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Abstract

Motivation: Intrinsic disorder (ID), i.e. the lack of a unique folded conformation at physiological

conditions, is a common feature for many proteins, which requires specialized biochemical experi-

ments that are not high-throughput. Missing X-ray residues from the PDB have been widely used

as a proxy for ID when developing computational methods. This may lead to a systematic bias,

where predictors deviate from biologically relevant ID. Large benchmarking sets on experimentally

validated ID are scarce. Recently, the DisProt database has been renewed and expanded to include

manually curated ID annotations for several hundred new proteins. This provides a large bench-

mark set which has not yet been used for training ID predictors.

Results: Here, we describe the first systematic benchmarking of ID predictors on the new DisProt data-

set. In contrast to previous assessments based on missing X-ray data, this dataset contains mostly long

ID regions and a significant amount of fully ID proteins. The benchmarking shows that ID predictors work

quite well on the new dataset, especially for long ID segments. However, a large fraction of ID still goes

virtually undetected and the ranking of methods is different than for PDB data. In particular, many pre-

dictors appear to confound ID and regions outside X-ray structures. This suggests that the ID prediction

methods capture different flavors of disorder and can benefit from highly accurate curated examples.

Availability and implementation: The raw data used for the evaluation are available from URL:

http://www.disprot.org/assessment/.

Contact: silvio.tosatto@unipd.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

For almost a century, our view on protein function has been domi-

nated by the structure-function paradigm, which assumed that for

functioning, a protein needs to fold into a stable three-dimensional

(3D) structure. Due to its exquisite explanatory power, this

paradigm became practically exclusive, fueling efforts to solve struc-

tures of proteins and other macromolecules on an almost industrial

scale. As a result, more than 100 000 high-resolution structures have

been deposited into the Protein Data Bank (PDB) (Velankar et al.,

2016). Recently, however, it has been recognized that many
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proteins, or regions of proteins, lack such stable 3D structures under

apparently native conditions, which challenged the structure-

function paradigm. These intrinsically disordered (ID) proteins or

regions are prevalent in most organisms (Peng et al., 2015; Xue

et al., 2012). They fulfil important functions in the cell, mostly

related to cellular signaling and molecular recognition (Habchi

et al., 2014; van der Lee et al., 2014; Oldfield and Dunker, 2014),

when they often undergo induced folding in the presence of their

partner (Tompa et al., 2015). The phenomenon of structural dis-

order is also under intense scrutiny because, due to their regulatory

importance, disordered proteins are often implicated in diseases

(Uversky et al., 2008) and represent important drug targets (Hu

et al., 2016; Joshi and Vendruscolo, 2015; Metallo, 2010).

Whereas contrasting ID proteins or regions with folded proteins

might seem to provide a clear definition, there is actually no consen-

sus in the field with regards of what should be considered as struc-

tural disorder. As a rudimentary definition, the lack of a stable 3D

fold might work, but it does not unequivocally translate to experi-

mental or computational approaches to identify disorder. In accord,

a variety of experiment techniques, which may be considered pri-

mary (X-ray crystallography and NMR) or secondary (CD spectros-

copy, limited proteolysis and many more) (Habchi et al., 2014;

Uversky and Dunker, 2012) provide different types of information

on the lack of structure. It has been previously argued that ID should

only be accepted when they all agree (Habchi et al., 2014). Due to

technical difficulties, this consensus is not usually pursued, and thus

the entries in the recently updated version of the database of protein

disorder, DisProt (Piovesan et al., 2017), come in different subtypes,

depending on the type of the experimental evidence that supports

their annotation. In other words, structural disorder appears to

come as different ‘flavors’, the relationship of which is difficult to

assess at the moment. We may distinguish flavors of disorder by dis-

tinct amino acid composition (Vucetic et al., 2003), backbone flexi-

bility (Cilia et al., 2013; Martin et al., 2010), evolutionary

conservation (Bellay et al., 2011), function (Peng et al., 2015;

Tompa, 2005; Xue et al., 2012) and length. The separation of ID re-

gions into short and long disorder usually involves a threshold of 20

or 30 continuous disordered residues. By this definition, short dis-

order is often present in the PDB in the form of short linkers or loops

in folded proteins, whereas long disorder is underrepresented in the

PDB because it poses major obstacles in structure determination.

