

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2018.2545

REGULARITY AND ENTROPY SOLUTIONS OF SOME ELLIPTIC EQUATIONS

M. ALIZADEH AND M. ALIMOHAMMADY

Received 03 March, 2018

Abstract. Here, we would study regularity of solutions and existence at least one entropy solution for L^1 -data and duality solution. This result would improve some results of Laplacian differential equations.

2010 Mathematics Subject Classification: 35B65; 35J55

Keywords: Fourier transformation, regularity, duality solutions, entropy solutions

1. Introduction

First, we summarize some result notions of Schwratz space and tempered distributions. The schwartz space $\mathcal{S}(\mathbb{R}^n)$ is a topological vector space of all $f: \mathbb{R}^n \to \mathbb{C}$ such that $f \in C^{\infty}(\mathbb{R}^n)$ and $x^{\alpha} \partial^{\beta} f(x)$ is bounded. For every pair of multi-induces $\alpha, \beta \in \mathbb{N}^n$, we set

$$|||f|||_{\alpha,\beta} := \sup_{x} |x^{\alpha} \partial^{\beta} f|$$

which induces a family of semi-norms on $\mathcal{S}(\mathbb{R}^n)$. A tempered distribution is a continuous linear functional $T: \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}$ and $\mathcal{S}'(\mathbb{R}^n)$ is the space of all tempered distributions. $\mathcal{D}(\mathbb{R}^n)$ is the space $C_c^{\infty}(\mathbb{R}^n)$ endowed with the topology in which $f_n \to 0$ means that, there is a compact set K; such that $Supp f_n \subseteq K$ (n = 1, 2, ...) and for each $\alpha \in \mathbb{N}^n$, $D^{\alpha} f_n \to 0$ uniformly.

The fourier transform of a function $f \in \mathcal{S}(\mathbb{R}^n)$ is the function $\widehat{f}: \mathbb{R}^n \to \mathbb{C}$ defined by

$$\widehat{f}(k) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x)e^{-ikx} dx.$$

It is well known that

1) $\widehat{:}$ $\mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous one to one.

2)
$$\widehat{\partial^{\alpha} f}(k) = (ik)^{\alpha} \widehat{f}(k)$$
.

$$3)\widehat{(-ix)^{\beta}f}(k) = \partial^{\beta}\widehat{f}(k).$$

For regularity of Laplacian, Ma and Thompson [8], Ma [7] proved regularity, where

© 2018 Miskolc University Press

 $f \in C[0,1]$. Moreover, Lee and Sim [6] proved it but for $f \in L^1(0,1)$. Recently, interior regularity have studied by many mathematician:

M. Cozzi [4] studied regularity theory of weak solutions for the second order linear elliptic differential equations $-div(A(.)\nabla u)=f$ in Ω , where Ω is an open bounded subset of \mathbb{R}^n and $A=[a_{ij}]$ is $n\times n$ matrix uniformly elliptic, $a_{ij}\in C^{0,1}_{loc}(\Omega)$ and $f\in L^2(\Omega)$. In fact, it is proved that for any $\Omega'\subset \Omega$, $||u||_{H^2(\Omega)}\leq C(||u||_{L^2(\Omega)}+||f||_{L^2(\Omega)})$. Moreover, it was shown the interior $H^{2s-\epsilon}$ regularity for weak solutions of some linear elliptic differential equations.

J. Siljander, J. M. Urbano [11] studied the Serrin-type interior regulatity result.

$$u \in L^{2+\epsilon}_{loc}(\Omega_T) \Rightarrow \text{regularity}$$

for a weak solution in the energy space $L_t^\infty L_x^2$ satisfying in appropriate vorticity estimates for

$$\partial_t u + (u \cdot \nabla)u + \nabla p = 0$$
 and div $u = 0$.

S. Gustafson and co authors [5] gave an interior regularity criteria for suitable weak solutions of the 3D Navier-Stokes equations. In fact they considered the regularity problem for a suitable weak solution $(u, p) : \Omega \times I \to \mathbb{R}^3 \times \mathbb{R}$ of three-dimensional incompressible Navier-Stokes equations (NS)

$$\begin{cases} u_t - \Delta u + (u \cdot \nabla)u + \nabla p = f & \text{in } \Omega \\ \operatorname{div} u = 0 & \text{in } \Omega \times I \end{cases}$$

and proved $u \in L^{\infty}(Q_{z,r})$ for some $B_{x,r} \times (t-r^2,t) = Q_{z,r} \subseteq \Omega \times I$, r > 0.

These brand of problems have potential applications to the modeling of combustion, thermal explosions, nonlinear heat generation, gravitational equilibrium of polytropic stars, glaciology, non-Newtonian fluids, and the flow through porous media.

In this paper, we would study the regular property of

$$-\Delta_{\alpha}u + \lambda u = f, \tag{1.1}$$

in $\mathcal{D}'(\Omega)$, where we define $\Delta_{\alpha} := \alpha_1 \frac{\partial^2}{\partial x_1^2} + ... + \alpha_n \frac{\partial^2}{\partial x_n^2}$ and $\alpha = (\alpha_1, ..., \alpha_n)$, $(\alpha_i > 0, \forall i)$, our aim is to show $u \in C^{\infty}(\mathbb{R}^n)$.

2. RESULTS

Here, we use of \approx for equivalent norms.

Lemma 1. Suppose that $m \in \mathbb{Z}$, $\lambda > 0$ and let $u, f \in \mathcal{S}'(\mathbb{R}^n)$ satisfy (1.1) as distributions. If $f \in W^{m,2}(\mathbb{R}^n)$, then $u \in W^{m+2,2}(\mathbb{R}^n)$ and there exists a constant C such that $\|u\|_{W^{m+2,2}} \leq C \|f\|_{W^{m,2}}$.

