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Abstract

Motivation: Transmembrane proteins (TMPs) are crucial in the life of the cells. As they have special

properties, their structure is hard to determine––the PDB database consists of 2% TMPs, despite

the fact that they are predicted to make up to 25% of the human proteome. Crystallization predic-

tion methods were developed to aid the target selection for structure determination, however,

there is a need for a TMP specific service.

Results: Here, we present TMCrys, a crystallization prediction method that surpasses existing

prediction methods in performance thanks to its specialization for TMPs. We expect TMCrys to

improve target selection of TMPs.

Availability and implementation: https://github.com/brgenzim/tmcrys

Contact: tusnady.gabor@ttk.mta.hu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transmembrane proteins (TMPs) play vital roles in numerous cell

functions being enzymes, receptors or channels, connecting the inner

and outer environment of the cells. They may also anchor proteins

to the membrane of the cell and play roles in cell–cell recognition

and form intercellular joining. About a quarter of the human prote-

ome consists of TMPs (Dobson et al., 2015b) and around 50% of

the marketed drugs interacts with these proteins (Hopkins and

Groom, 2002). TMPs have very special physical-chemical properties

as they span the hydrophobic cell and organelle membranes, making

the determination of their structures extremely difficult. In a recent

work, it was found that among the about 3000 human polytopic

TMPs only around 60 ones have an experimentally determined

structure that covers all of their membrane regions (Varga et al.,

2017).

The process of TMP structure determination consists of several

steps (Kobe et al., 2008). First, an appropriately designed DNA se-

quence (Mirzadeh et al., 2016) has to be cloned to a suitable expres-

sion system and overexpressed in sufficient quantity (Lundstrom,

2006). TMPs tend to be challenging with regards to their expression

in larger quantities as they can be toxic to a cell (Gubellini et al., 2011).

In prokaryotic systems, some post-translational modifications, like gly-

cosylation, do not occur and that may prevent the production of the

functional protein with the proper structure (Andréll and Tate, 2013).

After these problems are overcome, the membrane fraction is separated

and the TMPs are solubilized with the appropriate detergents or deter-

gent mixtures. The selection of the proper detergent is a subject to trial-

and-error experiments and is often done by high-throughput screenings

with a set of conditions (Moraes et al., 2014). The solubilized proteins

are subsequently purified by affinity chromatography. The chance of

successful purification can be enhanced with adding proper purification

tags to the N- or C-terminal of the protein, like the commonly used his-

tidine tag. After purification, these tags are usually cleaved from the pro-

teins with proteases as they are no longer needed and they may impede

crystal formation (Love et al., 2010). If there exists an anti-body against

the protein or it has a ligand that it binds to, the purification can be per-

formed by these as well.

The purified protein can be subjected to crystallization experi-

ments. That usually means the screening of hundreds or thousands

experimental conditions. The aim of these experiments is to create

single perfect crystals that are large enough to perform X-ray crys-

tallography experiments on them (that usually means a few tenths of
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millimeter length in every direction) and are pure and regular.

Diffraction quality crystals are subjected to X-ray and data are col-

lected of the diffraction. The data have to be thoroughly analyzed to

solve the phase problem and create the electron density map of the

protein that is subsequently matched with the known sequence of

the protein to generate the structure (Moraes et al., 2014). As usual,

the success of protein structure determination can be enhanced by

introducing mutations, creating fusion constructs or deleting part of

the sequence (Scott et al., 2013).

Lately, numerous crystallization prediction methods were devel-

oped, namely OB-score (Overton and Barton, 2006), CRYSTALP

(Chen et al., 2007), CRYSTALP2 (Kurgan et al., 2009), PPCPred

(Charoenkwan et al., 2013), PredPPCrys (Wang et al., 2014),

XtalPred (Slabinski et al., 2007), XtalPred-RF (Jahandideh et al.,

2014), Crysalis (Wang et al., 2016) or Crysf (Wang et al., 2017) to

aid the selection of crystallization targets. A comprehensive descrip-

tion of these methods was recently published by Wang et al. (Wang

et al., 2017). However, only one of them, MEMEX (Martin-

Galiano et al., 2008), created in 2008, aimed specifically at TMPs.

With all the new experimental processes and methods developed

since then, a prediction method specific for TMPs incorporating

new experimental data were opportune to create. Here, we present

TMCrys, a method for the prediction of TMP solubilization, purifi-

cation and crystallization.

2 Materials and methods

As common for every machine learning problem, we created positive

and negative datasets for the different steps of the crystallization

process (solubilization, purification and crystallization) and split

them into training and test sets, tuning the hyperparameters of the

models on the training sets with cross-validation. Cloning and ex-

pression steps were not included in this analysis since they are better

described by the DNA sequence coding for the proteins (Saladi

et al., 2018). Features, characterizing the different elements of the

datasets, were calculated and loaded into a machine learning algo-

rithm to find the best performing models. Then, the performances of

the models were tested on the corresponding test sets. The workflow

of the whole process is depicted in Supplementary Figure S1.

