we have .dx/.dx0/ � x �
.dx0/� x �x0 D 0 and x0 � .dx/� x0 �x D 0 for all x 2 R. By Lemma 1 (vi),
dx0 � .dx/0 for all x 2R.

(iii) If a 2 BoolR then daCda0 D d.aCa0/D d1.
(iv) Since .d1/0 � 1, we have d..d1/0/ � d1 by Lemma 4 (iv). According to

Lemma 4 (iii) we have d..d1/0/� .d1/0. This shows d..d1/0/� .d1/^.d1/0.
(v) If d12BoolR then by (iv), Lemma 4 (iv) and Lemma 1 (ii) we have d..d1/0 �

x/ D .d..d1/0// � x C .d1/0 � .dx/ D 0 � x C .d1/0 � .dx/ D .dx/ � .d1/0 �

.d1/.d1/0 D 0 for all x 2R.
�

Theorem 4. Let R D .R;C; �; 0;0;1/ be a Łukasiewicz semiring, a 2 R and d 2
DerR. Then

(i) .DerR;C/ is a join-semilattice with the least element Nd0 and the greatest
element id,
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(ii) Fixd is a subuniverse of .R;C; �;0/,
(iii) .Fixd/\d�1.f0g/D f0g,
(iv) if a 2 BoolR then Nda 2 End.R;C; �;0/.

Proof.
(i) It is easy to see that DerR is closed with respect toC. Hence .DerR;C/ is a

semilattice which is considered as a join-semilattice. We then have d1 � d2 if
and only if d1x � d2x for all x 2 R. Obviously, Nd0; id 2 DerR and Nd0 is the
smallest element of .DerR;�/. Because of Lemma 4 (iii), id is the greatest
element of .DerR;�/.

(ii) If a;b 2 Fixd then d.aCb/D daCdb D aCb and

d.a �b/D .da/ �bCa � .db/D a �bCa �b D a �b:

Moreover, d0D 0 according to Lemma 4 (ii).
(iii) a 2 .Fixd/\d�1.f0g/ implies aD daD 0.
(iv) This can be proved by a straightforward computation.

�

For Łukasiewicz semirings we adopt the concept of an ideal as introduced for
semirings in [9]. Hence, we define

Definition 3. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring. An ideal of R
is a subset I of R satisfying

0 2 I;

if x;y 2 I then xCy 2 I;
if x 2 I and y 2R then x �y 2 I:

Let IdR denote the set of all ideals of R.

It is well known and easy to prove that .IdR;�/ is a complete lattice the with the
smallest element f0g and the greatest element R.

Proposition 2. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring, d 2DerR and
I 2 IdR. Then

(i) d�1.f0g/ 2 IdR,
(ii) d�1.I / WD fx 2R j dx 2 I g is a subuniverse of .R;C; �;0/.

Proof.
(i) We have 0 2 d�1.f0g/. Moreover, d�1.f0g/ is closed with respect to C.

If a 2 d�1.f0g/ and b 2 R then d.a � b/ � d.a � 1/ D da D 0 according to
Lemma 1 (iii) and Lemma 4 (iv) and hence d.a �b/D 0 , i.e. a �b 2 d�1.f0g/.

(ii) The proof is straightforward.
�
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Let R D .R;C; �; 0;0;1/ be a Łukasiewicz semiring and � 2 ConR. Denote by
Œ0�� the class of 0 with respect to �, the so-called kernel of �. It is well-known
that in any semiring, the kernel of any congruence is an ideal, but not every ideal is a
kernel of some congruence, see e.g. [9]. Now let d 2 DerR. We are interested in the
question if d�1.Œ0��/ 2 IdR.

Theorem 5. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring, � 2 ConR and
d 2 DerR. Then

(i) d�1.Œ0��/ WD fx 2R j dx 2 Œ0��g 2 IdR,
(ii) d.Œ0��/� Œ0�� and d.Œ0��/ is a subuniverse of .R;C;0/.

Proof.

(i) If I WD d�1.Œ0��/, a;b 2 I and c 2R then da;db 2 Œ0�� and hence

d.aCb/D daCdb 2 Œ0��;

d.a � c/D d.a � c/C0 2 Œd.a � c/Cda�� D Œda�� D Œ0��

according to Lemma 1 (iii) and Lemma 4 (iv) showing aCb;a � c 2 I .
(ii) Clearly, 0D d0 2 d.Œ0��/. If a;b 2 d.Œ0��/ then there exist c;e 2 Œ0�� with

dc D a and de D b and hence

aD dc D dcC0 2 ŒdcC c�� D Œc�� D Œ0��;

aCb D dcCde D d.cC e/ 2 d.Œ0��/

according to Lemma 4 (iii).

