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Abstract. The conditions that allow an element of an associative, unital, not necessarily commut-
ative ring R, to be represented as a sum of (commuting) idempotents and one nilpotent element
are analyzed. Some applications to group rings are also presented.
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1. INTRODUCTION

An element a in an associative unital ring R is called clean if it can be represented
as a sum a D eCu, where e is an idempotent element and u is a unit. This notion
was introduced by Nicholson in [8]. If one can find such elements e and u such that
a D eCu and euD ue, the element a is called strongly clean. The ring R itself is
called (strongly) clean if every element in R is (strongly) clean.

Many families of clean rings were investigated in previous decades. In recent
years, a particular attention has been paid to the nil-clean rings and its relatives. A
nil-clean ring (see [5]) is a ring in which every element is nil-clean, which means that
every element can be written as a sum of an idempotent element and a nilpotent one.
Analogously, we have a notion of strongly nil-clean elements (and rings). For some
of the results concerning this class of rings and some of the related classes of rings,
the reader may wish to consult also [1, 3, 7, 10].

A class of strongly 2-nil-clean rings was introduced in [4]. Namely, an element
a in a ring R is called strongly 2-nil-clean if it can be represented in the form a D

eC f C n, where e and f are idempotents, n is a nilpotent element and they all
commute with each other.

In this paper we analyze elements of a ring which can be written as a sum of finitely
many idempotents and one nilpotent element which are pairwise commutative. If the
number of idempotents which appear in this sum is s, we call these elements strongly
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s-nil-clean. It turns out that if every element in a ring is strongly s-nil-clean for
some s, this ring has finite characteristic and every element in this ring is strongly
.p�1/-nil-clean, where p is the largest prime dividing the characteristic of this ring
(see Theorem 1). These rings are naturally called strongly .p�1/-nil-clean rings and
they are all strongly clean (see Corollary 3 and the discussion preceding it). There
are many examples of strongly .p � 1/-nil-clean rings. Theorem 2 shows that in
every commutative ring R of finite characteristic k, elements which are strongly s-
nil-clean for some s, form a subring which is .p�1/-nil clean (where p is the largest
prime dividing k) and if this ring contains idempotents or nilpotents not belonging
to Zk (which is necessarily contained in R) we have a non-trivial example of such
a ring. Proposition 5 provides examples of finite commutative local rings which are
.p�1/-nil-clean.

The plan of the paper is as follows. In Section 2, we analyze sums of idempotents
and one nilpotent element and derive our main criteria for strongly .p�1/-nil-clean
elements in a ring. Section 3 deals with some structure theorems. It is shown that
in analyzing strongly .p�1/-nil-clean rings, we may reduce this analysis to the case
when p is a nilpotent element in a ring under investigation. We also show in this
section that strongly .p�1/-nil-clean rings are strongly �-regular and, consequently,
strongly clean.

Section 4 deals with the investigation of group rings RG where R is a .p�1/-nil-
clean commutative ring and G is a group. For example, we show that, for the ring
RG to be strongly .p�1/-nil-clean, when the characteristic of R is of the form ps ,
for a prime integer p, it is necessary that the order of any element of a group G is
of the form dpk , for some d j .p� 1/ and k � 0 (see Lemma 3). In the case of a
commutative group G this condition is also sufficient (see Theorem 4).

We emphasize that we work in associative, unital rings which need not be com-
mutative. When a ring is commutative, we drop the adjective “strongly” since it is
unnecessary. We use the same symbol k to denote the integer k and to denote the ring
element k1R. It will always be clear what we mean. Finally, we denote the field with
p elements by Zp, the Jacobson radical by J.R/ and the set of nilpotent elements by
N.R/.

2. BASIC RESULTS

A ring in which every element is a sum of certain number of idempotents and one
nilpotent element, that commute with each other, is a generalization of strongly nil-
clean rings and strongly 2-nil-clean rings. In view of this, we introduce the following
definition.