In accord, as many entries in the previous version of DisProt

(Sickmeier et al., 2007) have been identified as regions with missing

coordinates in PDB X-ray structures, DisProt v 6.0 was dominated by

short IDRs. The recent update (DisProt v 7.0) relies much more on

NMR and secondary techniques, thus the length distribution is sig-

nificantly shifted towards longer ID regions (Piovesan et al., 2017).

This notable heterogeneity has bearings on the prediction of

structural disorder from sequence. Today, dozens of bioinformatics

predictors are available for assigning to amino acids in a sequence

the status of order or disorder (Atkins et al., 2015; He et al., 2009).

As predictors rely on different principles, they are sensitive to the se-

quence environment, biased not only by the actual protein, but also

the experimental methodology used for describing its disorder. In

brief, available disorder prediction methods assess structural dis-

order based on: i) (amino acid) propensities, ii) pseudo-energy func-

tions of inter-residue contacts, iii) machine learning approaches and

iv) consensus based approaches (Atkins et al., 2015; He et al.,

2009). Propensity-based predictors apply some simple statistics on

the physical/chemical features of amino acids, such as amino acid

composition (Prilusky et al., 2005), secondary structure propensity

(Linding et al., 2003a), or regions with high structural temperature

factors (Linding et al., 2003b). Predictors based on pseudo-energy

functions (contact potentials) rely on statistics of residue contacts in

folded proteins to recognize sequence regions that are in a high-

energy (and thus disordered) state (Dosztányi et al., 2005;

Galzitskaya et al., 2006). Machine learning algorithms (neural net-

works and support-vector machines) are trained to recognize fea-

tures that distinguish a collection of positive (disordered) sequences

from negative (ordered) proteins (Ishida and Kinoshita, 2007; Jones

and Cozzetto, 2015; Vullo et al., 2006; Wang et al., 2012, 2016;

Walsh et al., 2012; Zhang et al., 2017). The results of distinct algo-

rithms may also be combined into meta-predictors. Such consensus-

seeking algorithms (Ishida and Kinoshita, 2008; Mizianty et al.,

2010; Necci et al., 2017; Walsh et al., 2011; Xue et al., 2010) are

more accurate than individual predictors, but they offer no indica-

tion of the cause of disorder and may combine individual predictions

that vary in disorder output and parameter setting.

In all, predictors in the first two categories approach structural

disorder by physical principles, conveying an element of understand-

ing of the reasons of structural disorder of a region. Predictors in the

other two categories, on the other hand, are trained to recognize se-

quences that look like other disordered sequences, propagating the

uncertainty of the experimental identification of structural disorder

(ascertainment bias), and do not convey a physical sense of disorder.

It should also be appreciated that distinct predictors have different

sensitivity in capturing different flavors of disorder, and thus per-

form differently on different ID collections, as demonstrated in the

Critical Assessment of techniques for protein Structure Prediction

(CASP) experiment (Monastyrskyy et al., 2014). An additional facet

of applying distinct predictors is their applicability in the in-depth

analysis of a single, or a very small number of, proteins, in which

the maximum accuracy with a resolution down to single residues is

demanded, or the high-throughput analysis of disorder in entire gen-

omes for comparative and evolutionary studies (Pancsa and Tompa,

2012; Schlessinger et al., 2011). With a significant shift in our

knowledgebase of structural disorder in DisProt (Piovesan et al.,

2017) that underlies predictor development, these and other features

of their performance should be re-assessed. To this end, we have car-

ried out a comprehensive comparative analysis of novel DisProt data

and the performance of disorder predictors trained on prior data.

