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Abstract

Background—LGALS13 [placental protein 13 (PP13)] promoter DNA polymorphisms was 

evaluated in predicting preeclampsia (PE), given PP13’s effects on hypotension, angiogenesis, and 

immune tolerance.

Methods—First-trimester plasma samples (49 term and 18 intermediate) of PE cases matched 

with 196 controls were collected from King’s College Hospital, London, repository. Cell-free 

DNA was extracted and the LGALS13 exons were sequenced after PCR amplification. Expression 

of LGALS13 promoter reporter constructs was determined in BeWo trophoblast-like cells with 
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luciferase assays. Adjusted odds ratio (OR) was calculated for the A/A genotype combined with 

maternal risk factors.

Results—The A/A, A/C, and C/C genotypes in the −98 promoter position were in Hardy-

Weinberg equilibrium in the control but not in the PE group (p < 0.036). The dominant A/A 

genotype had higher frequency in the PE group (p < 0.001). The A/C and C/C genotypes protected 

from PE (p < 0.032). The ORs to develop term and all PE, calculated for the A/A genotype, 

previous PE, body mass index (BMI) >35, black ethnicity, and maternal age >40 were 15.6 and 

11.0, respectively (p < 0.001). In luciferase assays, the “−98A” promoter variant had lower 

expression than the “−98C” variant in non-differentiated (−13%, p = 0.04) and differentiated 

(−26%, p < 0.001) BeWo cells. Forskolin-induced differentiation led to a larger expression 

increase in the “−98C” variant than in the “−98A” variant (4.55-fold versus 3.85-fold, p < 0.001).

Conclusion—Lower LGALS13 (PP13) expression with the “A” nucleotide in the −98 promoter 

region position (compared to “C”) and high OR calculated for the A/A genotype in the −98A/C 

promoter region position, history of previous PE, BMI >35, advanced maternal age >40, and black 

ethnicity could serve to aid in PE prediction in the first trimester.
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Introduction

Preeclampsia (PE) is an obstetrical syndrome affecting 2%–7% of all pregnancies and is a 

main cause of maternal and perinatal morbidity and mortality. Characterized by 

hypertension and proteinuria after 20 weeks of gestation in previously normotensive women 

[1–3], PE also affects the liver, kidneys, heart, and the circulation system [4,5] and can be 

exacerbated to brain stroke and convulsion (eclampsia) risking maternal and fetal life [1–5].

Previous PE of the pregnant woman and her mother are major risk factors for PE along with 

black ethnicity [6–8]. Single nucleotide polymorphisms (SNPs) have been identified as risk 

factors for PE leading to gestational hypertension [9], vasodilatation [10], angiogenesis 

regulation [11], interleukin-related inflammation [12], and human placental diseases [13, 

14]. Affected pathways include: impaired placentation [15], immune-fetal rejection [16], 

anti-angiogenic state [17], and various cardiovascular disorders [18, 19].

Placental protein 13 (PP13) and its encoding gene located on chromosome 19 (LGALS13, 

NM_013268.2) are implicated in the risk to develop PE [16, 20]. PP13 protein is a placental-

specific member of the galectin family, which has high affinity for sugar residues of 

glycoproteins. PP13 is implicated in placentation [16, 20, 21], and is involved in 

inflammation and immune defense required for trophoblast invasion during uterine artery 

remodeling in early pregnancy [16, 21–24]. PP13 decreases blood pressure, causes blood 

vessel dilation and diameter expansion, and stimulates the development of larger placenta 

and pups in pregnant rats [25]. Lower LGALS13 expression [26, 27] and reduced serum 

PP13 levels [22] are correlated with high risk to develop PE in the first trimester. The 

−98A/C promoter polymorphism of LGALS13 [28] and the deletion of thymidine in 

Madar-Shapiro et al. Page 2

Fetal Diagn Ther. Author manuscript; available in PMC 2018 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



position 221 of the open reading frame [14] were identified in South Africa (SA) and were 

implicated as PP13-related DNA markers of the prediction of PE. The purpose of this study 

was to investigate polymorphisms in the LGALS13 gene using first-trimester plasma 

samples and to assess how circulating free DNA (cfDNA) can be involved in the risk to 

develop PE.

Materials and Methods

Study population

We used a prospective cohort of women attending their routine first hospital visit at King’s 

College Hospital, London, at gestational weeks 11+0 to 13+6 between March 2006 and 

September 2009. The study was approved by the Ethics Committee of King’s College 

Hospital (REC reference: 02-03-033). Women agreeing to participate provided written 

informed consent. Pregnancy age was determined by measurement of the fetal crown-rump 

length (CRL) [29].

We included pregnant women with viable singleton pregnancies who delivered live or a 

phenotypically normal stillbirth at or after 24 weeks of gestation. We excluded pregnancies 

with major fetal abnormalities and those ending in termination, miscarriage, or fetal death 

before 24 weeks.

Samples of serum and plasma were drawn in the first trimester and stored at −80° C for 

subsequent analysis. The samples were tested for a large diversity of biochemical markers as 

detailed by Akolekar et al. [8], including serum PP13.