Definition 1. An element a of a ring R is s-nil-clean if it can be written in the
following form:

aD e1C�� �C esCn; (2.1)
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where elements e1; : : : ; es are idempotents and n is nilpotent. If an element a can be
written in the form (2.1) so that elements in this sum are pairwise commutative, we
say that this element is strongly s-nil-clean. If every element in R is (strongly) s-nil
clean, we say that R is a (strongly) s-nil-clean ring.

Of course, if a is (strongly) s-nil-clean and s < t , a is also t -nil-clean — we simply
add t � s zeroes to the presentation of a as a (strongly) s-nil-clean element.

Remark 1. It is clear that, if f WR! S is a ring homomorphism and an element
a 2 R is (strongly) s-nil-clean, then f .a/ 2 S is (strongly) s-nil-clean. Similarly, an
element a D .a1; : : : ;al/ 2 R1� � � � �Rl is (strongly) s-nil-clean iff ai is (strongly)
s-nil-clean for all i . So, homomorphic images and finite direct products of (strongly)
s-nil-clean rings are itself (strongly) s-nil-clean. Also, a subring of a strongly s-nil-
clean ring has the same property, as we shall see later. However, this does not hold for
s-nil-clean rings. Namely, if we have a ring which is s-nil-clean, but it is not strongly
s-nil-clean, it is enough to take an element a which is not strongly s-nil-clean and
look at the subring generated by this element. This subring is commutative, so it
cannot be s-nil-clean – if it were, this element would also be strongly s-nil-clean.

We begin our analysis with a useful result concerning sum of several idempotents
and one nilpotent element.

Proposition 1. Let R be a ring and suppose that element a 2 R is strongly s-nil
clean. Then a.a�1/ � � �.a� s/ is nilpotent.

Proof. Let a D e1C e2C�� �C esCn, where e1; e2; : : : ; es are idempotents and n
is nilpotent that commute with each other. Observe that

1D ..1� e1/C e1/..1� e2/C e2/ � � �..1� es/C es/:

After multiplication, we get a sum of products of the form

ei1 � � �eik .1� ej1/ � � �.1� ejs�k
/;

where 1� k� s, i1< � � �< ik , j1< � � �<js�k and fi1; : : : ; ik;j1; : : : ;js�kgD f1; : : : ; sg.
Next, we get that

.k�a/ei1 � � �eik .1� ej1/ � � �.1� ejs�k
/

D ..1� ei1/C�� �C .1� eik /� ej1 �� � �� ejs�k
�n/ei1 � � �eik .1� ej1/ � � �.1� ejs�k

/

D�nei1 � � �eik .1� ej1/ � � �.1� ejs�k
/ :

This follows from the fact that .1� e/e D e� e2 D 0, for an idempotent e. Since
n is nilpotent, so is this product. Thus, when 1 is multiplied by a.a� 1/ � � �.a� s/,
we get a sum of nilpotent elements that commute with each other. Therefore, a.a�
1/ � � �.a� s/ is nilpotent. �

The following corollary is simple, but important.
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Corollary 1. a) If a ring R is such that �1 is strongly s-nil-clean for some s � 1,
then this ring has finite characteristic.
b) If char.R/D k, then �1 is strongly .p�1/-nil-clean, where p is the largest prime
dividing k.

Proof. a) From the previous proposition we conclude that .�1/.�2/ � � �.�.sC
1//D .�1/sC1.sC1/Š is nilpotent, so ..sC1/Š/m D 0 for some m� 1 and the char-
acteristic of the ring R is not 0.
b) It is enough to show that �1 is .p�1/-nil-clean in the ring Zk , which is contained
in R. If k D p˛11 � � �p

