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Abstract. Here, we would study regularity of solutions and existence at least one entropy solution
forL1-data and duality solution. This result would improve some results of Laplacian differential
equations.

2010 Mathematics Subject Classification: 35B65; 35J55

Keywords: Fourier transformation, regularity, duality solutions, entropy solutions

1. INTRODUCTION

First, we summarize some result notions of Schwratz space and tempered distri-
butions. The schwartz space S.Rn/ is a topological vector space of all f W Rn! C
such that f 2 C1.Rn/ and x˛@ˇf .x/ is bounded. For every pair of multi-induces
˛;ˇ 2Nn, we set

jjjf jjj˛;ˇ WD sup
x
jx˛@ˇf j

which induces a family of semi-norms on S.Rn/. A tempered distribution is a
continuous linear functional T W S.Rn/!C and S 0.Rn/ is the space of all tempered
distributions. D.Rn/ is the space C1c .R

n/ endowed with the topology in which
fn! 0 means that, there is a compact set K; such that Suppfn � K .nD 1;2; :::/

and for each ˛ 2Nn, D˛fn! 0 uniformly.
The fourier transform of a function f 2 S.Rn/ is the function bf W Rn! C defined
by bf .k/D 1

.2�/
n
2

Z
Rn

f .x/e�ikxdx:

It is well known that
1)bW S.Rn/! S.Rn/ is continuous one to one.
2) b@˛f .k/D .ik/˛bf .k/.
3) 3.�ix/ˇf .k/D @ˇbf .k/.
For regularity of Laplacian, Ma and Thompson [8], Ma [7] proved regularity, where
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f 2 C Œ0;1�. Moreover, Lee and Sim [6] proved it but for f 2 L1.0;1/. Recently,
interior regularity have studied by many mathematician:

M. Cozzi [4] studied regularity theory of weak solutions for the second order linear
elliptic differential equations�div.A.:/ru/D f in˝, where˝ is an open bounded
subset of Rn and A D Œaij � is n� n matrix uniformly elliptic, aij 2 C

0;1
loc
.˝/ and

f 2L2.˝/. In fact, it is proved that for any˝ 0 ��˝, jjujjH2.˝/ �C.jjujjL2.˝/C

jjf jjL2.˝//:Moreover, it was shown the interiorH 2s�� regularity for weak solutions
of some linear elliptic differential equations.

J. Siljander, J. M. Urbano [11] studied the Serrin-type interior regulatity result.

u 2 L2C�
loc

.˝T /) regularity

for a weak solution in the energy space L1t L
2
x satisfying in appropriate vorticity

estimates for
@tuC .u:r/uCrp D 0 and divuD 0:

S. Gustafson and co authors [5] gave an interior regularity criteria for suitable weak
solutions of the 3D Navier-Stokes equations. In fact they considered the regularity
problem for a suitable weak solution .u;p/ W˝ � I ! R3�R of three-dimensional
incompressible Navier-Stokes equations (NS)�

ut ��uC .u:r/uCrp D f in ˝
divuD 0 in ˝ �I

and proved u 2 L1.Q´;r/ for some Bx;r � .t � r2; t /DQ´;r �˝ �I; r > 0:
These brand of problems have potential applications to the modeling of combus-

tion, thermal explosions, nonlinear heat generation, gravitational equilibrium of poly-
tropic stars, glaciology, non-Newtonian fluids, and the flow through porous media.

In this paper, we would study the regular property of

��˛uC�uD f; (1.1)

in D 0.˝/, where we define �˛ WD ˛1 @
2

@x2
1

C :::C˛n
@2

@x2
n

and ˛ D .˛1; :::;˛n/, (˛i >

0;8i ), our aim is to show u 2 C1.Rn/.

2. RESULTS

Here, we use of� for equivalent norms.

Lemma 1. Suppose that m 2 Z, � > 0 and let u;f 2 S 0.Rn/ satisfy (1.1) as
distributions. If f 2 W m;2.Rn/, then u 2 W mC2;2.Rn/ and there exists a constant
C such that kukWmC2;2 � Ckf kWm;2 .