�

Theorem 6. Let R D .R;C; �; 0;0;1/ be a Łukasiewicz semiring, d 2 DerR, as-
sume d1 2 BoolR, put

x� WD x0^ .d1/;

x\y WD .x�Cy�/�

for all x;y 2 d.R/ and assume x� 2 d.R/ for all x 2 d.R/. Then .d.R/;C;\;�;0;d1/
is a bounded lattice with an antitone involution.

Proof. Since d1 2 BoolR, i.e. .d1/^ .d1/0 D 0, we have

.x�/� D .x0^ .d1//0^ .d1/D .xC .d1/0/^ .d1/

D .x^ .d1//C ..d1/0^ .d1//D xC0D x

for all x 2 d.R/. Obviously, � is antitone. The rest of the proof is clear. �

Theorem 7. Let RD .R;C; �; 0;0;1/ and SD .S;C; �; 0;0;1/ be Łukasiewicz semi-
rings. Then Der.R�S/D DerR�DerS.
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Proof. Clearly, DerR�DerS� Der.R�S/. In order to prove the converse inclu-
sion, let d 2 Der.R�S/. Then for each x 2 R we have d.x;0/ � .x;0/ according
to Lemma 4 (iii) and hence there exists some mapping d1 from R to R satisfying
.d1x;0/D d.x;0/ for all x 2R. Analogously, there exists some mapping d2 from S

to S satisfying .0;d2y/D d.0;y/ for all y 2 S . Now let a;b 2R and c 2 S . Then

.d1.aCb/;0/D d.aCb;0/D d..a;0/C .b;0//D d.a;0/Cd.b;0/D

D .d1a;0/C .d1b;0/D .d1aCd1b;0/;

i.e. d1.aCb/D d1aCd1b. Moreover,

.d1.a �b/;0/D d.a �b;0/D d..a;0/ � .b;0//D .d.a;0// � .b;0/C .a;0/ � .d.b;0//D

D .d1a;0/ � .b;0/C .a;0/ � .d1b;0/D ..d1a/ �b;0/C .a � .d1b/;0/D

D ..d1a/ �bCa � .d1b/;0/;

i.e. d1.a �b/D .d1a/ �bCa �.d1b/. This shows d1 2DerR. Analogously, d2 2DerS.
Finally,

d.a;c/D d..a;0/C .0;c//D d.a;0/Cd.0;c/D .d1a;0/C .0;d2c/D .d1a;d2c/

proving d 2 DerR�DerS. Hence Der.R�S/� DerR�DerS completing the proof
of the theorem. �

Proposition 3. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring and a 2BoolR.
Then . Nda.R/;C; �;0;a/ is a commutative semiring satisfying xCx � x and xCa�
a.

Proof. Since Nda.xCy/ D NdaxC Nday, Nda.x �y/ D a � .x �y/ D .a � x/ � .a �y/ D

. Ndax/ � . Nday/ for all x;y 2 R and Nda0 D a � 0 D 0 and Nda1 D a � 1 D a, Nda is a
homomorphism from .R;C; �;0;1/ onto . Nda.R/;C; �;0;a/. �

4. .f;g/-DERIVATIONS

The concept of an .f;g/-derivation is mentioned in the monograph [9]. For Łukasi-
ewicz semirings, it is specified as follows:

Definition 4. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring and f;g 2EndR.
An .f;g/-derivation on R is a mapping d from R to R satisfying the following
identities:

d.xCy/� dxCdy;

d.x �y/� .dx/ �f .y/Cg.x/ � .dy/:

Let Derf;g R denote the set of all .f;g/-derivations on R. Especially, Derid;id R D
DerR.