We have previously reported a large-scale analysis of ID regions in

X-ray PDB structures based on over 27000 different proteins ex-

tracted from the MobiDB database (Walsh et al., 2015). In that paper,

several performance measures were explored and a ranking established

for a dozen fast ID predictors. Unsurprisingly, the results highlighted

how methods trained on missing X-ray data generally perform better

on the PDB dataset. Here, we provide a similar analysis on a dataset

derived from the novel DisProt 7.0 release (Piovesan et al., 2017). The

analysis was carried out in the same way as before (Walsh et al., 2015)

and the results can be compared directly. This will help to better char-

acterize the differences between missing X-ray residues and experi-

mentally determined long ID regions curated from the literature.

2 Materials and methods

2.1 Datasets and classifications
The DisProt 7.0 (Piovesan et al., 2017) sequences were downloaded

and compared to the previous 6.02 release (Sickmeier et al., 2007),

providing the following seven different subsets (see Table 1). As ver-

sion 7.0 is a complete re-annotation of DisProt, a ‘core’ of 488 pro-

teins is also present in the previous release and these may have been

used to train some of the predictors. It should be noted that the
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disorder annotation has also changed for some of these entries. The

DisProt 7.0 ‘complement’ is composed of proteins not annotated in

the previous release and therefore represents, in the strictest defin-

ition, data ‘unseen’ for predictors. While DisProt 7.0 always maps

to a single UniProt (The UniProt Consortium, 2012) sequence, this

was not necessarily the case for release 6.02, reducing the number of

sequences from 694 to 667. DisProt 7.0 annotations can have a dif-

ferent level of confidence, ‘confident’ and ‘ambiguous’, describing

confident and problematic cases respectively (Piovesan et al., 2017).

In order to be conservative, ID residues are taken directly from the

DisProt ‘confident’ annotations. All residues not annotated as dis-

ordered are considered ordered to limit overprediction and focus the

assessment on biologically meaningful ID regions (Habchi et al.,

2014). An alternative definition excluding undefined residues not

annotated in DisProt and not present in the PDB is also used (see

Supplementary Fig. S1 and Table S1). Multiple annotations for the

same residue are consolidated into a single state (order or ID). The

rationale for this conservative setup is to concentrate the prediction

on bona fide ID residues in order to limit overprediction, concentrat-

ing on biologically meaningful ID regions (Habchi et al., 2014).

2.2 Predictors
Predictors were initially selected to include those of the previous as-

sessment on the entire PDB (Walsh et al., 2015). These are (disorder

definition used in parenthesis): DisEMBL (hot loops and remark

465) (Linding et al., 2003b), ESpritz (X-ray, NMR and DisProt)

(Walsh et al., 2012), GlobPlot (globularity) (Linding et al., 2003a),

IUPred (short and long) (Dosztányi et al., 2005), RONN (X-ray)

(Yang et al., 2005) and VSL2b (combination of X-ray and Disprot)

(Peng et al., 2006). This resulted in a total of ten fast predictors with

different disorder flavors. Given the relatively smaller dataset size

for DisProt, several recent slower predictors requiring multiple-

sequence alignments were also included. These are: AUCpred (Wang

et al., 2016), Disopred3 (Jones and Cozzetto, 2015), ESpritz ‘slow’

(X-ray, NMR and DisProt) (Walsh et al., 2012), Spine-D (Zhang

et al., 2017), S2D (Sormanni et al., 2015) MFDp (Mizianty et al.,

2010), MFDp2 (Mizianty et al., 2013) and MetaDisorder

(Kozlowski and Bujnicki, 2012) in all of its flavors. Finally,

MobiDB-lite (Necci et al., 2017) is included to benchmark the ef-

fects of using a consensus approach of several fast predictors.

2.3 Performance assessment
The standard binary classification measures accuracy, sensitivity

and specificity were calculated both per residue and as average on a

per protein basis. The Matthews Correlation Coefficient (MCC)

and AUC are used in addition for a per residue assessment. For

the per protein evaluation, two disorder content measures are

included, Root Mean Square Error (RMSE) and Pearson Correlation

Coefficient (PCC), with predicted and observed disorder content

normalized by the number of annotated residues. All performance

measures are calculated as detailed in (Walsh et al., 2015). Finally,

all measures are combined into a single overall ranking on which

statistical significance is measured with the Welch t-test to deter-

mine the best methods.

