
1 
 

Emergent functions of proteins in non-stoichiometric supramolecular assemblies 

  

Rita Pancsa1, Eva Schad1, Agnes Tantos1, Peter Tompa1,2,3 

  

1Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, 

Budapest, Hungary 

2VIB Center for Structural Biology (CSB), Brussels, Belgium 

3Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium, 

  

  

*REVISED Manuscript (text UNmarked)
Click here to view linked References

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/188836555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ees.elsevier.com/bbapro/viewRCResults.aspx?pdf=1&docID=11224&rev=1&fileID=306835&msid={43EA33D1-082B-41B5-A7FA-6A3A71D8F710}


2 
 

Abstract  

Proteins are the basic functional units of the cell, carrying out myriads of functions essential for life. 

There are countless reports in molecular cell biology addressing the functioning of proteins under 

physiological and pathological conditions, aiming to understand life at the atomistic-molecular level 

and thereby being able to develop remedies against diseases. The central theme in most of these 

studies is that the functional unit under study is the protein itself. Recent rapid progress has radically 

challenged and extended this protein-function paradigm, by demonstrating that novel function(s) 

may emerge when proteins form dynamic and non-stoichiometric supramolecular assemblies. There 

is an increasing number of cases for such collective functions, such as targeting, localization, 

protection/shielding and filtering effects, as exemplified by signaling complexes and prions, 

biominerals and mucus, amphibian adhesions and bacterial biofilms, and a broad range of 

membraneless organelles (bio-condensates) formed by liquid-liquid phase separation in the cell. In 

this short review, we show that such non-stoichiometric organization may derive from the 

heterogeneity of the system, a mismatch in valency and/or geometry of the partners, and/or intrinsic 

structural disorder and multivalency of the component proteins. Either way, the resulting functional 

features cannot be simply described by, or predicted from, the properties of the isolated single 

protein(s), as they belong to the collection of proteins.  

  

Keywords 

emergent function, dynamic assembly, biomolecular condensate, contextual function, intrinsically 

disordered protein, phase separation, membraneless organelle 

  

Introduction 

Proteins are protagonists of life. They carry out a broad diversity of functions, from catalyzing 

chemical reactions and transporting key metabolites to recognizing signaling molecules and 

regulating gene expression. What they do is described by their “function”, a term that has been used 

and abused excessively in the literature. Actually, the function of a protein can be approached at 

different levels, such as describing the chemical reaction, e.g. catalysis or binding, it carries out 

(molecular function, MF), or the cellular process it takes part in (biological process, BP) [1]. The first 

is usually approached by characterizing the protein in the test tube, whereas the second can be 

described by manipulating the protein in cellular studies [2]. Ingenious high-throughput “omics” 

approaches are also at our disposal for these various endeavors [3, 4]. 
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Our general notion in approaching the function of an isolated protein is the structure-function 

paradigm, which describes the function of a protein at the atomistic level by its structure. It is 

underlined by more than 100k structures in the Protein Data Bank [5], also supported by high-

throughput omics (structural genomics) programs [6]. Its descriptive power is also attested by the 

success of rational structure-based approaches of drug design [7]. The rather recent discovery of 

intrinsically disordered proteins/regions (IDPs/IDRs) does not contradict, only extends, this 

paradigm, suggesting that function can also emanate from a highly dynamic conformational 

ensemble, devoid of a well-defined, dominant structure [8, 9].  

The functional insight extracted from structures is also important in appreciating the cellular (BP) 

function of a protein, which can be considered as a contextual (cellular or organismal) readout of the 

MF it carries out. In this sense, the BP function of a protein is an “emergent” property, which is only 

realized in the complex cellular environment. It follows from this caveat that the “function” of 

exactly the same protein may actually be different in different cells or cell states.  

The broad assumption in all these considerations is that a well-defined function can be ascribed to 

each protein. This is, however, a definite oversimplification, as many proteins have more than one 

functions, at both levels [10, 11]. A simple functional variant may result from switching the function 

of the protein by post-translational modification or alternative splicing, but true multifunctionality 

(e.g. gene sharing, moonlighting) is also witnessed when the protein has the capacity to do 

completely different things in the cell. In retrospect, this is of no great surprise as many proteins 

have complex domain organization, and/or are capable of interacting with hundreds of interaction 

partners [4], i.e., it would appear rather naïve to assume that they always do the same in all different 

molecular settings. It is of note, though, that diversity of functions can also be the sign of the lack of 

absolute specificity, i.e. promiscuity [12]. 

Either way, whether well-defined or promiscuous, we traditionally ascribe function(s) to individual 

proteins, i.e., consider them as the functional units of the cell. This view, however is somewhat 

challenged by functional complexes, which form a unit, the function of which cannot be ascribed to 

any of its constituent subunits. To name just one example, the anaphase promoting complex (APC) 

has 13 subunits in human cells and functions as an E3 ubiquitin ligase that marks proteins for 

degradation in conjunction with the progression of cell cycle [13]. Its emergent function cannot be 

simply derived from that of its subunits, it only arises when the complex is fully assembled, i.e., is a 

collective property of the proteins arranged in a particular way in time and space. While our 

knowledge may be insufficient to predict it from those of its building blocks, we can at least 

rationalize their assembly and collective functioning on structural means, by assuming their 

sequential assembly from structurally complementary building blocks [14]. Thus, according to the 



4 
 

traditional view, the functional unit of life is the protein, either in itself or as part of a multi-subunit 

complex with a well-defined stoichiometry and structure. 

In this review we survey a variety of recent results showing that physical attraction can also drive the 

assembly of multidomain and ID proteins into higher-order non-stoichiometric assemblies [15, 16]. 

As defined through common features of the diverse examples shown, non-stoichiometric assemblies 

are dense entities made of hundreds or thousands of protein (and other components) confined in 

space by multivalent interactions, lacking internal symmetry and strict number and/or stoichiometry 

of components. In these, the collective action of molecules convey a broad range of emergent 

functions [17, 18]. These assemblies are usually very dynamic and can have different structural states 

ranging from highly ordered structures (amyloids, prions), through open and extendable complexes 

(signaling complexes, signalosomes) to liquids/hydrogels and biominerals (assemblages, bio-

condensates, liquid droplets, membraneless organelles (MOs), adhesive secretomes). By describing 

these various systems, we illustrate this emerging and probably general principle, and also point out 

that similar physicochemical phenomena have already been observed and described many times in 

other areas, such as surface chemistry [19], soft-matter physics [20], colloid chemistry [21] and even 

in membrane biology [22] and cell biology [23]. In these analogous systems, it is also generally 

accepted that the formation of such assemblies entails the appearance of emergent features, not 

apparent at the level of isolated components. Through all these examples and functional 

considerations, we purport that the collective functioning of dynamic protein assemblies represents 

a novel, general paradigm in molecular cell biology. 

 

Amyloids, prions and signalosomes 

 

Perhaps the simplest structural manifestation of this principle is the appearance of amyloids and 

prions, which may be considered as supramolecular signaling complexes [24]. Whereas traditionally 

thought of as pathological self-organizing protein assemblies, we now have many examples of 

“physiological” prions, which derive their altered functional state from their extended orderly 

assembled state termed amyloid (Figure 1Aa). Its structure is most often a β-sheet extended 

indefinitely in one dimension, composed of perpendicular β-strands [25]. In the amyloid core, there 

is a characteristic tight packing with self-complementing “steric zipper” interactions (Figure 1Ab), 

from which the solvent is excluded and is supported by an extended H-bond network between side 

chains [26]. 

Amyloids, pathological and physiological prions 
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Amyloids/prions are traditionally thought of as pathological entities, as exemplified by the human 

prion protein, or amyloidogenic proteins associated with neurodegeneration, such as alpha-

synuclein in Parkinson’s disease or tau protein in Alzheimer’s disease [24, 27]. The self-stimulated 

transition to an altered structural and functional state, and the emergent functional properties of the 

amyloid are also harnessed for functional purposes in cells [28]. This phenomenon is most 

extensively characterized in yeast, as exemplified by Ure2, which can promote the uptake of poor 

nitrogen sources [29] and Sup35, which in the prion state confers a new phenotype on cells by 

suppressing stop-codons and facilitating translation readthrough [30]. In higher organisms, a novel 

function emerging from the amyloid state explains the functioning of the neuron-specific 

cytoplasmic polyadenylation-element binding protein (neuronal CPEB) in the marine snail A. 

californica, involved in memory formation [31]. In human, the Pmel17 protein forms fibrous striations 

inside melanosomes to support melanin granule formation [32]. Also, the receptor-interacting 

serine/threonine-protein kinases 1 and 3 (RIP1 and RIP3) form a heterodimeric, fibrillar functional 

amyloid signaling complex mediating tumor necrosis factor-induced programmed cell necrosis. The 

amyloid state of the RIP1/3 homotypic interaction motifs is a prerequisite for function, as mutations 

affecting their amyloid core compromise kinase activation and subsequent necrosis [33]. 