Proof. Taking the Fourier transform of (1.1), we have

$$\mathcal{F}(-\alpha_1 u_{x_1 x_1} - \dots - \alpha_n u_{x_n x_n} + \lambda u) = \mathcal{F}(f),$$

$$(\alpha_1 \xi_1^2 + \dots + \alpha_n \xi_n^2 + \lambda) \mathcal{F}(u) = \mathcal{F}(f).$$

From theorem 5.2.3 of [3] for any $m \in \mathbb{Z}$ and a, b > 0 we note to the following equivalent norms:

$$W^{m,2}(\mathbb{R}^n) := \{ u \in \mathcal{S}'(\mathbb{R}^n); \mathcal{F}^{-1}[(a+b|\xi|^2)^{\frac{m}{2}}\mathcal{F}(u)] \in L^2(\mathbb{R}^n) \}$$
$$\|u\|_{W^{m,2}} \approx \|\mathcal{F}^{-1}[(a+b|\xi|^2)^{\frac{m}{2}}\mathcal{F}(u)]\|_{L^2}, \quad u \in W^{m,2}(\mathbb{R}^n).$$

By using Parseval theorem

$$\|\mathcal{F}^{-1}[(a+b|\xi|^2)^{\frac{m}{2}}\mathcal{F}(u)]\|_{L^2} = \|(a+b|\xi|^2)^{\frac{m}{2}}\mathcal{F}(u)\|_{L^2}.$$

Thus.

$$\|(a+b|\xi|^2)^{\frac{m}{2}}\mathcal{F}(u)\|_{L^2} \approx \|(\alpha_1\xi_1^2 + \dots + \alpha_n\xi_n^2 + \lambda)^{\frac{m}{2}}\mathcal{F}(u)\|_{L^2}$$
 (2.1)

and

$$(\alpha_1 \xi_1^2 + \dots + \alpha_n \xi_n^2 + \lambda)^{\frac{m+2}{2}} \mathcal{F}(u) = (\alpha_1 \xi_1^2 + \dots + \alpha_n \xi_n^2 + \lambda)^{\frac{m}{2}} \mathcal{F}(f)$$

so the result follows from (2.1).

We now consider the case of a general domain Ω

Theorem 1. Suppose that $\lambda \in \mathbb{R}$ and $u, f \in \mathcal{D}'(\Omega)$ satisfy the equation (1.1) in $\mathcal{D}'(\Omega)$.

(i) If $f \in W_{loc}^{m,2}(\Omega)$ and $u \in W_{loc}^{n,2}(\Omega)$ for some $m \geq 0$ and $n \in \mathbb{Z}$, then $u \in W_{loc}^{m+2,2}(\Omega)$ and for every $\Omega_2 \subset \subset \Omega_1 \subset \subset \Omega$, there exists a constant C (depending only on m, Ω_2 and Ω_1) such that $\|u\|_{W^{m+2,2}(\Omega_2)} \leq C(\|f\|_{W^{m,2}(\Omega_1)} + \|u\|_{W^{n,2}(\Omega_1)})$.

(ii) If
$$f \in C^{\infty}(\Omega)$$
 and $u \in W^{n,2}_{loc}(\Omega)$ for some $n \in \mathbb{Z}$ then $u \in C^{\infty}(\Omega)$.

Proof. We proceed in two steps.

Step 1: Consider $M'' \subset\subset M' \subset\subset \Omega$ and $k \in \mathbb{Z}$. If $u \in W^{k,2}(M')$ and $f \in W^{k-1,2}(M')$ solve the equation (1.1) in $\mathcal{D}'(\Omega)$, thus, $u \in W^{k+1,2}(M'')$ and there exists C such that $\|u\|_{W^{k+1,2}(M'')} \leq C(\|f\|_{W^{k-1,2}(M')} + \|u\|_{W^{k,2}(M')})$. To show this, consider $\rho \in C_c^{\infty}(\mathbb{R}^n)$ such that $\rho \equiv 1$ on M'' and supp $\rho \subset M'$ and define $v \in \mathcal{D}'(\mathbb{R}^n)$ by $v = \rho u$, i.e.

$$(v,\varphi)_{D'(\mathbb{R}^n),D(\mathbb{R}^n)} = (u,\rho\varphi)_{D'(M'),D(M')}.$$

Clearly $v \in W^{k,2}(\mathbb{R}^n)$ and $||v||_{W^{k,2}(\mathbb{R}^n)} \le C ||u||_{W^{k,2}(M')}$. v solves the equation

$$-\Delta_{\alpha}v + v = T_1 + T_2 + T_3 \tag{2.2}$$

in $\mathcal{D}'(\mathbb{R}^n)$, where the distributions T_1, T_2 , and T_3 are defined by

$$(T_1, \varphi)_{\mathcal{D}'(\mathbb{R}^n), \mathcal{D}(\mathbb{R}^n)} = (f + (1 - \lambda)u, \rho\varphi)_{\mathcal{D}'(M'), \mathcal{D}(M')},$$

$$(T_2, \varphi)_{\mathcal{D}'(\mathbb{R}^n), \mathcal{D}(\mathbb{R}^n)} = -(u, \Delta_\alpha \rho. \varphi)_{\mathcal{D}'(M'), \mathcal{D}(M')},$$

$$(T_3,\varphi)_{\mathcal{D}'(\mathbb{R}^n),\mathcal{D}(\mathbb{R}^n)} = -2(u,(\alpha.\nabla\rho)\varphi)_{\mathcal{D}'(M'),\mathcal{D}(M')},$$
 for every $\varphi \in C_c^{\infty}(\mathbb{R}^n)$, since
$$(-\Delta_{\alpha}v + v,\varphi)_{D'(\mathbb{R}^n),D(\mathbb{R}^n)} = (-\alpha_1v_{x_1x_1} - ... - \alpha_nv_{x_nx_n} + v,\varphi)_{D'(\mathbb{R}^n),D(\mathbb{R}^n)}$$

$$= -(\alpha_1 \left[(u, \rho_{x_1 x_1} \varphi)_{D'(M'), D(M')} + 2(u, \rho_{x_1} \varphi)_{D'(M'), D(M')} + (u_{x_1 x_1}, \rho \varphi)_{D'(M'), D(M')} \right]$$

$$+ ... + \alpha_n \left[(u, \rho_{x_n x_n} \varphi)_{D'(M'), D(M')} + 2(u, \rho_{x_n} \varphi)_{D'(M'), D(M')} + (u_{x_n x_n}, \rho \varphi)_{D'(M'), D(M')} \right]$$

$$+ (u, \rho \varphi)_{D'(M'), D(M')} = (-\alpha_1 u_{x_1 x_1} - ... - \alpha_n u_{x_n x_n} + \lambda u, \rho \varphi)_{D'(M'), D(M')}$$

$$- (u, (\alpha_1 \rho_{x_1 x_1} + ... + \alpha_n \rho_{x_n x_n}) \varphi)_{D'(M'), D(M')} - 2(u, (\alpha_1 \rho_{x_1} + ... + \alpha_n \rho_{x_n}) \varphi)_{D'(M'), D(M')} .$$