3 Results

3.1 DisProt disorder is different from the PDB
Partially due to the relatively limited number of entries in previous

DisProt releases, ID predictors have been usually assessed on missing

X-ray residues from the PDB (Monastyrskyy et al., 2014; Walsh

et al., 2015). Here, we present the first full assessment of DisProt

data thanks to the newly released version 7.0 (Piovesan et al., 2017).

Before starting to look at predictor performance, it is interesting to

see how DisProt differs from PDB missing X-ray data. Figure 1

shows the distribution of ID in the DisProt complement divided by

taxonomic kingdom. Unsurprisingly, Eukaryotic sequences are most

abundant, with viruses providing an additional source of ID.

The actual ID length distribution is very different from missing

X-ray coordinates in the PDB. Where PDB missing X-ray data is

strongly dominated by ID regions of less than 20 residues (Walsh

et al., 2015), DisProt has many proteins with a large ID fraction

(Piovesan et al., 2017). In DisProt, 33 out of 284 sequences are fully

disordered, which is obviously not possible in the PDB. The average

ID fraction per protein in the PDB is 5.2% compared to 22.7% in

DisProt and the fraction of long ID regions is 13.8% in PDB and

71.8% in DisProt. Overall, the DisProt dataset appears more repre-

sentative of the natural disorder distribution in proteins. Figure 2

shows the pairwise distribution of sequence identity between

DisProt sequences, peaking at ca. 10% with an average of 21%,

which demonstrates the highly non-redundant nature of data in

DisProt. Using a 90% cutoff, the number of DisProt 7.0 entries is

just slightly reduced from 803 to 752. For comparison, the reduction

in PDB entries was fourfold, from 101 338 to 24 669 (Walsh et al.,

Table 1. Dataset composition

DisProt Proteins Residues ID regions Fully ID

Disorder Ordered Short Long

v 6.02 667 90 495 221 724 759 747 131

v 7.0 756 87 494 305 020 594 1408 102

Core 488 57 874 219 560 470 979 70

Complement 268 29 620 85 460 124 429 32

v 7.0 virus 70 6631 41 195 49 202 9

v 7.0 primary 581 48 996 348 518 539 637 39

v 7.0 secondary 341 59 477 333 037 55 771 84

Note: The different DisProt subsets are listed with the number of proteins,

residues (disorder, order), ID regions and fully ID proteins. Short ID regions

have at least five and long ID regions at least 20 consecutive residues. The

DisProt v 7.0 dataset can be separated into proteins already present in

DisProt v 6.02 and re-annotated (core) and new entries (complement). The

last three subsets are only viral proteins (virus), proteins annotated from

X-ray and NMR (primary) and indirect biochemical experiments (secondary)

methods.

Fig. 1. Protein ID percentage distribution of the 284 new DisProt entries. The

x-axis labels represent the rightmost boundaries of the bins
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2015). In other words, the DisProt dataset is much more diverse

than PDB and sufficient to ensure an unbiased evaluation of the

predictors.

3.2 Predictor performance
A large number of different ID predictors, both very fast and slower

ones requiring a multiple-sequence alignment, have been bench-

marked against the DisProt dataset. Results are shown (see Table 2)

per protein and per residue for the complement dataset, i.e. entries

that are not present in DisProt 6.02. This is the fairest possible

benchmark, as no method was trained on the more recent DisProt

entries. Results for the other three DisProt sets are similar, and not

shown.

The results are coherent with the dataset differences highlighted

before, i.e. long ID predictors are better on the DisProt dataset com-

pared to the PDB. For example IUPred long is better than IUPred

short and ESpritz-DisProt is better than the other ESpritz versions,

in the PDB dataset the ranking is the opposite (Walsh et al., 2015).