Maternal history and characteristics

Patients were asked to complete a questionnaire on maternal age, racial origin (Caucasian, 

African, South Asian, East Asian, and mixed), method of conception (spontaneous or 

assisted conception requiring the use of ovulation drugs), cigarette smoking and substance 

abuse during pregnancy (each as yes/no), history of chronic hypertension (yes/no), history of 

type 1 or type 2 diabetes mellitus (yes/no), family history of PE in the mother of the patient 

(yes/no), and obstetric history including parity (parous/nulliparous if no previous 

pregnancies at or after 24 weeks) and a history of PE in previous pregnancy (yes/no). The 

questionnaire was then reviewed by a doctor together with the patient, and maternal weight 

and height were measured [8]. Maternal mean arterial blood pressure was measured by 

automated devices [30]. Trans-abdominal color Doppler ultrasound was used to visualize the 

left and right uterine artery and to measure the pulsatility index (PI) of the uterine arteries 

(UTPI) of each vessel and calculate the mean UTPI [31–32].

Outcome measures

The definition of PE was according to the International Society for the Study of 

Hypertension in Pregnancy [33]. The systolic blood pressure should be 140 mm Hg or more 

and/or the diastolic blood pressure should be 90 mm Hg or more on at least two occasions 4 

hours apart, developing after 20 weeks of gestation in previously normotensive women. 

There should also be proteinuria of 300 mg or more in 24-hour urine collection or two 
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readings of at least 2+ on dipstick analysis of midstream or catheter urine specimens, if no 

24-hour urine collection is available. PE cases superimposed on chronic hypertension were 

excluded [33]. Data on pregnancy outcome were collected from the hospital maternity 

records or the women’s general medical practitioners. The obstetric records of all women 

with hypertension were examined to differentiate between gestational hypertension and 

chronic hypertension. For this study, we used only cases of term PE (n=49; delivery at >37 

weeks) and preterm PE (n=18; delivery at 34–37 weeks), but not early PE (delivery at <34 

weeks) cases due to shortage of cases.

Nested case-control study for biochemical markers

In the nested case-control study, the cases were drawn from the study population as 

described above on the basis of availability of stored samples. The controls (n=196) were 

selected from pregnancies with no complications and normal outcome, and were matched to 

the cases according to gestational week and storage time. None of the samples were 

previously thawed and refrozen.

Serum PP13 testing

Serum PP13 was measured by DELFIA (Dissociation-Enhanced Lanthanide Fluorescent 

Immunoassay) using research reagents (PerkinElmer Life and Analytical Sciences, Turku, 

Finland) [8].

Blood processing and DNA extraction

To study PP13 LGALS13 DNA polymorphisms, we used maternal plasma that was drawn 

from first-trimester (gestational weeks 10–13) maternal peripheral veins and stored in 

ethylene-diamine-tetra-acetic acid (EDTA) tubes. Blood was centrifuged at 1,600 × g for 10 

minutes at 4° C, and the supernatant plasma was aspired and re-centrifuged again at 13,000 

× g for 10 minutes at 4° C to remove residual cells. Cell-free DNA (cfDNA) was extracted 

from 0.5 mL of plasma using AccuPrep Genomic DNA extraction kit (Bioneer Corporation, 

Daejeon, South Korea), according to the manufacturer’s instructions. DNA was eluted in 50 

μL double-distilled water.

We used Hylabs’ recombinant clone of LGALS13 that was constructed according to the 

website of the National Center for Biotechnology Information (NCBI) (http://

www.ncbi.nlm.nih.gov/) to sequence the LGALS13 (NM 013268.2) gene. Primer pairs for 

PCR amplification were designed to encompass the promoter and intronic sequences 

flanking the PP13 encoding regions of each LGALS13 exon under investigation.

Primers were synthesized by the Hylabs’ company oligo service unit using a BH5 oligo 

making devise (Metabion, Planegg, Germany) and the solid-phase oligonucleotide synthesis 

method (ATDBio, University of South Hampton, UK).

Primer sequences are shown in Figure 1A; they were verified by the Multiple Primer 

Analyzer (ThermoFisher, Waltham, MA USA) and sequence specificity using NCBI Basic 

Local Alignment Search Tool (http://www.ncbi.nlm.nih.gov/BLAST/).
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PCR Reaction

PCR products were amplified according to LGALS13 exons and the flanking introns using 

Takara Ex Taq Hot Start kit (Cat. #R006A, Takara Bio, Kusatsu, Shiga, Japan). Each 

reaction was prepared to a final volume of 50 μL containing 10 μL of pregnant women’s 

plasma extracted genomic DNA (gDNA), and the Takara kit reagents including: 5 μL of 10× 

Taq buffer, 4 μL of dNTPs mixture (2.5 mM each), 1 μL primer pairs at 10 mM 

concentration, 0.25 μL of Taq DNA polymerase (5 U/μL) and 30 μL of double-distilled 

water. Amplifications were performed with the following sequential steps: denaturing at 98° 

C for 10 seconds, followed by 40 cycles of amplification with initial denaturing at 94° C for 

30 seconds, annealing of primers at corresponding temperature for 30 seconds and extension 

at 72° C for 60 seconds, and a final extension at 72° C for 10 minutes.

The PCR products (9 μL each) were then mixed with 1 μL of 10× loading buffer (Takara, 

Japan) and resolved by electrophoresis on 2% agarose gels in 1× TAE buffer (90 mM Tris-

HCl, 90 mM boric acid, and 1mM EDTA, pH 8.0) for 20 minutes to ensure a single PCR 

product (Figure 1B). The gels were then photographed under ultraviolet light (260 nm) using 

a Bio-Rad Universal Hood and Bio-Rad Quantity One software (Bio-Rad, Hercules, CA, 

USA).