In all these cases, the function of prions/amyloids differs from that of their components, and may 

appear due to the suppression of the function of associated functional domains, or form the 

emergent physicochemical properties of the amyloid itself. Furthermore, in case of amyloids the 

degree and extent of supramolecular organization can also influence the functional readout, since 

while the conversion of a peptide/protein into amyloid state creates a novel pathological or 

functional entity, further assembly of the fibrils or precursor oligomers into large assemblies often 

neutralizes their toxicity, leading to an additional functional state [34-36]. 

 

Signalosomes and signaling complexes 

Complex multidomain proteins feature in the formation of other kinds of functional, non-

stoichiometric supramolecular condensates, which appear in signal transduction. These signaling 

complexes are very large, open-ended assemblies of lose structural organization and composition 

[37, 38]. As probably follows from their ill-defined stoichiometries, these signalosomes are very 

dynamic, they quickly respond to signaling cues by extension, contraction and morphological 

rearrangements and shedding or incorporating novel components, often linked with signaling post-

translational modifications [37]. 
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A prime example of such higher-order signaling assemblies is exemplified by the head-to-tail 

polymerization of signaling proteins (Figure 1B) containing a Phox and Bem1 (PB1), dishevelled 

(Dvl), homologous (DIX), and sterile alpha motif (SAM) domains [39]. These are encountered in 

distinct signaling processes, such as autophagy, ephrin signaling and the Wnt signaling pathway. 

The primary functional outcome of their dynamic and extendable, often competing domain-domain 

associations results from high local concentrations and the ensuing rapid signal propagation, also 

effectively showcasing enzyme-substrate targeting, specificity and substrate selection and signal 

amplification [37, 38]. 

Even more complex and heterogeneous organization appears in postsynaptic densities (PSD) in 

neurons [40, 41]. Excitatory (glutamatergic) synapses in the mammalian brain are usually localized 

on dendritic spines, where a very high concentration of receptors, scaffolds, signaling proteins and 

cytoskeletal elements assemble into an organized electron-dense structure, PSD (Figure 1C, 1D). 

The major organizational proteins of PSD are large multidomain scaffold proteins, such as PSD95, 

which engage in multivalent domain-domain and domain-motif interactions with many other 

proteins. Anchored to this scaffold are receptors and channel proteins (e.g. glutamate-activated 

NMDA receptor, AMPA receptor, K+-channel), signaling enzymes (e.g., Ca2+-CaM dependent kinase 

II (CaMKII), Fyn Src kinase, neuronal nitric oxide synthase...), their anchoring proteins (e.g. AKAP, 

GKAP, Shank, etc...), cytoskeletal proteins (e.g. actin, cortactin), and other signaling proteins (e.g. 

synGAP, SPAR, IRSp53, etc...) (cf. Figure 1C). 

Due to its complexity, PSD has multiple emergent properties, such as large ion fluxes, effective 

channel regulation by localized modifying enzymes, and localized processing of signaling 

information [41]. Co-localization of enzymes with their substrates (such as receptors and channels) 

provides specificity of reactions and modifications (cf. next section and Figure 2). A further 

emergent function of physical origin, metaplasticity, has also been proposed for PSD [42]. In short, 

plasticity of synaptic communication means the general ability of the nervous system to change 

synaptic strength, primarily by PTM-altered activity of synaptic receptor ion channels, such as the 

NMDA channel [43]. It is much less appreciated that plasticity itself is also plastic, i.e. the prior 

history of the synapse changes its ability to undergo plastic changes. As a highly emergent function 

of the PSD, it was suggested that metaplasticity results from the extremely high local concentration 

of autophosphorylated CaMKII molecules, which generates a local electrostatic field high enough to 

affect membrane potential and alter the direction of synaptic plasticity [42]. 

 

Liquid-liquid phase separation 
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Organelles are mesoscale compartments within cells that fulfil a specific function and are separately 

enclosed either within their own lipid bilayer (membranous organelles) or by phase boundaries 

(membraneless organelles) [44]. Membraneless organelles (MOs) are non-stoichiometric 

supramolecular condensates that largely influence the normal operation [45, 46] as well as stress 

tolerance of living cells [15]. Although several of them have been known to exist for a very long time 

(e.g. the nucleolus, nuclear speckles or the Balbiani body), it has been only very recently recognized 

that they form without membranes through liquid-liquid phase separation (LLPS), a process driven 

by multivalent weak interactions between IDPs/IDRs [47-49]. As described by classical polymer 

theories [50], polymers above a critical concentration may separate from solution to form a 

polymer-rich and solvent-rich phase by LLPS. On an atomic scale, protein LLPS can be achieved 

through distinct, and most often co-occurring mechanisms [16, 51]: simple coacervation of 

hydrophobic residues, cation-pi interactions between G/SYG/S, RG-GR and FG-GF motifs, 

electrostatic attraction and repulsion between regions of alternating charge patterns, or multivalent 

domain-motif interactions. Such supramolecular condensates confer a wide range of functional 

advantages on cells [52] due to their unique material properties and responsiveness [44]: they are 

highly diverse in physical properties, shape, size, viscosity, molecular composition, subcellular 

location and functions [15, 52]. They may contain hundreds of different proteins and thousands of 

mRNAs, as shown in omics analyses of the composition of stress granules and P-bodies [53, 54]. 

Their assembly can be dictated by dedicated regions of one or a few constitutive components, the 

drivers of LLPS (scaffolds) [55]. For example, PML is the only protein essential for PML nuclear body 

formation [56], and spindle-defective protein 5 (SPD-5) is sufficient for the formation of 

centrosomes in C. elegans [57]. Often, scaffolds can drive LLPS on their own, and recapitulate many 

features of the given condensate. Critical for their emergent biological function, however, is the 

recruitment of associated proteins (clients), which cannot phase separate on their own, but critically 

contribute to the functional output of the condensate. As outlined next, these emergent functions 

can fall into five broad types, which often appear in combination in the functioning of a particular 

organelle.   

 

1) Bioreactors: increasing reaction kinetics through proximity effects 

Formation of a phase boundary through LLPS reflects a special way of concentrating molecules (e.g. 

enzymes and their substrates) in one place in a cell, leading to optimal concentrations, stoichiometry 

and orientation for reactions/interactions to occur (Figure 2). 
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Most MOs hitherto described function as such reactors. Examples include nucleoli that condense the 

players of ribosome biogenesis [58] and P-bodies that condense the factors required for mRNA 

degradation [53]. PSDs [59] and signalosomes/membrane clusters [60] described before harness the 

same operational principle. A less well-known example is miRISC, a multi-protein assembly for 

microRNA-mediated mRNA repression. The condensation of the two core components of human 

miRISC, Argonaute2 (Ago2) and TNRC6B, into phase-separated droplets facilitates accelerated 

deadenylation of target RNAs bound to Ago2 [61]. Also, in C. elegans, efficient RNA silencing 

requires small-RNA amplification mediated by RNA-dependent RNA polymerases. This is facilitated 

by the perinuclear germline Mutator foci that assemble through LLPS of the C-terminal IDR of the 

Mutator complex protein MUT-16. MUT-16 functions as a scaffold, bringing together many other 

proteins required for small-RNA biogenesis and amplification [62].  

Another example is the coacervation of ZNF207/BuGZ, which induces microtubule bundling and 

concentrates tubulin, promoting microtubule polymerization and assembly of spindle and spindle 

matrix by concentrating its building blocks [63]. Within animal cells, microtubule arrays are 

organized by the centrosome that comprises two centrioles surrounded by an amorphous protein 

mass called pericentriolar material (PCM). In C. elegans, PCM assembly requires SPD-5, a coiled-coil 

protein that forms micrometer-sized porous networks in vitro. Only this assembled network, but not 

the unassembled SPD-5 protein, functions as a scaffold for PCM client proteins, including 

microtubule-associated proteins that recruit tubulin and form microtubule asters [57]. 

 

2) Biomolecular filters: selective recruitment of macromolecules 

Macromolecular constituents of MOs are never randomly selected from the cell. Different MOs 

selectively recruit certain macromolecules, while exclude others, i.e., they act as biomolecular filters 

(Figure 2). 

This function is best showcased by the hydrogel-like mesh filling the central transport channel of the 

nuclear pore complex (NPC). The mesh is formed by ID phenylalanine-glycine-rich nucleoporins (FG-

Nups) and acts as a permeability barrier, ensuring critical selective control for nucleocytoplasmic 

transport. While small molecules (<40 kDa) can cross the pore by passive diffusion, the passage of 

larger molecules needs to be facilitated by nuclear transport receptors (NTRs), which are selectively 

recognized by FG-Nups and can guide cargos across the barrier [64]. 

Another example is provided by DDX4 liquid droplets that were demonstrated to exclude chromatin 

and double-stranded DNA and RNA, while selectively partitioning single-stranded DNA and RNA 

with a preference for structured RNAs (hairpins and regulatory RNAs) [65]. P-bodies and stress 
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granules also recruit transcripts selectively, since only a well-defined subset of the transcriptome 

could be identified within them [53, 54]. 