Notably, while the accuracy is somehow comparable with the PDB

assessment, there is a significant change in the sensitivity and specifi-

city. In general, for DisProt specificity decreases and sensitivity in-

creases compared to the PDB. The AUC decrease from the PDB to

DisProt is generally 5-10% (compare Table 2 with Walsh et al.,

2015). This could be explained by the fact that the DisProt dataset is

more balanced than PDB. It may fit better the predictor training fea-

tures, with some exceptions such as methods trained on X-ray data

like ESpritz X-ray. For the same reasons the PCC has improved.

In order to establish an overall ranking, the ranking for each

measure has been combined. Figure 3 shows a statistical perform-

ance of the top 12 ranking representing the average of the 10 differ-

ent distributions calculated on the complement dataset (see also

Supplementary Fig. S2). The row methods have a worse ranking

than column methods when the cell is red and vice versa when green.

Darker colors correspond to a lower P-value (the number in the

cells) and indicate a significant ranking difference. Interestingly, pre-

dictors using multiple sequence alignments are not significantly bet-

ter than fast methods (with the exception of ESpritz-X-ray). An even

stronger difference can be seen for DisEMBL 465, which was ranked

first for PDB and is in the lowest quarter for DisProt.

Fig. 2. DisProt pairwise identity distribution. Pairwise identity distribution for

the core and complement datasets of Disprot 7.0. Identity percentage is the

maximum symmetrical identity of each entry Blast results against Disprot 7.0

(see Materials and methods). The x-axis labels represent the rightmost

boundary of each bin

Table 2. DisProt complement performance sorted by descending MCC

Method Per-residue Per-protein

Accuracy Sensitivity Specificity AUC MCC Accuracy Sensitivity Specificity RMSE PCC