2.1 Creating datasets
Datasets were compiled from PDBTM [version 2017.04.07, (Kozma

et al., 2013)] and TargetTrack [version 2016.06.18, (Gabanyi et al.,

2011)] databases for every considered step. Sequences below 30

amino acids were not considered as they were hardly more than sin-

gle transmembrane helices.

Entries from the PDBTM database were classified as positive

examples of all the three considered steps. For the last step, crystal-

lization, only structures determined by X-ray crystallization were

used. For the preceding two steps, solubilization and purification,

entries determined by all kind of methods were used.

The predecessor of TargetTrack database, TargetDB (Chen et al.,

2004) was created in 2003 as part of the Protein Structure Initiative

(PSI) program and was merged with Protein expression, purification

and crystallization database in 2008 to form TargetTrack database as

a member of the Structural Biology Knowledgebase (SBKB). The PSI

program ended in 2015 and SBKB continued to deliver result from

PSI contributing centers for another 2 years, discontinuing the weekly

update of the database by July 1, 2017.

Processing the entries of TargetTrack database required several

more steps. Since the contributing genomics centers uploaded

different data with different intervals and precision, we had to make

several assumptions while processing. These assumptions were

based on the papers of previous crystallization methods and

described in the following paragraphs.

The database covers 14 years and some described past failures

may only have occurred as a result of rudimentary methods that

have been improved over the years. Hence, in case of failures, only

entries after 12/31/2008 were used (Wang et al., 2017). Another

problem arose in the cases of closing down various phases of PSI

(like entries with status ‘End of PSI-I’) or when the center ceased

contributing to the database. Classifying the concerned entries as

failures would lead to false classifications, introducing noise to the

data. Therefore, we only used entries if their status were ‘Work

stopped’ or if registered as running, they belonged to a still contribu-

ting center. In case of running entries, we categorized entries as fail-

ures if there was no update since 12/31/2014 (Wang et al., 2014) in

order to not count an attempt as a failure just because the center did

not update it in time. In these cases, the failed step was the one after

the last status (e.g. ‘crystallization failed’ if the last successful step

was ‘purification successful’). Categorization for every occurring

status is available in Supplementary Table S1, on Worksheet

‘TargetTrack statuses’.

The processing of TargetTrack database is depicted in

Supplementary Figure S2. It is important to note that sequences

were handled on trial level instead of target level, making every trial

sequence a separate example in the datasets. First, leading and trail-

ing expression and purification tags were removed. Then, all trials

with the exact same sequence were collected as one together with

their latest updates. If the status of the latest update was ‘Work

stopped’, we classified the protein as negative regarding the corre-

sponding step and positive for the preceding steps, unless the reason

for stopping was a determined structure when it was categorized as

positive for all of the steps. Negative entries were only considered if

they were registered after 2008.12.31. If the status of the update

was equivalent to ‘Running’ (ie. not ‘Works stopped’), we always

checked if the recording center was still contributing. The entry was

omitted if the corresponding contribution had been stopped or it

was negative and made before 01/01/2015, otherwise it was put in

the appropriate groups.

For every step, redundant entries were removed with CDHIT (Fu

et al., 2012). We used CD-HIT-2D to sort out entries from the nega-

tive dataset if there was an entry in the positive with at least 60% se-

quence identity. Then, each group of each step was also filtered for

redundancy by CDHIT considering 60% identity. The limitation of

TMCrys comes from the 60% identity threshold: it could not dis-

criminate between proteins with substituted amino acids or short

truncations.

For the overall process, the training and testing negative datasets

were created by merging the corresponding negative datasets of all

the three steps, respectively. The positive datasets were merely the

entries of positive crystallization step. Redundancy was removed be-

tween the positive and negative datasets as described above.

Every dataset was split to independent training and test sets with

80% going to training and 20% to the test. In case of the whole pro-

cess, the latter was used to compare performance between prediction

methods. Last, all entries were categorized as TMP or globular by

running CCTOP (Dobson et al., 2015a) algorithm on them.

2.2 Calculating and engineering features
For every dataset of the three steps, features describing the protein

sequences were calculated or predicted and are available in

TMCrys: membrane protein crystallization prediction 3127
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Supplementary Table S1 together with the software (Dobson et al.,

2015b; Petersen et al., 2009), R package (Kawashima et al., 1999;

Xiao et al., 2015) or Perl module (Overton and Barton, 2006;

Walker, 2005) used for the calculation of that particular feature,

if any.

The non-parametric two-sample Kolmogorov–Smirnov test was

used for eliminating features where both the positive and negative

datasets come from the same distribution (Supplementary Fig. S3A).