  

3) Regulators of spatial patterns: maintenance of large concentration gradients in the cytoplasm 

By stabilizing concentration gradients of selected macromolecules in particular regions of cells 

(Figure 2), LLPS processes are also well-suited for facilitating the formation and maintenance of 

unique spatial patterns [66]. For example, the adhesion receptor Nephrin undergoes LLPS through 

multivalent interactions with its cytoplasmic partners, Nck and N-WASP [67], which leads to the 

grouping of the receptors into micrometer-sized clusters on the membrane surface. In the presence 

of the Arp2/3 complex, these receptor clusters promote local actin assembly at membranes [68], 

thus also functioning as reactors. 

Probably the most penetrating example of this behavior is the development of cell polarity in 

asymmetric cell divisions. In D. melanogaster neuroblasts, the cell-fate determinant Numb 

undergoes LLPS through multivalent domain-motif interactions with Pon, to form a basal crescent 

that then segregates into the basal daughter cell to shape its differentiation [69]. In C. elegans, RNA- 

and protein-rich P-granules show increased condensation at the posterior end of the one-cell 

embryo that will form the first germ cell after cell division [70]. This spatial patterning of P-granules 

is achieved by opposing concentration gradients of two polarity proteins: MEG-3, which forms the 

granules through RNA-induced phase separation, and MEX-5, a competitor of MEG-3 for binding 

RNAs [71]. These observations suggest that such phase transitions could represent a general 

mechanism for creating and maintaining spatial patterns within cells [66], like receptor clusters [68] 

and cell polarity [70]. 

  

4) Biomolecular shields: shielding viral macromolecules from the immune response 

Phase-separated condensates are also capable of hiding recruited macromolecules so that those 

could not be recognized by the ones excluded (Figure 2). 

RNA viruses replicate in the hostile environment of the host cytoplasm, as they are exposed to the 

immune system and also to RNAses ready to degrade viral RNA. That is, the virus has to juggle the 

subsequent steps of unpacking, replicating and re-packing its RNA genome without providing access 

to host enzymes, which they achieve by concentrating and segregating their replication machinery 

within specialized compartments. The liquid-like replication compartments of vesicular stomatitis 

virus form by phase separation of 3 viral proteins required for replication [72]. For example, the 
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replication and assembly of Mononegavirales occurs in specialized intracellular compartments 

known as viral factories, viral inclusions or viroplasms. For rabies virus, these viral inclusions are 

called Negri bodies that also show characteristics similar to those of liquid organelles [73]. These 

condensates not only ensure favorable local concentrations of the components for enzymatic 

reactions, they also shield viral RNA from detection by cytosolic pattern-recognition receptors 

mediating cellular antiviral response [72, 73]. 

 

5) Reservoirs: temporary storage of macromolecules 

Phase-separated MOs are also frequently employed for transiently storing select macromolecules in 

an inactive, dormant state; dissolution of such reservoirs upon a particular cellular signal enables 

then the rapid restoration of the halted functions (Figure 2). 

For example, to survive stressful conditions, cells have evolved stress response pathways that arrest 

the cell cycle, re-adjust cell metabolism and upregulate stress-protective factors. Stressed 

eukaryotic cells form stress granules (SGs) that concentrate stalled translation preinitiation 

complexes of selected transcripts and mRNAs released from polysomes [54]. Budding yeast and 

bacteria employ a related stress-adaptive strategy that involves changes in the physical state of the 

cytoplasm, from a fluid to a protective, solid-like state, on energy-depletion. In budding yeast, the 

RNA-binding SG protein Pub1 forms condensates upon starvation or heat stress that is associated 

with cell-cycle arrest. While starvation-induced Pub1 condensates form by LLPS and subsequently 

convert into reversible gel-like particles, heat-induced condensates are more solid-like and require 

chaperones for disaggregation [74]. In Drosophila S2 cells amino-acid starvation leads to the 

inhibition of protein transport through the secretory pathway, and to the formation of reversible 

stress assemblies, so called Sec bodies, which incorporate components of the ER exit sites. They 

require Sec23 and Sec24AB Sec for their formation, they have liquid droplet-like properties, and act 

as a protective reservoir for ERES components to rebuild a functional secretory pathway after re-

addition of amino-acids [75]. 

Heterochromatin is a compacted state of chromatin, wherein unused genes are kept in a repressed 

state. Heterochromatin protein 1 alpha (HP1α) binds to chemical modifications on histones that 

mark transcriptionally silent regions of chromatin and packs such regions together into liquid 

droplets through LLPS. The dynamic properties and selectivity of this liquid-like state could explain 

how heterochromatin stays accessible for DNA repair [76]. 

Protective reservoirs are also useful to store cell-cycle components when they are not needed. For 

instance, unphosphorylated CPEB4 phase separates into inactive, liquid-like droplets through its N-
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terminal IDR. In contrast, phosphorylation by ERK2- and Cdk1 on several residues additively activate 

CPEB4 by pushing the equilibrium towards its monomeric state in M-phase, required for cytoplasmic 

polyadenylation and meiotic progression [77]. 

  

Extracellular condensation of secreted proteins: biominerals, mucus, adhesive secretions and 

bacterial biofilms 

Secretion and subsequent large-scale assembly of proteins in the extracellular space is a prevalent 

strategy for the formation of a protective physical layer used in all domains of life, as demonstrated 

through a few illustrative examples.  

 

Biomineralization: hard tissues of inorganic minerals for a variety of purposes 

Biomineralization is a generic process of making an orderly crystalline structure of proteins and 

inorganic minerals in tissues as diverse as bones and teeth in vertebrates, egg shell in aves and 

reptiles, and hard tissues in mollusks. Their common feature is that a few specific proteins serve as 

nucleators and regulate the growth of crystal nanostructures in a specific manner. The resulting 

tissues generally contain around 95% crystallized inorganic mineral and a small proportion of water 

and protein. A wide variety of structured and disordered proteins participate with each having their 

distinctive function in crystal formation and growth. While ordered domains such as tyrosinases, 

carbonic anhydrases, chitin-binding domains and Von Willebrand factor A are well-known 

coordinators of biocalcification, the also abundant IDRs are important for both the binding of 

inorganic ions or to serve as phosphorylation donors [78]. 

A convenient model for the study of biomineralization is the formation of sea urchin embryo skeletal 

element (spicule), and several recent observations highlight the importance of the self-assembling 

capacity of the participating proteins in this process (Figure 3). 

The S. purpuratus spicule matrix protein SpSM30B/C was shown to form hydrogel-like structures 

that mediate amorphous calcium carbonate (ACC) crystal formation [79]. It was proposed that the 

hydrogel structure promotes the organization and growth of elongated single crystal calcite 

nanoparticles, while hydrogels are capable to form on the surface of already existing crystals, 

mediating textural changes that affect the properties of the mineral phase. The observed 

glycosylation pattern of the protein was suggested to affect the kinetics of phase transition. 

Another sea urchin model protein, SpSM50, also forms hydrogels in a calcium-dependent manner, 

facilitating the formation of both vaterite and calcite nanoparticles [80]. It was suggested that the C-
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terminal ordered CTLL domain serves as a mediator of protein-protein or protein-mineral 

interactions, while the repetitive, disordered N-terminal part of the protein destabilizes its internal 

structure and improves its overall self-association propensity [80]. The same behavior was observed 

for other nacre and spicule matrix hydrogels [81, 82], underlining the general importance of 

hydrogel formation as a regulatory step in biomineralization. Whereas self-assembly is generally 

accompanied by an elevation of secondary structure propensities, as shown in the case of nacre 

framework protein n16 [83], in other cases, like PFMG1 [82], a significant amount of disorder is 

retained in the assembled state. Amelogenin, the major protein component of mammalian tooth 

enamel also adopts a mostly disordered structure in vitro but shows a prominent alpha-helical 

tendency on the addition of TFE, which also induces self-assembly of the protein [84].  

The currently accepted model for bionucleation is the polymer-induced liquid precursor (PILP) phase 

system [85], which describes nucleation process as a liquid-liquid phase separation mediated by 

disordered polymers binding to different solutes, resulting in a metastable precursor (Figure 3). 

These amorphous precursors were indeed shown to occur in vivo [86, 87] and calcium containing 

nanospheres were directly observed during the development of sea urchin embryos [88], indicating 

the applicability of this model to living systems.  

 

Mucus: a protective endothelial layer 

Another example of extracellular protein associations is mucus, a viscous material found in many 

different metazoan species from corals and gastropods to humans. Their functions span a broad 

range, including filtering nutrients from the environment, aiding movement of gastropods, and 

providing protection against predators.  

In vertebrates, where mucus covers all epithelial tissues in direct contact with the environment, the 

most important function of this hydrogel is to hydrate and lubricate the mucosal surfaces [89]. The 

main protein components of mucus hydrogels in humans are gel-forming mucins (GFMs). e.g. 