˛l
l

is the prime factorization of k, where p1 < � � � < pl D p,
then Zk Š Z

p
˛1
1

� � � � �Z
p
˛l
l

. Since �1 7! .�1; : : : ;�1/ under this isomorphism,
this reduces the proof to show that �1 is .p � 1/-nil-clean in Z

p
˛i
i

. This is clear

since �1D p˛ii �1D 1C�� �C1„ ƒ‚ …
pi�1

Cpi .p
˛i�1
i �1/, and pi .p

˛i�1
i �1/ is nilpotent in

Z
p
˛i
i

. �

Example 1. The ring Zk is (strongly) .p � 1/-nil-clean, where p is the largest
prime integer dividing k. Namely, using the notation from the previous corollary,
this reduces to show that Zpi ˛i is .p � 1/-nil-clean. Since any element in Z

p
˛i
i

can be written in the form 1C�� �C1„ ƒ‚ …
s

Cpi t , for some s 2 f0; : : : ;pi � 1g and t 2

f0; : : : ;p
˛i�1
i �1g, and since pi is nilpotent in Z

p
˛i
i

, we are done.

Lemma 1. If k D char.R/D p˛11 � � �p
˛l
l

is the prime factorization of the charac-
teristic of the ring R, then R Š R1� � � � �Rl , where Ri D R=p

˛i
i R. In particular,

char.Ri /D p
˛i
i .

Proof. This follows easily from the Chinese remainder theorem taking into ac-
count the fact that elements p˛ii are central. �

Since the products of the form a.a�1/ � � �.a� s/ are important for our investiga-
tion, we introduce the symbol .a/k WD a.a� 1/ � � �.a� .k� 1// (falling factorial, as
is known in combinatorics), where k is a positive integer.

We have the following corollary.

Corollary 2. Let R be a ring. Suppose that element a 2 R is strongly s-nil clean
and k.< s/ is nilpotent. Then .a/k is a nilpotent element.

Proof. Clearly

.a/s D a.a�1/ � � �.a� .s�1//D a
t0.a�1/t1 � � �.a� .k�1//tk�1Ckq.a/;

for some non-negative integers ti , such that
Pk�1
iD0 ti D s and polynomial q.X/ 2

ZŒX�. Taking into account that k is nilpotent, the result follows. �
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In order to see what the fact that .a/s is nilpotent implies, we start with a simple
lemma.

Lemma 2. Let p be a prime integer and r;m� 1 arbitrary positive integers. Then
the element x in the ring Zpr ŒX�=hXm.X � 1/m � � �.X � .p � 1//mi is (strongly)
.p�1/-nil-clean, where x is the class of X in this quotient ring.

Proof. Ideals hX � ii and hX � j i are coprime in Zpr ŒX�, for all 0 � i < j <
p, since .X � i/� .X �j /D j � i and j � i is invertible in the ring Zpr ŒX�. So,
h.X � i/mi;h.X � j /mi are coprime as well. By applying the Chinese remainder
theorem we obtain the isomorphism

Zpr ŒX�=hX
m
� � �.X�.p�1//mi ŠZpr ŒX�=hX

m
i�� � ��Zpr ŒX�=h.X�.p�1//

m
i;

such that x 7! .x; : : : ;x/. Thus, it is enough to show that x has the desired presenta-
tion in all factors and since xD 1C�� �C1„ ƒ‚ …

i

C.x� i/ in the factor Zpr ŒX�=h.X� i/mi,

this is true. �

Proposition 2. Let R be a ring. Suppose that the element p is nilpotent, where
p is a prime integer, and let a 2 R be such that .a/p is nilpotent. Then a is strongly
.p�1/-nil-clean.

Proof. Consider the homomorphism f WZŒX�! R, given by f .X/D a. An im-
mediate consequence of the fact that .a.a�1/ � � �.a� .p�1///m D 0 and that pr D 0
in R, for some m;r � 1, is the existence of an induced homomorphism

Nf WZpr ŒX�=hX
m.X �1/m � � �.X � .p�1//mi !R; such that x 7! a:

Since x is strongly .p�1/-nil-clean, so is its image a. �

Proposition 3. Let R be a ring of characteristic k.> 0/. If p is the largest prime
dividing k and a 2 R is such that .a/s is nilpotent for some s � 1, then a is strongly
.p�1/-nil-clean.

