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Abstract. Uniqueness of solution and finite difference scheme of corresponding initial-boundary
value problem for one nonlinear partial integro-differential averaged model with source terms
are studied. Mentioned model is based on Maxwell system which describes electromagnetic
field penetration into a substance. Mixed boundary condition is considered. Large time behavior
of solution is fixed too. Convergence of the fully discrete scheme is proved. Wider class of
nonlinearity is studied than one has been investigated before.
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1. INTRODUCTION

Investigating many applied problems in nature we are facing to nonlinear integro-
differential models which contain derivatives of several variables. Numerous public-
ations deal with the study of integro-differential equations of various kinds (see, for
example, the bibliography in [6], [8]). Integro-differential models arise for example at
the mathematical simulation of process of a magnetic field penetration into a medium
whose electro-conductivity depends on temperature. Numerous works are dedicated
to the investigation of Maxwell equations describing above-mentioned process (see,
for example, [12], [19], [20] and references therein). In a quasi-stationary case the
corresponding system of Maxwell equations [12] can be rewritten in the following
form [5]:

t

oH

M- ror|a /|th|2dz rotH || (L.1)
0
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where H = (Hy, H», H3) is a vector of the magnetic field and function a = a(S) is
defined for S € [0, 00).

If vector of magnetic field has the form H = (0,U, V), where U = U(x,t), V =
V(x,t), then from (1.1) we get the following system of nonlinear parabolic integro-
differential equations:

U d U av 0 av
ﬁ—a[a(s)g] E—a[a(s)a] (1.2)

(TraunNe /o2
S(x,t):/[(a) +(§) :|dr. (1.3)
0

Study of the models of type (1.1) have begun in [5]. In that work, in particular,
based on Galerkin modified method and compactness arguments as in [ 1 7] for nonlin-
ear parabolic equations the theorems of existence of solution of the initial-boundary
value problem with first kind boundary conditions for scalar and one-dimensional
space case when a(S) = 1+ S and uniqueness for more general cases are proven.
One-dimensional scalar variant for the case a(S) = (1+ 5)?, 0 < p <1 is studied
in [3]. Investigations for multi-dimensional space cases at first was carried out in [4].
Multidimensional space cases are also discussed in [1], [13]. Asymptotic behavior
as t — oo of solutions of initial-boundary value problems for (1.1) type models are
studied in [8], [9], [10], [15], [23] and in a number of other works as well. In those
works main attention is paid to one-dimensional cases. Finite element analogues and
Galerkin method algorithm as well as settling of semi-discrete and finite difference
schemes for (1.1) type one-dimensional integro-differential models are studied in [2],
[71, [8], [91, [151, [1€], [22], [23], [24] and in the other works as well for the linear
case of diffusion coefficient, i.e. a(S) =1+ S.

Some generalization of the system of type (1.1) is proposed by Prof. G. I. Laptev
[14]. In particular, in some physical assumptions, the process of penetration of the
magnetic field into a material is modeled by so-called averaged integro-differential
model, the (1.2), (1.3) type analog of which have the following form:

U FU v v
R A e

t 1
U2  [V)?
S(l)://[(a) +(§) i|dxd‘l,'. (1.5
00

The literature on the questions of existence, uniqueness, regularity, asymptotic be-
havior of the solutions and numerical resolution of the initial-boundary value prob-
lems to the (1.2), (1.3) and (1.4), (1.5) type models and models like them is very rich
(see, for example, [5], [0], [7], [8], [14], [15], [16], [18] and references therein). The

where

(1.4)

where
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asymptotic behavior and numerical solution of two-dimensional case for the (1.4),
(1.5) type averaged integro-differential system is considered for example in [11],
[24].

Our aim is to investigate system of nonlinear integro-differential equations (1.4),
(1.5) with source terms. Uniqueness and large time behavior of solution of initial-
boundary value problem with mixed boundary condition as well as convergence of
corresponding fully discrete scheme is studied. In the present note we consider new
class of nonlinearity considering more general cases of the diffusion coefficient a =
a(s).

