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Abstract. In this paper, we introduce the concept of a pair .f;h/ called upper class of type II and
˛ˇ -contractive mappings. We obtain that all the corresponding established results of Hussain
et al. [7] are immediately consequences of our main result. Our main result generalizes and
modifies several existing results in literature. Also, an example is given to support the main
result.
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1. INTRODUCTION AND PRELIMINARIES

It is well known that Banach contraction principle [2] is one of the most interest-
ing and useful result in nonlinear analysis and whole mathematics in general. This
famous result has also very large applications in various fields such as engineering,
economic, computer sciences, and many others. This theorem has been extended and
generalized by various authors (see, e.g., [7–9, 11, 12]).

In an attempt to generalize this significant principle, many researchers have exten-
ded the following result in certain directions.

Theorem 1 ([3–6, 8]). Let .X;d/ be a complete metric space and T W X ! X

be a mapping. Assume that there exists a function ˇ W Œ0;1/! Œ0;1� such that, for
any bounded sequence ftng of positive real numbers, ˇ.tn/! 1 implies tn! 0 and
d.T x;Ty/� ˇ.d.x;y//d.x;y/ for all x;y 2X . Then T has a unique fixed point.

In this paper we introduce a concept of pair .f;h/ which we denote as upper class
of type II and ˛ˇ -contractive mappings to show the theorems in [7] are immediately
consequences of our main approach.

Now, we introduce some definitions and new notations which will be used in the
sequel.
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Definition 1. We say that h W Œ0;C1/3! R is a function of subclass of type II if
it is continuous and

x;y � 1) h.1;1;´/� h.x;y;´/

Example 1. Define hWRC�RC�RC! R by:
(a) h.x;y;´/D .´C l/xy ; l > 1;
(b) h.x;y;´/D .xyC l/´; l > 1;
(c) h.x;y;´/D ´;
(d) h.x;y;´/D xmyn´p; m;n;p 2N;
(e) h.x;y;´/D xmCxnypCyq

3
´k; m;n;p;q;k 2N

for all x;y;´ 2 RC: Then h is a function of subclass of type II.

Definition 2. Suppose that f W Œ0;C1/2! R and h W Œ0;C1/3! R. The pair
.f;h/ is called upper class of type II if f is a continuous function, h a subclass of
type II with

0� s � 1) f .s; t/� f .1; t/;

and h.1;1;´/� f .s; t/) ´� st:

Example 2. Define hWRC�RC�RC! R and F WRC�RC! R by:
(a) h.x;y;´/D .´C l/xy ; l > 1; F .s; t/D stC l ;
(b) h.x;y;´/D .xyC l/´; l > 1; F .s; t/D .1C l/st ;
(c) h.x;y;´/D ´; F.s; t/D st ;
(d) h.x;y;´/D xmyn´p; m;n;p 2N; F .s; t/D sptp

(e) h.x;y;´/D xmCxnypCyq

3
´k; m;n;p;q;k 2N; F .s; t/D sktk

for all x;y;´;s; t 2 RC. Then the pair .F ;h/ is an upper class of type II.

Definition 3. Let .X;d/ be a metric space and T W X ! X be a mapping. A
nonempty subset F of X is called invariant under T if T x 2 F , for every x 2 F:

Definition 4. Let T W X ! X be a mapping, F a nonempty subset of X which
is invariant under T and ˛ W F �F ! Œ0;C1/. We say that T is an ˛F -admissible
mapping if ˛.x; y/� 1 implies ˛.T x; Ty/� 1; for all x; y 2 F:

Remark 1. A mapping T is called an ˛-admissible mapping (see [12]) if we take
F DX in Definition 4.

Definition 5. A function  W Œ0;C1/! Œ0;C1/ is called altering distance func-
tion if the following properties are satisfied:

(1)  is continuous and non-decreasing;
(2)  �1.f0g/D 0.

We denote 	 the set of all altering distance functions.

The following result will be used in the sequel.
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Lemma 1 ([1, 9–11]). Suppose .X;d/ is a metric space. Let fxng be a sequence
in X such that d.xn;xnC1/! 0 as n!1. If fxng is not a Cauchy sequence then
there exist an " > 0 and sequences fm.k/g and fn.k/g of positive integers such that
the following sequences tend to " when k!1:

d.xm.k/;xn.k//; d.xm.k/�1;xn.k/C1/; d.xm.k/�1;xn.k//;

d.xm.k/�1;xn.k/�1/; d.xm.k/C1;xn.k/C1/:

2. MAIN RESULTS

In this section by using the new concept we consider, discuss, improve and gener-
alize the main results from [7]. It is worth mentioning here that in our approach the
implication ˇ .tn/! 1) tn! 0 holds also for unbounded sequences .tn/: There-
fore, our new results generalize the recent results of [7] in several directions.