*ESpritz X-ray 75.10 74.41 75.79 80.43 45.42 65.01 64.29 65.74 07.25 59.07

*ESpritz DisProt 68.83 47.41 90.26 81.50 41.62 54.17 49.25 59.09 14.18 52.10

ESpritz DisProt 70.03 53.87 86.20 80.02 40.95 54.38 49.20 59.57 13.40 53.86

*AUCpred 70.39 57.66 83.11 72.77 39.98 62.21 60.31 64.11 08.33 53.06

*MetaDisorder 72.01 75.94 68.08 57.01 38.84 64.31 65.31 63.30 08.98 49.19

*MetadisorderMD 71.56 73.78 69.34 59.52 38.22 64.04 60.67 67.41 08.75 47.24

MobiDB-lite 68.31 49.98 86.63 76.74 38.16 56.77 33.50 80.04 09.78 57.73

IUpred long 70.73 66.83 74.62 75.69 37.74 60.93 50.96 70.90 08.70 53.13

*ESpritz NMR 71.37 75.18 67.56 76.7 37.69 64.81 64.72 64.90 07.51 52.37

*SPINE-D 71.43 81.89 60.97 78.64 37.47 64.20 74.70 53.70 09.71 51.22

*DISOPRED3 70.27 66.34 74.19 76.56 36.87 60.34 48.77 71.91 09.46 45.03

IUpred short 68.71 57.03 80.40 75.48 35.97 60.95 49.24 72.66 06.96 57.17

*MetadisorderMD2 70.46 77.36 63.57 69.26 35.85 64.70 65.36 64.04 09.27 45.18

ESpritz NMR 69.71 70.29 69.13 73.73 35.04 62.50 59.02 65.99 07.83 49.34

*MFDp2 68.08 57.32 78.84 67.73 34.34 61.58 63.11 60.05 13.28 44.33

ESpritz X-ray 67.73 55.60 79.86 75.85 34.08 60.73 51.80 69.65 06.75 59.64

VSL2b 69.35 81.42 57.28 76.65 33.89 62.91 74.08 51.74 10.42 50.08

JRONN 68.33 74.11 62.56 73.20 32.12 62.03 63.97 60.09 08.19 50.06

*MFDp 67.18 60.50 73.86 67.40 31.50 62.52 67.87 57.17 13.27 42.18

DisEMBL 465 62.88 42.12 83.64 70.39 26.77 56.74 39.55 73.93 07.66 58.06

*S2D 64.15 74.05 54.25 72.11 24.79 58.11 68.49 47.72 13.56 33.00

DisEMBL hot loops 61.08 58.41 63.74 65.90 19.63 56.35 58.24 54.47 08.34 41.69

GlobPlot 58.49 35.15 81.82 61.46 17.76 52.89 32.10 73.67 10.87 32.41

*Metadisorder3D 51.78 43.27 60.28 61.07 03.17 52.61 32.35 72.87 19.08 �18.65

Note: All values are shown as percentages. The top performing method in each category is shown in bold and the second best underlined. Methods marked ‘*’,

rely on multiple sequence alignments. Accuracy, sensitivity and specificity are calculated per residue (left) and per protein (right). AUC and MCC are per residue.

RMSE and PCC are calculated per protein and based on disorder content.
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3.3 Performance on different subsets
One of the most interesting features of the DisProt dataset is the

availability of different annotations beyond the well-known missing

X-ray data from the PDB. These include NMR and especially indir-

ect biochemical methods (termed ‘secondary’ in DisProt). Especially

the longer ID regions in DisProt are dominated by secondary meth-

ods, which include a wide array of biochemical techniques providing

indirect evidence for ID (Piovesan et al., 2017). Albeit susceptible to

some experimental errors, these provide a complementary view of

ID where structural methods fail due to the intrinsic difficulty in

determining ID regions. It is therefore interesting to see how the dif-

ferent predictors fare on these peculiar subsequences with a set of

predominantly long ID regions. Figure 4 shows the performance dif-

ference between primary and secondary methods on the full DisProt

7.0 dataset sorted by decreasing MCC. Almost all predictors im-

prove considerably, in particular those detecting long regions such

as IUpred long, ESpritz-DisProt and MobiDB-lite. The ranking is

also changed to the benefit of faster methods (see Fig. 4). In this

case, the overall improvement can not be explained by a better bal-

ancing between positive and negative examples (as for PDB), since

disorder content for secondary methods is 15.2% compared to

22.3% of the full DisProt. Conversely, the number of long regions

increases from 71.8 to 94.0%. Short regions are more difficult to

predict and a higher number of regions increase the probability of

making errors.

Figure 5 shows the same analysis performed on the subset of

viral proteins. Viral proteins are known to have extensive disorder,

due to the evolutionary pressure on having a compact genome with

high functional density, combined with an ability to evade the im-

mune system (Davey et al., 2011). Similarly to secondary methods

this dataset is enriched in long regions (81.2%). In this case the

improvement is less relevant and there is not a clear distinction be-

tween long and short predictors. Instead, a contribution to the im-

provement, even if weak, can be related to evolutionary information

since all the three different ESpritz flavors improve when exploiting

conservation. These observations probably releate to the higher rate

of evolutionary variation of viral proteins, which attests to how

structural disorder can combine functionality with relaxed evolu-

tionary selection pressure (Xue et al., 2014).

3.4 Consensus of disorder predictions
Given the similar performance of several ID predictors, it is worth

investigating how much these agree on the actual regions of dis-

order. To this end, we evaluated the consensus among ten fast ID

predictors (three ESpritz, two DisEMBL and two IUPred flavors,

plus GlobPlot, VSL2b and RONN) in terms of their agreement on

defining ID regions. To be more statistically significant, the evalu-

ation was carried out on the entire DisProt 7.0 dataset. Figure 6

shows how only a strong majority of at least 8 out of 10 methods

labeling a region ID has a probability of over 50% of being correct.