MUC2, MUC5A, and MUC5B, all of which contain D-domains on their N terminus and a cystine knot 

(CK) domain at their C terminus. These globular domains are capable of forming stable protein-

protein interactions, thus facilitating the formation of higher order structures. MUC2, MUC5A and 

MUC5B also contain several repeats of Cys domains (named after their high cysteine content) in 

their central region. All GFMs are characterized by a long central region that is enriched in serine, 

threonine and proline residues (S/T/P region) and is heavily glycosylated [89], except for the Cys 

domains. Since Cys domains contain mostly hydrophobic residues, the alternating pattern of 

negatively charged glycosylated regions and Cys domains contribute to the reversible forces 
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between mucin proteins in the hydrogel [90]. The S/T/P region is shown to adopt an extended, 

disordered conformation that is indispensable for the elasticity of the mucus hydrogel [91]. The main 

driving force behind phase separation of GFMs is concentration [92], but other factors such as salt 

concentration, pH and the presence of other protein factors also play crucial roles in regulating 

structure and rheological properties of the mucus blanket [89]. In cystic fibrosis, mutation(s) in the 

cystic fibrosis transmembrane conductance regulator (CFTR) channel leads to electrolytic imbalance 

and the formation of the highly viscoelastic mucus, causing the disease [89].  

 

Adhesive exudates: sticky gels for protection and predation 

Assembled secreted protein(s) (termed exudates) also play interesting and important roles in 

invertebrates: they either use the adhesive, gluey material for protecting themselves against 

predators or attaching themselves to surfaces. For example, the Australian fossorial frog N. bennetti 

secretes from its dorsal skin a protein-rich liquid exudate when attacked by a predator, i.e. a snake 

[93]. Once outside, the protein solution rapidly forms a tacky elastic gel, causing discomfort to the 

predator. This behavior has also been observed in several other frogs [94]. Interestingly, larvae of 

the frog secrete a similar material that forms a cement, which is used by the embryos and early 

larvae to adhere to stationary supports [95]. Other amphibia, such as some salamander species, also 

rely on proteinaceous adhesive exudates to protect themselves [96]. 

The application of adhesive secretions may be an even broader, general strategy of invertebrates to 

attach themselves, their nests or their eggs to biological or mineral surfaces [97]. For example, the 

moth O. eucalypti uses a protein-based hydrogel to secure its egg [98]. At variance, some velvet 

worms eject a proteinaceous solution turning instantaneously gluey, to immobilize and capture their 

prey [99]. 

 

Bacterial biofilms: protection and colonization  

Bacteria often form colonies stuck to each other and to biological and environmental surfaces. 

Their cells are embedded in a self-produced protein matrix of extracellular polymeric substance 

(EPS), often also termed biofilm [100]. The biofilm matrix can contain soluble, gel-forming 

polysaccharides, proteins and DNA, and also insoluble components such as functional amyloids or 

cellulose, which all impart their individual physical properties on the heterogenous and highly 

dynamic matrix. Interestingly, not only components of the biofilm give rise to the emergent 

properties of an artificial habitat, bacteria in biofilms also exhibit emergent properties that differ 

substantially from those of the free-living bacterial cells. 
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Specific and emergent structural and functional properties of the biofilm specify the characteristic 

features (emergent properties) of the colony within the biofilm, such as social cooperation, 

resource capture and enhanced resistance or tolerance to antibiotics and environmental stress. 

For example E. coli biofilms have desiccation tolerance, a group of proteins called hydrophobins 

secreted by B. subtilis form highly hydrophobic biofilms that float at the air–liquid interface, and in 

B. subtilis biofilms DNA from lysed cells is a source of phosphorus, carbon and energy [100]. 

 

Conclusions: principles and applications of bio-condensates 

Through many distinct examples, we have shown that assemblies of proteins form in many 

biological settings and convey a very broad range of emergent properties. Importantly, the different 

possible functional (Figure 2) and structural (Figure 1) categories  probably combine in many distinct 

concrete assemblies. Certain generalizations regarding the structural and atomistic background of 

the formation of such assemblies, nevertheless, can be made. Protein-protein interactions can be 

mediated by domains, motifs and residues, which can all lead to the formation of stoichiometric 

complexes but also to non-stoichiometric ones (Figure 4), if: i) multiple interacting partners cause 

heterogeneity of the system (Figure 4A), ii) there is a mismatch in the binding valency of the 

partners (Figure 4B), and iii) some partners have a high level of structural disorder (Figure 4C). The 

underlying physical interactions then lead to the formation of a non-stoichiometric and extendable 

assembly with completely novel, emergent properties. Whereas the noted features can be derived 

from indirect observations and considerations, basic challenges of this emerging field is to unravel 

the underlying structural determinants promoting the assembly process and to provide quantitative 

description of thermodynamics, kinetics and dynamics of the various functional states that arise. 

Although we have a battery of techniques to look into these details [101, 102], heterogeneity and 

diversity of the systems already reported will represent an enduring challenge for many years to 

come.  

Understanding all the details of supramolecular assemblies is also of special interest because they 

display the potential of special applications in medical and material sciences. Hydrogels are excellent 

candidates for targeted drug delivery and tissue engineering, because they are biocompatible, 

highly responsive to their environment and their physical properties such as stiffness, mesh size and 

biodegradability can be fine-tuned through varying their components and applying cross-linking 

[103]. Hydrogels can encapsulate therapeutic agents, such as drugs [104], peptides, proteins [105]  or 

nucleic acids [106], capable of releasing them in a controlled and gradual manner. This property was 

utilized for the delivery of taxol to human hepatocarcinoma tumor in mice [107], resulting in a stable 
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release and reduced toxicity. The same effect was observed with doxorubicin, where the hydrogel-

encapsulated drug showed similar anti-tumor activity with less side-effects compared to the 

conventional application [108].  Hydrogels can also be applied to accelerate wound healing [109] and 

cardiac regeneration [110], whereas artificial mimicking of biomineralization is a promising field in 

regenerating tooth enamel [111] and bones [112]. One strategy is to encapsulate regenerative 

agents into hydrogels, like bone marrow-derived mesenchymal stem cells, and utilize them as 3D 

scaffolds for bone regeneration [113]. With the ever-growing insight into the molecular organization 

of the supramolecular structures participating in tissue regeneration and the formation of “smart 

interfaces” [114], artificial materials that are capable of communicating with and responding to their 

cellular environment seems soon to be within our reach. 

First and foremost, however, the basic challenge lies with our ability to harness this novel paradigm 

of organization for a better understanding of cell biology. As primordial coacervation may have been 

instrumental in the emergence of life [115], and extant organelles can have as basic functions as 

decelerated aging of oocytes [116] or assembly of ribosomes [117], the importance of these cellular 

compartments can hardly be overstated. As studies aimed at their detailed description keep 

unrolling, we are entering one of the most exciting phase of our quest for the molecular 

understanding of life.  

 

Legends of figures 

Figure 1 Amyloids, prions and signalosomes as non-stoichiometric signaling complexes   

There are various ways by which multidomain proteins can assemble into non-stoichiometric 

signaling complexes. (A) Prions form by the orderly assembly of amyloid-type structures, as shown 

schematically for the human prion protein (a) and by the high-resolution X-ray structure of the 

heptapeptide GNNQQNY of the physiological yeast prion Sup35 (b, based on PDB 1yjp, cf. [26]). (B) 

Head-to-tail organization of p62 autophagy scaffolding protein forms a signalosome, via its N-

terminal PB1 domain forming a filamentous structure (adapted from ref. [38]). (C) Schematic 

diagram of the network of proteins in the PSD, with various groups of proteins color-coded. For 

simplicity, only a few key proteins are named and shown (adapted from ref. [41]). (D) Electron 

microscopic image of an excitatory glutamatergic synapse, displaying a prominent electron-dense 

zone, PSD, juxtaposed to the postsynaptic membrane (from ref. [40], Copyright (2008) National 

Academy of Sciences). 

 

Figure 2 LLPS results in different types of emergent functions    
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Phase separation brings a large number of macromolecules (protein, RNA) in close proximity and/or 

physical contact, endowing five broad types of emergent functional features on them. Here we show 

them separately starting from the upper left corner and proceeding clockwise: 1) bioreactors 

(affecting catalytic efficiency and specificity by enzyme-substrate proximity and targeting), 

biomolecular filters (selecting molecules incorporated by size and chemical differences), regulators 

of spatial patterns (generating concentration gradients in cells), biomolecular shields (protection of 

content from outside effects, such as immune system of degrading enzymes), and reservoirs 

(temporarily storing components for later re-use), but in most of the cases they appear in 

combination in the functioning of a particular organelle. 

 

Figure 3 Crystal nucleation through phase separation as a mechanism of biomineralization 

Biomineralization, such as the formation of bone and tooth, egg shell and hard tissues of mollusks 

results from the orderly deposition of inorganic minerals by large, repetitive, mostly disordered 

proteins. Increasing evidence attests to a nucleation model of biomineralization (polymer-induced 

liquid precursor (PILP) phase), which describes the nucleation process as LLPS mediated by ID 

polymers binding to different solutes. 