Proof. Taking the Fourier transform of (1.1), we have

F .�˛1ux1x1
� :::�˛nuxnxn

C�u/D F .f /;
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.˛1�
2
1 C :::C˛n�

2
nC�/F .u/D F .f /:

From theorem 5.2.3 of [3] for any m 2 Z and a;b > 0 we note to the following
equivalent norms:

W m;2.Rn/ WD fu 2 S 0.Rn/IF �1Œ.aCbj�j2/
m
2 F .u/� 2 L2.Rn/g

kukWm;2 � kF �1Œ.aCbj�j2/
m
2 F .u/�kL2 ; u 2W m;2.Rn/:

By using Parseval theorem

kF �1Œ.aCbj�j2/
m
2 F .u/�kL2 D k.aCbj�j2/

m
2 F .u/kL2 :

Thus,

k.aCbj�j2/
m
2 F .u/kL2 � k.˛1�

2
1 C :::C˛n�

2
nC�/

m
2 F .u/kL2 (2.1)

and

.˛1�
2
1 C :::C˛n�

2
nC�/

mC2
2 F .u/D .˛1�

2
1 C :::C˛n�

2
nC�/

m
2 F .f /

so the result follows from (2.1).
�

We now consider the case of a general domain ˝

Theorem 1. Suppose that � 2 R and u;f 2D 0.˝/ satisfy the equation (1.1) in
D 0.˝/.
(i) If f 2 W m;2

loc
.˝/ and u 2 W

n;2
loc
.˝/ for some m � 0 and n 2 Z, then

u 2 W
mC2;2
loc

.˝/ and for every ˝2 �� ˝1 �� ˝, there exists a constant C (de-
pending only on m, ˝2 and ˝1) such that kukWmC2;2.˝2/

� C.kf kWm;2.˝1/
C

kukW n;2.˝1/
/.

(ii) If f 2 C1.˝/ and u 2W n;2
loc
.˝/ for some n 2Z then u 2 C1.˝/.

Proof. We proceed in two steps.
Step 1: Consider M 00 �� M 0 �� ˝ and k 2 Z. If u 2 W k;2.M 0/ and
f 2 W k�1;2.M 0/ solve the equation (1.1) in D 0.˝/, thus, u 2 W kC1;2.M 00/ and
there exists C such that kukW kC1;2.M 00/ � C.kf kW k�1;2.M 0/CkukW k;2.M 0//. To
show this, consider � 2C1c .R

n/ such that �� 1 onM 00 and supp ��M 0 and define
v 2D 0.Rn/ by v D �u, i.e.

.v;'/D0.Rn/;D.Rn/ D .u;�'/D0.M 0/;D.M 0/:

Clearly v 2W k;2.Rn/ and kvkW k;2.Rn/ � CkukW k;2.M 0/.
v solves the equation

��˛vCv D T1CT2CT3 (2.2)

in D 0.Rn/, where the distributions T1;T2; and T3 are defined by

.T1;'/D 0.Rn/;D.Rn/ D .f C .1��/u;�'/D 0.M 0/;D.M 0/;

.T2;'/D0 .Rn/;D.Rn/ D�.u;�˛�:'/D 0.M 0/;D.M 0/;
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.T3;'/D 0.Rn/;D.Rn/ D�2.u;.˛:r�/'/D 0.M 0/;D.M 0/;

for every ' 2 C1c .R
n/, since

.��˛vCv;'/D0.Rn/;D.Rn/ D .�˛1vx1x1
� :::�˛nvxnxnCv;'/D0.Rn/;D.Rn/

D�.˛1
�
.u;�x1x1

'/D0.M 0/;D.M 0/C2.u;�x1
'/D0.M 0/;D.M 0/C .ux1x1

;�'/D0.M 0/;D.M 0/
�

C:::C˛n
�
.u;�xnxn'/D0.M 0/;D.M 0/C2.u;�xn'/D0.M 0/;D.M 0/C .uxnxn ;�'/D0.M 0/;D.M 0/

