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EFFICIENT APPROXIMATION FOR COUNTING OF FORMAL
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Abstract. The number of formal concepts generated from the input context is an important para-
meter in the cost functions of concept formation algorithms. The calculation of concept count
for any arbitrary context is a hard, NP-complete problem and only rough approximation methods
can be found in the literature to solve this problem. This paper introduces an efficient numerical
approximation algorithm for contexts where attribute probabilities are independent from the ob-
jects instances. The preconditions required by the approximation method are usually met in the
FCA applications, thus the proposed method provides an efficient tool for practical complexity
analysis, too.
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1. INTRODUCTION

In the development of Formal Concept Analysis (FCA) applications, a key issue is
the cost efficiency of concept set and concept lattice management. The cost function
[12] [14] usually contains the following key parameters:

� N : number of objects
� M : number of attributes
� L: the average number of attributes related to an arbitrary object (context

density)
� C : total number of concepts generated.

Although the value C is a function of the context, parameter C is considered as an
independent base parameter. The reason of this simplification is that the relationship
to calculate C is too complex, no simple analytical description is known.

This paper introduces a probabilistic model and a related efficient numerical ap-
proximation method to determine the count of generated concepts. The probabilistic
model is based on the model presented in [9], where the goal of the work was to de-
termine the significance of the generated formal concepts. Unlike the original paper,
our model is aimed at an efficient approximation of the total number of concepts.
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The proposed method can be used among others in complexity analysis of FCA al-
gorithms in many application areas.

The FCA provides tools to manage and to investigate the concept set generated
from an input formal context. A formal context is defined as a triplet < G ;M;I >,
where I is a binary relation between G (set of objects) and M (set of attributes). The
property .g;m/ 2 I is met if and only if the attribute m is true for the object g. Two
derivation operators are introduced as mappings between the powersets of G and M.
For A� G ;B �M:

f .A/D AI
D fm 2Mj8g 2 A W .g;m/ 2 I /g ;

g.B/D BI
D fg 2 G j8m 2 B W .g;m/ 2 I /g :

For a context < G ;M;I >, a formal concept is defined as a pair .A;B/, where A �
G , B �M, A D BI , B D AI are met. The composition of these derivations are
closure operators, A 7! AII ;A� G and respectively B 7! BII ;B �M. Regarding
the derivation operator, the components of a formal concept satisfy the A D AII ,
B DBII conditions, too. The A component is called the extent of the concept, while
B is the intent part.

On the set of formal concepts C generated from the context < G ;M;I >, a partial
ordering relation is defined in the following way:

.A1;B1/� .A2;B2/, A1 � A2:

It can be shown that A1 �A2 if and only if B2 � B1. The obtained partially ordered
set .C ;�/ is in fact a complete lattice, called the concept lattice of the context <
G ;M;I >.

The size of C is a key factor in the cost analysis of FCA algorithms. Due to the
complex relationship between the size of C and the context parameters, there is no
simple and efficient approximation to determine the total number of concepts. The
first related result was presented by Ganter and Wille in [7] showing that the size of C

may increase exponentially in the parametersN andM . Beside the parametersN and
M , also the density of the context plays an important role in the complexity analysis.
A context with large values ofN andM , but having a sparse I, yields a small concept
set. One of the first analytical results in counting the concepts can be found in [16]
presented by Schutt. The paper provides the following upper approximation for the
count value:

C � 3=2 �2
p
jI jC1

�1:

Later, Kuznetsov has been proved in [10] that calculation algorithm for the total num-
ber of concepts belongs to the NP-complete problem class.

A more sharper theoretical upper bound was shown by Prisner in [15] and by
Albano and Chornomaz in [1]. They have investigated a special type of contexts,
the contranomial scale free contexts. For a given set S , the context < S ;S ;¤ > is a
contranomial scale context. If the set S contains k elements then the context belongs
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to the class N c.k/ . For any N c.k/-free context, the upper bound for the concept
number is given with

C � .jGjjM j/k�1
C1:

According to the literature, there are only few proposals to provide a precise ap-
proximation method. One important result is presented in [4], where a sampling
approach was used to estimate the concept count. The sampling method traverses the
concept lattice by random walk and it works with a series of increasing sub-contexts.
The candidate concepts are checked whether they are contained in other subcontexts
already tested or not. The main drawback of the proposed algorithm is the high cal-
culation cost as the number of candidate concepts for sampling is very high.