Thus $T_j \in W^{k-1,2}(\mathbb{R}^n)$ and

$$||T_j||_{W^{k-1,2}(\mathbb{R}^n)} \le C(||f||_{W^{k-1,2}(M')} + ||u||_{W^{k,2}(M')}),$$

for j = 1, 2, 3. Applying (2.1) and lemma 1, we deduce $v \in W^{k+1,2}(\mathbb{R}^n)$ and $\|v\|_{W^{k+1,2}(\mathbb{R}^n)} \le C(\|f\|_{W^{k-1,2}(M')} + \|u\|_{W^{k,2}(M')})$.

Step 2: (Conclusion) Without loss of generality, we may assume $n = -\ell \le 0$. Let $\Omega_2 \subset\subset \Omega_1 \subset\subset \Omega$. Consider a family $(M_j)_{0\le j\le m+\ell+1}$ of open subsets of Ω , such that

$$\Omega_2 = M_{m+\ell+1} \subset \subset ... \subset \subset M_0 \subset \subset \Omega_1$$

(one constructs easily such a family). It follows from Step 1 that $u \in W^{-\ell+1,2}(M_0)$ and can

$$||u||_{W^{-\ell+1,2}(M_0)} \le C(||f||_{W^{-\ell-1,2}(\Omega_1)} + ||u||_{W^{-\ell,2}(\Omega_1)})$$

$$\le C(||f||_{W^{m,2}(\Omega_1)} + ||u||_{W^{n,2}(\Omega_1)}).$$
(2.3)

(2.3) and lemma 1 imply that $u \in W^{-\ell+2,2}(M_1)$ and

$$||u||_{W^{-\ell+2,2}(M_1)} \le C(||f||_{W^{-\ell,2}(M_0)} + ||u||_{W^{-\ell+1,2}(M_0)})$$

$$\le C(||f||_{W^{m,2}(\Omega_1)} + ||u||_{W^{n,2}(\Omega_1)}).$$
(2.4)

Iterating the above argument, $u \in W^{m+2,2}(M_{m+\ell+1}) = W^{m+2,2}(\Omega_2)$ and that there exists C in which

$$||u||_{W^{m+2,2}(\Omega_2)} \le C(||f||_{W^{m,2}(\Omega_1)} + ||u||_{W^{n,2}(\Omega_1)}).$$

Hence, property (i) satisfies since Ω_1 and Ω_2 are arbitrary. Property (ii) follows from Property (i) and $C^{\infty}(\Omega) = \bigcap_{m \geq 0} W_{loc}^{m,2}(\Omega)$.

Before paying to entropy solutions, we remember some notions:

Let f, g and q be functions in $L^{\infty}(\Omega)$, u and v be the solutions of

$$\begin{cases}
-div(A(x)\nabla u) + q(x)u = f & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(2.5)

and

$$\begin{cases}
-div(A^*(x)\nabla v) + q(x)v = g & \text{in } \Omega \\
v = 0 & \text{on } \partial\Omega
\end{cases}$$
(2.6)

respectively, where A^* is the transposed matrix of A and

$$A(x)y.y \ge \alpha |y|^2, |A(x)| \le \beta \tag{2.7}$$

for every $y \in \mathbb{R}^n$, $0 < \alpha \le \beta$. It is well known that (2.5) has a weak unique solution (Theorem 1.6.1 [1]). Since both u and v belong to $H_0^1(\Omega)$, u can be chosen as test function in the formulation of weak solution for v and vice versa. One obtains

$$\int fv = \int A(x)\nabla u \cdot \nabla v + \int q(x)u \cdot v = \int A^*(x)\nabla v \cdot \nabla u + \int q(x)v \cdot u = \int ug$$

for every $f,g \in L^{\infty}(\Omega)$, where u and v solve the corresponding problems with data f and g respectively. $u,v \in L^{\infty}(\Omega)$ (Theorem 2.3 [9]), but we remark that the two integrals are well-defined also if $f \in L^1(\Omega)$ and $u \in L^1(\Omega)$ (always maintaining the assumption that g and so v is a bounded function). This fact inspired to Guido Stampacchia the following definition of solution for (2.5) if the datum is in $L^1(\Omega)$.

Definition 1. Suppose that $f \in L^1(\Omega)$. A function $u \in L^1(\Omega)$ is called a *duality* solution with datum f if one has $\int ug = \int fv$, for every $g \in L^{\infty}(\Omega)$, where v is the solution of

$$\begin{cases} -div(A^*(x)\nabla v) + q(x)v = g & \text{in } \Omega \\ v = 0 & \text{on } \partial\Omega \end{cases}$$

Theorem 2 (Stampacchia, theorem 3.3 of [9]). For $f \in L^1(\Omega)$ there exists a unique duality solution with datum f. Furthermore, $u \in L^q(\Omega)$ for every $q < \frac{N}{N-2}$.

Remark 1. In special case if

$$A = \begin{bmatrix} \alpha_1 & 0 & 0 & \dots & 0 \\ 0 & \alpha_2 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \alpha_n \end{bmatrix}$$

and $q(x) = \lambda$, problems (2.5) and (2.6) change to

$$\begin{cases} -\Delta_{\alpha} u + \lambda u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases} \quad \text{and} \quad \begin{cases} -\Delta_{\alpha} v + \lambda v = g & \text{in } \Omega \\ v = 0 & \text{on } \partial \Omega \end{cases}$$

Respectively.