Perhaps more troubling, only about a third of the total ID residues

are covered by this consensus approach. A similar proportion of ID

residues has an intermediate number (i.e. 4–7) of predictors agreeing

and the rest goes virtually undetected. In other words, while the pre-

dictors have similar overall performances, the actual ID residues

being predicted are quite divergent and a large fraction of ID re-

mains undetected. These results are still encouraging, as more ID

was left undetected in the PDB (Walsh et al., 2015). It would appear

that the predictors have gathered a basic understanding of the se-

quence signal for ID, but are rather fuzzy on cases closer to the clas-

sification boundary. This is probably due to the lack of good

training data which will improve as more high-quality ID an-

notation becomes available. Overall, this situation suggests that

Fig. 3. Top 12 average ranking of prediction methods on the complement data-

set. Methods marked ‘*’ rely on multiple sequence alignments. Methods are

ranked on the basis of scores in Table 2, resulting in 10 rankings per method

(ranking distribution). The Welch t-test P-value is shown inside each box as

computed over all ranking distributions. Dark green background color is used if

the method on the x-axis is significantly better than the one on the y-axis. Red

background color is the opposite, i.e. x-axis method is significantly worse. Due

to space constraints, only the top 12 methods are shown. The full figure is

shown as Supplementary Figure S2 (Color version of this figure is available at

Bioinformatics online.)

Fig. 4. Difference in performance between secondary and primary methods

on the full DisProt 7.0. Methods are ordered by decreasing MCC on the

DisProt 7.0 secondary dataset, shown left. On the right panel, the x-axis repre-

sents the improvement of secondary over primary methods. Accuracy is

scaled in the [0–1] range. The delta RMSE is negative to follow the x-axis dir-

ection. Methods marked ‘*’ rely on multiple sequence alignments
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combining several fast ID predictors using a stronger majority

threshold can provide good results and explains the performance of

MobiDB-lite (Necci et al., 2017).

3.5 ID versus non-structure prediction
The ID definition used in DisProt prediction focuses on regions

where disorder is thought to be functionally relevant (Piovesan

et al., 2017). Many disorder predictors instead are trained to recog-

nize missing residues in X-ray PDB structures as a proxy for ID. In-

between may exist undefined residues, which are neither bona fide

ID (in DisProt) nor structured (in the PDB; see Supplementary Fig.

S1). Indeed, 53.2% of residues in the DisProt 7.0 dataset fall in the

undefined category (see Supplementary Fig. S3). Repeating the

assessment excluding undefined residues yields overall consistent

results, with two points standing out. The specificity of several pre-

dictors trained on X-ray data and using multiple sequence align-

ments is increased by up to 20% with consequent increases in AUC

and MCC (see Supplementary Table S2). As the specificity increase

is uneven between predictors, the ranking also fluctuates (see

Supplementary Figs S4–S6).

This may suggest either that the assessment is biased or that the

predictors are not specifically trained to recognize ID. To help elu-

cidate the difference, we plot the amino acid composition of the

different residue types in Figure 7. The composition for disorder

and structure follow well-established opposite trends, with lack

of hydrophobic and increase in charged residues denoting ID.

Undefined residues however are generally close to the dataset aver-

age and resemble structure more than ID. This suggests that func-

tional ID regions are a separate phenomenon, which stand out with

a different amino acid composition as opposed to being just the con-

trary of structure. This may also help explain differences in ranking

between the assessment with or without undefined residues. The

upshot from this subtle difference is that many ID predictors, trained

on X-ray structure data with limited ID, are likely predicting the ab-

sence of structure instead. This is understandable given the previous

lack of bona fide ID regions in large enough numbers but highlights

an opportunity for future improvement.

4 Discussion

We have presented the first evaluation of a large number of ID pre-

dictors on a large curated set of proteins experimentally determined

to be intrinsically disordered. This was possible due to the recent up-

grade of the DisProt database (Piovesan et al., 2017). Previous crit-

ical assessments for ID prediction were based on missing X-ray data

Fig. 5. Difference in performance between viral and non-viral proteins on the

full DisProt 7.0 dataset. Methods are ordered by decreasing MCC on the viral

DisProt 7.0 dataset, shown left. On the right panel, the x-axis represents the

improvement on viral over non-viral proteins. Accuracy is scaled in the [0–1]

range. The delta RMSE is negative to follow x-axis direction. Methods marked

‘*’ rely on multiple sequence alignments

Fig. 6. Proportion of disordered and structured residues in DisProt 7.0 annota-

tion as a function of ten methods predicting disorder. Each pie chart shows

the fraction of disorder and structure at a given number of methods predict-

ing a certain residue as disordered, ranging from 0 (i.e. none) to 10. The bar

plots one the left aggregate data for each row showing the dataset coverage.