 

Figure 4 Various assembly logics of non-stoichiometric assemblies 

All different processes leading to the formation of non-stoichiometric assemblies rely on proteins 

that can engage in multivalent interactions with each other. Various combinations of domain-

domain, domain-motif and residue-residue interactions may lead to assemblies of distinct internal 

symmetry and dynamics, preventing the formation of stoichiometric complexes, due to 

heterogeneity multiple interacting partners, A), a mismatch in the binding valency of the partners 

(B), and/or  a high level of structural disorder that remains even in the mutually bound state (C). 
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Abstract  

Proteins are the basic functional units of the cell, carrying out myriads of functions essential for life. 

There are countless reports in molecular cell biology addressing the functioning of proteins under 

physiological and pathological conditions, aiming to understand life at the atomistic-molecular level 

and thereby being able to develop remedies against diseases. The central theme in most of these 

studies is that the functional unit under study is the protein itself. Recent rapid progress has radically 

challenged and extended this protein-function paradigm, by demonstrating that novel function(s) 

may emerge when proteins form dynamic and non-stoichiometric supramolecular assemblies. There 

is an increasing number of cases for such collective functions, such as targeting, localization, 

protection/shielding and filtering effects, as exemplified by signaling complexes and prions, 

biominerals and mucus, amphibian adhesions and bacterial biofilms, and a broad range of 

membraneless organelles (bio-condensates) formed by liquid-liquid phase separation in the cell. In 

this short review, we show that such non-stoichiometric organization may derive from the 

heterogeneity of the system, a mismatch in valency and/or geometry of the partners, and/or intrinsic 

structural disorder and multivalency of the component proteins. Either way, the resulting functional 

features cannot be simply described by, or predicted from, the properties of the isolated single 

protein(s), as they belong to the collection of proteins.  

  

Keywords 

emergent function, dynamic assembly, biomolecular condensate, contextual function, intrinsically 

disordered protein, phase separation, membraneless organelle 

  

Introduction 

Proteins are protagonists of life. They carry out a broad diversity of functions, from catalyzing 

chemical reactions and transporting key metabolites to recognizing signaling molecules and 

regulating gene expression. What they do is described by their “function”, a term that has been used 

and abused excessively in the literature. Actually, the function of a protein can be approached at 

different levels, such as describing the chemical reaction, e.g. catalysis or binding, it carries out 

(molecular function, MF), or the cellular process it takes part in (biological process, BP) [1]. The first 

is usually approached by characterizing the protein in the test tube, whereas the second can be 

described by manipulating the protein in cellular studies [2]. Ingenious high-throughput “omics” 

approaches are also at our disposal for these various endeavors [3, 4]. 
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Our general notion in approaching the function of an isolated protein is the structure-function 

paradigm, which describes the function of a protein at the atomistic level by its structure. It is 

underlined by more than 100k structures in the Protein Data Bank [5], also supported by high-

throughput omics (structural genomics) programs [6]. Its descriptive power is also attested by the 

success of rational structure-based approaches of drug design [7]. The rather recent discovery of 

intrinsically disordered proteins/regions (IDPs/IDRs) does not contradict, only extends, this 

paradigm, suggesting that function can also emanate from a highly dynamic conformational 

ensemble, devoid of a well-defined, dominant structure [8, 9].  

The functional insight extracted from structures is also important in appreciating the cellular (BP) 

function of a protein, which can be considered as a contextual (cellular or organismal) readout of the 

MF it carries out. In this sense, the BP function of a protein is an “emergent” property, which is only 

realized in the complex cellular environment. It follows from this caveat that the “function” of 

exactly the same protein may actually be different in different cells or cell states.  

The broad assumption in all these considerations is that a well-defined function can be ascribed to 

each protein. This is, however, a definite oversimplification, as many proteins have more than one 

functions, at both levels [10, 11]. A simple functional variant may result from switching the function 

of the protein by post-translational modification or alternative splicing, but true multifunctionality 

(e.g. gene sharing, moonlighting) is also witnessed when the protein has the capacity to do 

completely different things in the cell. In retrospect, this is of no great surprise as many proteins 

have complex domain organization, and/or are capable of interacting with hundreds of interaction 

partners [4], i.e., it would appear rather naïve to assume that they always do the same in all different 

molecular settings. It is of note, though, that diversity of functions can also be the sign of the lack of 

absolute specificity, i.e. promiscuity [12]. 

Either way, whether well-defined or promiscuous, we traditionally ascribe function(s) to individual 

proteins, i.e., consider them as the functional units of the cell. This view, however is somewhat 

challenged by functional complexes, which form a unit, the function of which cannot be ascribed to 

any of its constituent subunits. To name just one example, the anaphase promoting complex (APC) 

has 13 subunits in human cells and functions as an E3 ubiquitin ligase that marks proteins for 

degradation in conjunction with the progression of cell cycle [13]. Its emergent function cannot be 

simply derived from that of its subunits, it only arises when the complex is fully assembled, i.e., is a 

collective property of the proteins arranged in a particular way in time and space. While our 

knowledge may be insufficient to predict it from those of its building blocks, we can at least 

rationalize their assembly and collective functioning on structural means, by assuming their 

sequential assembly from structurally complementary building blocks [14]. Thus, according to the 
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traditional view, the functional unit of life is the protein, either in itself or as part of a multi-subunit 

complex with a well-defined stoichiometry and structure. 

In this review we survey a variety of recent results showing that physical attraction can also drive the 

assembly of multidomain and ID proteins into higher-order non-stoichiometric assemblies [15, 16]. 

As defined through common features of the diverse examples shown, non-stoichiometric assemblies 

are dense entities made of hundreds or thousands of protein (and other components) confined in 

space by multivalent interactions, lacking internal symmetry and strict number and/or stoichiometry 

of components. In these, the collective action of molecules convey a broad range of emergent 

functions [17, 18]. These assemblies are usually very dynamic and can have different structural states 

ranging from highly ordered structures (amyloids, prions), through open and extendable complexes 

(signaling complexes, signalosomes) to liquids/hydrogels and biominerals (assemblages, bio-

condensates, liquid droplets, membraneless organelles (MOs), adhesive secretomes). By describing 

these various systems, we illustrate this emerging and probably general principle, and also point out 

that similar physicochemical phenomena have already been observed and described many times in 

other areas, such as surface chemistry [19], soft-matter physics [20], colloid chemistry [21] and even 

in membrane biology [22] and cell biology [23]. In these analogous systems, it is also generally 

accepted that the formation of such assemblies entails the appearance of emergent features, not 

apparent at the level of isolated components. Through all these examples and functional 

considerations, we purport that the collective functioning of dynamic protein assemblies represents 

a novel, general paradigm in molecular cell biology. 

 

Amyloids, prions and signalosomes 

 

Perhaps the simplest structural manifestation of this principle is the appearance of amyloids and 

prions, which may be considered as supramolecular signaling complexes [24]. Whereas traditionally 

thought of as pathological self-organizing protein assemblies, we now have many examples of 

“physiological” prions, which derive their altered functional state from their extended orderly 

assembled state termed amyloid (Figure 1Aa). Its structure is most often a β-sheet extended 

indefinitely in one dimension, composed of perpendicular β-strands [25]. In the amyloid core, there 

is a characteristic tight packing with self-complementing “steric zipper” interactions (Figure 1Ab), 

from which the solvent is excluded and is supported by an extended H-bond network between side 

chains [26]. 

Amyloids, pathological and physiological prions 
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Amyloids/prions are traditionally thought of as pathological entities, as exemplified by the human 

prion protein, or amyloidogenic proteins associated with neurodegeneration, such as alpha-

synuclein in Parkinson’s disease or tau protein in Alzheimer’s disease [24, 27]. The self-stimulated 

transition to an altered structural and functional state, and the emergent functional properties of the 

amyloid are also harnessed for functional purposes in cells [28]. This phenomenon is most 

extensively characterized in yeast, as exemplified by Ure2, which can promote the uptake of poor 

nitrogen sources [29] and Sup35, which in the prion state confers a new phenotype on cells by 

suppressing stop-codons and facilitating translation readthrough [30]. In higher organisms, a novel 

function emerging from the amyloid state explains the functioning of the neuron-specific 

cytoplasmic polyadenylation-element binding protein (neuronal CPEB) in the marine snail A. 

californica, involved in memory formation [31]. In human, the Pmel17 protein forms fibrous striations 

inside melanosomes to support melanin granule formation [32]. Also, the receptor-interacting 

serine/threonine-protein kinases 1 and 3 (RIP1 and RIP3) form a heterodimeric, fibrillar functional 

amyloid signaling complex mediating tumor necrosis factor-induced programmed cell necrosis. The 

amyloid state of the RIP1/3 homotypic interaction motifs is a prerequisite for function, as mutations 

affecting their amyloid core compromise kinase activation and subsequent necrosis [33]. 

In all these cases, the function of prions/amyloids differs from that of their components, and may 

appear due to the suppression of the function of associated functional domains, or form the 

emergent physicochemical properties of the amyloid itself. Furthermore, in case of amyloids the 

degree and extent of supramolecular organization can also influence the functional readout, since 

while the conversion of a peptide/protein into amyloid state creates a novel pathological or 

functional entity, further assembly of the fibrils or precursor oligomers into large assemblies often 

neutralizes their toxicity, leading to an additional functional state [34-36]. 