Definition 2. For k > 0, set

$$T_k(s) := \max\{-k, \min\{s, k\}\}\$$

and

$$\tau_0^{1,2} = \{u : \Omega \longrightarrow \mathbb{R} \, measurable : T_k(u) \in H_0^1(\Omega), \, \forall k > 0\},$$

It is well known that $\nabla T_k(u) = \nabla u \chi_{\{|u| \le k\}}$.

Lemma 2. Suppose that $u \in \tau_0^{1,2}(\Omega)$, $q \in L^{\infty}(\Omega)$ and (2.7) valid. Then there is $\alpha > 0$ in which

$$\alpha \int_{\Omega} |\nabla T_k(u)|^2 \le \int_{\Omega} A(x) \nabla u \cdot \nabla T_k(u) + \int_{\Omega} q(x) u T_k(u).$$

Proof. By (2.7)

$$\int_{\Omega} A(x) \nabla u \cdot \nabla T_k(u) + \int_{\Omega} q(x) u T_k(u) \ge \gamma \int_{\Omega} |\nabla u|^2 + \int_{\Omega} q(x) u T_k(u)$$

$$\ge \gamma \int_{\Omega} |\nabla u|^2 - \int_{\Omega} |q(x)| |u| |T_k(u)|,$$

since $|T_k(u)| \le |u|$, $|q(x)| \le b$ (almost every where) for a suitable b > 0 and from Poincaré inequality

$$\gamma \int_{\Omega} |\nabla u|^2 - \int_{\Omega} |q(x)||u||T_k(u)| \ge \gamma \int_{\Omega} |\nabla u|^2 - \int_{\Omega} |q(x)||u|^2$$
$$\ge \gamma \int_{\Omega} |\nabla u|^2 - bC_q \int_{\Omega} |\nabla u|^2 = \alpha \int_{\Omega} |\nabla T_k(u)|^2,$$

for $\alpha := \gamma - bC_q$, where C_q is multiplier in Poincaré inequality.

Definition 3. Suppose that $f \in L^1(\Omega)$. A function $u \in \tau_0^{1,2}(\Omega)$ is called an enteropy solution of (2.5) if

$$\int_{\Omega} A(x) \nabla u \cdot \nabla T_k(u - \varphi) + \int_{\Omega} q(x) u T_k(u - \varphi) \le \int_{\Omega} f T_k(u - \varphi), \tag{2.8}$$

for every k > 0 and for every φ in $H_0^1(\Omega) \cap L^{\infty}(\Omega)$.

Theorem 3. Suppose that $f \in L^1(\Omega)$. Then there exists an entropy solution u for (2.5).

Proof. We do by approximation; Suppose that $f_n = T_n(f)$ and by the Lax-Miligram theorem, there exists a weak solution u_n for

$$\begin{cases} -div(A(x)\nabla u_n) + q(x)u_n = f_n & \text{in } \Omega \\ u_n = 0 & \text{on } \partial\Omega. \end{cases}$$

Let k > 0. Taking $T_k(u_n)$ as test function and using of lemma 2,

$$\alpha \int_{\Omega} |\nabla T_k(u_n)|^2 \le \int_{\Omega} A(x) \nabla u_n \cdot \nabla T_k(u_n) + \int_{\Omega} q(x) u_n T_k(u_n)$$
$$= \int_{\Omega} f_n T_k(u_n) \le k||f||_{L^1(\Omega)}.$$

Therefore, $(T_k(u_n))_n$ is bounded in $H_0^1(\Omega)$ for a fixed k. This implies that there exists a function $v_k \in H_0^1(\Omega)$ such that, up to subsequences $T_k(u_n)$ converges to v_k

weakly in $H_0^1(\Omega)$ and strongly in $L^2(\Omega)$. From lemma 2, one can deduce that

$$\int_{\Omega} |\nabla (u_n - u_m)|^q \le C_q \|f_n - f_m\|_{L^1(\Omega)}^q$$

and since $(f_n)_n$ is a Cauchy sequence in $L^1(\Omega)$, so $(u_n)_n$ is a Cauchy sequence in $W_0^{1,q}(\Omega)$ and then u_n converges strongly to a suitable $u \in W_0^{1,q}(\Omega)$. For every $q < \frac{N}{N-1}$, ∇u_n converges to ∇u almost everywhere in Ω . Thus, $T_k(u_n)$ converges strongly to $T_k(u)$ in $L^2(\Omega)$, and so $v_k = T_k(u)$. Therefore, by Fatou lemma,

$$\alpha \int_{\Omega} |\nabla T_k(u_n)|^2 \le \liminf_{n \to +\infty} \alpha \int_{\Omega} |\nabla T_k(u_n)|^2 \le k||f||_{L^1(\Omega)},$$

which implies that u belongs to $\tau_0^{1,2}$. Fix k > 0, φ in $H_0^1(\Omega) \cap L^\infty(\Omega)$, and $v := T_k(u_n - \varphi)$ as test function in the weak formulation of (2.5). Then

$$\int_{\Omega} A(x) \nabla u_n \cdot \nabla T_k(u_n - \varphi) + \int_{\Omega} q(x) u_n T_k(u_n - \varphi) = \int_{\Omega} f_n T_k(u_n - \varphi).$$

For the right hand side we have $T_n \longrightarrow I$ as $n \longrightarrow \infty$ and $f_n = T_n(f) \longrightarrow f$. Thus, $f_n \longrightarrow f$ point wise in $L^1(\Omega)$ and $|f_n T_k(u_n - \varphi)| \le 2k|f|$. Lebesgue theorem implies that

$$\lim_{n \to +\infty} \int_{\Omega} f_n T_k(u_n - \varphi) = \int_{\Omega} f T_k(u - \varphi),$$

while the left hand side can be rewritten as

$$\int_{\Omega} A(x) \nabla T_k(u_n - \varphi) \cdot \nabla T_k(u_n - \varphi) + \int_{\Omega} A(x) \nabla \varphi \cdot T_k(u_n - \varphi) + \int_{\Omega} q(x) u_n T_k(u_n - \varphi).$$