The following example shows that there exist .f;g/-derivations on Łukasiewicz
semirings which are not derivations.
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Example 5. Let M be a set with jM j > 1 and put R WD .2M ;[;\; 0;¿;M/. If
f 2 EndR then f 2 Derf;f R since

f .A[B/D f .A/[f .B/;

f .A\B/D f .A\B/[f .A\B/D .f .A/\f .B//[ .f .A/\f .B//

for all A;B 2 2M . Now let a 2M and g denote the mapping from 2M to 2M defined
by

g.A/ WD

�
M if a 2 A;
¿ otherwise

(A 2 2M ). Then g 2 EndR (and hence g 2Derg;g R) as can be seen from the follow-
ing table:

A B g.A/ g.B/ g.A[B/ g.A\B/ g.A0/

3 a 3 a M M M M ¿
3 a 63 a M ¿ M ¿ ¿
63 a 3 a ¿ M M ¿ M

63 a 63 a ¿ ¿ ¿ ¿ M

But g … DerR since

g.fag\fxg/D¿¤ fxg D .g.fag/\fxg/[ .fag\g.fxg//

for all x 2M n fag.

Lemma 6. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring, f;g 2EndR, a;b 2
R and d;d1;d2 2 Derf;g R. Then

(i) Nd0 2 Derf;g R,
(ii) d0D 0,

(iii) da � f .a/^g.a/,
(iv) a � b implies da � db,
(v) .f .a/Cg.a// � .d1/� da,

(vi) d1D 1 if and only if d D f D g,
(vii) .d1.g.a/// �f .d2b/C .d1.f .b/// �g.d2a/� .d1 ıd2/.a �b/,

(viii) if f ı f D f and g ı g D g then d1 ı d2 2 Derf;g R if and only if for all
x;y 2R we have .d1.g.x/// �f .d2y/C .d1.f .y/// �g.d2x/� ..d1 ıd2/x/ �

f .y/Cg.x/ � ..d1 ıd2/y/.

Proof.

(i) This is clear.
(ii) We have d0D d.0 �0/D .d0/ �f .0/Cg.0/ � .d0/D .d0/ �0C0 � .d0/D 0.

(iii) According to (ii) and Lemma 1 (ii) we have

.da/ � .f .a//0 D .da/ �f .a0/� d.a �a0/D d0D 0



782 IVAN CHAJDA AND HELMUT LÄNGER

and hence .da/ � .f .a//0 D 0 whence da � f .a/ according to Lemma 1 (vi).
Analogously, according to (ii) and Lemma 1 (ii) we have

.da/ � .g.a//0 D g.a0/ � .da/� d.a0 �a/D d0D 0

and hence .da/ � .g.a//0 D 0 whence da � g.a/ according to Lemma 1 (vi).
(iv) can be proved exactly as Lemma 4 (iv).
(v) We have

.f .a/Cg.a// �.d1/D .d1/ �f .a/Cg.a/ �.d1/� d.1 �a/Cd.a �1/D daCdaD da:

(vi) If d1D 1 then

f .a/D .d1/ �f .a/� d.1 �a/D da � f .a/;

g.a/D g.a/ � .d1/� d.a �1/D da � g.a/

according to (iii) showing d D f D g. The converse is trivial.
(vii) We have

.d1.g.a/// �f .d2b/C .d1.f .b/// �g.d2a/�

� .d1.g.a/// �f .d2b/C .d1.f .b/// �g.d2a/C

C ..d1 ıd2/a/ �f .f .b//Cg.g.a// � ..d1 ıd2/b/D

D .d1.d2a// �f .f .b//Cg.d2a/ � .d1.f .b///C

C .d1.g.a/// �f .d2b/Cg.g.a// � .d1.d2b//D

D d1..d2a/ �f .b//Cd1.g.a/ � .d2b//D d1..d2a/ �f .b/Cg.a/ � .d2b//D

D d1.d2.a �b//D .d1 ıd2/.a �b/:

(viii) If f ıf D f and g ıg D g then according to the proof of (vii) we have

.d1 ıd2/.a �b/D .d1.g.a/// �f .d2b/C .d1.f .b/// �g.d2a/C

C ..d1 ıd2/a/ �f .b/Cg.a/ � ..d1 ıd2/b/:

�

For the unary operation 0, we can prove the following theorem:

Theorem 8. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring, f;g 2 EndR and
d 2 Derf;g R. Then

(i) dx0 D .dx/0 for all x 2R if and only if d D f D g,
(ii) .dx/ � .dx0/� f .x/ � .dx0/� f .x0/ � .dx/� g.x/ � .dx0/� g.x0/ � .dx/� 0

and hence dx0 � .dx/0 for all x 2R,
(iii) if a 2 BoolR then daCda0 D d1.

