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DISTANCE k-DOMINATION IN SOME CYCLE RELATED
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Abstract. In this paper we determine distance k�domination number of graph obtained by du-
plication of vertices altogether by edges in cycle Cn, splitting graph of cycle Cn as well as graph
obtained by duplication of edges altogether by vertices in cycle Cn.
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1. INTRODUCTION

Graph G D .V .G/;E.G//, we mean simple, finite, connected and undirected
graph. The open neighbourhood N.v/ of v 2 V.G/ is the set of all vertices adja-
cent to v. That is, N.v/ D fu 2 V.G/=uv 2 E.G/g. The closed neighbourhood of
v 2 V.G/ is the set NŒv�D N.v/[fvg. The distance d.u;v/ between two vertices
u and v is the length of the shortest uv�path in G, if exists, otherwise d.u;v/D1.
The open k�neighbourhood Nk.v/ of a vertex v 2 V.G/ is the set of all vertices
of G which are different from v and at a distance at most k from v in G. That is
Nk.v/ D fu 2 V.G/=d.u;v/ � kg. The closed k�neighbourhood set is defined as
NkŒv�D Nk.v/[fvg. It is obvious that N.v/D N1.v/. A set D � V.G/ is called
a dominating set if every vertex in V.G/�D is adjacent to at least one vertex in
D. For terminology and notation not defined here we follow West [13] and Haynes
et al. [3]. The concept of distance dominating set was initiated by Slater [7] with
special reference to communication network, while the term distance k�dominating
set was given by Henning et al. [5]. For an integer k � 1, D � V.G/ is a distance
k�dominating set of G, if every vertex in V.G/�D is within the distance k from
some vertex v 2 D. That is, NkŒD� D V.G/. The minimum cardinality among all
the distance k�dominating sets of G is called the distance k�domination number
of G and it is denoted by 
k.G/. It is obvious that 
.G/ D 
1.G/. A distance
k�dominating set of cardinality 
k.G/ is called a 
k�set. Many reserchers have
explored the concept of distance k�domination in graphs. The distance domination
number for cartesian products of two paths has been investigated by Klobucar [6]
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while the distance domination in the context of spanning tree of the graph is dis-
cussed by Griggs and Hutchinson [2]. The bounds on the distance two-domination
number and the classes of graphs attaining these bounds are reported in Sridharan et
al. [8]. Tian and Xu [9] have established upper bound for distance k�domination for
connected graph G and show that 
k.G/ �

j
n��Ck�1

k

k
. The same authors in [10]

have studied average distance and distance domination number and established an
upper bound of average distance in terms of distance domination. Fischermann and
Volkmann [1] have characterized the graphs whose distance n�domination number
is equal to half of their number of vertices, when the diameter is greater or equal to
2n�1. Vaidya and Kothari [12] have investigated distance k�domination number of
total graph, shadow graph and middle graph of path Pn. The same authors in [11]
have investigated distance k�domination number for the graphs obtained by graph
operations on some standard graphs. For more bibliographic references on distance
k�domination, the readers are advised to refer a survey article by Henning [4].

2. RESULTS

Proposition 1 ([4]). Let k � 1 and D be a distance k-dominating set of a graph
G. Then D is a minimal distance k-dominating set of G if and only if each d 2D
has at least one of the following two properties hold.
(1) There exist a vertex v 2 V.G/�D such that Nk.v/\D D fdg.
(2) The vertex d is at distance at least kC1 from every other vertex d of D in G.

Definition 1. Duplication of a vertex v by a new edge e D v0v00 of graph G pro-
duces a new graph G0 such that N.v0/\N.v00/D fvg.

Theorem 1. If G is a graph obtained by duplication of vertices altogether by
edges in cycle Cn .n� 2k�1/ then 
k.G/D 1.