The first term is non-negative, thus, the almost everywhere convergence of ∇u_n to ∇u follows by Fatou lemma,

$$\int_{\Omega} A(x) \nabla T_k(u - \varphi) \cdot \nabla T_k(u - \varphi) \leq \liminf_{n \to +\infty} \left(\int_{\Omega} A(x) \nabla T_k(u_n - \varphi) \cdot \nabla T_k(u_n - \varphi) \right).$$

For the second, since u_n converges to u in $H_0^1(\Omega)$ so $u_n - \varphi$ to $u - \varphi$ in $H_0^1(\Omega)$, then $T_k(u_n - \varphi)$ to $T_k(u - \varphi)$ in $H_0^1(\Omega)$ and since $-\nabla (A(x)\nabla \varphi) \in H_0^1$

$$<-\nabla(A(x)\nabla\varphi), T_k(u_n-\varphi)>\longrightarrow <-\nabla(A(x)\nabla\varphi), T_k(u-\varphi)>$$

i.e.

$$\int_{\Omega} A(x) \nabla \varphi . T_k(u - \varphi) = \lim_{n \to +\infty} \int_{\Omega} A(x) \nabla \varphi . T_k(u_n - \varphi).$$

For third term since

$$|q(x)u_nT_k(u_n-\varphi)| \leq 2k||q||_{\infty}|u|$$

by Lebesgue dominated convergence theorem

$$\int_{\Omega} q(x)u T_k(u - \varphi) = \lim_{n \to +\infty} \int_{\Omega} q(x)u_n T_k(u_n - \varphi).$$

Then by cancelling equal terms:

$$\int_{\varOmega} A(x) \nabla u. \nabla T_k(u-\varphi) + \int_{\varOmega} q(x) u T_k(u-\varphi) \leq \int_{\varOmega} f \, T_k(u-\varphi),$$

so u is an entropy solution of (2.5).

Theorem 4. Let $f \in L^1(\Omega)$ and u be an entropy solution of (2.5) with datum f. Then u belongs to $W_0^{1,q}(\Omega)$ for every $q < \frac{N}{N-1}$ and it is a distributional solution for (2.5).

Proof. Taking $\varphi = 0$ in (2.8)

$$\alpha \int_{\Omega} |\nabla T_k(u)|^2 \le \int_{\Omega} A(x) \nabla u \cdot \nabla T_k(u) + \int_{\Omega} q(x) u T_k(u) = \int_{\Omega} f T_k(u) \le k ||f||_{L^1(\Omega)}.$$

Proof of Theorem 4.1 in [9] shows that $u \in W_0^{1,q}(\Omega)$ for every $q < \frac{N}{N-1}$. We now fix h > 0 and choose $\varphi = T_h(u)$ as test function in (2.8). Then

$$\int_{\Omega} A(x) \nabla u \cdot \nabla T_k(u - T_h(u)) + \int_{\Omega} q(x) u T_k(u - T_h(u)) \le \int_{\Omega} f T_k(u - T_h(u)).$$

Moreover,

$$T_k(u - T_h(u)) = \begin{cases} u - T_h(u) & -k \le u - T_h(u) \le k, \\ k & k \le u - T_h(u), \\ -k & u - T_h(u) \le -k, \end{cases}$$

where

$$u - T_h(u) = \begin{cases} 0 & -h \le u \le h, \\ u - h & h \le u, \\ u + h & u \le -h. \end{cases}$$

Therefore, if $|u| \le h$, then $T_k(u - T_h(u)) = 0$. Moreover, if $h - k \le |u| \le h + k$, then $T_k(u - T_h(u)) = u - T_h(u)$. Thus,

$$\begin{split} \int_{\{h-k \leq |u| \leq h+k\}} A(x) \nabla u \cdot \nabla u + \int_{\{|u| \geq h\}} q(x) u T_k (u - T_h(u)) \\ &= \int_{\{|u| \geq h\}} f T_k (u - T_h(u)) \leq k \int_{\{|u| \geq h\}} |f|. \end{split}$$

Defining $A_h = \{|u| \ge h\}$, $m(A_h) \longrightarrow 0$ as $h \longrightarrow \infty$ (since $u \in W_0^{1,1}(\Omega)$, thus, in $L^1(\Omega)$). From $f \in L^1(\Omega)$,

$$\lim_{h \to +\infty} \int_{\{|u| \ge h\}} |f| = 0,$$

hence by recalling (2.7)

$$\lim_{h \to +\infty} \int_{\{h-k \le |u| \le h+k\}} |\nabla u|^2 = 0.$$
 (2.9)

For h > 0, η in $C_0^1(\Omega)$ and $\varphi = T_h(u) - \eta$ as test function in the entropy formulation (2.8), where $k = \|\eta\|_{L^\infty(\Omega)}$ then

$$\int_{\Omega} A(x) \nabla u \cdot \nabla T_k(u - T_h(u) + \eta) + \int_{\Omega} q(x) u T_k(u - T_h(u) + \eta) \le \int_{\Omega} f T_k(u - T_h(u) + \eta).$$

By Lebesgue dominated theorem and choice of k

$$\lim_{h\to +\infty} \int_{\Omega} f T_k(u - T_h(u) + \eta) = \int_{\Omega} f T_k(\eta) = \int_{\Omega} f \eta.$$

For the left hand side, using again the choice of k

$$\begin{split} & \int_{\{|u| \leq h\}} (A(x) \nabla u . \nabla T_k(u - T_h(u) + \eta) + \int_{\{|u| \leq h\}} q(x) u T_k(u - T_h(u) + \eta)) \\ & + \int_{\{|u| \geq h\}} (A(x) \nabla u . \nabla T_k(u - T_h(u) + \eta) + \int_{\{|u| \geq h\}} q(x) u T_k(u - T_h(u) + \eta)). \end{split}$$

Since A is bounded, so $u \in W_0^{1,1}(\Omega)$ and $\eta \in C_0^1(\Omega)$. For $\{|u| \le h\}$ we have $T_k(u - T_h(u) + \eta) = T_k(\eta)$. Thus, by Lebesgue dominated theorem

$$\lim_{h\to +\infty} \int_{\{|u|\leq h\}} A(x) \nabla u. \nabla T_k(\eta) = \lim_{h\to +\infty} \int_{\{|u|\leq h\}} A(x) \nabla u. \nabla \eta = \int_{\varOmega} A(x) \nabla u. \nabla \eta.$$