Due to these efficiency problems, our method uses a different approach. We take
a simplified probability model where the attribute occurence probabilities are inde-
pendent from the objects. This independence model was used also in [9] and [6],
where the goal was to calculate the relevance of the discovered concepts.

The applied data matrix model is based on a fixed matrix marginal approach
presented also in [8]. In the approach, the sums of the columns (the probabilities
of the attributes) are fixed. The article presents also a novel algorithm calculating the
concept probability index, but the cost of the proposed algorithm is too high for large
practical data contexts. The concept probability index can be used also in the fuzzy
FCA models [5] to provide an uncertainty level for knowledge engineering.

An interesting generalization of the probability model can be found in [3] to de-
termine the basic level of concepts generated by FCA. Basic level concepts are those
concepts which are used to refer to objects of our everyday life. The basic level
can be seen as a compromise between the accuracy of classification at a maximally
general level and the predictive power of a maximally specific level [13]. Using the
example given in [3], when we refer to a particular dog then we usually say ’It is a
dog.’ rather than ’This is a German Shepherd.’ or ’This is a mammal.’. The elements
of the basic level concept sets are characterized by the fact that they have signific-
antly larger cohesion than its upper neighbors and they have only a slightly smaller
cohesion than its lower neighbors. A similar research was presented also in [11] to
calculate concept interestingness using the concept probability, concept stability and
concept robustness as the main components of the interestingness measure.

2. CONCEPT PROBABILITY MODEL

A basic assumption in our model is that the input context is generated randomly.
The probability that object i is linked to attribute j is denoted by

pij :

We assume that
8j; i1; i2 W pi1;j D pi2;j :
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The elements of the context matrix are either 1 (the attribute is true) or 0. A concept
corresponds to a special sub-matrix of the context matrix. An example is shown in
Figure 1, where K denotes the context matrix, A is the concept subcontext, while
B;C;D;E are the complementary sub-contexts of A. Although the concept subcon-
text is a single rectangle in the example, the subcontexts are usually fragmented.

A sub-context A corresponds to a formal concept if and only if:
� all elements in A are set to 1
� for each column in sub-contexts B , D, one of the elements is equal to 0
� for each row in sub-contexts C;E, one of the elements is equal to 0.

FIGURE 1. Example context and sub-contexts

We introduce a random variable �A for every candidate sub-contexts A, where the
value is set to 1 if the A belongs to a concept in the current experiment. Otherwise,
the value is equal to 0. The mean value of �A shows the probability that A belongs
to a concept. Next, we take a new random variable � which is equal to the sum of
the candidate level random variables. The total number of concepts in the context is
estimated with the expected value of � .

The calculation of the mean value for �A is based on the following considerations.
First, we know that all matrix elements in A must be equal to 1 an the corresponding
probability is equal to Y

.i;j /2A

pi;j :

The probability that every column in the region B [D contains at least one element
with value 0: Y

o2B[D

.1�
Y

.i;j /2o

pi;j /;

where o denotes a column. The corresponding probability that every row in the region
C [E contains at least one element with value 0 can be given withY

s2C[E

.1�
Y

.i;j /2s

pi;j /:
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where s is a row element. Based on these considerations, the mean value of � , i.e. the
sum over the set of all possible candidate sub-contexts is equal to:

C D
X

A�K

Y
.i;j /2A

pi;j

Y
o2B[D

.1�
Y

.i;j /2o

pi;j /
Y

s2C[E

.1�
Y

.i;j /2s

pi;j /: (2.1)

This expression shows our base formula for the approximation of concept count.