The null hypothesis of the test is that the two compared distributions

are the same. We used P-value threshold of 0.05 to select features

for which the null hypothesis was rejected (P-values for every fea-

ture are in Supplementary Table S1). The number of features after

this step is included in Table 2. For every retained feature, we calcu-

lated log transformed values to determine which scale of the values

offers the best separation of data (Supplementary Fig. S3C). The

used scale was determined by visual inspection, and is available in

Supplementary Table S1, in columns entitled ‘Engineering’.

We also transformed some variables from continuous to categor-

ical scale in the following way (Supplementary Fig. S3B). By examin-

ing the distributions of the variables, it appeared that the positive

datasets tended to have heavier tailed distributions for a few fea-

tures. For these features, we calculated the mean and SD of the val-

ues belonging to the negative group. For both groups, we calculated

upper and lower thresholds at mean 6 2 SDs and applied these

thresholds for the data. Values between the two thresholds were

categorized as ‘non-extreme’ and values outside of the thresholds

were ‘extreme’. These variables together with the calculated mean

and deviation values are available in Supplementary Table S1.

2.3 Training models
Extreme gradient boosting (XGBoost; Chen and Guestrin, 2016) is a

recently developed technique that was shown to perform well on nu-

merous types of data (Olson et al., 2017). Boosting starts with fitting

a model to the training data. Errors are those data points that have

been wrongly categorized with the first model. The second model is

then fitted on the errors to correct the mistakes of the first model

hence increasing separation of the data. The number of iteration

rounds is subjected to hyperparameter tuning and has to be opti-

mized by cross-validation to prevent overfitting. Gradient boosting

uses a gradient descent algorithm to find the model that best corrects

the previous ones. The word ‘extreme’ refers to some implementa-

tion specialties that make the algorithm run faster and use less re-

source. Here, we used XGBoost with decision trees.

We have trained three XGBoost decision tree models for each

step of the crystallization process using caret (Kuhn, 2008; Kuhn

et al., 2017; version 6.0-76) and xgboost (Chen et al., 2017; version

0.6-4) packages in R. The tuning of the hyperparameters was per-

formed with Bayesian Optimization using rBayesianOptimization

(version 1.1.0) package, with Matèrn kernel function (�¼5/2) with

25 iterations. The set of tuned hyperparameters is available in the

Supplementary Table S1 (sheet Tuned hyperparameters). For tuning,

10-fold cross-validation of the training dataset was used and the aim

was to maximize area under curve (AUC) of the receiver operating

characteristics (ROC) curve as usually recommended for imbalanced

training data (Provost and Fawcett, 2001). The best sets of hyper-

parameters were determined by the maximum of the AUC and were

used for tuning the final models. Thresholds for binary classification

were selected to balance specificity and sensitivity.

A very simple model was built to create prediction for the three

consecutive steps. The probabilities of the different steps were

summed and then an appropriate threshold was determined with

10-fold cross-validation to balance sensitivity and specificity.

2.4 Comparing methods
Comparison of the developed methods with existing models was

performed for whole crystallization process. A heldout test set of

783 proteins was subjected to prediction for five different methods,

as well as TMCrys. Since Crysf can only be used with protein

sequences derived from SwissProt/Trembl, we did not include it in

this testing. PredPPCrys and MEMEX was unreachable at the time

we created the comparisons, thus these methods were also left out.

Since some of the prediction methods can only work with proteins

that are not shorter or longer than a certain threshold, we only used

sequences from the test dataset with length between 30 and 1000

amino acids to enable far comparison.

XtalPred and XtalPred-RF do not give a binary crystallizable/

non-crystallizable result but a scale of 1–5 and 1–11, respectively, 1

being the most probable and 5 or 11 being the least probable to crys-

tallize. To calculate specificity, sensitivity, accuracy and G-mean,

we defined the threshold to give the best results for these models.

For XtalPred, that threshold was 4.5 and for XtalPred-RF 9.5.

We used AUC of ROC curve and other performance metrics that

can be derived from a confusion matrix. For binary classification, a

confusion matrix contains four cells: true positive (TP), false positive

(FP), false negative (FN) and true negative (TN). The performance

metrics can be defined as follows:

Sensitivity ¼ TP

TPþ FN
(1)

Specificity ¼ TN

FPþ TN
(2)

MCC ¼ TP � TN� FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p (3)

Balanced accuracy ¼ sensitivityþ specificity

2
(4)

G�mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity � specificity

p
(5)

2.5 Implementation
TMCrys was implemented in R and Perl and is available at https://

github.com/brgenzim/tmcrys together with the description of instal-

ling and runninq the scripts. It requires the topology for each protein

either as CCTOP result files or as a space delimited file. For execut-

ing properly, TMCrys demands the NetSurfp result file of the

proteins.