Proof.
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(i) If dx0 D .dx/0 for all x 2R then for all x 2R we have

f .x/D .f .x0//0 � .dx0/0 D dx � f .x/;

g.x/D .g.x0//0 � .dx0/0 D dx � g.x/

according to Lemma 6 (iii) and hence d D f D g.
(ii) Due to Lemma 6 (iii) and Lemma 1 (iii) and (ii) we have

.dx/ � .dx0/� f .x/ � .dx0/� f .x/ �f .x0/D f .x �x0/D f .0/D 0;

f .x0/ � .dx/� f .x0/ �f .x/D f .x �x0/D f .0/D 0

for all x 2 R. The proof for g is analogous. By Lemma 1 (vi), dx0 � .dx/0

for all x 2R.
(iii) can be proved exactly as Theorem 3 (iii).

�

Theorem 9. Let RD .R;C; �; 0;0;1/ be a Łukasiewicz semiring, f;g 2 EndR and
d 2 Derf;g R. Then

(i) .Derf;g R;C/ is a join-semilattice with the least element Nd0,
(ii) .Fixd/\d�1.f0g/D f0g.

Proof.

(i) It is easy to see that Derf;g R is closed with respect toC. Hence .Derf;g R;C/
is a semilattice which is considered as a join-semilattice. We then have d1 �

d2 if and only if d1x � d2x for all x 2 R. Obviously, Nd0 2 Derf;g R and Nd0

is the smallest element of .Derf;g R;�/.
(ii) can be proved exactly as Theorem 4 (iii).

�

It is clear that Proposition 2, Theorem 5 (i) and Theorem 6 remain valid for .f;g/-
derivations, too.

Theorem 10. Let R D .R;C; �; 0;0;1/ and S D .S;C; �; 0;0;1/ be Łukasiewicz
semirings, f1;g1 2 EndR and f2;g2 2 EndS. Then .f1;f2/; .g1;g2/ 2 End.R�S/
and

Der.f1;f2/;.g1;g2/.R�S/D Derf1;g1
R�Derf2;g2

S:

Proof. Clearly, .f1;f2/; .g1;g2/ 2 End.R�S/ and

Derf1;g1
R�Derf2;g2

S� Der.f1;f2/;.g1;g2/.R�S/:

In order to prove the converse inclusion, let d 2 Der.f1;f2/;.g1;g2/.R�S/. Then for
each x 2R we have d.x;0/� .f1.x/;0/ according to Lemma 6 (iii) and hence there
exists some mapping d1 from R to R satisfying .d1x;0/ D d.x;0/ for all x 2 R.
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Analogously, there exists some mapping d2 from S to S satisfying .0;d2y/D d.0;y/

for all y 2 S . Now let a;b 2R and c 2 S . Then

.d1.aCb/;0/D d.aCb;0/D d..a;0/C .b;0//D d.a;0/Cd.b;0/D

D .d1a;0/C .d1b;0/D .d1aCd1b;0/;

i.e. d1.aCb/D d1aCd1b. Moreover,

.d1.a �b/;0/D d.a �b;0/D d..a;0/ � .b;0//D

D .d.a;0// � .f1.b/;0/C .g1.a/;0/ � .d.b;0//D

D .d1a;0/ � .f1.b/;0/C .g1.a/;0/ � .d1b;0/D

D ..d1a/ �f1.b/;0/C .g1.a/ � .d1b/;0/D

D ..d1a/ �f1.b/Cg1.a/ � .d1b/;0/;

i.e. d1.a � b/D .d1a/ �f1.b/Cg1.a/ � .d1b/. This shows d1 2 Derf1;g1
R. Analog-

ously, d2 2 Derf2;g2
S. Finally,

d.a;c/D d..a;0/C .0;c//D d.a;0/Cd.0;c/D .d1a;0/C .0;d2c/D .d1a;d2c/

proving d 2 Derf1;g1
R�Derf2;g2

S. Hence

Der.f1;f2/;.g1;g2/.R�S/� Derf1;g1
R�Derf2;g2

S

completing the proof of the theorem. �
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[10] J. Krňávek and J. Kühr, “A note on derivations on basic algebras,” Soft Comput, vol. 19, no. 7, pp.
1765–1771, 2015, doi: 10.1007/s00500-014-1586-0.

[11] G. Szasz, “Derivations of lattices,” Acta Sci. Math, vol. 37, pp. 149–154, 1975.

Authors’ addresses

Ivan Chajda
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