Definition 6. Let .X;d/ be a metric space, F a nonempty subset ofX , T WX!X

and ˛ WF �F ! Œ0;C1/. A mapping T is said to be ˛ˇ -contractive mapping if there
exists a ˇ W Œ0;C1/! Œ0; 1/ with the property that tn! 0 whenever ˇ .tn/! 1 as
well as for all x;y 2 F; the following condition holds:

h.˛ .x;T x/ ;˛ .y;Ty/ ; .d.T x;Ty///� f .ˇ.d.x;y//; .d.x;y/// ; (2.1)

where the pair .f;h/ is a upper class of type II and  2 	 .

Theorem 2. Let .X;d/ be a complete metric space and F be a nonempty closed
subset of X . Suppose that T W X ! X is an ˛F -admissible mapping and F is in-
variant under T . Further assume that T is an ˛ˇ -admissible contractive mapping.
Suppose that there exists x0 2 F such that ˛.x0;T x0/ � 1 and one of the following
conditions holds,
(a) T is continuous.
(b) if fxng is a sequence in F such that xn ! ´, ˛.xn;xnC1/ � 1, for all n, then
˛.´;T ´/� 1.

Then T has a fixed point.

Proof. Let x0 2 F such that ˛.x0;T x0/ � 1. Now, we construct a sequence fxng
in F by xnDT xn�1, for n�1, such that ˛.xn;xnC1/D ˛.xn;T xn/� 1. Substituting
x D xn�1 and y D xn in (2.1), we obtain

h.1;1; .d.xn;xnC1///� h.˛ .xn�1;xn/ ;˛ .xn;xnC1/ ; .d .xn;xnC1///

� f .ˇ.d.xn�1;xn//; .d.xn�1;xn///

which implies that

 .d .xn;xnC1//� ˇ.d.xn�1;xn// .d.xn�1;xn// (2.2)

�  .d.xn�1;xn//:

As  2 	 , we have
d .xn;xnC1/� d.xn�1;xn/; (2.3)
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for every n 2N. Therefore, fd .xn;xnC1/g is a decreasing sequence, so there exists
some r � 0, such that

lim
n!1

d .xn;xnC1/D r: (2.4)

Further from (2.2), we have
 .d .xn;xnC1//

 .d.xn�1;xn//
� ˇ.d.xn�1;xn//� 1:

Letting n!1 in the above inequality, we have lim
n!1

ˇ.d.xn�1;xn//D 1, and this
implies that

lim
n!1

d .xn;xnC1/D 0: (2.5)

Now, we will show that fxng is a Cauchy sequence. Suppose, to the contrary, that
fxng is not a Cauchy sequence.

By Lemma 1, there exists ı >0 for which we can find subsequences fxnkg and
fxmkg of fxng with nk>mk>k such that

lim
k!1

d.xnk ;xmk /D lim
k!1

d.xnk�1;xmk�1/D ı: (2.6)

Setting x D xmk�1 and y D xnk�1 in (2.1), we obtain

h
�
1;1; 

�
d.xnk ;xmk /

��
� h

�
˛
�
xmk�1;xmk

�
;˛
�
xnk�1;xnk

�
; 
�
d.xnk ;xmk /

��
� f .ˇ

�
d
�
xmk�1;xnk�1

��
; 
�
d
�
xmk�1;xnk�1

��
/;

i.e.  
�
d.xnk ;xmk /

�
� ˇ

�
d
�
xmk�1;xnk�1

��
 
�
d
�
xmk�1;xnk�1

��
, which implies

that
 
�
d.xnk ;xmk /

�
 
�
d
�
xmk�1;xnk�1

�� � ˇ �d �xmk�1;xnk�1��� 1: (2.7)

Letting k!1 and using (2.6) and (2.7), we obtain

lim
k!1

d.xnk�1;xmk�1/D 0� ı; (2.8)

which is a contradiction.
This shows that fxng is a Cauchy sequence and hence it is convergent in the com-

plete set F . Hence xn! ´ 2 F as n!1.
First, we suppose that T is continuous. Therefore, we have