Proof. LetG be a graph obtained by duplication of vertices v1;v2; : : : ;vn by edges

u2i�1u2i .1 � i � n/ in cycle Cn. Then D D

8<:v�n
2

�
9=; is distance k-dominating set

of G as n� 2k�1. Hence 
k.G/D 1. �

Theorem 2. If G is a graph obtained by duplication of vertices altogether by
edges in cycle Cn .n > 2k�1/ then


k.G/D

8̂̂<̂
:̂
j n

2k�1

k
C1; for n� 1;2; :::;2k�2.mod 2k�1/

n

2k�1
for n� 0. mod 2k�1/

Proof. LetG be a graph obtained by duplication of vertices v1;v2; : : : ;vn by edges
u2i�1u2i .1 � i � n/ in cycle Cn. One can observe that vi ’s dominate more ver-
tices than ui ’s. Here vertices from vn�.k�1/ to vkC1, u2n�.2k�3/ to u2n and u1
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to u2k are dominated by a vertex v1 at a distance k. Also d.v1;u2k/ D k, and
d.u2n�.2k�3/;v1/D k. Hence 2k� 1 consecutive vertices from ui ’s dominated by
only one vertex v1. Hence


k.G/�
j n

2k�1

k
(2.1)

Now depending upon the number of vertices of Cn, consider the following subsets,
For n� 1;2; : : : ;2k�2.mod 2k�1/

D D
n
v1C.2k�1/j =0� j �

j n

2k�1

ko
; jDj D

j n

2k�1

k
C1;

for n� 0.mod 2k�1/

D D
n
v1C.2k�1/j =0� j <

n

2k�1

o
; jDj D

n

2k�1
:

We claim that each D is a distance k-dominating set as
For j ¤ 0,

d.v1C.2k�1/j ;viC.2k�1/j /� k; where �kC1� i � kC1; i ¤ 1

d.v1C.2k�1/j ;uiC.2k�1/j /� k; where .3�2k/C .2k�1/j � i � 2kC .2k�1/j

and for j D 0,

d.v1;vi /� k; where n�kC1� i � n; 2� i � kC1

d.v1;ui /� k; where 1� i � 2k; 2n� .2k�3/� i � 2n

Therefore for j ¤ 0,

Nk.v1C.2k�1/j /D fv2C.2k�1/j ;v3C.2k�1/j ; : : : ;v.kC1/C.2k�1/j ; : : : ;v.2k�1/j ;

v.2k�1/j�1; : : : ;v.2k�1/j�.k�1/;u1C2.2k�1/j ;u2.1C.2k�1/j /;

: : : ;u2kC2..2k�1/j /;u.3�2k/C2..2k�1/j /;u.4�2k/C2..2k�1/j /;

: : : ;u2.2k�1/j g:

While for j D 0,

Nk.v1/D fv2;v3; : : : ;vkC1;vn�.k�1/;vn�k; : : : ;vn;u1;u2; : : : ;u2k;u2n;

u2n�1; : : : ;u2n�.2k�3/g:

Then NkŒD�DNkŒv1�[NkŒv1C.2k�1/j �D V.G/.
For some j D j1, v1C.2k�1/j1

2D and for some j D j2, v1C.2k�1/j2
2D,

d.v1C.2k�1/j1
;v1C.2k�1/j2

/D .j2�j1/.2k�1/� kC1:

Which implies that every vertex d of D is at a distance kC1 apart from every other
vertex of D in G. Thus by Proposition 1 above defined D is a minimal distance
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k�dominating set of G and by expression 2.1 it is also of minimum cardinality for
n > 2k�1. Hence


k.G/D

8̂̂<̂
:̂
j n

2k�1

k
C1; for n� 1;2; :::;2k�2.mod 2k�1/

n

2k�1
for n� 0 .mod 2k�1/

�

Illustration 1. Distance 3�dominating set in graph G obtained by duplication of
vertices in cycle C22 altogether by edges is shown by solid vertices in FIGURE 1.
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Definition 2. For a graph G, the splitting graph S 0.G/ of graph G is obtained by
adding a new vertex v0 corresponding to each vertex v of G such that N.v/DN.v0/.

Theorem 3. If n� 2kC1, k ¤ 1, then 
k.S 0.Cn//D 1.