2. UNIQUENESS AND ASYMPTOTIC BEHAVIOR OF SOLUTION AS f — 00

In the cylinder [0, 1] x [0, 00) let us consider the following initial-boundary value

problem:
t 1
U U 2 oV 2 92U
5 //[(E) +(a) i|dxdr W-ﬁ-g(U):fl(x,f),
00 (2.1)
oy t 1 U 2 PYY 2 Jed aZV vy — ,
W o // (a) +(§) xdv | 55+ (V) = (0,
0 0
U0.1) = V(0.1) = aU(x,t) _ aV(x,t) —0, (2.2)
ax x=1 ax x=1
U(x,0) = Up(x), V(x,0) = Vp(x), (2.3)

where a = a(S), g, f1, f2, Uo and V} are given functions of their arguments.
The following statement takes place.

Theorem 1. Ifa = a(S) > a9 = Const >0, a’(S) >0, a”’(S) <0, g is mono-

tonically increased function, Uy, Vo € H'(0,1), Up(0) = V,(0) = % L=
xX=

% = 0, f1, f2, %, % € L2(Q) and problem (2.1) - (2.3) has a solution

then it is unique and exponential stabilization of solution as t — oo takes place.
Here we use usual L, and Sobolev H! spaces. o
To prove the uniqueness of solution we assume that there exist two different u,v)

Eld (U, 7) soluti_ons of problem (2.1) - (2.3) and introduce the differences Z =

U—-Uand W =V —V. To show that Z = W = 0 the methodology of proving the
convergence theorem, which is given in the next section, monotone growth feature of
function g and the following identity is mainly used:

(CECIEE
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t 1 —\ 2 —\ 2 — — —
B // U n 1% dxd ou 8U_3U
“ ox ox var dx dx  Ox
0 0
N AN AY oV
+{a(//|:(—) +<—) :|dxdr)—
dx X X
00
2 —

(%)
fae ({5 [ (5] o

For obtaining stabilization of solution stated in the Theorem 1 the method of a-
priori estimates based on analogical methodology given in [7] is used and large time
behavior of solution is obtained.

3. CONVERGENCE OF THE FULLY DISCRETE SCHEME

In the rectangle Q7 = [0, 1] x [0, T'], where T is a positive constant, let us consider
again problem (2.1) - (2.3). On Q7 let us introduce a net with mesh points denoted by
(xi,tj) = (ih, jr), wherei =0,1,...M; j =0,1,..,.N withh=1/M,t=T/N.
The initial line is denoted by j = 0. The discrete approximation at (x;,#;) is designed
by (ul] , vl.] ) and the exact solution to the problem (2.1) - (2.3) by (Ul-] , Vl.] ). We will
use the following known notations [2 1] of forward and backward derivatives:

Joo_ J_J J+1
i _Tig1 7 j =T i _Ti ri
x,0 h ’ X,i h ’ | T

and inner products and norms:

M—-1 M
oy =h Y iyl @y =0y

i=1 i=1

Ir7 =7 DY = o

r
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For problem (2.1) - (2.3) let us consider the following finite difference scheme:

j+1 j J+1 M

u; " —uy /
——a ‘L’hZZ[(u e)2+(vxe) ] uij}-ﬁ-g(ul'H flj,iv
k=1£4=1
e v, i1 M (3.1
1 1 i
—_a thZ[(u”)ZJr(vx ) ] jcjl +g(v1+ )= 13
k=14=1

i=12,..M—-1; j=0,1,..,.N—1,
u{) = v(J) :uf-C,M = vfch =0, j=01,..N, 3.2)

—Uol, -—Vol,z—Ol M. 3.3)

j+1

Multiplying equations in (3.1) scalarly by ulj and vy ' respectively, it is not

difficult to get the inequalities:

n n
17+ )P < o "7+ ) IvilPr<C. n=1.2,..N. (34)
Jj=1 j=1

where here and below C is a positive constant independent from t and 4.