Proof. Under isomorphism R Š R1 � � � � �Rl , where Ri D R=p
˛i
i R and k D

p
˛1
1 � � �p

˛l
l

, implied by Lemma 1, the element a goes to .a1; : : : ;al/. Also, a is
strongly .p�1/-nil-clean iff ai is such for all i . However, from the fact that .a/s is
nilpotent, it follows that .ai /s 2 Ri is nilpotent for all i . From this, it easily follows
that .ai /pi is also nilpotent for all i . Namely, if s < pi , this follows since .ai /pi D
.ai /s.ai � s/pi�s and if s > pi , it follows from Corollary 2. Since pi is nilpotent in
Ri , Proposition 2 gives that ai 2 Ri is strongly .pi �1/-nil-clean for all i . From the
fact that pi � p for all i , it follows that these elements ai are all .p� 1/-nil-clean
and so is a. �

Theorem 1. Let R be a ring such that every element a 2R is strongly s-nil-clean
for some s. Then R has finite characteristic and R is strongly .p � 1/-nil-clean,
where p is the largest prime dividing char.R/.
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Proof. Corollary 1 shows that R has finite characteristic and from Proposition 1
and Proposition 3 it follows that every element is strongly .p�1/-nil-clean, where p
is the largest prime dividing this characteristic. �

Theorem 1 shows that one needs only to investigate strongly .p � 1/-nil-clean
rings, where p is a prime integer. For example, the class of all strongly 3-nil-clean
rings is the same as the class of strongly 2-nil-clean rings, and the class of strongly
9-nil-clean-rings is the same as the class of strongly 6-nil-clean rings. Namely, if a
ring is, say, strongly 9-nil-clean, then .a/10 is nilpotent for all a 2 R. So, this is true
for a D 10. Consequently, 10ŠD .10/10 is nilpotent, so char.R/ j .10Š/m, for some
m � 1. We conclude that the largest prime dividing char.R/ is at most 7 (it may be
smaller), so our ring is strongly 6-nil-clean.

Proposition 4. A subring of a strongly .p�1/-nil-clean ring is also strongly .p�
1/-nil-clean.

Proof. Let S be a subring of a strongly .p� 1/-nil-clean ring R and let a 2 S .
Since a 2 R, a is strongly .p�1/-nil-clean, and according to Proposition 1 element
.a/p is nilpotent. R is of finite characteristic, say k, which means that char.S/D k,
with p being the largest prime dividing k. When we apply Proposition 3, we get that
a is strongly .p�1/-nil-clean in S . �

Theorem 2. Let R be a commutative ring of finite characteristic k and p the
largest prime dividing k. Let S D fa 2R W a is s-nil-clean for some sg. Then S is the
largest subring of R which is .p�1/-nil-clean.

Proof. Since k D 0 in R, we have: �1 D 1C�� �C1„ ƒ‚ …
k�1

, so �1 is .k � 1/-nil-clean

and �1 2 S . Also, if a;b 2 S , then aD e1C�� �C esCn, b D f1C�� �Cft Cn0 and
we get ab D

P
i;j eifj CN , where N is nilpotent and all eifj are idempotents (R is

a commutative ring). So, ab 2 S . Similarly, aCb D e1C�� �C esCf1C�� �Cft C
nCn0 2 S . Finally, since a�b D aC .�1/b we conclude that a�b 2 S as well. So,
S is a ring in which every element is s-nil-clean for some s. From Theorem 1, we
conclude that S is actually .p�1/-nil-clean ring. It is clear that S is the largest such
subring. �

Remark 2. From the Theorem 2 it is clear that, in order to show that a commutative
ring of finite characteristic k is .p� 1/-nil-clean, it is enough to check only its ring
generators over Zk . For example, the ring Zpr ŒX�=hXm.X�1/m � � �.X�.p�1//mi,
appearing in Lemma 2, is .p�1/-nil-clean, since it is generated by x and this element
is .p�1/-nil-clean.