Proof. Let v1;v2; : : : ;vn be the vertices of cycle Cn and u1;u2; : : : ;un be the ver-
tices corresponding to v1;v2; : : : ;vn which are added to obtain S 0.Cn/. Then D D8<:v�n

2

�
9=; is distance k-dominating set of S 0.Cn/ as n� 2kC1. Hence 
k.S 0.Cn//D

1. �

Theorem 4. If n > 2kC1 then


k.S
0.Cn//D

8̂̂̂<̂
ˆ̂:
�

n

2kC1

�
C1; for n� 1;2; :::;2k .mod 2kC1/

n

2kC1
for n� 0 .mod 2kC1/

Proof. Let v1;v2; : : : ;vn be the vertices of cycle Cn and u1;u2; : : : ;un be the ver-
tices corresponding to v1;v2; : : : ;vn which are added to obtain S 0.Cn/. One can
observe that vi ’s dominate more vertices than ui ’s at a distance k. In graph S 0.Cn/



DISTANCE k-DOMINATION IN SOME CYCLE RELATED GRAPHS 1227

vertices vn�.k�1/ to vkC1 and un�.k�1/ to unCk are dominated by a vertex v1 at
a distance k. Also d.vn�.k�1/;vkC1/D 2kC 1; and d.un�.k�1/;ukC1/D 2kC 1.
Hence 2kC1 consecutive vertices from vi ’s and .2kC1/ consecutive vertices from
ui ’s dominated by only one vertex at a distance k. Which implies that


k
�
S 0.Cn/

�
�

�
n

2kC1

�
(2.2)

Now depending upon the number of vertices of Cn, consider the following subsets,
For n� 1;2; : : : ;2k .mod 2kC1/

D D

�
v1C.2kC1/j =0� j �

�
n

2kC1

��
; jDj D

�
n

2kC1

�
C1;

for n� 0 .mod 2kC1/

D D

�
v1C.2kC1/j =0� j <

n

2kC1

�
; jDj D

n

2kC1
:

We claim that each D is a distance k-dominating set as
for j ¤ 0,

d.v1C.2kC1/j ;viC.2kC1/j /� k; where �kC1� i � kC1; i ¤ 1

d.v1C.2kC1/j ;uiC.2kC1/j /� k; where �kC1� i � kC1

while for j D 0

d.v1;vi /� k; where n�kC1� i � n; 1� i � kC1

d.v1;ui /� k; where 1� i � kC1; n�kC1� i � n

Therefore j ¤ 0,

Nk.v1C.2kC1/j /D fv2C.2kC1/j ;v3C.2kC1/j ; : : : ;v.kC1/C.2kC1/j ;v.2kC1/j ;

v.2kC1/j�1; : : : ;v.2kC1/j�.k�1/;u1C.2kC1/j ;u2C.2kC1/j ; : : : ;

u.kC1/C.2kC1/j ;u.2kC1/j ;u.2kC1/j�1; : : : ;u.2kC1/j�.k�1/g:

While for j D 0,

Nk.v1/D fv2;v3; : : : ;vkC1;vn;vn�1;vn�.�kC1/;u1;u2; : : : ;ukC1;un�kC1;

un�kC2; : : : ;ung:

Then NkŒD�DNkŒv1�[NkŒv1C.2kC1/j �D V.S 0.Cn//.
For some j D j1, v1C.2kC1/j1

2D and for some j D j2, v1C.2kC1/j2
2D,

d.v1C.2kC1/j1
;v1C.2kC1/j2

/D .j2�j1/.2kC1/� kC1

This implies that every vertex d of D is at a distance kC 1 apart from every other
vertex ofD in S 0.Cn/. Thus by Proposition 1 above definedD is a minimal distance
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k�dominating set of G and by expression 2.2 it is also of minimum cardinality for
n > 2k�1. Hence


k.S
0.Cn//D

8̂̂̂<̂
ˆ̂:
�

n

2kC1

�
C1; for n� 1;2; :::;2k .mod 2kC1/

n

2kC1
for n� 0 .mod 2kC1/

�

Illustration 2. Distance 4�dominating set in S 0.C20/ is shown by solid vertices
in FIGURE 2.