2.1. Uniform distribution

In this case, we assume that the probability for every object-attribute pair is the
same:

8i;j W pi;j D p:

The corresponding formula for the approximation concept count can be transformed
into the following simple formula:

C D

NX
nD1

MX
mD1

 
N

n

! 
M

m

!
pn�m.1�pn/M�m.1�pm/N�n: (2.2)

This formula can be implemented with the following R code:

cptcnt = function(N,M,P) {
val = 0;
for (Nx in 1:N) {
for (My in 1:M) {
val = val + getval(N,M,Nx,My,P)

}
}
return (val);

}

getval = function (N, M, Nx, My,P) {
c = choose(N , Nx)*choose(M , My)*(Pˆ(Nx*My))*
(1 - PˆNx)ˆ(M - My)*(1 - PˆMy)ˆ(N - Nx);

return (c);
}

To demonstrate the accuracy of the presented model, Figure 2 shows the result of
a comparison test, where the theoretical calculation is compared with the experi-
mental measurement. The figure shows the dependency of the calculated and meas-
ured concept counts (C ) in dependency form attribute probability (P ). For the eperi-
mental measurement, we used our Java implementation of the InClose [2] algorithm.
The test is based on random generation of the context using the following parameter
settings: N=15, M=10; P=0.1..1.0 and the length of the runs to calculate the mean
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value is 5. The dashed line corresponds to the measured values. From the viewpoint
of the practice, the result shows a good estimation accuracy.

FIGURE 2. Accuracy test of the approximation formula

2.2. Not uniform distribution

Next, we turn to the general case, when different attributes may have different
probability values. On the other hand, according to our base condition, this probabil-
ity is independent from the single objects:

8j; i1; i2 W pi1;j D pi2;j :

In this case, the general formula can be transformed into the following form:

C D

NX
nD1

 
N

n

! X
Y�T

Y
j2Y

pn
j

Y
j2B[D

.1�pn
j /.1�

Y
j2Y

pj /
N�n: (2.3)

In the expression, the symbol Y denotes an arbitrary subset of the attributes. In
the following figures, the results of some comparison tests can be observed. In the
tests, the results of the theoretical calculations are compared with the experimental
measurements. Figure 3 is related to the parameter set (N=100; M=8,10,12,14,16;
P=0.1-0.3). As the comparisons show the theoretical model provides a very good
approximation.

3. SAMPLING-BASED COST REDUCTION

Although, the approximation algorithm presented in the previous section, provides
a good accuracy, it has a significant weakness: it has a very high execution cost. The
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FIGURE 3. Accuracy test of the approximation formula

algorithm requires a large amount of time for smaller problems too. For example, tak-
ing the context with parameterset (N=100,M=16, P=0.1..0.3), the runtime is over
967 seconds. Figure 4 shows the corresponding dependency between the execution
time and the size of the attribute set (M ). In order to apply the approximation al-
gorithms to real-life size problems, the base algorithm must be updated to an optim-
ized version.

The full enumeration of the candidates implemented in the baseline version of the
approximation algorithm is not suitable to handle larger contexts. The aim of the
optimization is to eliminate some candidates in the evaluation process. The initial
formula containing full enumeration is equal to

C D

NX
nD1

 
N

n

! X
Y�T

Y
j2Y

pn
j

Y
j2B[D

.1�pn
j /.1�

Y
j2Y

pj /
N�n: (3.1)

This formula processes all candidates ordered by the sub-context size. Our analysis
shows that the candidates with different size values usually have very different prob-
ability weights. Considering all the candidates with size parameter .n;m/, the cor-
responding sub-total is given with

Cn;m D

 
N

n

! X
Y�T;jY jDm

Y
j2Y

pn
j

Y
j2B[D

.1�pn
j /.1�

Y
j2Y

pj /
N�n: (3.2)

Investigating the cntn;m values for different .n;m/ parameters, we can see that there
are dominating .n;m/ pairs where the values are significantly higher than the values
on the complement area. Fig F5 shows the distribution for the context (N=30,M=14,
P1=0.2,P2=0.6). The x and y axes correspond to n and m, while the ´ axis denotes
the count value. In this example, the dominance area involves only small .n;m/
values.
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FIGURE 4. Execution cost function

FIGURE 5. The Cn;m distribution

The position of the dominance area depends on the attribute probabilities of the
input context. The Figures 6-9 show the maximum positions for different P values
taking uniform attribute probability distribution. The parameter of the input context
is (N=40,M=14,P=(0.2,0.6,0.8,0.96)).