The following proposition provides us with a lot of examples of commutative .p�
1/-nil-clean rings.
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Proposition 5. Let R be a finite commutative local ring, M its maximal ideal and
R=M ŠZp. Then R is .p�1/-nil-clean.

Proof. We know that every element in M is nilpotent. If x 2 R, then xCM D
sCM , for some s 2 f0; : : : ;p�1g. So, xD 1C�� �C1„ ƒ‚ …

s

Cm, wherem is nilpotent. �

Remark 3. In the case of non-commutative rings, the set of all elements which are
strongly s-nil-clean for some s do not necessarily form a subring. Such examples will
be given in Section 3 and Section 4. However, a simple application of Zorn’s lemma
shows that there exist maximal subrings which are strongly .p�1/-nil-clean.

The following proposition gives another characterization of strongly .p� 1/-nil-
clean elements.

Proposition 6. Let R be a ring of finite characteristic k, p the largest prime
dividing k and a 2R. The following conditions are equivalent.

(1) .a/p is nilpotent.
(2) a is strongly .p�1/-nil-clean.
(3) aD bCn, where b 2R is such that .b/p D 0, n is nilpotent and bnD nb.

Proof. .1/ H) .2/. This is contained in Proposition 3.
.2/ H) .3/. Let aD e1C�� �Cep�1Cn be a .p�1/-nil-clean decomposition of a.
Take b WD e1C�� �C ep�1. The proof of Proposition 1 shows that .b/p D 0.
.3/ H) .1/. Assume that aD bCn. So, we have

.a/p D .bCn/..b�1/Cn/ � � �..b�pC1/Cn/:

Therefore, since n and b commute, .a/p D .b/p C nq.n;b/ D nq.n;b/, for some
polynomial q.X;Y / 2ZŒX;Y �. Since n is nilpotent, so is .a/p. �

3. STRUCTURE THEOREMS

The purpose of this section is to discuss the structure of (strongly) .p�1/-nil-clean
rings, for prime number p.

The following proposition sums up the discussion from the previous section.

Proposition 7. Suppose that char.R/D kD p˛11 � � �p
˛l
l

, where p1 < � � �<pl D p.
Then R is strongly .p� 1/-nil-clean if and only if Ri is strongly .pi � 1/-nil-clean,
where Ri DR=p

˛i
i R and 1� i � l .

This shows that in investigation of strongly .p� 1/-nil-clean rings, for p prime,
we can reduce our analysis to the case when p is nilpotent (equivalently, when the
characteristic of the ring is a power of a prime).

Let us recall that a ring R is called strongly �-regular if for every element a 2 R
there exists n� 1 and x 2R such that an D anC1x.

Theorem 3. Every strongly .p�1/-nil-clean ring is strongly �-regular.
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Proof. It is enough to consider the case when p is a nilpotent element. Then
.p� 1/Š is invertible. Let a 2 R. Since .a/p is nilpotent, we have that ..a/p/s D 0
for some s. But

0D ..a/p/
s
D .a.a�1/ � � �.a� .p�1///s D as..p�1/Š/sCasC1y;

for some y 2R. Since .p�1/Š is invertible, we get that as D asC1x, for some x 2R
and we are done. �

It is well known that strongly �-regular ring is strongly clean (see [2, Proposition
2.6], [9, Theorem 1], [5, Corollary 2.4]). Also, Jacobson radical of a strongly �-
regular ring is nil and commutative strongly �-regular rings have Krull dimension 0
(see [2]). So, we have the following corollary.

Corollary 3. Every strongly .p�1/-nil-clean ring is strongly clean.

The following proposition is rather useful.

Proposition 8. Let R be a ring, a 2 R and let p be a nilpotent element, where p
is prime. Then ap�a is nilpotent if and only if .a/p is nilpotent.

Proof. It is well-known that Xp �X D .X/p in ZpŒX�. So, ap � a� .a/p D
pr.a/, for some polynomial r.X/ 2 ZŒX�. From this fact, the proof follows imme-
diately. �

For future reference, we formulate the following corollary which directly follows
from Proposition 6 and Proposition 8.