The a priori estimates (3.4) guarantee the stability of the scheme (3.1) - (3.3). Note,
that applying the technique as we prove convergence theorem blow, it is not difficult
to prove the uniqueness of the solution of the scheme (3.1) - (3.3) too.

The main statement of the present section can be stated as follows.

Theorem 2. Ifa = a(S) > ag = Const >0,d’(S) >0, a”(S) <0, g is monoton-
ically increased function and problem (2.1) - (2.3) has a sufficiently smooth solution
(U(x,t), V(x,t)), then the solution u’ = (u{ué, .. .,ujju_l), v/ = (v{,vé eers U1Jv1—1)’
J =12,...,N of the difference scheme (3.1) - (3.3) tends to the solution of continu-
ous problem (2.1) - (2.3) U/ = (U{ Uy ,....Uj;_ ). VI = (V{ VS ... Vi),
j=12,....,N ast — 0, h — 0 and the following estimates are true:

lu/ —U7 || <Cx+h), v/ =V/|<C(z+h). (3.5)
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Proof. Introducing the differences z{ = ulJ — UiJ and wij = vl-J — Vij we get the
following relations:

Jt+1 M

+1 i+1
Z{l —lalth Z Z [(u’;’(i)z + (v’;’e)z] uj-u.

k=1{=1

J+1 M

—a|th Y Y [WE2+ k2] | ULl

k=14=1

+g! T —gU/ T =~y
(3.6)
J+1 M

w/ ' =tal e )Y [0k 2+ 0k ] ol

k=1{=1

J+l1 M

—a|oh Y0 Y[ W+ )] | VLT

k=14=1 X

+g! T —g (VT =~y

3.7)

O~
O~

N
R~
S

S
=i~
N

Il
L

e [ —
)= w? 0, (3.8)
where W{ ; and W{ ; are approximation errors of scheme (3.1) and
vl . =0@+h), k=12

Multiplying the first equation of system (3.6) scalarly by the grid function 7/t =
FES T A J+1

t(zy' .23 ...»237_,) and using the boundary conditions (3.7) we get
J+1 M
||Zj+1”2 (Z]+1 /)+‘[hz a ‘L'hZZ[(u g)2+(v Z)] Mi?—t_l
i=1 k=14=1
j+1 M
—a|on Y S [wWkpr+ k] Uit i
k=14=1

+ (! H—g @M T =0T = (] .
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Analogously,
Jt+1 M
||wj+1||2 (w1+1 J)+‘(hz a ‘EhZZ[(uxe)z—l_(vx@)] vljf.j'_l
i=1 k=14=1
i1 M
—a chZ[(U;c’e)z'f‘(Vx]ie)z] V)‘cj,z—'ipl w)j'cjl
k=14{=1

+ (g(vl,fﬂ) _g(Vl.j“), A Vj+1) — —r(wzj,w”l),

Adding these two equalities and taking into account monotonicity of the function
g, from these two equalities we have

12712 = @72 + w2 = ! w )

j+1 M

+th a thZ[(u [)2+(vxe)

i=1 k=14=1

k=1£¢=1
3.9)
J+1 M
+‘L’h2 a thZ[(Uxe)2+(vxe) vg—l
i=1 k=1{=1
J+1 M .
4 ‘ChZZI:( ()2+(Vk() J+1 w{":'l

J+t1 M .
—a|h 30 3| WE)?+ (0707 ’“}zé?

k=1{=1

<t =ty w .
Note that, using the Hadamard formula
1
d
p(y)—9(2) = @w[z +n(y —2)ldp,
0

below we prove one of the main inequality to estimate terms with nonlinear diffusion
coefficient a(.S)

jtl M ,
§a (rh Z Z [(”];c,e)z + (U)’%,é)z]) ”)]?Jtrl

k=1£=1
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j+l M )
—a (th Z Z [( 4)2 +(V; 4) ]) U)‘?,;H
k=14=1