Similarly

$$\int_{\{|u| \le h\}} q(x)u T_k(u - T_h(u) + \eta) = \int_{\{|u| \le h\}} q(x)u T_k(\eta) = \int_{\{|u| \le h\}} q(x)u \eta.$$

Then

$$\lim_{h \to +\infty} \int_{\{|u| \le h\}} q(x)u\eta = \int_{\Omega} q(x)u\eta.$$

Since

$$\{|u - T_h(u) + \eta| \le k, |u| \ge h\} \subseteq \{h - 2k \le |u| \le h + 2k\}$$

by (2.7) and choice of k

$$\begin{split} &\int\limits_{\{|u|\geq h\}} A(x)\nabla u.\nabla T_k(u-T_h(u)+\eta) \leq |\int\limits_{\{|u|\geq h\}} A(x)\nabla u.\nabla T_k(u-T_h(u)+\eta)| \\ \leq &\int\limits_{\{|u|\geq h\}} A(x)|\nabla u|.|\nabla T_k(u-T_h(u)+\eta)| \leq \beta \int\limits_{\{h-2k\leq |u|\leq h+2k\}} |\nabla u|(|\nabla u|+|\nabla \eta|). \end{split}$$

Thus by (2.9) and Hölder Inequality

$$\beta \int_{\{h-2k \le |u| \le h+2k\}} |\nabla u| (|\nabla u| + |\nabla \eta|) \le \beta \int_{\{h-2k \le |u| \le h+2k\}} (|\nabla u|^2 + |\nabla u|.|\nabla \eta|)$$

$$\le \beta \left[\int_{\{h-2k \le |u| \le h+2k\}} |\nabla u|^2 \right]^{\frac{1}{2}} \cdot \left[\int_{\{h-2k \le |u| \le h+2k\}} |\nabla \eta|^2 \right]^{\frac{1}{2}} = 0.$$

Therefore,

$$\lim_{h \to +\infty} \int_{\{|u| \ge h\}} (A(x)\nabla u.\nabla T_k(u - T_h(u) + \eta) = 0$$

and

$$|q(x)uT_k(u - T_h(u) + \eta))| \le k ||q||_{\infty} |u|$$

so $q(x)uT_k(u-T_h(u)+\eta)\in L^1(\Omega)$. Thus, $\lim_{h\to+\infty}\int_{\{|u|>h\}}k\|q\|_{\infty}|u|=0$ and

$$\int_{\{|u| \ge h\}} q(x)u T_k(u - T_h(u) + \eta)) = 0$$

Putting together the results,

$$\int_{\Omega} (A(x)\nabla u.\nabla \eta + q(x)u\eta) \le \int_{\Omega} f\eta,$$

for any $\eta \in C_0^1(\Omega)$. Exchanging η with $-\eta$ we obtain the reverse inequality so that u is a distributional solution of (2.5).

Finally, we would show uniqueness of entropy solution.

Theorem 5. Let $f \in L^1(\Omega)$. Then the entropy solution of (2.5) is unique.

Proof. We proceed in three steps.

Step 1 (An entropy solution is a duality solution): Consider g is in $L^{\infty}(\Omega)$ and v is a weak solution of

$$\begin{cases} -div(A^*(x)\nabla v) + q(x)v = g & \text{in } \Omega \\ v = 0 & \text{on } \partial\Omega. \end{cases}$$

According to the Stampacchia's theorem [2], $v \in L^{\infty}(\Omega)$. We repeat the proof of Theorem 4. By choosing $\varphi = T_h(u) - v$ in the entropy formulation, for h > 0 and $k = ||v||_{L^{\infty}(\Omega)}$:

$$\int_{\Omega} A(x) \nabla u \cdot \nabla T_k(u - T_h(u) + v) + \int_{\Omega} q(x) u T_k(u - T_h(u) + v) \le \int_{\Omega} f T_k(u - T_h(u) + v).$$

Similar to theorem 4, from Lebesgue dominated theorem and choose of k,

$$\lim_{h\to+\infty} \int_{\Omega} f T_k(u - T_h(u) + v) = \int_{\Omega} f v,$$

Moreover, the left hand side can be rewritten as

$$\int_{\{|u| \le h\}} (A(x)\nabla u \cdot \nabla v + q(x)uv) + \int_{\{|u| \ge h\}} A(x)\nabla u \cdot \nabla T_k(u - T_h(u) + v) + \int_{\{|u| \ge h\}} q(x)uT_k(u - T_h(u) + v).$$

For the second and the third term, similar to the proof of Theorem 4 (using (2.9))

$$\lim_{h \to +\infty} \int_{\{|u| \ge h\}} A(x) \nabla u . \nabla T_k(u - T_h(u) + v) + \int_{\{|u| \ge h\}} q(x) u T_k(u - T_h(u) + v) = 0,$$

and the first term can be rewritten as

$$\int_{\{|u| \le h\}} (A(x)\nabla u \cdot \nabla v + q(x)uv) = \int_{\Omega} (A(x)\nabla T_h(u) \cdot \nabla v + q(x)T_h(u)v)$$
$$= \int_{\Omega} (A^*(x)\nabla v \cdot \nabla T_h(u) + q(x)vT_h(u)) = \int_{\Omega} gT_h(u),$$

since $T_h(u) \in H_0^1(\Omega)$ can be chosen as test function in the problem solved by v. Then, by Lebesgue dominated theorem,

$$\int_{\{|u|\leq h\}} (A(x)\nabla u.\nabla v + q(x)uv) = \lim_{h\to +\infty} \int_{\{|u|\leq h\}} (A(x)\nabla u.\nabla v + q(x)uv) = \int_{\varOmega} gu.$$

Putting together the results, we obtain

$$\int_{\Omega} gu \le \int_{\Omega} fv.$$

Exchanging g with -g (and so v with -v, by linearity), we obtain the reverse inequality, therefore, u is a duality solution of (2.5).