Sequencing reactions were carried out using the BigDye® Terminator v1.1 Cycle 

Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and the products were 

analyzed using an ABI 3730XL Genetic Analyzer (Applied Biosystems). Sequencing was 

bi-directional to verify accuracy.

Mutational analysis of the LGALS13 gene was performed using the BioEdit Sequence 

Alignment Editor version 7.2.5 (Ionis Pharmaceuticals, Carlsbad, CA, USA) (Figure 2A). 

SNPs were verified by repeating the sequence and PCR procedures (Figure 2B). The 

sequence analyzed was maternal, and there was no background signal at the polymorphic 

region to imply any detection of fetal cfDNA, most likely because of its very low level.

Transcription factor binding site analysis

The Transfac Database of the BIOBASE Biological Databases (www.biobase-

international.com) was used to predict putative transcription factor binding sites in the 

promoter of LGALS13 gene. The positional probability matrix and the positional weight 

matrix of the canonical TFAP2A (transcription factor AP-2 alpha, activating enhancer 

binding protein 2 alpha) binding site (MA0003.1) were downloaded from the Jaspar 

database (http://jaspar.genereg.net/).

Promoter luciferase assays

To test the effect of the A/C variation in −98 position of the LGALS13 promoter on gene 

expression, luciferase assays coupled with trophoblast differentiation experiments were 

completed following published protocols [34]. Briefly, the LGALS13 promoter reporter 

construct, which contains Gaussia luciferase reporter gene linked to the LGALS13 promoter, 

was designed at the NIH Perinatology Research Branch and generated by GeneCopoeia 

(Rockville, MD, USA). The “−98C” clone contains a cytosine in the −98 position. The 
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“−98A” reporter construct was generated at the Hungarian Academy of Sciences Research 

Centre for Natural Sciences by replacing cytosine for adenine in −98 position by site-

directed mutagenesis using the QuikChange Lightning kit (Agilent Technologies, Santa 

Clara, CA, USA), following the manufacturer’s protocol.

The “−98C” and “−98A” reporter constructs (1 μg/well in a 24-well plate) were transfected 

into BeWo cells (American Type Culture Collection, Manassas, VA, USA) cultured in F12K 

medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum 

(Gibco-ThermoFisher Scientific, Waltham, MA, USA) using Lipofectamine-2000 reagent 

(Invitrogen-ThermoFisher Scientific), according to the manufacturer’s protocol. Twenty-four 

hours after transfection, BeWo cells were treated with either Forskolin (25 μM in DMSO; 

Sigma-Aldrich) or DMSO control, and incubated at 37° C for 48 hours. In all experiments, 

supernatants were collected, and secreted Gaussia luciferase activity was determined by 

Secrete-Pair Gaussia Luciferase Assay (GeneCopoeia), according to the manufacturer’s 

protocol. This assay measured the Gaussia luciferase reporter gene’s expression linked to the 

LGALS13 promoter by measuring the luciferase activity of the secreted luciferase reporter 

protein, since secreted luciferase activity correlates with LGALS13 promoter activity and 

luciferase gene expression. The luminescence was immediately measured with a Victor X3 

microplate reader (PerkinElmer, Inc., Waltham, MA, USA).

Statistical analysis

For categorical variables, comparisons between each outcome group and unaffected controls 

were made by Fisher’s exact test. Kruskal-Wallis or Mann-Whitney non-parametric tests 

were used for continuous variables. P values of 0.05 or less were considered as significantly 

different. The data were analyzed using the SPSS version 24 (SPSS Inc., Chicago, IL, USA).

Hardy-Weinberg equilibrium and χ2 tests were used to compare the genotype and allelic 

frequency distribution in the study groups. Genotypes and alleles were considered to be in 

Hardy-Weinberg equilibrium if the observed frequencies did not differ significantly from the 

expected (p > 0.05). The 95% confidence intervals (CI) were determined to verify the 

pattern of population distribution and overlap.

Data generated by luciferase assays were analyzed using the t-test for comparison between 

the constructs. Odds ratios (OR) for individual maternal risk to develop PE were calculated 

first on their own and then adjusted given having the other ones. For BMI, we used a 

continuous assessment and a categorical one, dividing the patients into higher BMI (>35) 

and lower BMI groups. Maternal age was also assessed as a continuous parameter and after 

defining the group age >40 as advanced maternal age (AMA) in pregnancy versus younger 

groups. Multiple regression was then calculated according to all adjusted risk factors from 

the observed measures and conducted once for the continuous BMI and maternal age and 

once for BMI >35 and AMA >40 versus the respective lower others.

Positive likelihood ratio (LR) was calculated according to sensitivity/(1-specificity), and 

negative LR was calculated according to (1-sensitivity)/specificity. Overall, LR was the 

division of the positive and negative LRs.
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Power analysis was conducted assuming the detection accuracy of promoter genotype 

polymorphism is 100%. Accordingly, we evaluated the frequency of the “A” allele in the 

control and PE groups. To yield the power of the study given 5% type 1 error, we entered 

these values into the PS Power and Sample Size Program (version 3.1.2) (http://ps-power-

and-sample-size-calculation.software.informer.com).

Results

We have identified 20 intermediate PE cases (delivered at gestational age between 34+0 

weeks and 36+6 weeks) and 50 cases of late PE (delivery >37 weeks). These were matched 

with 200 unaffected controls, according to the time of enrolment (+1 week) and gestational 

age at enrolment (+1 week). The amount of cfDNA extracted from the samples was 

sufficient to run the analysis for 196 controls, 18 intermediate PE cases, and 49 term PE 

cases. In the case of other samples, we could not isolate a suitable amount of cfDNA to 

conduct the analysis.