 

Signalosomes and signaling complexes 

Complex multidomain proteins feature in the formation of other kinds of functional, non-

stoichiometric supramolecular condensates, which appear in signal transduction. These signaling 

complexes are very large, open-ended assemblies of lose structural organization and composition 

[37, 38]. As probably follows from their ill-defined stoichiometries, these signalosomes are very 

dynamic, they quickly respond to signaling cues by extension, contraction and morphological 

rearrangements and shedding or incorporating novel components, often linked with signaling post-

translational modifications [37]. 
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A prime example of such higher-order signaling assemblies is exemplified by the head-to-tail 

polymerization of signaling proteins (Figure 1B) containing a Phox and Bem1 (PB1), dishevelled 

(Dvl), homologous (DIX), and sterile alpha motif (SAM) domains [39]. These are encountered in 

distinct signaling processes, such as autophagy, ephrin signaling and the Wnt signaling pathway. 

The primary functional outcome of their dynamic and extendable, often competing domain-domain 

associations results from high local concentrations and the ensuing rapid signal propagation, also 

effectively showcasing enzyme-substrate targeting, specificity and substrate selection and signal 

amplification [37, 38]. 

Even more complex and heterogeneous organization appears in postsynaptic densities (PSD) in 

neurons [40, 41]. Excitatory (glutamatergic) synapses in the mammalian brain are usually localized 

on dendritic spines, where a very high concentration of receptors, scaffolds, signaling proteins and 

cytoskeletal elements assemble into an organized electron-dense structure, PSD (Figure 1C, 1D). 

The major organizational proteins of PSD are large multidomain scaffold proteins, such as PSD95, 

which engage in multivalent domain-domain and domain-motif interactions with many other 

proteins. Anchored to this scaffold are receptors and channel proteins (e.g. glutamate-activated 

NMDA receptor, AMPA receptor, K+-channel), signaling enzymes (e.g., Ca2+-CaM dependent kinase 

II (CaMKII), Fyn Src kinase, neuronal nitric oxide synthase...), their anchoring proteins (e.g. AKAP, 

GKAP, Shank, etc...), cytoskeletal proteins (e.g. actin, cortactin), and other signaling proteins (e.g. 

synGAP, SPAR, IRSp53, etc...) (cf. Figure 1C). 

Due to its complexity, PSD has multiple emergent properties, such as large ion fluxes, effective 

channel regulation by localized modifying enzymes, and localized processing of signaling 

information [41]. Co-localization of enzymes with their substrates (such as receptors and channels) 

provides specificity of reactions and modifications (cf. next section and Figure 2). A further 

emergent function of physical origin, metaplasticity, has also been proposed for PSD [42]. In short, 

plasticity of synaptic communication means the general ability of the nervous system to change 

synaptic strength, primarily by PTM-altered activity of synaptic receptor ion channels, such as the 

NMDA channel [43]. It is much less appreciated that plasticity itself is also plastic, i.e. the prior 

history of the synapse changes its ability to undergo plastic changes. As a highly emergent function 

of the PSD, it was suggested that metaplasticity results from the extremely high local concentration 

of autophosphorylated CaMKII molecules, which generates a local electrostatic field high enough to 

affect membrane potential and alter the direction of synaptic plasticity [42]. 

 

Liquid-liquid phase separation 
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Organelles are mesoscale compartments within cells that fulfil a specific function and are separately 

enclosed either within their own lipid bilayer (membranous organelles) or by phase boundaries 

(membraneless organelles) [44]. Membraneless organelles (MOs) are non-stoichiometric 

supramolecular condensates that largely influence the normal operation [45, 46] as well as stress 

tolerance of living cells [15]. Although several of them have been known to exist for a very long time 

(e.g. the nucleolus, nuclear speckles or the Balbiani body), it has been only very recently recognized 

that they form without membranes through liquid-liquid phase separation (LLPS), a process driven 

by multivalent weak interactions between IDPs/IDRs [47-49]. As described by classical polymer 

theories [50], polymers above a critical concentration may separate from solution to form a 

polymer-rich and solvent-rich phase by LLPS. On an atomic scale, protein LLPS can be achieved 

through distinct, and most often co-occurring mechanisms [16, 51]: simple coacervation of 

hydrophobic residues, cation-pi interactions between G/SYG/S, RG-GR and FG-GF motifs, 

electrostatic attraction and repulsion between regions of alternating charge patterns, or multivalent 

domain-motif interactions. Such supramolecular condensates confer a wide range of functional 

advantages on cells [52] due to their unique material properties and responsiveness [44]: they are 

highly diverse in physical properties, shape, size, viscosity, molecular composition, subcellular 

location and functions [15, 52]. They may contain hundreds of different proteins and thousands of 

mRNAs, as shown in omics analyses of the composition of stress granules and P-bodies [53, 54]. 

Their assembly can be dictated by dedicated regions of one or a few constitutive components, the 

drivers of LLPS (scaffolds) [55]. For example, PML is the only protein essential for PML nuclear body 

formation [56], and spindle-defective protein 5 (SPD-5) is sufficient for the formation of 

centrosomes in C. elegans [57]. Often, scaffolds can drive LLPS on their own, and recapitulate many 

features of the given condensate. Critical for their emergent biological function, however, is the 

recruitment of associated proteins (clients), which cannot phase separate on their own, but critically 

contribute to the functional output of the condensate. As outlined next, these emergent functions 

can fall into five broad types, which often appear in combination in the functioning of a particular 

organelle.   

 

1) Bioreactors: increasing reaction kinetics through proximity effects 

Formation of a phase boundary through LLPS reflects a special way of concentrating molecules (e.g. 

enzymes and their substrates) in one place in a cell, leading to optimal concentrations, stoichiometry 

and orientation for reactions/interactions to occur (Figure 2). 
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Most MOs hitherto described function as such reactors. Examples include nucleoli that condense the 

players of ribosome biogenesis [58] and P-bodies that condense the factors required for mRNA 

degradation [53]. PSDs [59] and signalosomes/membrane clusters [60] described before harness the 

same operational principle. A less well-known example is miRISC, a multi-protein assembly for 

microRNA-mediated mRNA repression. The condensation of the two core components of human 

miRISC, Argonaute2 (Ago2) and TNRC6B, into phase-separated droplets facilitates accelerated 

deadenylation of target RNAs bound to Ago2 [61]. Also, in C. elegans, efficient RNA silencing 

requires small-RNA amplification mediated by RNA-dependent RNA polymerases. This is facilitated 

by the perinuclear germline Mutator foci that assemble through LLPS of the C-terminal IDR of the 

Mutator complex protein MUT-16. MUT-16 functions as a scaffold, bringing together many other 

proteins required for small-RNA biogenesis and amplification [62].  

Another example is the coacervation of ZNF207/BuGZ, which induces microtubule bundling and 

concentrates tubulin, promoting microtubule polymerization and assembly of spindle and spindle 

matrix by concentrating its building blocks [63]. Within animal cells, microtubule arrays are 

organized by the centrosome that comprises two centrioles surrounded by an amorphous protein 

mass called pericentriolar material (PCM). In C. elegans, PCM assembly requires SPD-5, a coiled-coil 

protein that forms micrometer-sized porous networks in vitro. Only this assembled network, but not 

the unassembled SPD-5 protein, functions as a scaffold for PCM client proteins, including 

microtubule-associated proteins that recruit tubulin and form microtubule asters [57]. 

 

2) Biomolecular filters: selective recruitment of macromolecules 

Macromolecular constituents of MOs are never randomly selected from the cell. Different MOs 

selectively recruit certain macromolecules, while exclude others, i.e., they act as biomolecular filters 

(Figure 2). 

This function is best showcased by the hydrogel-like mesh filling the central transport channel of the 

nuclear pore complex (NPC). The mesh is formed by ID phenylalanine-glycine-rich nucleoporins (FG-

Nups) and acts as a permeability barrier, ensuring critical selective control for nucleocytoplasmic 

transport. While small molecules (<40 kDa) can cross the pore by passive diffusion, the passage of 

larger molecules needs to be facilitated by nuclear transport receptors (NTRs), which are selectively 

recognized by FG-Nups and can guide cargos across the barrier [64]. 

Another example is provided by DDX4 liquid droplets that were demonstrated to exclude chromatin 

and double-stranded DNA and RNA, while selectively partitioning single-stranded DNA and RNA 

with a preference for structured RNAs (hairpins and regulatory RNAs) [65]. P-bodies and stress 
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granules also recruit transcripts selectively, since only a well-defined subset of the transcriptome 

could be identified within them [53, 54]. 

  

3) Regulators of spatial patterns: maintenance of large concentration gradients in the cytoplasm 

By stabilizing concentration gradients of selected macromolecules in particular regions of cells 

(Figure 2), LLPS processes are also well-suited for facilitating the formation and maintenance of 

unique spatial patterns [66]. For example, the adhesion receptor Nephrin undergoes LLPS through 

multivalent interactions with its cytoplasmic partners, Nck and N-WASP [67], which leads to the 

grouping of the receptors into micrometer-sized clusters on the membrane surface. In the presence 

of the Arp2/3 complex, these receptor clusters promote local actin assembly at membranes [68], 

thus also functioning as reactors. 