Step 2 (An entropy solution is a solution obtained by approximation (See [10])): Suppose that $f_n \in L^{\infty}(\Omega)$ be a sequence of functions that converges to $f \in L^1(\Omega)$, and suppose that u_n be the solution of

$$\begin{cases} -div(A^*(x)\nabla u_n) + q(x)u_n = f_n & \text{in } \Omega \\ u_n = 0 & \text{on } \partial\Omega \end{cases}$$

 $u_n \in H_0^1(\Omega) \cap L^\infty(\Omega)$, so that $\varphi = u_n$ is an admissible choice in the entropy formulation for u. Thus

$$\int_{\Omega} A(x) \nabla u \cdot \nabla T_k(u - u_n) + \int_{\Omega} q(x) u T_k(u - u_n) \le \int_{\Omega} f T_k(u - u_n).$$

On the other hand, $T_k(u-u_n)$ belongs to $H_0^1(\Omega)$ and so it can be chosen as test function in the weak formulation for u_n . Then

$$\int_{\Omega} A(x) \nabla u_n \cdot \nabla T_k(u - u_n) + \int_{\Omega} q(x) u_n T_k(u - u_n) = \int_{\Omega} f_n T_k(u - u_n).$$

Thus,

$$\int_{\Omega} A(x) \nabla (u - u_n) \cdot \nabla T_k(u - u_n) + \int_{\Omega} q(x) (u - u_n) T_k(u - u_n) \le \int_{\Omega} (f - f_n) T_k(u - u_n).$$

By (2.7) and lemma 2

$$\alpha \int_{\Omega} |\nabla T_k(u - u_n)|^2 \le \int_{\Omega} A(x) \nabla (u - u_n) \cdot \nabla T_k(u - u_n) + \int_{\Omega} q(x) (u - u_n) T_k(u - u_n)$$

$$\le k \| (f - f_n) \|_{L^1(\Omega)}.$$

approaching $n \longrightarrow \infty$, $T_k(u-u_n) \longrightarrow 0$ in $H^1_0(\Omega)$ and this implies that u_n converges to the entropy solution u. From solutions obtained by approximation are unique, hence, the entropy solution u is unique.

Step 3 (There exists at most an entropy solution): Here, we follow [2]. Suppose that u and v be two entropy solutions of (2.5), with the same datum f, and let h > k > 0. Then $\varphi = T_h(v)$ is admissible in the entropy formulation for u and $\varphi = T_h(u)$ is admissible in the entropy formulation for v. Thus,

$$\int_{\Omega} A(x) \nabla u \cdot \nabla T_k(u - T_h(v)) + \int_{\Omega} q(x) u T_k(u - T_h(v)) \le \int_{\Omega} f T_k(u - T_h(v)),$$

and

$$\int_{\Omega} A(x) \nabla v \cdot \nabla T_k(v - T_h(u)) + \int_{\Omega} q(x) v T_k(v - T_h(u)) \le \int_{\Omega} f T_k(v - T_h(u)).$$

Summing these two inequalities,

$$\begin{split} &\int_{\varOmega} A(x) \nabla u. \nabla T_k(u - T_h(v)) + \int_{\varOmega} q(x) u T_k(u - T_h(v)) \\ &+ \int_{\varOmega} A(x) \nabla v. \nabla T_k(v - T_h(u)) + \int_{\varOmega} q(x) v T_k(v - T_h(u)), \end{split}$$

in the left hand side is less than or equal to

$$\int_{\Omega} f(T_k(u - T_h(v)) + T_k(v - T_h(u)))$$

in the right hand side. From oddness of $T_k(s)$ and Lebesgue dominated theorem,

$$\lim_{h \to +\infty} \int_{\Omega} f(T_k(u - T_h(v)) + T_k(v - T_h(u))) = 0.$$

Hence,

$$\begin{split} &\limsup_{h\to +\infty} \int_{\Omega} A(x) \nabla u. \nabla T_k(u - T_h(v)) + \int_{\Omega} q(x) u T_k(u - T_h(v)) \\ &+ \int_{\Omega} A(x) \nabla v. \nabla T_k(v - T_h(u)) + \int_{\Omega} q(x) u T_k(v - T_h(u)) \leq 0. \end{split}$$

For the sake of simplicity we will suppose from now on that $u \ge 0$ and $v \ge 0$, since the proof turns out to be considerably simplified. We refer to [2] for the proof in the general case of changing sign solutions. We set

$$\Omega = \{ u \le h, v \le h \} \cup \{ u > h, v \le h \} \cup \{ v > h \} = E_0^h \cup F_1^h \cup F_2^h,$$

and

$$\Omega = \{ v \le h, u \le h \} \cup \{ v > h, u \le h \} \cup \{ u > h \} = E_0^h \cup F_3^h \cup F_4^h.$$

Then

$$\begin{split} \int_{E_0^h} A(x) \nabla u . \nabla T_k(u - T_h(v)) + \int_{E_0^h} q(x) u T_k(u - T_h(v)) \\ &= \int_{E_0^h} A(x) \nabla u . \nabla T_k(u - v) + \int_{E_0^h} q(x) u T_k(u - v). \end{split}$$

Similarly,

$$\begin{split} \int_{E_0^h} A(x) \nabla v \cdot \nabla T_k(v - T_h(u)) + \int_{E_0^h} q(x) v T_k(v - T_h(u)) \\ &= \int_{E_0^h} A(x) \nabla v \cdot \nabla T_k(v - u) + \int_{E_0^h} q(x) v T_k(v - u), \end{split}$$

On F_1^h ,

$$\int_{F_1^h} A(x) \nabla u. \nabla T_k(u - T_h(v)) = \int_{\{u > h, v \leq h, 0 \leq u - v \leq k\}} A(x) \nabla u. \nabla (u - v).$$

On $\{u > h, v \le h, 0 \le u - v \le k\}$ it valid $h < u \le h + k$ and $h - k < v \le h$, so

$$\left| \int_{F_1^h} A(x) \nabla u \cdot \nabla T_k(u - T_h(v)) \right| \leq \beta \int_{\{h < u \leq h + k, h - k < v \leq h\}} |\nabla u| |\nabla v|.$$