Cases and controls’ demographic and pregnancy information is summarized in Table 1, 

showing that gestational week (crown-rump length) at enrolment was not different between 

the groups. Cases that developed PE had higher maternal BMI at enrolment, and lower 

frequency of spontaneous conception (e.g., more conceived by assisted reproduction 

technology. In the PE group, there were more women with a history of previous PE and 

black ethnicity.

The PP13 serum level

The PP13 serum level was previously reported by Akolekar et al. [8]. Accordingly, first-

trimester PP13 converted to multiple of the gestation specific medians in the unaffected 

patients was 1.00 (0.76–1.33) (median and 95% CI), compared to 0.93 (0.7–1.3) and 1.11 

(0.89–1.49) for intermediate PE and term PE, respectively. The detection rate for 10% false 

positive rate was 41.4% (32.2–51.2%) and 37.8% (28.9–47.6%) for intermediate PE and 

term PE, respectively.

Combining maternal prior risk factors, biochemical and biophysical markers, the prediction 

of PE was 79.5% and 64.2% for intermediate PE and term PE, respectively. Adding PP13 to 

the prediction of PE increased the prediction accuracy to 85.9% and 71.2%, respectively.

Polymorphisms

As depicted in Table 2, the respective primers revealed the presence of several polymorphic 

variants previously reported by Gebhardt et al. [14] and a few new ones, not previously 

listed in the NCBI SNP database for LGALS13. In this cohort, the DelT221 variant of 

Gebhardt et al. [14] was not found. This is most likely related to the relative small study 

size. For 0.8 power, a sample size of 168 cases of early severe PE versus 672 controls is 

required to identify the DelT221 mutation. Such large number of early cases is not available 

to us today.

There were additional SNPs that were reported in SA and not found in the London cohort 

(Table 2). Those that were detected (new and old ones) did not appear in a significant 
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number of samples to run analysis for elucidating any specific conjunction with PE except 

−98A/C [28].

The −98A/C genotype variation (dbSNP: rs3764843)

The −98 A/C genotype polymorphism was detected using the pair of the first two primers 

(Fig. 2). Table 3 depicts the genotype distribution in PE and unaffected controls. The A/A 

variant at the −98 position [28] was found to be the dominant genotype in all groups but was 

above 80% in the PE cases and below 70% in the controls. The C/C genotype has the lowest 

frequency and A/C was inbetween. The presence of C in either the A/C or C/C genotype was 

of higher frequency in control compared to PE cases.

The pattern of genotype distribution was more significantly different when comparing term 

PE cases to controls (p=0.032) than when all PE cases were compared to controls (p=0.068). 

There was no difference (p=0.730) in genotype pattern distribution for intermediate PE 

compared to controls (Table 3), presumably due to the very low number of intermediate PE 

cases.

Altogether, our sample had approximately 4 controls to 1 term PE case. Thus, among the 

196 unaffected controls, the “A” allele appears 312 times, corresponding to a probability of 

0.8. Among the 49 term PE cases, the “A” allele appears 80 times, corresponding to a 

probability of 0.92. Accordingly, the study power for this polymorphism was 0.9 given 

α=0.05. The sample size of intermediate PE was underpowered for an accurate probability 

assessment in this study.

Cohort comparison between London and South Africa (SA)

• In both the SA and the London cohorts, the A/A genotype was the dominant 

allele, but its frequency was below 70% in the control group and above 80% in 

the PE group in both London and SA (p < 0.001) (Table 4). For the A/A 

genotype, the ORs for term PE was 2.91 (1.06–5.32) for the London cohort and 

1.84 (0.85–2.73) for the SA population.

• The presence of C (A/C and C/C genotypes) was in higher frequency in the 

controls compared to the PE group in both the SA and London cohorts.

In summary, while there were some differences in the genotype distributions between SA 

and London, the presence of cytosine nucleotide in the −98 promoter position (either as a 

heterozygous (A/C) or homozygous (C/C) genotype) was higher in unaffected controls 

versus all PE cases and particularly in term PE cases (p<0.001).

The comparison of genotype distribution according to racial origin is depicted in Table 5. 

For the population at large, both black and non-black had a higher frequency of the A/A 

genotype and a lower frequency of the A/C and C/C genotypes (p=0.958). However, there 

was a significant correlation between black ethnicity and PE. Term PE was more frequent in 

blacks compared to the non-blacks (31.5% vs. 12.1%, p<0.001).
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Genotype, ethnicity and outcome

The C allele (in either C/C or A/C genotype) appears to confer protection from developing 

term PE for all ethnic groups (Table 6). The A/A genotype was more common in black 

women with term PE. Accordingly, there was a significant correlation between term PE 

outcome, A/A genotype, and black ethnicity.

Hardy-Weinberg analysis

Applying the Hardy-Weinberg equation to the genotype distribution as summarized in Table 

3 yielded the following:

• The A/A genotype was detected in 82.1% of cases and 67.3% of controls.

• Heterozygosity (A/C) was detected in 13.4% of cases and 24.5% of controls.

• The C/C genotype was detected in 4.5% of the cases and 8.2% of controls.

Accordingly, the genotype frequencies in the control individuals were in Hardy-Weinberg 

equilibrium. However, all PE cases deviated significantly from equilibrium (p=0.036).