Corollary 4. Let R be a ring. If p is nilpotent, then R is a strongly .p� 1/-nil-
clean ring if and only if ap�a is nilpotent for every a 2R.

Let us proceed with some of the special properties of .p�1/-nil-clean rings.

Proposition 9. Let R be a ring and let I be any nil ideal of R. Then R is .p�1/-
nil-clean if and only if R=I is .p�1/-nil-clean.

Proof. .H)/ As observed before, this is trivial since R=I is a homomorphic im-
age of R.
.(H/ Suppose that R=I is .p� 1/-nil-clean. Let x 2 R. Then xC I is .p� 1/-
nil-clean. Thus, xC I D .x1C I /C .x2C I /C�� �C .xp�1C I /C .yC I /, where
xi C I are idempotents, 1 � i � p � 1, and yC I is nilpotent. It is well known
that idempotents lift modulo nil ideals (see, e.g. [6, Theorem 21.28]) so there are
idempotents ei such that xi C I D ei C I . So, x� e1� e2� � � �� ep�1�y 2 I , i.e.,
xD e1Ce2C�� �Cep�1CyCn, for some n2 I . Element yCn is nilpotent. Indeed,
since yC I is nilpotent, yk 2 I for some k 2 N. Every element different from yk

in the sum one gets in the expansion of .yCn/k , is in I and we can conclude that
.yCn/k 2 I , so yCn is nilpotent. Therefore R is .p�1/-nil-clean. �

An analogous result holds for the strongly .p�1/-nil-clean rings.
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Proposition 10. Let R be a ring and let I be any nil ideal of R. Then R is strongly
.p�1/-nil-clean if and only if R=I is strongly .p�1/-nil-clean.

Proof. .H)/ Again, this is trivial since R=I is a homomorphic image of R.
.(H/ Let a 2R. Since R=I is strongly .p�1/-nil-clean, one has ..aCI /p/k D I ,
for some k 2N. Consequently, ..a/p/k 2 I: As I is nil ideal, ..a/p/k 2 N.R/: So,
.a/p is nilpotent. Since .p/p is also nilpotent, the characteristic k of R is finite.
The characteristic l of R=I has the property that p is the largest prime dividing this
characteristic, but this also holds for k. Namely, l 2 I and therefore l is nilpotent in
R. So we have that k j ls for some s, and also l j k. It follows that the sets of primes
dividing k and l are the same. Now the result follows from Proposition 6. �

The following corollary follows directly from the fact that J.R/ is nil for a strongly
.p�1/-nil-clean ring and Proposition 10.

Corollary 5. A ring R is strongly .p�1/-nil-clean if and only if J.R/ is nil and
R=J.R/ is strongly .p�1/-nil-clean.

4. GROUP RINGS

Let us recall the notion of a group ring. Let G be a group, written multiplicatively,
and let R be a commutative ring. The group ring of G over R, denoted by RG, is a
free R-module with generating set G, i.e.:

RG D
M
g2G

Rg:

So, elements of RG are formal finite sums of the form
P
i rigi , with ri 2R, gi 2G,

while the multiplication is implied by multiplication in G. The identity of this ring is
1Re, where 1R is the identity in R and e is the neutral element of G. We denote the
identity simply by 1.

Our main interest here is focused on strongly .p�1/-nil-clean group rings RG. It
is obvious that if RG is strongly .p�1/-nil-clean, so is R. Since we assume that the
coefficient ring R is commutative, we refrain from using adjective “strongly” when
referring toR, we use it only forRG when appropriate. We begin by discussing rings
R, such that char.R/ is a power of a prime.