By (2.9)

$$\lim_{h \to +\infty} \int_{\{h < u \le h + k\}} |\nabla u|^2 = 0,$$

and

$$\lim_{h \to +\infty} \int_{\{h-k < v \le h\}} |\nabla v|^2 = 0,$$

Hence, by Hölder inequality

$$\lim_{h\to +\infty} \left| \int_{F_1^h} A(x) \nabla u . \nabla T_k (u - T_h(v)) \right| = 0;$$

and $|q(x)uT_k(u-T_h(v))| \le k ||q||_{\infty} |u|$, so $q(x)uT_k(u-T_h(v)) \in L^1(\Omega)$. Thus,

$$\lim_{h \to +\infty} \int_{F_1^h} k \|q\|_{\infty} |u| = 0,$$

728

hence,

$$\int_{F_h^h} q(x)uT_k(u - T_h(v)) = 0.$$

Repeating the same for F_3^h we have

$$\lim_{h \to +\infty} \left| \int_{F_3^h} A(x) \nabla v \cdot \nabla T_k(v - T_h(u)) \right| = 0.$$

and

$$\int_{F_3^h} q(x)v T_k(v - T_h(u)) = 0$$

Moreover on F_2^h ,

$$\begin{split} &\int_{F_2^h} (A(x)\nabla u.\nabla T_k(u-T_h(v))+q(x)uT_k(u-T_h(v)))\\ &=\int_{\{v>h,0\leq u< h+k\}} (A(x)\nabla u.\nabla u)+q(x)uu)\geq 0, \end{split}$$

and similarly on F_4^h ,

$$\begin{split} &\int_{F_4^h} (A(x)\nabla v.\nabla T_k(v-T_h(u))+q(x)vT_k(v-T_h(u)))\\ &=\int_{\{u>h,0\leq v< h+k\}} (A(x)\nabla v.\nabla v)+q(x)vv)\geq 0, \end{split}$$

Putting the results together,

$$\limsup_{h\to +\infty} \int_{E_0^h} (A(x)\nabla(u-v).\nabla T_k(u-v) + q(x)(u-v)T_k(u-v)) \le 0,$$

which, by Fatou lemma, implies, from E_0^h "fills" Ω as $h \longrightarrow +\infty$,

$$0 \le \int_{\Omega} (A(x)\nabla(u-v).\nabla T_k(u-v) + q(x)(u-v)T_k(u-v)) \le 0,$$

Using (2.7) and lemma 2 we have $\nabla T_k(u-v) \equiv 0$, thus u=v.

Remark 2. In special case if

$$A = \begin{bmatrix} \alpha_1 & 0 & 0 & \dots & 0 \\ 0 & \alpha_2 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \alpha_n \end{bmatrix}$$

and $q(x) = \lambda$, problem (2.5) can be rewritten

$$\left\{ \begin{array}{ll} -div(A(x)\nabla u) + q(x)u = f & \text{ in } \Omega \\ u = 0 & \text{ on } \partial\Omega \end{array} \right. \Longrightarrow \left\{ \begin{array}{ll} -\Delta_{\alpha}u + \lambda u = f & \text{ in } \Omega \\ u = 0 & \text{ on } \partial\Omega \end{array} \right.$$

Then above theorems are satisfied for this problem.

REFERENCES

- [1] M. Badiale and E. Serra, *Semilinear elliptic equations for beginners. Existence results via the variational approach.* London: Springer, 2011. doi: 10.1007/978-0-85729-227-8.
- [2] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. L. VÁZQUEZ, "An 11-theory of existence and uniqueness of solutions of nonlinear elliptic equations," *Annali della Scuola Normale Superiore di Pisa. Classe di scienze*, vol. 22, no. 2, pp. 241–273, 1995.
- [3] T. Cazenave, "An introduction to semilinear elliptic equations," *Editora do Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro*, vol. 164, 2006.
- [4] M. Cozzi, "Interior regularity of solutions of non-local equations in Sobolev and Nikol'skii spaces." Ann. Mat. Pura Appl. (4), vol. 196, no. 2, pp. 555–578, 2017, doi: 10.1007/s10231-016-0586-3.
- [5] S. Gustafson, K. Kang, and T.-P. Tsai, "Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations." *Commun. Math. Phys.*, vol. 273, no. 1, pp. 161–176, 2007, doi: 10.1007/s00220-007-0214-6.
- [6] Y.-H. Lee and I. Sim, "Global bifurcation phenomena for singular one-dimensional *p*-Laplacian." J. Differ. Equations, vol. 229, no. 1, pp. 229–256, 2006, doi: 10.1016/j.jde.2006.03.021.
- [7] R. Ma, "Nodal solutions of second-order boundary value problems with superlinear or sublinear nonlinearities." *Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods*, vol. 66, no. 4, pp. 950–961, 2007, doi: 10.1016/j.na.2005.12.036.
- [8] R. Ma and B. Thompson, "Multiplicity results for second-order two-point boundary value problems with superlinear or sublinear nonlinearities." J. Math. Anal. Appl., vol. 303, no. 2, pp. 726–735, 2005, doi: 10.1016/j.jmaa.2004.09.002.
- [9] L. Orsina, "Elliptic equations with measure data."
- [10] M. M. Porzio, "A uniqueness result for monotone elliptic problems." C. R., Math., Acad. Sci. Paris, vol. 337, no. 5, pp. 313–316, 2003, doi: 10.1016/S1631-073X(03)00347-9.
- [11] J. Siljander and J. M. Urbano, "On the interior regularity of weak solutions to the 2-D in-compressible Euler equations." *Calc. Var. Partial Differ. Equ.*, vol. 56, no. 5, p. 19, 2017, doi: 10.1007/s00526-017-1231-8.

Authors' addresses

M. Alizadeh

University of Mazandaran, factuly of Mathematic sciences, Babolsar, Iran *E-mail address:* az.mohsen@gmail.com

M. Alimohammady

University of Mazandaran, factuly of Mathematic sciences, Babolsar, Iran *E-mail address:* amohsen@umz.ac.ir