Table 1. Number of sequences in each group for every step of the

crystallization process

Step Success Failure Total

Training Test Training Test

Solubilization 2161 549 864 217 3833

Purification 1732 439 429 107 2735

Crystallization 543 152 1279 321 2367

Whole process 543 152 2545 632 3950
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3 Results

3.1 Descriptive statistics
Descriptive statistics of all the used features were calculated for each

of the steps both for positive and negative groups, respectively.

These statistics can be found in Supplementary Table S1 together

with the P-value of the applied Kolmogorov–Smirnov test. The table

also includes the softwares, packages or modules required for the

calculation of that specific feature together with the final decision of

incorporating, transforming or dropping the variable from the

prediction.

Different datasets were compiled both for every steps and the

whole process. The cardinalities of every dataset are available at

Table 1. The datasets are available as Supplementary Data S2.

3.2 Performance of the models
We have compared the results of several crystallization prediction

methods either for the whole process.

The performance of TMCrys for different steps is shown on

Table 2 and the ROC curves are presented in Figure 1, Panels A–C.

For binary classification the thresholds for solubilization, purifica-

tion, crystallization steps and the whole process were set to balance

specificity and sensitivity. The values were 0.774, 0.869, 0.235 and

2.177, respectively.

Comparison of TMCrys to other methods is presented in Table 3

and the ROC curves are depicted in Figure 1D. TMCrys clearly out-

performs other predictions for TMPs that is reasonable as they are

not specifically developed for TMPs. TMCrys has a specificity and

sensivity well above the others for the overall process, while other

tools could hardly either reach 90% specificity at the expense of

much lower sensitivity or they have sensitivity and specificity be-

tween 50% and 60%.

4 Discussion

Although cryo-electron microscopy, acknowledged by Nobel prize

this year, is a promising new technique to determine the 3D struc-

tures of molecules in their natural environment (Hite and

MacKinnon, 2017; Nogales, 2016), the selection of targets for struc-

ture determination remains one of the greatest question of structural

genomics experiments to better avoid long and expensive experi-

mentation with proteins that are not likely to result in resolved

structures (Varga et al., 2017). TMPs are usually more challenging

due to their special physical-chemical properties. Here, we described

a crystallization propensity prediction tool, TMCrys that might

contribute to successful structure determination by pointing out

proteins that would likely fail the process at some point. The

peculiarity of TMCrys is using only TMP-derived features to

train machine learning algorithms to the task. The resulting model

surpasses existing, non-specific tools in deciding of the crystallizabil-

ity of TMPs. TMCrys is freely available and downloadable at

GitHub.

Table 2. Performance of the models of the different steps with cross-validation and on the respective test sets

Cross-validation Test Features

Step Acc Sens Spec G-mean AUC MCC Acc Sens Spec G-mean AUC MCC

Solubilization 0.745 0.701 0.700 0.700 0.772 0.368 0.732 0.694 0.770 0.731 0.803 0.421 156

Purification 0.812 0.761 0.758 0.758 0.820 0.437 0.734 0.753 0.717 0.735 0.813 0.394 193

Crystallization 0.763 0.809 0.807 0.807 0.885 0.583 0.795 0.743 0.847 0.794 0.875 0.581 201

Whole process 0.923 0.934 0.927 0.930 0.976 0.786 0.752 0.662 0.841 0.746 0.833 0.456 ––

Note: The numbers of features after feature selection are also included for every step.

Acc, Balanced accuracy; Sens, Sensitivity; Spec, Specificity and MCC, Matthew’s correlation coefficient.

Fig. 1. Performance of TMCrys. ROC curves of the performance of TMCrys both for the corresponding test sets and cross-validation. (A) Solubilization, (B) purifi-

cation and (C) crystallization step. (D) Comparing the performance of TMCrys (shading: confidence interval) with existing tools for the whole process. The meth-

ods are the following: CrystalP2, XtalPred, XtalPred-RF, ParCrys, Crysalis I and Crysalis II

Table 3. Performance of the different prediction methods on the

test set

Method Acc Sens Spec G-mean AUC MCC

TMCrys 0.752 0.662 0.841 0.746 0.833 0.456

Crysalis I 0.493 0.105 0.881 0.304 0.510 –0.017

Crysalis II 0.492 0.112 0.871 0.312 0.499 –0.020

XtalPred 0.491 0.016 0.967 0.124 0.482 –0.038

XtalPred-RF 0.577 0.620 0.524 0.570 0.578 0.299

CRYSTALP2 0.572 0.606 0.538 0.571 0.593 0.106

ParCrys 0.445 0.107 0.783 0.289 0.564 –0.125

Acc, Balanced accuracy; Sens, Sensitivity; Spec, Specificity and MCC,

Matthews correlation coefficient.
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