An important observation is that the dominance zone for the not very dense con-
texts is always near the origo position. In the case of not uniform attribute probability
distribution, the dominance zone is an area near the corresponding uniform domin-
ance positions. This case is shown in Figure 10, where the input context is generated
with the parameterset( N=10,M=14,P=0.6-0.8).

Based on the presented properties of the dominance zones, the implemented op-
timization applies the following steps:

� For the calculation of a Ci;j component, a sampling technique is applied
instead of full enumeration of the corresponding candidates.
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FIGURE 6. The Cn;m

distribution (P = 0.2)
FIGURE 7. The Cn;m

distribution (P = 0.6)

FIGURE 8. The Cn;m

distribution (P = 0.8)
FIGURE 9. The Cn;m

distribution (P = 0.96)

FIGURE 10. The Cn;m distribution

� The enumeration of the candidates is restricted only to the dominance zones,
the candidates outside the dominance zone are eliminated.

The sampling process applies the method of simple sampling without replacement
approach. Using this method, the corresponding confidence interval can be given
with

4 Nxn D t
Sn
p
n

r
.1�

n

N
/;

where n: size of the sample, N : size of the population, Nxn: mean value, Sn: standard
deviation, t : t-score value. Using this formula and the desired t-score value, we can
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determine an optimum sample size with the following formula:

no D
N

1C N4Nx

t2S2
n

:

Our proposed algorithm uses this formula to determine the length of the sampling. To
determine the required apriori values, we use a pre-sampling phase with a moderate
fixed sample size. The estimation of the deviation value is based on the result of this
pre-sampling phase.

According to our experiences, the initial pre-sampling phase generates usually an
approximation value significantly higher than the real deviation. To optimize this pro-
cess, we have implemented a mechanism to stop the sampling process if the deviation
of the last time window is below of the threshold. Thus there are two termination cri-
teria in the sampling process :

� the length of the sampling is equal to the calculated;
� the deviation of the last time window is below a the threshold.

The second cost reduction method restricts the full enumeration on the parameter
space .n;m/ to the dominance region. In general case, this reduction is performed
with the following algorithm:

� build up a coarse grid on the .n;m/ parameter space
� calculate Cn;m for each node of the grid
� determine .n0;m0/D argmax.m;n/fcntn;mg

� select a dominance factor 1 > ˛ > 0
� process all elements .n;m/ which are connected to .n0;m0/.

A connectivity relationship is used to determine the dominance zone as a maximal
cluster. The relationship is defined on the usual way. Two elements .ns;ms/, .nl ;ml/

are connected if
� Cns ;ms

� ˛ �Cn0;m0
;Cnl ;ml

� ˛ �Cn0;m0

� there exists a sequence of neighboring connected elements:.n1 D ns;m1 D

ms/; .n2;m2/; .n2;m3/; :::; .ni D ne;mi Dme/.
The method merges only those elements .n;m/ into the dominance zone whereCn;m�

˛ �Cn0;m0
. The exploration starts at the element .n0;m0/. At a given position it will

test all the neighboring elements. The method implements a greedy algorithms and it
terminates if no new element with high Cn;m value can be discovered. The sampling
process will be executed for all elements of the discovered dominance zone.

In the case of sparse contexts, the general algorithm can be reduced to a faster
variant. In this case, the dominance zone is located near the origo position. In the
practical applications, the contexts usually are sparse contexts, otherwise we would
manage exponential large set of concepts. For the sparse context the dominance zone
is explored in this way:

� initially, we take the element (0,0) and calculate C0;0
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� a nested loop on the elements is started, where both the object and attribute
indexes start at value 0. Both loops terminate if the increase of the accumu-
lated cnt value is below a threshold. If the increase of the accumulated value
is very low, then the element last tested is outside the dominance value.