´D lim
n!1

xnC1 D lim
n!1

T xn D T lim
n!1

xn D T ´:

Next, we suppose that condition (b) holds. Therefore, ˛.´;T ´/ D 1. Now, by
(2.1), we have

h.1;1; .d .T ´;xnC1///� h.˛ .´;T ´/ ;˛ .xn;T xn/ ; .d .T ´;xnC1///

� f .ˇ .d .´;xn// ; .d .´;xn///;

which implies that

 .d .T ´;xnC1//� ˇ .d .´;xn// .d .´;xn// :
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Taking n!1 and using the properties of  and ˇ, we have d.T ´;´/D 0, that is,
´D T ´. �

3. SOME CONSEQUENCES OF THE MAIN RESULT

If h.x;y;´/D.´C l/xy ; l > 1, f .x;y/ D xy C l ,  .t/D t , and F D X in
Theorem 2, we have Theorem 4 of [7].

Corollary 1. Let .X;d/ be a complete metric space and T W X ! X be an ˛-
admissible mapping. Assume that there exists a function ˇ W Œ0;1/! Œ0;1/ with the
property that tn! 0 whenever ˇ .tn/! 1, such that

.d.T x;Ty/Cl/˛.x;T x/˛.y;Ty/ � ˇ .d .x;y//d .x;y/C l

for all x; y 2X . Suppose that either
(a) T is continuous, or
(b) if fxng is a sequence in X such that xn ! ´, ˛.xn;xnC1/ � 1 for all n, then
˛.´;T ´/� 1:

If there exists x0 2X such that ˛.x0;T x0/� 1, then T has a fixed point.

If h.x;y;´/D.xyC l/´; l >1, f .x;y/D .1Cm/xy , mD1,  .t/D t , and F D
X in Theorem 2, we have Theorem 6 of [7].

Corollary 2. Let .X;d/ be a complete metric space and T W X ! X be an ˛-
admissible mapping. Assume that there exists a function ˇ W Œ0;1/! Œ0; 1/ with the
property that tn! 0 whenever ˇ .tn/! 1, such that

.˛ .x;T x/˛ .y;Ty/Cl/d.T x;Ty/ � 2ˇ.d.x;y//d.x;y/

for all x; y 2X . Suppose that either
(a) T is continuous, or
(b) if fxng is a sequence in X such that xn ! ´, ˛.xn;xnC1/ � 1 for all n, then
˛.´;T ´/� 1

If there exists x0 2X such that ˛.x0; T x0/� 1, then T has a fixed point.

If h . x;y;´/ D xy´; f .x;y/ D xy; .t/D t , and F D X in Theorem 2, we
have Theorem 8 of [7].

Corollary 3. Let .X;d/ be a complete metric space and T W X ! X be an ˛-
admissible mapping. Assume that there exists a function ˇ W Œ0;1/! Œ0; 1/ with the
property that tn! 0 whenever ˇ .tn/! 1, such that

˛.x;T x/˛.y;Ty/d.T x;Ty/� ˇ.d.x;y//d.x;y/

for all x; y 2X . Suppose that either
(a) T is continuous, or
(b) if fxng is a sequence in X such that xn ! ´, ˛.xn;xnC1/ � 1 for all n, then
˛.´;T ´/� 1:

If there exists x0 2X such that ˛.x0;T x0/� 1, then T has a fixed point.
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Remark 2. Let h.x;y;´/ D xy´, f .x;y/ D xy,  .t/ D t , ˛.x;y/ D 1, F D X
for all x;y;´ 2X and t > 0. Then we get Theorem 1.

Example 3. Let X D Œ1;1/ be endowed with a usual metric d.x;y/D jx�yj for
all x;y 2X and T WX !X be defined by

T .x/D

(
xC14
8

1� x � 4
x2

4
; x > 4

Define the function ˛; ˇ; and  given by

˛.x;y/D

�
1; x;y 2 Œ1;4�

0; otherwise

ˇ.t/D
1

1C t
;  .t/D t

Then T is ˛-admissible and we obtain 1� y � x � 4

˛ .x;T x/˛ .y;Ty/d.T x;Ty/D d

�
xC14

8
;
yC14

8

�
D
1

8
jx�yj

� ˇ.d.x;y// .d.x;y//

Hence, T satisfies all the assumptions of Theorem 2 with h.x;y;´/ D xy´ and
f .s; t/D st and thus it has a fixed point (which is x D 2).
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