1 2 3 4 5 6 7 8 9

u20

u19 u18 u17 u16 u15 u14 u13 u12 u11

u10

v
1

v
2

v
3

v
4

v
5

v
6 v

7
v

8
v

9

v
11

v
19

v
18

v
17

v
16

v
15

v
14

v
13

v
12

v
10v

20

FIGURE 2.

Definition 3. Duplication of an edge e D uv by a new vertex w in a graph G
produces a new graph G0 such that N.w/D fu;vg.

Theorem 5. IfG is a graph obtained by duplication of edges altogether by vertices
in cycle Cn
.n� 2k/ then 
k.G/D 1.

Proof. Let G be a graph obtained by duplication of edges viviC1 altogether by

vertices ui , .1 � i < n/ in cycle Cn. Then

8<:v�n
2

�
9=; is distance k-dominating set of

G as n� 2k. Hence 
k.G/D 1. �
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Theorem 6. IfG is a graph obtained by duplication of edges altogether by vertices
in cycle Cn .n > 2k/ then


k.G/D

8̂̂<̂
:̂
j n
2k

k
C1; forn� 1;2; :::;2k�1.mod 2k/

n

2k
forn� 0.mod 2k/

Proof. Let G be a graph obtained by duplication of edges viviC1 altogether by
vertices ui .1� i < n/ in cycle Cn. One can observe that vi ’s dominate more vertices
than ui ’s at a distance k. In graph G vertices vn�k to vkC1 and un�.k�1/ to uk are
dominated by a vertex v1 at a distance k. Also d.un�.k�1/;v1/D k and d.v1;uk/D
k. Hence 2k consecutive vertices of ui ’s are dominated by only one vertex at a
distance k. Hence


k.G/�
j n
2k

k
(2.3)

Now depending upon the number of vertices of Cn, consider the following subsets.
For n� 1;2; : : : ;2k�1 .mod 2k/

D D
n
v1C.2k/j =0� j �

j n
2k

ko
; jDj D

j n
2k

k
C1;

for n� 0 .mod 2k/

D D
n
v1C.2k/j =0� j <

n

2k

o
; jDj D

n

2k
:

Now we claim that each D is a distance k-dominating set as
for j ¤ 0,

d.v1C2kj ;viC2kj /� k; where �kC1� i � kC1; i ¤ 1;

d.v1C2kj ;uiC2kj /� k; where �kC1� i � k

while for j D 0,

d.v1;vi /� k; where n�kC1� i � n; 2� i � kC1

d.v1;ui /� k; where n�kC1� i � n; 1� i � k

Therefore for j ¤ 0,

Nk.v1C2kj /D fv2C2kj ;v3C2kj ; : : : ;v.kC1/C2kj ;v2kj ;v2kj�1; : : : ;v2kj�.k�1/;

u1C2kj ;u2C2kj ; : : : ;ukC2kj ;u2kj ;u2kj�1; : : : ;u2kj�.k�1/g:

While for j D 0,

Nk.v1/D fv2;v3; : : : ;vkC1;vn�kC1;vn�kC2; : : : ;vn;u1;u2; : : : ;uk;un�kC1;

un�kC2; : : : ;ung:
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This implies that NkŒD�DNkŒv1�[NkŒv1C.2k/j �D V.G/.
For some j D j1, v1C.2k/j1

2D and for some j D j2, v1C.2k/j2
2D,

d.v1C.2k/j1
;v1C.2k/j2

/D .j2�j1/2k � kC1

Which implies that every vertex d of D is at a distance kC1 apart from every other
vertex of D in G. Thus by Proposition 1 above defined D is a minimal distance
k�dominating set of G and by expression 2.3 it is also of minimum cardinality for
n > 2k. Hence


k.G/D

8̂̂<̂
:̂
j n
2k

k
C1; forn� 1;2; :::;2k�1.mod 2k/

n

2k
forn� 0.mod 2k/

�

Illustration 3. Distance 2�dominating set in graph G obtained by duplication of
edges in C18 altogether by vertices is shown by solid vertices in FIGURE 3.
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