Odds ratios

Calculation of the OR was based on a recessive homozygosity model for PE development. It 

was conducted by comparing the A/A genotype to other genotypes and yielded an OR of 

2.22 (0.61–3.9) for all PE, 2.91 (0.83–4.5) for term PE, and 1.26 (0.29–1.83) for 

intermediate (values not shown). This was consistent with the previous report from SA 

performed at delivery [28] that has demonstrated that the A/A genotype is associated with 

high risk to develop PE, while the C/C and A/C genotypes were protective against the 

development of PE. However, on its own the promoter variant genotype was not strong 

enough as a stand-alone marker for predicting PE.

The first model

A multivariate analysis was subsequently conducted to combine the A/A genotype in the 

−98 promoter position with black ethnicity, previous PE, BMI, and maternal age. While 

ethnicity and previous PE were used as categorical confounders (yes/no), BMI and maternal 

age were used as continuous ones. The individual ORs were first calculated as “stand alone” 

(not shown) and then recalculated to account for having the other risk factors to yield the 

adjusted OR (upper part of Table 7).

The first model (top part of Table 7) yields the following values:

• The overall multiple marker assessment yielded 77.9% accuracy for all PE and 

83.7% accuracy for term PE with 6% and 3% false positive rates, respectively.

• The combined OR for all PE had R2=0.24, χ2
(5)= 47.35, p<0.001, and an 

adjusted OR=7. For the term PE, the values were R2=0.27, χ2
(5)=44.99, p<0.001 

and the adjusted OR=14.

• The positive LR [sensitivity/(1-specificity)] was 5.21 and 10.2 for all PE and 

term PE, respectively.
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• The negative LR [(1-sensitivity)/specificity] was 0.73 and 0.72 for all PE and 

term PE, respectively.

• The overall LR = positive LR/negative LR was 7.13 for all PE and 14.17 for the 

term PE group, respectively.

The second model

OR was subsequently recalculated with all confounders considered as categorical variables 

(BMI >35 vs. the others and AMA >40 vs. younger women). Using this model, the adjusted 

ORs for each confounder were improved, particularly the OR for BMI that was dramatically 

increased from 1.12 (1.06–1.19) for either all PE or term PE (Table 7, upper part) to 4.36 

(1.62–11.78) and 3.68 (1.24–10.95) for all PE and term PE, respectively (Table 7, lower 

part).

• The overall accuracy slightly increased to a 78.3% detection rate for all PE and 

83.3% for term PE with similar 6% and 3% false positive rates, respectively.

• The combined adjusted OR increased to 11 for all PE and 15.6 for term PE.

• The overall LR slightly increased to 11.14 and 15.8 for all PE and term PE, 

respectively.

The effect of −98 polymorphism on LGALS13 expression

In order to study the functional effect of this polymorphism, first we performed a 

transcription factor binding site search using the Transfac database, which revealed a 

TFAP2A binding site in the LGALS13 gene promoter at −101 to −93 positions (Figure 3A). 

Of interest, the comparison of this binding site nucleotide sequence with the positional 

probability matrix and positional weight matrix of the canonical TFAP2A binding site 

(MA0003.1) in the Jaspar database showed that: 1) 7 out of the 9 bases in the LGALS13 
promoter binding site match the most frequent bases in the canonical binding site; and 2) the 

“C” in the −98 position has a higher occurrence and, thus, binding affinity than “A” in the 

canonical binding site (Figure 3B). This suggested that having “A” in the −98 position may 

lead to a weaker binding of TFAP2A than having “C” in the same position in the LGALS13 
promoter and a consequent lower LGALS13 gene expression.

To investigate this hypothesis, next we generated “−98C” and “−98A” LGALS13 promoter 

clones and examined their expression in non-differentiated and differentiated BeWo cells. 

BeWo cells have TFAP2A expression in the non-differentiated state, which increases during 

trophoblast differentiation. Therefore, we expected to find an increasing difference in 

luciferase activity with the progress of differentiation between the two clones. Indeed, 

promoter “−98A” variant had a 13% lower expression in non-differentiated BeWo cells 

(p=0.04), while it had a 26% lower expression in Forskolin-induced BeWo cells after 48 

hours of differentiation (p<0.001) compared to the “−98C” variant. The expression of both 

promoter variants increased during the 48 hours of differentiation. However, the increase in 

the expression of “−98C” variant was by 4.55-fold, while the increase in the expression of 

the “−98A” variant was only by 3.85-fold increase (−15%, p<0.001).
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Discussion

Major findings of the study

1) The LGALS13 −98 A/C genotype was the lowest in term PE compared to controls 

(p<0.032), similar to the SA cohort; 2) control but not all PE allele frequencies were in 

Hardy-Weinberg equilibrium (p=0.036); 3) the OR for term PE calculated for previous PE, 

BMI, maternal age, black ethnicity, and the A/A genotype was 14 (p<0.001) and increased 

to 15.6 when BMI and AMA were used as categorical variables; 4) in luciferase assays, the 

LGALS13 promoter “−98A” variant had 13% (p=0.04) and 26% (p<0.001) lower expression 

than the “−98C” variant in non-differentiated and differentiated BeWo cells, respectively. 

After 48 hours of differentiation, there was a 4.55-fold increase in the expression of the 

“−98C” variant versus a 3.85-fold of “−98A” variant (p<0.001).