Lemma 3. Let R be a .p�1/-nil-clean ring such that char.R/D ps , for a prime
p and some s � 1 and let G be a group. For the list of conditions:

(1) RG is strongly .p�1/-nil-clean;
(2) For each g 2G, the element gp�1�1 is nilpotent;
(3) For each g 2G, there exists k � 0 and d j .p�1/ such that !.g/D dpk ,

the following holds: .1/ H) .2/ and .2/” .3/. Here, !.g/ denotes the order of
g in G.
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Proof. .1/ H) .2/. Let g 2 G. Since RG is strongly .p� 1/-nil-clean, from
Corollary 4 it follows that gp � g is nilpotent. Since g is invertible, we get that
gp�1�1 is nilpotent.
.3/ H) .2/. Let g 2G. Then !.g/D dpk , where k � 0 and d j.p�1/. Let p�1D
ds. Since !.gd /D pk and gcd.s;pk/D 1, we have that !.gp�1/D!..gd /s/D pk .
Therefore,

.gp�1�1/p
k

D .gp�1/p
k

�1„ ƒ‚ …
0

Cp �u; for some u 2RG:

Since p is nilpotent, the element gp�1�1 is nilpotent as well.
.2/ H) .3/. Let g 2 G. The order of g cannot be infinite — in that case, it would
not be possible for gp�1�1 to be nilpotent. Namely, the element g.p�1/s in the sum
.gp�1�1/s D g.p�1/sC�� �C .�1/s cannot be cancelled out.

So, let us suppose that !.g/ D tpk , for some k � 0 and t such that p − t and
gcd.t;p�1/D d ¤ t . Also, let t D dt1, p�1D d´1 and hD gp�1. Since !.gd /D
t1p

k and gcd.´1; t1pk/D 1, it follows that

!.h/D !.gp�1/D !..gd /´1/D t1p
k :

Since h� 1 is nilpotent, hp
k

� 1 is nilpotent as well. Let h1 D hp
k

. Then !.h1/D
t1. Let us focus on the polynomial f .X/D .X � 1/t1 � .X t1 � 1/, which is clearly
divisible by X �1:

f .X/D .X �1/..X �1/t1�1� .X t1�1C�� �CXC1//D .X �1/f1:

This follows from the fact that t1 ¤ 1 (which also implies that h1� 1¤ 0). We can
see that

f .X/D .X �1/.�t1C .X �1/q.X//;

for some polynomial q 2ZŒX�, since f1.1/D�t1. We can conclude that

f .h1/D .h1�1/
t1 � .h

t1
1 �1„ ƒ‚ …
0

/D .h1�1/.�t1C .h1�1/q.h1//:

We know that h1�1 is nilpotent. As p − t1 and p is nilpotent, element t1 is invertible
in R. So

.h1�1/
t1 D u.h1�1/;

for an invertible u 2RG. So

.h1�1/..h1�1/
t1�1�u/D 0;

and since .h1�1/t1�1�u is invertible, we have that h1�1D 0. That is a contradic-
tion.

It is easy to check that the proof of 2 ” 3 is valid, although shorter, even for
p D 2. �
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In the previous lemma, G was an arbitrary group. If we add commutativity, we
actually get equivalence .1/ ” .2/.

Theorem 4. LetR be a .p�1/-nil-clean ring such that char.R/D ps , for a prime
p and some s � 1 and let G be an Abelian group. Then RG is .p� 1/-nil-clean iff
gp�1�1 is nilpotent for every g 2G.

Proof. We only need to prove the “if” part. It follows directly from the Remark
following Theorem 2 since elements of the group G form a generating set for RG
over R. �

Example 2. The previous theorem does not hold for non-commutative groups. Let
us take R D Z5 and G D D4, the dihedral group of order 8 generated by elements s
and r such that s2 D 1D r4, sr D r3s. In this group, g4 D 1 for all g 2 G, so the
condition that g4� 1 is nilpotent is trivially satisfied. However, direct computation
shows that

.sC sr/5 D 2sC2rC3sr
2
C3r3

..sC sr/5/
8
D 3C2r2

.3C2r2/2 D 3C2r2;

so .sC sr/5 is not nilpotent and the group ring Z5D4 is not strongly 4-nil-clean.

Let us concentrate now on the general case.

Proposition 11. Let R be a .p� 1/-nil-clean ring and char.R/D p˛11 � � �p
˛l
l

, so
that l > 1, p1 < � � �< pl D p.