The proposed method is implemented as an algorithm returning the expected mean
value and the corresponding deviation value. The deviation is estimated with the fol-
lowing approach. At a given element .n;m/, we determine first the standard deviation
of the sample values:

s D

qPl
i

.fi�
Nf /2

l
p
l

:

The standard deviation related to cntn;m is equal to

sn;m D

 
M

m

! 
N

n

!
s:

Considering the whole element space, the total deviation can be calculated with

S D

sX
.m;n/

s2
m;n:

4. TEST RESULTS

Based on the performed tests, we can say that the proposed algorithm provides a
unique and fast approximation tool to determine the expected number of concepts for
contexts where the attribute probabilities are independent from each others and from
the object instances. Some typical test results are shown in Table 1. The meaning of
the columns is the following: Ce: measured average, Ca: value by base approxima-
tion; Cao: value by optimized base approximation; te: time for concept enumeration,
ta: time of base approximation; t imeao: time of optimized base approximation; Pris-
ner: the value of the Priosner approximationIn the table some values are left blank,
because they could not be calculated due to high execution cost or to high memory
demand. The test results show that the baseline upper approximation provide a very
inaccurate values, they cannot be used for practical cost estimations.

Table 2 shows some values related to the approximation of the standard deviation
Ce: measured average, ada: measured deviation, Cao: calculated average, sdao:
calculated deviation)

The approximation algorithm, can be used also for extreme parameter values where
the available concept enumeration methods would require extreme large execution
time. The initial approximation algorithm with evaluation of all components can be
used only for small sized contexts .N < 3000;M < 30/. The best concept set enu-
meration algorithms can process also larger contexts, in our test environment, the
threshold value is about .C < 5000000/. On the other hand, the proposed optimized
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TABLE 1. Test results on cost efficiency of the approximation method

N M P Ce Cao te tao Prisner
3000 50 0.1 23889 23460 1.42 0.002 1025

1000 30 0.1 1910 1850 0.11 0.001 1013

3000 100 0.1 183210 189700 7.26 0.002 1043

10000 100 0.1 901331 906413 35.9 0.002 1060

100000 1000 0.1 - 4.71e9 - 0.002 10120

100000 5000 0.01 - 8.1e6 - 0.003 1090

1000000 2000 0.05 - 1.77e12 - 0.004 10140

100 12 0.1-0.3 120 120 0.02 0.1 106

100 16 0.1-0.3 231 223 0.02 0.1 107

200 13 0.1-0.2 220 162 0.03 0.1 108

1000 13 0.1-0.2 461 422 0.06 0.2 1010

10000 13 0.1-0.2 1446 1336 0.18 0.25 1012

10000 30 0.1-0.2 49954 49367 1.55 0.28 1020

TABLE 2. Test results on standard deviation of the approximation method

N M P Ce sde Cao sdao

1000 100 0.1-0.2 238000 12707 247583 12870
5000 100 0.1-0.2 3056012 168400 3029816 144998

method can be applied for larger contexts too .N < 1000000000;M < 10000;C <

1e25/ with a maximal execution time of 5 seconds. This execution time data shows
that the algorithm is very efficient and it can be used for larger complexity ana-
lysis too. Next figures presents some complexity functions for larger contexts, Fig-
ure 11: .N D 10000::100000;M D 200;P D 0:1/, Figure 12:.N D 10000;M D
100::1000;P D 0:1/ and Figure 13: .N D 10000;M D 200;P D 0:02::0:24/.

5. CONCLUSIONS

The calculation of the concept count for any arbitrary context is a hard, NP-
complete problem and only rough approximation methods can be found in the lit-
erature to solve this problem. The paper proposes a novel algorithmic approach to
approximate the total number of concepts where the attribute probabilities are inde-
pendent from each others and from the single objects. The algorithm is very efficient
especially for rare contexts which are mainly used in the practical FCA applications.
The proposed algorithm provides a better practical approximation with a significantly
better execution cost than the baseline approximation [16], [15]. The method can be
used among others also for complexity analysis of large scale FCA problems.



COUNTING OF FORMAL CONCEPTS 995

FIGURE 11. Mean and deviation of concept count

FIGURE 12. Mean and deviation of concept count

FIGURE 13. Mean and deviation of concept count
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