�
/

C.u;�'/D0.M 0/;D.M 0/ D .�˛1ux1x1
� :::�˛nuxnxnC�u;�'/D0.M 0/;D.M 0/

�.u;.˛1�x1x1
C :::C˛n�xnxn/'/D0.M 0/;D.M 0/�2.u;.˛1�x1

C :::C˛n�xn/'/D0.M 0/;D.M 0/:

Thus Tj 2W k�1;2.Rn/ and

kTj kW k�1;2.Rn/ � C.kf kW k�1;2.M 0/CkukW k;2.M 0//;

for j D 1;2;3. Applying (2.1) and lemma 1, we deduce v 2 W kC1;2.Rn/ and
kvkW kC1;2.Rn/ � C.kf kW k�1;2.M 0/CkukW k;2.M 0//:

Step 2: (Conclusion) Without loss of generality, we may assume n D �` � 0. Let
˝2 ��˝1 ��˝. Consider a family .Mj /0�j�mC`C1 of open subsets of ˝, such
that

˝2 DMmC`C1 �� :::��M0 ��˝1

(one constructs easily such a family). It follows from Step 1 that
u 2W �`C1;2.M0/ and can

kukW �`C1;2.M0/
� C.kf kW �`�1;2.˝1/

CkukW �`;2.˝1/
/

� C.kf kWm;2.˝1/
CkukW n;2.˝1/

/:
(2.3)

(2.3) and lemma 1 imply that u 2W �`C2;2.M1/ and
kukW �`C2;2.M1/

� C.kf kW �`;2.M0/
CkukW �`C1;2.M0/

/

� C.kf kWm;2.˝1/
CkukW n;2.˝1/

/:
(2.4)

Iterating the above argument, u 2 W mC2;2.MmC`C1/ D W
mC2;2.˝2/ and that

there exists C in which

kukWmC2;2.˝2/
� C.kf kWm;2.˝1/

CkukW n;2.˝1/
/:

Hence, property (i) satisfies since˝1 and˝2 are arbitrary. Property (ii) follows from
Property (i) and C1.˝/D

T
m�0W

m;2
loc

.˝/. �

Before paying to entropy solutions, we remember some notions:
Let f;g and q be functions in L1.˝/, u and v be the solutions of�

�div.A.x/ru/Cq.x/uD f in ˝
uD 0 on @˝ (2.5)

and �
�div.A�.x/rv/Cq.x/v D g in ˝
v D 0 on @˝ (2.6)
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respectively, where A� is the transposed matrix of A and

A.x/y:y � ˛jyj2; jA.x/j � ˇ (2.7)

for every y 2 Rn, 0 < ˛ � ˇ. It is well known that (2.5) has a weak unique solution
(Theorem 1.6.1 [1]). Since both u and v belong to H 1

0 .˝/, u can be chosen as test
function in the formulation of weak solution for v and vice versa. One obtainsZ

f v D

Z
A.x/ru:rvC

Z
q.x/u:v D

Z
A�.x/rv:ruC

Z
q.x/v:uD

Z
ug

for every f;g 2 L1.˝/, where u and v solve the corresponding problems with data
f and g respectively. u;v 2 L1.˝/ (Theorem 2.3 [9]), but we remark that the two
integrals are well-defined also if f 2 L1.˝/ and u 2 L1.˝/ (always maintaining
the assumption that g and so v is a bounded function). This fact inspired to Guido
Stampacchia the following definition of solution for (2.5) if the datum is in L1.˝/.

Definition 1. Suppose that f 2 L1.˝/. A function u 2 L1.˝/ is called a duality
solution with datum f if one has

R
ugD

R
f v, for every g 2L1.˝/, where v is the

solution of �
�div.A�.x/rv/Cq.x/v D g in ˝
v D 0 on @˝

Theorem 2 (Stampacchia, theorem 3.3 of [9]). For f 2 L1.˝/ there exists a
unique duality solution with datum f . Furthermore, u 2 Lq.˝/ for every q < N

N�2
.

Remark 1. In special case if

AD

26666664
˛1 0 0 : : : 0

0 ˛2 0 : : : 0

: :

: :

: :

0 0 : : : 0 ˛n

37777775
and q.x/D �, problems (2.5) and (2.6) change to�
��˛uC�uD f in ˝
uD 0 on @˝ and

�
��˛vC�v D g in ˝
v D 0 on @˝

Respectively.