The relevance of −98A/C LGALS13 polymorphism for preeclampsia prediction

In the present study, we searched for first-trimester SNPs of the LGALS13 gene encoding 

for PP13 and the potential relevance of these SNPs to the prediction of PE. An A/C genotype 

for the promoter −98 position has been previously reported for an SA cohort collected at 

delivery. Our study revealed it in a cohort from London with samples collected before the 

development of PE symptoms during the first-trimester evaluation of pregnancy. The results 

show that such polymorphism analysis could add to the prediction accuracy of the risk to 

develop PE.

While the frequency of the A/A genotype was higher among patients who subsequently 

developed PE, the presence of cytosine (“C”) in the −98 position (either in its heterozygous 

A/C genotype variant or the homozygous C/C variant) seems to convey protection from the 

development of PE, as was previously reported for the cohort in SA [28]. This protection 

from PE is probably related to the higher expression of LGALS13 when “C” is in the −98 

position compared to “A” in this position in the LGALS13 promoter, as was detected in 

BeWo trophoblast-like cells. Our study revealed that while the unaffected control group was 

in Hardy-Weinberg equilibrium, the PE group deviated from it. This was true for both the 

London and SA cohorts, and strongly emphasized that having the “C” variant in the −98 

position is protecting from the development of PE.

PP13 was implicated in several functions of placental development, including immune 

tolerance to the paternal genes of the migrating trophoblasts [16, 23] as well as blood 

pressure and uteroplacental vasculature control [25]. Therefore, knowledge of 

polymorphisms in the promoter region for this gene might facilitate our understanding of its 

potential role in regulating the normal progress of pregnancy. Regardless of the differences 

in the actual prevalence of the A/A, C/C, and A/C genotypes between the SA and London 

cohorts, the presence of cytosine, either in the C/C or A/C format, appeared to convey 

protection from PE, and black ethnicity added to the accuracy of PE prediction. The 

discrepancy in the actual genotype distributions may be related to the difference in the origin 

of the analyzed black tribe, which were mainly Sub-Saharan and Caribbean origin in 

London compared to Zulu and additional South- and Central African tribes in SA [8, 15]. In 

this context, one may address the issue of ancestry information markers (AIMS). To the best 
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of our knowledge, there are no AIMS for PE that can be used in the prediction of this 

disorder according to the ethnic origin, although such AIMS were described for certain 

different geographical regions in the context of other diseases [6,7]. Given the different 

frequency of PE even among the black ethnic groups, i.e. South African, Caribbean African, 

and African-American, in the future the polymorphism of LGALS13 may be developed as a 

potential AIM for PE.

The relevance of −98A/C polymorphism for LGALS13 expression

How may the cytosine nucleotide in the A/C or C/C configuration (versus A/A genotype) in 

the −98 position in the promoter region of LGALS13 convey resistance to PE? The 

transcription factor binding site analysis has indicated that having “C” in the −98 position in 

the LGALS13 promoter compared to having “A” in this position predicts a higher binding of 

TFAP2A. This transcription factor is critical for the trophoblastic expression of several 

placental genes including LGALS13 and other galectin genes in its close vicinity on Chr19 

[34]. Thus, this provides a molecular rationale for the higher expression of LGALS13 in 

individuals who have “C” in the −98 position and consequently more PP13 protein 

synthesis.

Indeed, the in vitro expression studies confirmed this binding and in silico analysis. We 

performed luciferase assays on the “−98C” and the “−98A” LGALS13 promoter clones. It 

was found that the “98A” variant had a lower expression in both non-differentiated and 

differentiated placenta-derived BeWo cells compared to the expression in the “−98C” 

variant. The effect is strong during differentiation, where having the “−98C” variant in the 

promoter construct was accompanied by a higher fold increase in expression compared to 

having the “−98A” variant. Since luciferase assays measured only the expression of the 

promoter constructs transfected into BeWo cells but not the internal expression of LGALS13 
gene copies in BeWo cells, the genotype of BeWo cells for the −98A/C LGALS13 
polymorphisms as well as their aneuploidy [35] did not interfere with our assay.

The expression studies with the “−98A” and “−98C” promoter reporter variants emphasized 

the effect of this polymorphism on LGALS13 expression in the context of trophoblast 

differentiation. It is important, since induction of LGALS13 expression during the 

differentiation of the trophoblasts to generate placental villi correlates with the increased 

expression of TFAP2A among other transcription regulatory genes [34]. Thus, this 

functional observation validates the in-silico prediction of the role of TFAP2A binding to the 

polymorphism-containing binding site. Moreover, Kliman et al. [23] have shown that PP13 

is involved in the remodeling of the utero-placental vasculature. In addition, Kliman et al 

[23] and Than et al. [16] have shown that PP13 induces white blood cell apoptosis and 

confers maternal immune tolerance to the pregnancies. Thus, the results of this study point 

to the potential link between placental development, trophoblast differentiation, LGALS13 
expression, maternal blood PP13 concentrations, and normal pregnancy maintenance, and 

prompts additional studies—functional and clinical—to uncover this unexplored area in 

detail.
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The relevance of LGALS13 polymorphisms for the development of preeclampsia

We determined LGALS13 on the level of cfDNA from maternal blood. Impairments in the 