( Jj+1 Uf“)
i+l M
+{a (rh Z Z [(”I)%,e)z + (Ug,z)z]) ”éjl

k=14=1

J+1 M . . ,
—a (rh Z Z [(U;ﬁz)z + (Vke) ]) ijj_l (v)j‘cjl - V)'cjj_l)

k=1£4=1

! 1l M i
:f{_a(thZ{[ U+ 1k = US|+ [VE o+ 0k —VE)] })
o k=1(=1
<[ v ol (-0

Jj+1 M 2
a(thZ{[ F otk — 6)] [ fet g — _k,z)] })
k=14=1

<[V =V han (o - Ve

1
it
0

1 i+l M 2
:2/6,/(11122{[%#“(»:’;’( Z)] +|VE+ ek - VE)] })
k=1£=1

' j+1 M

xthZ{[ [+I’L(ux£ Z)]( Uk)

k=14=1

[Vk[ + @k, — -k,e)] (U;]%,z - Vfck,z)}

[U;{jl'i'ﬂ( Jj+1 U)—f,jl)]dﬂ(uj+l_U!,?l)

1 1 M : 2
St )
g k=1¢=1
(k" =04 (U2
1 i+ M 2
+2/a ( ZZ{[Uk,Z+“(”§,K g)] [ Stk - 'k,e)] })
’ . j_+1 M

k=1£¢=1

+ [V— (k- -k,e)] (vé,e - VJ'ck,E)}

XThZZ{[USﬁZ"F“(”l)%,l xe)]( Uk )
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+1 1y +1 +1
<[ VI 4 @it = v Jan (vl - v

J+H1 M

ja(rhzz%[ L I —’ie)n)

k=1¢=1
( ’H—V’H)du(v{H x/l+1>

0/1 (mf%{[ £k Uk 4 [V ¢+M(sz—sz)]})

k=1{=1

i+l M

XThZZ{[U§(+M(u§,g e)]( ~Uk )

k=1£=1
+ [ka,e + (vf o~ 1&)] ( Vs L kaz)}
AUl + pelt —ulh ]| (uif vl
+ [V;’fl it - V’+1)] (véjl - Vfcjfl)}du

[

2 2
H Z‘HL(”xe U;Z:,i) +[V5¢k,l+l‘(vlfg,e_vxk,£)] })

||M§

. . 2
x[(u;,tl—v,-zfl) +(onr v ]dﬂ

! j+1 M ) _ ‘

! j+1 M 2
+/a(th22%[ Ugy+ (s —Ug )] [V-frﬂ(vxz a‘ck,z)] })
0 k=1£=1

: N2 2
x[(uf—cjl—U;{jl) —i—(v{+1 V)-ijl) :|d11«,

where
j+1 M

G =ch Y Y {[Uk ek Uk | (uk - UE,)

k=16=1
Vet ek = vE] (v~ VEL)-
£%(u) =0,
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and therefore,

{10 =3 [02 " ud -] (5 - uit)

4_[V{ZI%_M(UJ+1 VJ+4)]( V]+1).
Introducing the following notation

. Jjt+1 M 2 2
0 = o 3 5 f [0kt - UE ] [V - VD]

k=14=1

from the previous equality we have

j+1 M
-
alzth Z Z [(ul,%’g)z + (Ué,e)z] Ui
k=1¢=1
j+1 M
—a|w Y [(U§,5)2 T (ka,e)z] U)-{j (uif —U;ff )
k=1¢=1
j+1 M
-
+qalzth Z Z [(uf—c,g)z + (U];g,e)z] Vi
k=1(=1
J+1 M
+1 1
ol Y Wk 0k 2] |V (v
k=1(=1

1

= 2/a’ (sj“(u)) gIHE] dp
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After substituting this equality in (3.9) we get