Definition 2. For k > 0, set

Tk.s/ WDmaxf�k;minfs;kgg

and
�
1;2
0 D fu W˝ �! Rmeasurable W Tk.u/ 2H

1
0 .˝/; 8k > 0g;

It is well known that rTk.u/Dru�fjuj�kg .
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Lemma 2. Suppose that u 2 �1;20 .˝/, q 2 L1.˝/ and (2.7) valid. Then there is
˛ > 0 in which

˛

Z
˝

jrTk.u/j
2
�

Z
˝

A.x/ru:rTk.u/C

Z
˝

q.x/uTk.u/:

Proof. By (2.7)Z
˝

A.x/ru:rTk.u/C

Z
˝

q.x/uTk.u/� 


Z
˝

jruj2C

Z
˝

q.x/uTk.u/

� 


Z
˝

jruj2�

Z
˝

jq.x/jjujjTk.u/j;

since jTk.u/j � juj, jq.x/j � b (almost every where) for a suitable b > 0 and from
Poincaré inequality




Z
˝

jruj2�

Z
˝

jq.x/jjujjTk.u/j � 


Z
˝

jruj2�

Z
˝

jq.x/jjuj2

� 


Z
˝

jruj2�bCq

Z
˝

jruj2 D ˛

Z
˝

jrTk.u/j
2;

for ˛ WD 
 �bCq , where Cq is multiplier in Poincaré inequality. �

Definition 3. Suposse that f 2 L1.˝/. A function u 2 �1;20 .˝/ is called an en-
teropy solution of (2.5) ifZ

˝

A.x/ru:rTk.u�'/C

Z
˝

q.x/uTk.u�'/�

Z
˝

f Tk.u�'/; (2.8)

for every k > 0 and for every ' in H 1
0 .˝/\L

1.˝/.

Theorem 3. Suppose that f 2L1.˝/. Then there exists an entropy solution u for
(2.5).

Proof. We do by approximation; Suppose that fnDTn.f / and by the Lax-Miligram
theorem, there exists a weak solution un for�

�div.A.x/run/Cq.x/un D fn in ˝
un D 0 on @˝:

Let k > 0. Taking Tk.un/ as test function and using of lemma 2,

˛

Z
˝

jrTk.un/j
2
�

Z
˝

A.x/run:rTk.un/C

Z
˝

q.x/unTk.un/

D

Z
˝

fnTk.un/� kjjf jjL1.˝/:

Therefore, .Tk.un//n is bounded in H 1
0 .˝/ for a fixed k. This implies that there

exists a function vk 2H 1
0 .˝/ such that, up to subsequences Tk.un/ converges to vk
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weakly in H 1
0 .˝/ and strongly in L2.˝/. From lemma 2, one can deduce thatZ

˝

jr.un�um/j
q
� Cqkfn�fmk

q

L1.˝/

and since .fn/n is a Cauchy sequence in L1.˝/, so .un/n is a Cauchy sequence
in W 1;q

0 .˝/ and then un converges strongly to a suitable u 2 W 1;q
0 .˝/. For every

q < N
N�1

, run converges to ru almost everywhere in ˝. Thus, Tk.un/ converges
strongly to Tk.u/ in L2.˝/, and so vk D Tk.u/. Therefore, by Fatou lemma,

˛

Z
˝

jrTk.un/j
2
� liminf
n!C1

˛

Z
˝

jrTk.un/j
2
� kjjf jjL1.˝/;

which implies that u belongs to �1;20 . Fix k > 0, ' in H 1
0 .˝/\L

1.˝/, and v WD
Tk.un�'/ as test function in the weak formulation of (2.5). ThenZ

˝

A.x/run:rTk.un�'/C

Z
˝

q.x/unTk.un�'/D

Z
˝

fnTk.un�'/:

For the right hand side we have Tn �! I as n�!1 and fn D Tn.f /�! f . Thus,
fn �! f point wise in L1.˝/ and jfnTk.un � '/j � 2kjf j. Lebesgue theorem
implies that

lim
n!C1

Z
˝

fnTk.un�'/D

Z
˝

f Tk.u�'/;

while the left hand side can be rewritten asZ
˝

A.x/rTk.un�'/:rTk.un�'/C

Z
˝

A.x/r':Tk.un�'/

C

Z
˝

q.x/unTk.un�'/:

The first term is non-negative, thus, the almost everywhere convergence of run to
ru follows by Fatou lemma,Z

˝

A.x/rTk.u�'/:rTk.u�'/� liminf
n!C1

.