This is the sum of structured and disordered residues of the row divided by

the total number of structured or disordered residues in the dataset

Fig. 7. Distribution of the twenty amino acids in different fractions of the

DisProt complement dataset. Amino acids are shown in increasing Kyte-

Doolittle hydrophobicity from left to right. The percentage of enrichment is

calculated using the entire dataset as reference. Notice how disorder and

structure are complementary. Undefined residues are broadly comparable to

structure but generally closer to average, with the exceptions of serine and

threonine
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from PDB structures (Monastyrskyy et al., 2014; Walsh et al.,

2015). In CASP, this situation has been acknowledged as being not

optimal (Monastyrskyy et al., 2014) and ultimately led to the dis-

continuing of the disorder prediction category. In contrast, the

DisProt 7.0 dataset provides just the type of long disorder important

for protein function. This difference is exemplified by the signifi-

cantly higher fraction of long ID regions in DisProt (71.8%) com-

pared to the PDB (13.8%). Hence, the benchmarking results we

obtained were far from obvious.

In order to allow a fair comparison to previous results based on

the PDB, the analysis and performance measures were chosen to be

identical to our previous work (Walsh et al., 2015). The results have

been overall consistent, as ID predictors are clearly able to recognize

the longer disordered regions from the DisProt dataset. In terms of

several performance measures, results are comparable to those ob-

tained in the PDB. However, a few trends emerge.

First of all, the actual ranking is different depending on whether

predictors are benchmarked on DisProt or PDB data. E.g. DisEMBL

465 was performing well on PDB data (Walsh et al., 2015), but is

now in the lowest quarter of the ranking. Other methods trained on

longer ID regions (e.g. IUpred-long) perform better than on the

PDB. This is compounded when looking at specific subsets of the

DisProt 7.0 data, such as secondary methods or viral proteins. Here,

the ranking is further changed compared to the PDB dataset. It ap-

pears that the ID predictors are able to capture a strong signal for

disorder in the sequence, but are not well trained on subtler cases

such as non-ID residues outside X-ray structures. In fact, a lot of ID

in the dataset still goes undetected (see Fig. 6). This may also help

explain the previously noted decrease in ID predictor performance

when predicting entire UniProt sequences (Walsh et al., 2015).

As second interesting observation is the difference between ‘fast’

(i.e. single-sequence) methods able to predict ID for a typical protein

sequence in less than a second compared to those requiring multiple

sequence alignments (typically from Blast) as input. The latter have

proven quite popular in the literature, e.g. Jones and Cozzetto

(2015), Sormanni et al. (2015), Wang et al. (2016) and Zhang et al.

(2017), but are generally three orders of magnitude slower than

‘fast’ methods (Walsh et al., 2012). Our benchmarking on DisProt

shows that the difference in performance is probably not sufficient

to justify the severe reduction in speed for most applications.

Indeed, training on more high quality data is likely to provide a

larger performance gain.

In conclusion, the benchmarking of ID predictors on DisProt 7.0

has provided interesting results which we anticipate will give food

for thought to methods developers. Acknowledging the subtle differ-

ence between ID and other regions outside X-ray structures is a first

step. The observed significant differences in changes of predictor

performance upon updating DisProt data warrants that structural

disorder does come in different flavors, and a continuous improve-

ment of both data quality/consistency, and disorder predictors is ne-

cessary for improving consistency of our concepts of structural

disorder. To assist in these efforts, as the analysis pipeline is straight-

forward to execute on future DisProt updates, we plan to run similar

assessments periodically to help the user community understand the

strengths and limits of predictors for intrinsic disorder. We encour-

age interested developers to contact us if they would like their

method to be included in the future.
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