Probably the most penetrating example of this behavior is the development of cell polarity in 

asymmetric cell divisions. In D. melanogaster neuroblasts, the cell-fate determinant Numb 

undergoes LLPS through multivalent domain-motif interactions with Pon, to form a basal crescent 

that then segregates into the basal daughter cell to shape its differentiation [69]. In C. elegans, RNA- 

and protein-rich P-granules show increased condensation at the posterior end of the one-cell 

embryo that will form the first germ cell after cell division [70]. This spatial patterning of P-granules 

is achieved by opposing concentration gradients of two polarity proteins: MEG-3, which forms the 

granules through RNA-induced phase separation, and MEX-5, a competitor of MEG-3 for binding 

RNAs [71]. These observations suggest that such phase transitions could represent a general 

mechanism for creating and maintaining spatial patterns within cells [66], like receptor clusters [68] 

and cell polarity [70]. 

  

4) Biomolecular shields: shielding viral macromolecules from the immune response 

Phase-separated condensates are also capable of hiding recruited macromolecules so that those 

could not be recognized by the ones excluded (Figure 2). 

RNA viruses replicate in the hostile environment of the host cytoplasm, as they are exposed to the 

immune system and also to RNAses ready to degrade viral RNA. That is, the virus has to juggle the 

subsequent steps of unpacking, replicating and re-packing its RNA genome without providing access 

to host enzymes, which they achieve by concentrating and segregating their replication machinery 

within specialized compartments. The liquid-like replication compartments of vesicular stomatitis 

virus form by phase separation of 3 viral proteins required for replication [72]. For example, the 
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replication and assembly of Mononegavirales occurs in specialized intracellular compartments 

known as viral factories, viral inclusions or viroplasms. For rabies virus, these viral inclusions are 

called Negri bodies that also show characteristics similar to those of liquid organelles [73]. These 

condensates not only ensure favorable local concentrations of the components for enzymatic 

reactions, they also shield viral RNA from detection by cytosolic pattern-recognition receptors 

mediating cellular antiviral response [72, 73]. 

 

5) Reservoirs: temporary storage of macromolecules 

Phase-separated MOs are also frequently employed for transiently storing select macromolecules in 

an inactive, dormant state; dissolution of such reservoirs upon a particular cellular signal enables 

then the rapid restoration of the halted functions (Figure 2). 

For example, to survive stressful conditions, cells have evolved stress response pathways that arrest 

the cell cycle, re-adjust cell metabolism and upregulate stress-protective factors. Stressed 

eukaryotic cells form stress granules (SGs) that concentrate stalled translation preinitiation 

complexes of selected transcripts and mRNAs released from polysomes [54]. Budding yeast and 

bacteria employ a related stress-adaptive strategy that involves changes in the physical state of the 

cytoplasm, from a fluid to a protective, solid-like state, on energy-depletion. In budding yeast, the 

RNA-binding SG protein Pub1 forms condensates upon starvation or heat stress that is associated 

with cell-cycle arrest. While starvation-induced Pub1 condensates form by LLPS and subsequently 

convert into reversible gel-like particles, heat-induced condensates are more solid-like and require 

chaperones for disaggregation [74]. In Drosophila S2 cells amino-acid starvation leads to the 

inhibition of protein transport through the secretory pathway, and to the formation of reversible 

stress assemblies, so called Sec bodies, which incorporate components of the ER exit sites. They 

require Sec23 and Sec24AB Sec for their formation, they have liquid droplet-like properties, and act 

as a protective reservoir for ERES components to rebuild a functional secretory pathway after re-

addition of amino-acids [75]. 

Heterochromatin is a compacted state of chromatin, wherein unused genes are kept in a repressed 

state. Heterochromatin protein 1 alpha (HP1α) binds to chemical modifications on histones that 

mark transcriptionally silent regions of chromatin and packs such regions together into liquid 

droplets through LLPS. The dynamic properties and selectivity of this liquid-like state could explain 

how heterochromatin stays accessible for DNA repair [76]. 

Protective reservoirs are also useful to store cell-cycle components when they are not needed. For 

instance, unphosphorylated CPEB4 phase separates into inactive, liquid-like droplets through its N-
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terminal IDR. In contrast, phosphorylation by ERK2- and Cdk1 on several residues additively activate 

CPEB4 by pushing the equilibrium towards its monomeric state in M-phase, required for cytoplasmic 

polyadenylation and meiotic progression [77]. 

  

Extracellular condensation of secreted proteins: biominerals, mucus, adhesive secretions and 

bacterial biofilms 

Secretion and subsequent large-scale assembly of proteins in the extracellular space is a prevalent 

strategy for the formation of a protective physical layer used in all domains of life, as demonstrated 

through a few illustrative examples.  

 

Biomineralization: hard tissues of inorganic minerals for a variety of purposes 

Biomineralization is a generic process of making an orderly crystalline structure of proteins and 

inorganic minerals in tissues as diverse as bones and teeth in vertebrates, egg shell in aves and 

reptiles, and hard tissues in mollusks. Their common feature is that a few specific proteins serve as 

nucleators and regulate the growth of crystal nanostructures in a specific manner. The resulting 

tissues generally contain around 95% crystallized inorganic mineral and a small proportion of water 

and protein. A wide variety of structured and disordered proteins participate with each having their 

distinctive function in crystal formation and growth. While ordered domains such as tyrosinases, 

carbonic anhydrases, chitin-binding domains and Von Willebrand factor A are well-known 

coordinators of biocalcification, the also abundant IDRs are important for both the binding of 

inorganic ions or to serve as phosphorylation donors [78]. 

A convenient model for the study of biomineralization is the formation of sea urchin embryo skeletal 

element (spicule), and several recent observations highlight the importance of the self-assembling 

capacity of the participating proteins in this process (Figure 3). 

The S. purpuratus spicule matrix protein SpSM30B/C was shown to form hydrogel-like structures 

that mediate amorphous calcium carbonate (ACC) crystal formation [79]. It was proposed that the 

hydrogel structure promotes the organization and growth of elongated single crystal calcite 

nanoparticles, while hydrogels are capable to form on the surface of already existing crystals, 

mediating textural changes that affect the properties of the mineral phase. The observed 

glycosylation pattern of the protein was suggested to affect the kinetics of phase transition. 

Another sea urchin model protein, SpSM50, also forms hydrogels in a calcium-dependent manner, 

facilitating the formation of both vaterite and calcite nanoparticles [80]. It was suggested that the C-
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terminal ordered CTLL domain serves as a mediator of protein-protein or protein-mineral 

interactions, while the repetitive, disordered N-terminal part of the protein destabilizes its internal 

structure and improves its overall self-association propensity [80]. The same behavior was observed 

for other nacre and spicule matrix hydrogels [81, 82], underlining the general importance of 

hydrogel formation as a regulatory step in biomineralization. Whereas self-assembly is generally 

accompanied by an elevation of secondary structure propensities, as shown in the case of nacre 

framework protein n16 [83], in other cases, like PFMG1 [82], a significant amount of disorder is 

retained in the assembled state. Amelogenin, the major protein component of mammalian tooth 

enamel also adopts a mostly disordered structure in vitro but shows a prominent alpha-helical 

tendency on the addition of TFE, which also induces self-assembly of the protein [84].  

The currently accepted model for bionucleation is the polymer-induced liquid precursor (PILP) phase 

system [85], which describes nucleation process as a liquid-liquid phase separation mediated by 

disordered polymers binding to different solutes, resulting in a metastable precursor (Figure 3). 

These amorphous precursors were indeed shown to occur in vivo [86, 87] and calcium containing 

nanospheres were directly observed during the development of sea urchin embryos [88], indicating 

the applicability of this model to living systems.  

 

Mucus: a protective endothelial layer 

Another example of extracellular protein associations is mucus, a viscous material found in many 

different metazoan species from corals and gastropods to humans. Their functions span a broad 

range, including filtering nutrients from the environment, aiding movement of gastropods, and 

providing protection against predators.  

In vertebrates, where mucus covers all epithelial tissues in direct contact with the environment, the 

most important function of this hydrogel is to hydrate and lubricate the mucosal surfaces [89]. The 

main protein components of mucus hydrogels in humans are gel-forming mucins (GFMs). e.g. 