Z
˝

A.x/rTk.un�'/:rTk.un�'/:

For the second, since un converges to u in H 1
0 .˝/ so un�' to u�' in H 1

0 .˝/,
then Tk.un�'/ to Tk.u�'/ in H 1

0 .˝/ ) and since �r.A.x/r'/ 2H 1
0

< �r.A.x/r'/;Tk.un�'/ >�!< �r.A.x/r'/;Tk.u�'/ >

i.e. Z
˝

A.x/r':Tk.u�'/D lim
n!C1

Z
˝

A.x/r':Tk.un�'/:

For third term since

jq.x/unTk.un�'/j � 2kkqk1juj
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by Lebesgue dominated convergence theoremZ
˝

q.x/uTk.u�'/D lim
n!C1

Z
˝

q.x/unTk.un�'/:

Then by cancelling equal terms:Z
˝

A.x/ru:rTk.u�'/C

Z
˝

q.x/uTk.u�'/�

Z
˝

f Tk.u�'/;

so u is an entropy solution of (2.5). �

Theorem 4. Let f 2 L1.˝/ and u be an entropy solution of (2.5) with datum f.
Then u belongs to W 1;q

0 .˝/ for every q < N
N�1

and it is a distributional solution for
(2.5).

Proof. Taking ' D 0 in (2.8)

˛

Z
˝

jrTk.u/j
2
�

Z
˝

A.x/ru:rTk.u/C

Z
˝

q.x/uTk.u/D

Z
˝

f Tk.u/� kjjf jjL1.˝/:

Proof of Theorem 4.1 in [9] shows that u 2W 1;q
0 .˝/ for every q < N

N�1
. We now

fix h > 0 and choose ' D Th.u/ as test function in (2.8). ThenZ
˝

A.x/ru:rTk.u�Th.u//C

Z
˝

q.x/uTk.u�Th.u//�

Z
˝

f Tk.u�Th.u//:

Moreover,

Tk.u�Th.u//D

8<: u�Th.u/ �k � u�Th.u/� k;

k k � u�Th.u/;

�k u�Th.u/� �k;

where

u�Th.u/D

8<: 0 �h� u� h;

u�h h� u;

uCh u� �h:

Therefore, if juj � h, then Tk.u�Th.u//D 0. Moreover, if h�k � juj � hCk, then
Tk.u�Th.u//D u�Th.u/. Thus,Z

fh�k�juj�hCkg

A.x/ru:ruC

Z
fjuj�hg

q.x/uTk.u�Th.u//

D

Z
fjuj�hg

f Tk.u�Th.u//� k

Z
fjuj�hg

jf j:

Defining Ah D fjuj � hg, m.Ah/ �! 0 as h �!1 (since u 2 W 1;1
0 .˝/, thus, in

L1.˝/). From f 2 L1.˝/,

lim
h!C1

Z
fjuj�hg

jf j D 0;



REGULARITY AND ENTROPY SOLUTIONS 723

hence by recalling (2.7)

lim
h!C1

Z
fh�k�juj�hCkg

jruj2 D 0: (2.9)

For h > 0, � in C 10 .˝/ and ' D Th.u/�� as test function in the entropy formulation
(2.8), where k D k�kL1.˝/ thenZ
˝

A.x/ru:rTk.u�Th.u/C�/C

Z
˝

q.x/uTk.u�Th.u/C�/�

Z
˝

f Tk.u�Th.u/C�/:

By Lebesgue dominated theorem and choice of k

lim
h!C1

Z
˝

f Tk.u�Th.u/C�/D

Z
˝

f Tk.�/D

Z
˝

f �:

For the left hand side, using again the choice of kZ
fjuj�hg

.A.x/ru:rTk.u�Th.u/C�/C

Z
fjuj�hg

q.x/uTk.u�Th.u/C�//

C

Z
fjuj�hg

.A.x/ru:rTk.u�Th.u/C�/C

Z
fjuj�hg

q.x/uTk.u�Th.u/C�//:

Since A is bounded, so u 2W 1;1
0 .˝/ and � 2 C 10 .˝/. For fjuj � hg we have Tk.u�

Th.u/C�/D Tk.�/. Thus, by Lebesgue dominated theorem

lim
h!C1

Z
fjuj�hg

A.x/ru:rTk.�/D lim
h!C1

Z
fjuj�hg

A.x/ru:r�D

Z
˝

A.x/ru:r�:

SimilarlyZ
fjuj�hg

q.x/uTk.u�Th.u/C�/D

Z
fjuj�hg

q.x/uTk.�/D

Z
fjuj�hg

q.x/u�:

Then

lim
h!C1

Z
fjuj�hg

q.x/u�D

Z
˝

q.x/u�:

Since
fju�Th.u/C�j � k; juj � hg � fh�2k � juj � hC2kg

by (2.7) and choice of kZ
fjuj�hg

A.x/ru:rTk.u�Th.u/C�/� j

Z
fjuj�hg

A.x/ru:rTk.u�Th.u/C�/j

�

Z
fjuj�hg

A.x/jruj:jrTk.u�Th.u/C�/j � ˇ

Z
fh�2k�juj�hC2kg

jruj.jrujC jr�j/:
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Thus by (2.9) and Hölder Inequality

ˇ

Z
fh�2k�juj�hC2kg

jruj.jrujC jr�j/� ˇ

Z
fh�2k�juj�hC2kg

.jruj2Cjruj:jr�j/

� ˇŒ

Z
fh�2k�juj�hC2kg

jruj2�
1
2 :Œ

Z
fh�2k�juj�hC2kg

jr�j2�
1
2 D 0:

Therefore,

lim
h!C1

Z
fjuj�hg

.A.x/ru:rTk.u�Th.u/C�/D 0

and
jq.x/uTk.u�Th.u/C�//j � kkqk1juj

so q.x/uTk.u�Th.u/C�// 2 L1.˝/. Thus, limh!C1
R
fjuj�hgkkqk1juj D 0 andZ

fjuj�hg

q.x/uTk.u�Th.u/C�//D 0

Putting together the results,Z
˝

.A.x/ru:r�Cq.x/u�/�

Z
˝

f �;

for any � 2 C 10 .˝/. Exchanging � with �� we obtain the reverse inequality so that u
is a distributional solution of (2.5). �

Finally, we would show uniqueness of entropy solution.

Theorem 5. Let f 2 L1.˝/. Then the entropy solution of (2.5) is unique.

Proof. We proceed in three steps.
Step 1 (An entropy solution is a duality solution): Consider g is in L1.˝/ and v is
a weak solution of�

�div.A�.x/rv/Cq.x/v D g in ˝
v D 0 on @˝:

According to the Stampacchia’s theorem [2], v 2 L1.˝/. We repeat the proof of
Theorem 4. By choosing ' D Th.u/� v in the entropy formulation, for h > 0 and
k D kvkL1.˝/:Z
˝

A.x/ru:rTk.u�Th.u/Cv/C

Z
˝

q.x/uTk.u�Th.u/Cv/�

Z
˝

f Tk.u�Th.u/Cv/:

Similar to theorem 4, from Lebesgue dominated theorem and choose of k,

lim
h!C1

Z
˝

f Tk.u�Th.u/Cv/D

Z
˝

f v;



REGULARITY AND ENTROPY SOLUTIONS 725

Moreover, the left hand side can be rewritten asZ
fjuj�hg

.A.x/ru:rvCq.x/uv/C

Z
fjuj�hg

A.x/ru:rTk.u�Th.u/Cv/

C

Z
fjuj�hg

q.x/uTk.u�Th.u/Cv/:

For the second and the third term, similar to the proof of Theorem 4 (using (2.9))

lim
h!C1

Z
fjuj�hg

A.x/ru:rTk.u�Th.u/Cv/C

Z
fjuj�hg

q.x/uTk.u�Th.u/Cv/D 0;

and the first term can be rewritten asZ
fjuj�hg

.A.x/ru:rvCq.x/uv/D

Z
˝

.A.x/rTh.u/:rvCq.x/Th.u/v/

D

Z
˝

.A�.x/rv:rTh.u/Cq.x/vTh.u//D

Z
˝

gTh.u/;

since Th.u/ 2 H 1
0 .˝/ can be chosen as test function in the problem solved by v.

Then, by Lebesgue dominated theorem,Z
fjuj�hg

.A.x/ru:rvCq.x/uv/D lim
h!C1

Z
fjuj�hg

.A.x/ru:rvCq.x/uv/D

Z
˝

gu:

Putting together the results, we obtainZ
˝

gu�

Z
˝

f v:

Exchanging g with �g (and so v with �v, by linearity), we obtain the reverse in-
equality, therefore, u is a duality solution of (2.5).
Step 2 (An entropy solution is a solution obtained by approximation (See [10])):
Suppose that fn 2 L1.˝/ be a sequence of functions that converges to f 2 L1.˝/,
and suppose that un be the solution of�

�div.A�.x/run/Cq.x/un D fn in ˝
un D 0 on @˝

un 2 H
1
0 .˝/\L

1.˝/, so that ' D un is an admissible choice in the entropy for-
mulation for u. Thus,Z

˝

A.x/ru:rTk.u�un/C

Z
˝

q.x/uTk.u�un/�

Z
˝

f Tk.u�un/:

On the other hand, Tk.u� un/ belongs to H 1
0 .˝/ and so it can be chosen as test

function in the weak formulation for un. ThenZ
˝

A.x/run:rTk.u�un/C

Z
˝

q.x/unTk.u�un/D

Z
˝

fnTk.u�un/:
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Thus,Z
˝

A.x/r.u�un/:rTk.u�un/C

Z
˝

q.x/.u�un/Tk.u�un/�

Z
˝

.f �fn/Tk.u�un/:

By (2.7) and lemma 2

˛

Z
˝

jrTk.u�un/j
2
�

Z
˝

A.x/r.u�un/:rTk.u�un/C

Z
˝

q.x/.u�un/Tk.u�un/

� kk.f �fn/kL1.˝/:

approaching n �!1 , Tk.u�un/ �! 0 in H 1
0 .˝/ and this implies that un con-

verges to the entropy solution u. From solutions obtained by approximation are
unique, hence, the entropy solution u is unique.

Step 3 (There exists at most an entropy solution): Here, we follow [2]. Suppose that
u and v be two entropy solutions of (2.5), with the same datum f , and let h > k > 0.
Then ' D Th.v/ is admissible in the entropy formulation for u and ' D Th.u/ is
admissible in the entropy formulation for v. Thus,Z

˝

A.x/ru:rTk.u�Th.v//C

Z
˝

q.x/uTk.u�Th.v//�

Z
˝

f Tk.u�Th.v//;

andZ
˝

A.x/rv:rTk.v�Th.u//C

Z
˝

q.x/vTk.v�Th.u//�

Z
˝

f Tk.v�Th.u//:

Summing these two inequalities,Z
˝

A.x/ru:rTk.u�Th.v//C

Z
˝

q.x/uTk.u�Th.v//

C

Z
˝

A.x/rv:rTk.v�Th.u//C

Z
˝

q.x/vTk.v�Th.u//;

in the left hand side is less than or equal toZ
˝

f .Tk.u�Th.v//CTk.v�Th.u///

in the right hand side. From oddness of Tk.s/ and Lebesgue dominated theorem,

lim
h!C1

Z
˝

f .Tk.u�Th.v//CTk.v�Th.u///D 0:

Hence,

limsup
h!C1

Z
˝

A.x/ru:rTk.u�Th.v//C

Z
˝

q.x/uTk.u�Th.v//

C

Z
˝

A.x/rv:rTk.v�Th.u//C

Z
˝

q.x/uTk.v�Th.u//� 0:
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For the sake of simplicity we will suppose from now on that u � 0 and v � 0, since
the proof turns out to be considerably simplified. We refer to [2] for the proof in the
general case of changing sign solutions. We set

˝ D fu� h;v � hg[fu > h;v � hg[fv > hg DEh0 [F
h
1 [F

h
2 ;

and
˝ D fv � h;u� hg[fv > h;u� hg[fu > hg DEh0 [F

h
3 [F

h
4 :

Then Z
Eh

0

A.x/ru:rTk.u�Th.v//C

Z
Eh

0

q.x/uTk.u�Th.v//

D

Z
Eh

0

A.x/ru:rTk.u�v/C

Z
Eh

0

q.x/uTk.u�v/:

Similarly, Z
Eh

0

A.x/rv:rTk.v�Th.u//C

Z
Eh

0

q.x/vTk.v�Th.u//

D

Z
Eh

0

A.x/rv:rTk.v�u/C

Z
Eh

0

q.x/vTk.v�u/;

On F h1 ,Z
F h

1

A.x/ru:rTk.u�Th.v//D

Z
fu>h;v�h;0�u�v�kg

A.x/ru:r.u�v/:

On fu > h;v � h;0� u�v � kg it valid h < u� hCk and h�k < v � h, soˇ̌̌̌
ˇ
Z
F h

1

A.x/ru:rTk.u�Th.v//

ˇ̌̌̌
ˇ� ˇ

Z
fh<u�hCk;h�k<v�hg

jrujjrvj:

By (2.9)

lim
h!C1

Z
fh<u�hCkg

jruj2 D 0;

and

lim
h!C1

Z
fh�k<v�hg

jrvj2 D 0;

Hence, by Hölder inequality

lim
h!C1

ˇ̌̌̌
ˇ
Z
F h

1

A.x/ru:rTk.u�Th.v//

ˇ̌̌̌
ˇD 0I

and jq.x/uTk.u�Th.v//j � kkqk1juj, so q.x/uTk.u�Th.v// 2 L1.˝/. Thus,

lim
h!C1

Z
F h

1

kkqk1juj D 0;
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hence, Z
F h

1

q.x/uTk.u�Th.v//D 0:

Repeating the same for F h3 we have

lim
h!C1

ˇ̌̌̌
ˇ
Z
F h

3

A.x/rv:rTk.v�Th.u//

ˇ̌̌̌
ˇD 0:

and Z
F h

3

q.x/vTk.v�Th.u//D 0

Moreover on F h2 ,Z
F h

2

.A.x/ru:rTk.u�Th.v//Cq.x/uTk.u�Th.v///

D

Z
fv>h;0�u<hCkg

.A.x/ru:ru/Cq.x/uu/� 0;

and similarly on F h4 ,Z
F h

4

.A.x/rv:rTk.v�Th.u//Cq.x/vTk.v�Th.u///

D

Z
fu>h;0�v<hCkg

.A.x/rv:rv/Cq.x/vv/� 0;

Putting the results together,

limsup
h!C1

Z
Eh

0

.A.x/r.u�v/:rTk.u�v/Cq.x/.u�v/Tk.u�v//� 0;

which, by Fatou lemma, implies, from Eh0 ”fills” ˝ as h �!C1,

0�

Z
˝

.A.x/r.u�v/:rTk.u�v/Cq.x/.u�v/Tk.u�v//� 0;

Using (2.7) and lemma 2 we have rTk.u�v/� 0, thus uD v. �

Remark 2. In special case if

AD

26666664
˛1 0 0 : : : 0

0 ˛2 0 : : : 0

: :

: :

: :

0 0 : : : 0 ˛n

37777775
and q.x/D �, problem (2.5) can be rewritten



REGULARITY AND ENTROPY SOLUTIONS 729

�
�div.A.x/ru/Cq.x/uD f in ˝
uD 0 on @˝ H)

�
��˛uC�uD f in ˝
uD 0 on @˝

Then above theorems are satisfied for this problem.
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