LGALS13 nucleotide sequence and its RNA/protein expression have been found to affect 

the risk to develop PE [14, 22, 24, 28, 36]. In addition to the −98A/C promoter 

polymorphism, the deletion of the nucleotide thymidine in position 221 (DelT221) also 

conveyed high risk to develop PE. Although the frequency of DelT221 is 1:50,000 

pregnancies in the Western world, in SA it appears in 1:1,000 deliveries among black 

women [14], and conveyed an 89% positive predictive value for developing early-onset 

severe PE when present in its heterozygous form. The homozygous form was not associated 

with viable pregnancy. Sammar et al. [37] constructed the DelT221 variant and expressed 

both the wild type and the DelT221 variants of LGALS13 in Escherichia coli. The 

polypeptides were subsequently purified as recombinant proteins yielding DelT221 as a 

shorter variant compared to the wild type due to a premature stop codon in the open reading 

frame. When the wild type and truncated PP13 were applied, each was capable of reducing 

the blood pressure in gravid rats, and this effect lasted for the entire period of PP13 delivery 

from slow-releasing inter-peritoneal pumps [25]. However, unlike the wild-type, the 

truncated PP13 failed to cause expansion of the utero-placental vasculature and could not 

increase placental size and pup weight [25, 37]. These findings emphasize the role of the 

sugar-binding residues of the PP13 molecule that are partially missing in the truncated 

variant as was demonstrated previously [16, 34, 36]. To our disappointment, the 1:50,000 

frequency of the DelT221 mutation was too low to enable the detection of this mutation in 

the London cohort.

This study adds an additional piece of information to the importance of the LGALS13 locus 

in the development of PE. Having now two variants of polymorphic LGALS13 (DelT221 and 

−98A/C polymorphism) demonstrates the correlation between an impaired PP13 sequence 

and expression and the elevated risk to develop PE. In the case of the DelT221 mutation, a 

strong risk to develop early-onset and severe PE was discovered [14]. In the case of the −98 

A/C promoter variants, the reduced expression appears to be related to term PE. On its own, 

the −98 A/C promoter variant was a low predictor but combined with the history of previous 

PE, black ethnicity, AMA, and high BMI, it added to the prediction accuracy. Accordingly, 

each variant conveyed a different risk level to develop PE and was associated with a different 

subtype of PE. Further studies in PE and animal models may reveal the physiological and 

morphological mediators involved in the risk to develop PE derived from each variant and 

for the two combined.

The relevance of gene polymorphisms for the development of preeclampsia

Preeclampsia is a multifactorial disorder. Our study provides an additional tool for 

identifying patients at risk to develop PE, in the context of the sequence and/or expression of 

the LGALS13 gene and the encoded PP13 protein. This tool may help direct us to develop a 
novel drug-target composite through identifying the sub-group of patients whose risk to 

develop PE is associated with impaired PP13 sequence/expression/function. We have 

identified here a potential link between a marker discovery, risk stratification, and 

identification of a targeted group for evaluating potential new methods of therapy, which 

opens a road to deliver better patient monitoring and management [38].
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Polymorphisms were already identified in various genes that are involved in different 

functions related to the PE disorder [9–14]. Among them are the polymorphisms in genes 

that are involved in blood pressure regulation through the renin-angiotensin-aldosterone 

system. Polymorphisms in this system are associated with hypertensive disorders in 

pregnancy as was reported for the white population of Poland [39], and the black Afro-

Caribbean, but not the white Europeans in South and Central London [9]. However, this was 

not the case among Asian women of Taiwan [9]. More than one type of polymorphism in 

this system, including the variant related to hypertensive disorders in pregnancy, was 

identified among Tunisian Arabs [40]. At the same time, the latter two variants of 

polymorphisms have been shown to be closely related to other cardiovascular disorders, 

including congestive cardiomyopathy, supraventricular arrhythmias, reduced exercise 

capacity, and an increase in left ventricular systolic dimension. These disorders underline 

high susceptibility for cardiovascular morbidity among women who had experienced 

hypertensive disorders in pregnancy [41–42].

Polymorphisms were also identified in the endothelial nitric oxide synthase (eNOS) system 

that regulates vasodilation, one of the hallmarks of early stages of pregnancy development. 

Linkage studies in affected sibling pairs have implicated the NOS3 gene (encoding eNOS) 

locus on chromosome 7q35 [10, 43] to be responsible for a higher risk to develop PE. 

However, more studies are required because this gene candidate might differ between ethnic 

groups [9–10].

Analysis of the polymorphisms of IL27 in PE among Han Chinese women revealed a 

significantly reduced risk of PE in one genotype variant compared to the others in a 

dominant allele model. This was particularly true for the severe PE subgroup, implying that 

SNPs in IL27 may have an effect on individual susceptibility to PE [12].

Our findings are driving us to develop additional tools for PE prediction based on SNPs, 

such as quantitative real time multiplex PCR or DNA chips to evaluate the risk to develop 

PE with cfDNA tools. Preeclampsia has a significant inherited component, and it is likely 

that many genes are involved [44]. Considering that the etiology of PE remains complex, 

identification of genes that may predispose to developing PE could form an aiding tool for 

prevention and treatment. It might also assist in preventing cardiovascular disorders given 

that women with a history of PE are at increased risk of cardiovascular disease in later life 

[45].