127+ = @) + /P = (! w)

M 1
+2th/a' (sj“(u)) gl

i=1y
(3.10)
M1

+1h Z/a (SHl(,U«)) [(“ifl - US{,;FI)Z + (vajcjrl - Vfcjjl)2] du

<—t({. 2/ —r].w/th.
Taking into account that a(S) > ag = Const > 0 and relations s/ T1(1) > 0,
JESEEY NI S FURT RN S TSI ST NS Ry
() = SR S 2= S =,

2

() =5 () + 5 ()

L
/el =

| —

from (3.10) we have

: 1 . 1 . 1 . .
||ZJ+1||2—EHZJHHZ—EHZJ 1>+ §||ZJJrl -/ |?
JERTE NN IS NU Y S SN SIS ST S SIS
+Hlw/ ™| —5||w [ —§||w [ +§||w —w/|
M . N2 \2
wn Y o (1) | (£4) = ()]
) (3.11)
M
+12h2/a/(sj+l(u)) (E{) dp
l=10
a JH1 i1\ 1 412
+Th6102|:(u;€’i —U)-C’l- ) +(v)-c’i —V)-C’l. )]
i=1

< —t(y], 27T =g wiTh.
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From (3.11) we arrive at
. 1. 2
j+12 J2 J2
=z s+ =z
SIS0 1P+ S0 )
2

1 : 1 . T ;
_ Jj+12_ - JNn2 - w] 2
ol = Sl 12+ S |

i) () @) o

i=1
+1 i +1 2 i '
+eao (I 1P +10f 7)< 5= (12 + 1 1P)

+52 (12712 + 2.

Using discrete analogue of Poincar inequality [21]
I/ < P,
from (3.12) we get

412 12 200 (12 i+12 12 0 200000 (12
27T =127 12 + 2Ny 12 4w/ T2 = w12 4 <2 [Jw] |

1
+2h§:[a/ (sf“(u)) [(EHI)Z— (éj)z] du
i=1y
trao (I 1P+ T12) < = (e 12+ 1 1P).

Summing (3.13) from j =0to j =n —1 we arrive at

n—1 n—1
12712+ 22 Y 2/ 1P+ w2+ 2> w] |

+2h’§§:/1a’ (s”l(u)) [(SHI)Z—(E")Z] du

j=0i=1}

n—1

n—1
| e | |
+rao 3 (117 + 1w 1P) < = 3 (I 1P +19312).
j=0

Jj=0

(3.12)

(3.13)

(3.14)
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Note, that since s/+1(u) > s/ (n), a’(S) > 0 and a”(S) < 0, for the second line
of last formula we have

n—1

L ()| () ()]

=0

~

=d (s () (") = (s W) (£°)
+a' () (£2)* —a' (s*(w) (')
ot d (") (8" = (" w) (")
n—1
= (") )+ X[« (V) —a (57 w) | () 0.
j=1
Taking into account the last relation and (3.14) one can deduce

n—1 n—1
2 2 2 12 2 12
1271+ w2+ 72D M7 1P+ 22 ) llw/ |

Jj=0 Jj=0
(3.15)
n—1 - —
i+1 +1 i '
rao ) (IF P+ 1wd 1) < = 3 (Iwd 12+ 1w 12).
Jj=0 0 j=0
From (3.15) we get (3.5), and thus Theorem 2 is proved. ]

4. CONCLUSION

Uniqueness and large time behavior of solution of initial-boundary value problem
with mixed boundary conditions as well as finite difference scheme for one nonlinear
partial integro-differential averaged model with source terms are investigated. Men-
tioned model is based on Maxwell system which describes electromagnetic field pen-
etration into a medium whose electro-conductivity depends on temperature. Theorem
of uniqueness and stabilization of solution is fixed. Convergence of the fully discrete
scheme is proved. Wider class of nonlinearity considering more general cases of the
diffusion coefficient a = a(\S) is studied.
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