(1) IfG is an elementary Abelian 2-group, thenRG is strongly .p�1/-nil-clean.
(2) If G is an elementary Abelian group in which every element has order q and

q j gcd.p1�1; : : : ;pl �1/, then RG is strongly .p�1/-nil-clean.

Proof. .1/ As we know, R Š R1� � � ��Rl , where pi is nilpotent in Ri , and con-
sequentlyRG ŠR1G�� � ��RlG. So, all the ringsRi are strongly .p�1/-nil-clean,
and since pi is nilpotent in Ri , Ri is actually strongly .pi � 1/-nil-clean. We will
use Theorem 4. Since 2 j .pi � 1/ for all i � 2 and g2 D 1 for all g 2 G, we have
that gpi�1� 1D 0 for all g 2 G. If p1 > 2, the same holds for p1. If p1 D 2, then
.g�1/2 D g2�2gC1D 2.1�g/. Since 2 is nilpotent in R1G, g�1 is also nilpo-
tent in R1G. In this case also, from G being Abelian, we can conclude that RiG is
.pi �1/-nil-clean. Therefore, RG is .p�1/-nil-clean.
.2/ Similarly, from gq D 1, and q j gcd.p1�1; : : : ;pl �1/, we conclude that gpi�1�
1D 0 for all g 2G, and proceed as in .1/. �

Theorem 5. Let char.R/D p˛11 � � �p
˛l
l

, where l > 1, p1 < � � �< pl D p and let G
be a group. Suppose that RG is strongly .p�1/-nil-clean ring.

(1) For all g 2G the following holds: !.g/ j gcd.p2�1; : : : ;pl �1/ and !.g/D
d1p

s
1, such that d1 j .p1�1/ and s � 0.
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(2) If there exists h 2G such that !.h/� p1, then p1 j .pi �1/, for 2� i � l .
(3) If for all g 2G, !.g/ < p1, then !.g/ j gcd.p1�1; : : : ;pl �1/.
(4) If p1 D 2, then every element in G has order 2s for some s � 0.
(5) If p1D 2 and pi � 3 .mod 4/ for at least one i � 2, thenG is an elementary

Abelian 2-group.

Proof. .1/ As before, RG Š R1G � � � � �RlG, where pi is nilpotent in RiG.
Lemma 3 shows that gpi�1�1 is nilpotent in RiG. It follows that !.g/D dip

ki
i for

some ki � 0 and di j .pi �1/. So,

d1p
k1
1 D d2p

k2
2 D �� � D dlp

kl
l
:

Since d1 < p1, it is clear that d1p
k1
1 cannot be divisible by any prime greater than

p1. So ki D 0 for i � 2. Therefore,

!.g/D d1p
k1
1 D d2 D �� � D dl ; (4.1)

for all g 2 G, where di j .pi � 1/. Hence, !.g/ j .p2� 1/; : : : ;!.g/ j .pl � 1/, and
we are done.
.2/ If h 2G is such that !.h/� p1, we have !.h/D d1p

k1
1 D d2 D �� � D dl , where

k1 � 1. Since di j .pi �1/, it follows that p1 j .pi �1/.
.3/ Under this assumption, we get that k1 D 0 in 4.1, hence for all g 2G

!.g/D d1 D d2 D �� � D dl :

We conclude that !.g/ j gcd.p1�1; : : : ;pl �1/.
.4/ The fourth assertion follows easily. Namely, in this case p1D 2, so!.g/D d12k1 ,
where d1 j .2�1/. So, !.g/D 2k1 .
.5/ It is enough to show that there are no elements of order 4 in G. If it were, then
for an element g 2G, we would have equalities

4D d2 D �� � D dl ;

where di j .pi �1/, for 2 � i � l . This would imply that 4 j .pi �1/, that is pi � 1
.mod 4/, for 2 � i � l , which is a contradiction. Hence, we can conclude that G is
an elementary Abelian 2-group. �
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