MUC2, MUC5A, and MUC5B, all of which contain D-domains on their N terminus and a cystine knot 

(CK) domain at their C terminus. These globular domains are capable of forming stable protein-

protein interactions, thus facilitating the formation of higher order structures. MUC2, MUC5A and 

MUC5B also contain several repeats of Cys domains (named after their high cysteine content) in 

their central region. All GFMs are characterized by a long central region that is enriched in serine, 

threonine and proline residues (S/T/P region) and is heavily glycosylated [89], except for the Cys 

domains. Since Cys domains contain mostly hydrophobic residues, the alternating pattern of 

negatively charged glycosylated regions and Cys domains contribute to the reversible forces 
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between mucin proteins in the hydrogel [90]. The S/T/P region is shown to adopt an extended, 

disordered conformation that is indispensable for the elasticity of the mucus hydrogel [91]. The main 

driving force behind phase separation of GFMs is concentration [92], but other factors such as salt 

concentration, pH and the presence of other protein factors also play crucial roles in regulating 

structure and rheological properties of the mucus blanket [89]. In cystic fibrosis, mutation(s) in the 

cystic fibrosis transmembrane conductance regulator (CFTR) channel leads to electrolytic imbalance 

and the formation of the highly viscoelastic mucus, causing the disease [89].  

 

Adhesive exudates: sticky gels for protection and predation 

Assembled secreted protein(s) (termed exudates) also play interesting and important roles in 

invertebrates: they either use the adhesive, gluey material for protecting themselves against 

predators or attaching themselves to surfaces. For example, the Australian fossorial frog N. bennetti 

secretes from its dorsal skin a protein-rich liquid exudate when attacked by a predator, i.e. a snake 

[93]. Once outside, the protein solution rapidly forms a tacky elastic gel, causing discomfort to the 

predator. This behavior has also been observed in several other frogs [94]. Interestingly, larvae of 

the frog secrete a similar material that forms a cement, which is used by the embryos and early 

larvae to adhere to stationary supports [95]. Other amphibia, such as some salamander species, also 

rely on proteinaceous adhesive exudates to protect themselves [96]. 

The application of adhesive secretions may be an even broader, general strategy of invertebrates to 

attach themselves, their nests or their eggs to biological or mineral surfaces [97]. For example, the 

moth O. eucalypti uses a protein-based hydrogel to secure its egg [98]. At variance, some velvet 

worms eject a proteinaceous solution turning instantaneously gluey, to immobilize and capture their 

prey [99]. 

 

Bacterial biofilms: protection and colonization  

Bacteria often form colonies stuck to each other and to biological and environmental surfaces. 

Their cells are embedded in a self-produced protein matrix of extracellular polymeric substance 

(EPS), often also termed biofilm [100]. The biofilm matrix can contain soluble, gel-forming 

polysaccharides, proteins and DNA, and also insoluble components such as functional amyloids or 

cellulose, which all impart their individual physical properties on the heterogenous and highly 

dynamic matrix. Interestingly, not only components of the biofilm give rise to the emergent 

properties of an artificial habitat, bacteria in biofilms also exhibit emergent properties that differ 

substantially from those of the free-living bacterial cells. 
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Specific and emergent structural and functional properties of the biofilm specify the characteristic 

features (emergent properties) of the colony within the biofilm, such as social cooperation, 

resource capture and enhanced resistance or tolerance to antibiotics and environmental stress. 

For example E. coli biofilms have desiccation tolerance, a group of proteins called hydrophobins 

secreted by B. subtilis form highly hydrophobic biofilms that float at the air–liquid interface, and in 

B. subtilis biofilms DNA from lysed cells is a source of phosphorus, carbon and energy [100]. 

 

Conclusions: principles and applications of bio-condensates 

Through many distinct examples, we have shown that assemblies of proteins form in many 

biological settings and convey a very broad range of emergent properties. Importantly, the different 

possible functional (Figure 2) and structural (Figure 1) categories  probably combine in many distinct 

concrete assemblies. Certain generalizations regarding the structural and atomistic background of 

the formation of such assemblies, nevertheless, can be made. Protein-protein interactions can be 

mediated by domains, motifs and residues, which can all lead to the formation of stoichiometric 

complexes but also to non-stoichiometric ones (Figure 4), if: i) multiple interacting partners cause 

heterogeneity of the system (Figure 4A), ii) there is a mismatch in the binding valency of the 

partners (Figure 4B), and iii) some partners have a high level of structural disorder (Figure 4C). The 

underlying physical interactions then lead to the formation of a non-stoichiometric and extendable 

assembly with completely novel, emergent properties. Whereas the noted features can be derived 

from indirect observations and considerations, basic challenges of this emerging field is to unravel 

the underlying structural determinants promoting the assembly process and to provide quantitative 

description of thermodynamics, kinetics and dynamics of the various functional states that arise. 

Although we have a battery of techniques to look into these details [101, 102], heterogeneity and 

diversity of the systems already reported will represent an enduring challenge for many years to 

come.  

Understanding all the details of supramolecular assemblies is also of special interest because they 

display the potential of special applications in medical and material sciences. Hydrogels are excellent 

candidates for targeted drug delivery and tissue engineering, because they are biocompatible, 

highly responsive to their environment and their physical properties such as stiffness, mesh size and 

biodegradability can be fine-tuned through varying their components and applying cross-linking 

[103]. Hydrogels can encapsulate therapeutic agents, such as drugs [104], peptides, proteins [105]  or 

nucleic acids [106], capable of releasing them in a controlled and gradual manner. This property was 

utilized for the delivery of taxol to human hepatocarcinoma tumor in mice [107], resulting in a stable 
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release and reduced toxicity. The same effect was observed with doxorubicin, where the hydrogel-

encapsulated drug showed similar anti-tumor activity with less side-effects compared to the 

conventional application [108].  Hydrogels can also be applied to accelerate wound healing [109] and 

cardiac regeneration [110], whereas artificial mimicking of biomineralization is a promising field in 

regenerating tooth enamel [111] and bones [112]. One strategy is to encapsulate regenerative 

agents into hydrogels, like bone marrow-derived mesenchymal stem cells, and utilize them as 3D 

scaffolds for bone regeneration [113]. With the ever-growing insight into the molecular organization 

of the supramolecular structures participating in tissue regeneration and the formation of “smart 

interfaces” [114], artificial materials that are capable of communicating with and responding to their 

cellular environment seems soon to be within our reach. 

First and foremost, however, the basic challenge lies with our ability to harness this novel paradigm 

of organization for a better understanding of cell biology. As primordial coacervation may have been 

instrumental in the emergence of life [115], and extant organelles can have as basic functions as 

decelerated aging of oocytes [116] or assembly of ribosomes [117], the importance of these cellular 

compartments can hardly be overstated. As studies aimed at their detailed description keep 

unrolling, we are entering one of the most exciting phase of our quest for the molecular 

understanding of life.  

 

Legends of figures 

Figure 1 Amyloids, prions and signalosomes as non-stoichiometric signaling complexes   

There are various ways by which multidomain proteins can assemble into non-stoichiometric 

signaling complexes. (A) Prions form by the orderly assembly of amyloid-type structures, as shown 

schematically for the human prion protein (a) and by the high-resolution X-ray structure of the 

heptapeptide GNNQQNY of the physiological yeast prion Sup35 (b, based on PDB 1yjp, cf. [26]). (B) 

Head-to-tail organization of p62 autophagy scaffolding protein forms a signalosome, via its N-

terminal PB1 domain forming a filamentous structure (adapted from ref. [38]). (C) Schematic 

diagram of the network of proteins in the PSD, with various groups of proteins color-coded. For 

simplicity, only a few key proteins are named and shown (adapted from ref. [41]). (D) Electron 

microscopic image of an excitatory glutamatergic synapse, displaying a prominent electron-dense 

zone, PSD, juxtaposed to the postsynaptic membrane (from ref. [40], Copyright (2008) National 

Academy of Sciences). 

 

Figure 2 LLPS results in different types of emergent functions    
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Phase separation brings a large number of macromolecules (protein, RNA) in close proximity and/or 

physical contact, endowing five broad types of emergent functional features on them. Here we show 

them separately starting from the upper left corner and proceeding clockwise: 1) bioreactors 

(affecting catalytic efficiency and specificity by enzyme-substrate proximity and targeting), 

biomolecular filters (selecting molecules incorporated by size and chemical differences), regulators 

of spatial patterns (generating concentration gradients in cells), biomolecular shields (protection of 

content from outside effects, such as immune system of degrading enzymes), and reservoirs 

(temporarily storing components for later re-use), but in most of the cases they appear in 

combination in the functioning of a particular organelle. 

 

Figure 3 Crystal nucleation through phase separation as a mechanism of biomineralization 

Biomineralization, such as the formation of bone and tooth, egg shell and hard tissues of mollusks 

results from the orderly deposition of inorganic minerals by large, repetitive, mostly disordered 

proteins. Increasing evidence attests to a nucleation model of biomineralization (polymer-induced 

liquid precursor (PILP) phase), which describes the nucleation process as LLPS mediated by ID 

polymers binding to different solutes. 

 

Figure 4 Various assembly logics of non-stoichiometric assemblies 

All different processes leading to the formation of non-stoichiometric assemblies rely on proteins 

that can engage in multivalent interactions with each other. Various combinations of domain-

domain, domain-motif and residue-residue interactions may lead to assemblies of distinct internal 

symmetry and dynamics, preventing the formation of stoichiometric complexes, due to 

heterogeneity multiple interacting partners, A), a mismatch in the binding valency of the partners 

(B), and/or  a high level of structural disorder that remains even in the mutually bound state (C). 
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