Prediction of preeclampsia—the contribution of the PP13 promoter A/A genotype

This study adds additional information to the importance of the history of previous PE, black 

ethnicity, and high BMI in the attempt to stratify the risk to develop PE. In the ASPRE 

study, these parameters were integrated together with biochemical and biophysical markers 

to stratify the patients at high risk for developing intermediate PE, and its prevention by 

aspirin [46–48]. The ASPRE study was less successful in the prediction and prevention of 

term PE. Here, in an additional investigation within the ASPRE study, we have found an 

algorithm where BMI >35, history of previous PE, black ethnicity, and the genotype of 

LGALS13 in the −98 promoter region provides a very good prediction of term PE. Given 

metformin efficacy in preventing term PE among obese women (BMI>35) [49], this study 
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has opened the door to new means of prevention of term PE among obese women using 

metformin. Adding the A/A genotype of the −98 promoter region of PP13 to obesity (BMI 

>35) may help to narrow down the group to be treated by metformin and to explore if in this 

way the efficacy of metformin in reducing the frequency of PE may be increased.

Reducing inflammation is an expected pathway for the prevention of term PE associated 

with obesity [50]. However, in our study obesity was an independent confounder from the 

A/A genotype. Accordingly, we are unable to evaluate whether the improved prediction of 

term PE by LGALS13 genotype polymorphism together with high BMI could be related to 

any role of PP13 in damping maternal inflammation that is currently the suspected signaling 

pathway by which obesity increases the risk to develop PE [50].

In the past, members of our group have shown the value of PE risk adjustment to the blood 

groups with the B group and particularly the AB group identified as being at higher risk for 

generating low PP13 blood level given PP13’s high affinity to the sugar residues of this 

blood group’s antigens [51]. However, the B (~8%) and AB (~3%) blood groups are rare 

compared to the A and O groups (anticipating only two AB patients in our entire PE group). 

Thus, there were too few carriers of the relevant blood groups to justify the adjustment to 

this confounder. However, it would be interesting to examine the impact of this confounder 

in larger cohorts.

Study Limitations

While our study was powered enough to predict term PE according to −98A/C 

polymorphism, the study was underpowered to evaluate the value of this polymorphism for 

predicting intermediate PE. We have shown that lower PP13 expression with the A/A variant 

compared to A/C and C/C is associated with higher risk to develop all cases of PE, and the 

study was powered enough to certainly make such a claim in the context of term PE but 

underpowered to evaluate it in the context of intermediate PE. Thus, we are hesitating to 

make a strong statement regarding lower PP13 expression and intermediate PE. However, 

since all PE are less affected by the A/A genotype than term PE, it is reasonable to assume a 

lower correlation between the A/A genotype and the risk to develop intermediate PE. Could 

we use PP13 polymorphism in the context of identifying subtypes of PE? The evidence 

today has demonstrated PP13’s role in the immune tolerance of the maternal decidua during 

pregnancy, as was shown by Than et al. [34]. A part of it is related to maternal artery 

remodeling, as was described by Kliman et al. [23]. PP13 is involved in structural arterial 

expansion, which does require the molecular parts that are important to immune tolerance 

[37]. This set of evidence links PP13 to early and intermediate PE. The A/A genotype 

variation of reduced PP13 expression might be correlated with the hypotension induced by 

PP13, which occurs regardless of the molecular part responsible for immune tolerance [25]. 

Thus, PP13 impacts on main maternal artery expansion to enable the increase in cardiac 

output to coop with the increased burden of pregnancy and the systemic effect of PP13 on 

vasodilation, and the endothelial layer might be relevant to its importance in endothelial 

insufficiency in term PE. More studies are required to explore this point.

PP13 is a multifaceted molecule. Kliman et al. [23] have demonstrated the importance of 

PP13 in spiral artery remodeling associated with early and intermediate PE. Than et al. [16] 
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have shown the role of PP13 in immune tolerance. PP13 is also implicated in regulating 

blood pressure, artery vasodilation, and the development of larger placentas and pups, 

relevant to the signaling pathway of the eNOS and prostaglandin 2 receptors in the 

endothelial layer [25, 37, 52] that are also relevant to term PE. Thus, it appears that the 

impact of the promoter variant polymorphism is certainly related to term PE but its potential 

relevance to early and intermediate PE needs further evaluation.

This is only the second study that explores the promoter variant and its relevance to the 

elevated risk to develop PE, following a study conducted in SA [28]. We demonstrated for 

the first time that this polymorphism is a risk factor deriving from impaired PP13 

expression. More studies are required with additional cohorts of other ethnic origins to 

verify the use of this polymorphism in predicting PE and its subtypes. For identifying the 

DelT221 mutation, a larger sample size is required in view of the rare mutation frequency.

Is the LGALS13 DNA detected here in this study of maternal or fetal origin?

Studies have shown that approximately 5%–10% of the cfDNA in first-trimester maternal 

blood is of fetal/placental origin, while 90%–95% is of maternal origin [52]. Accordingly, 

90%–95% of cell-free genomic DNA fragments carrying the LGALS13 gene originate from 

maternal tissues. Since total cfDNA was subjected to PCR amplification, it is expected that 

the maternal/fetal cfDNA ratio will remain the same after PCR and sequencing. As can be 

seen in Figure 2, the chromatograms at the −98 polymorphism loci are distinct, with no 

background, therefore reflecting the maternal genotype. Thus, we estimate that the fetal 

fraction of LGALS13 in this study was too low for detection.

Future multiplex PCR for the assessment of the LGALS13 locus

This study together with former reports [14, 26] has indicated the potential value of bringing 

to the market a multiplex PCR for the assessment of the LGALS13 locus in identifying the 

risk to develop PE. Such diagnostics may be useful in identifying a potential paternal 

contribution to the risk to develop PE and evaluating the pre-pregnancy carrier. In this 

context, it appears questionable to test the −98A/C polymorphism on its own. So far we have 

found that a history of previous PE, high BMI, and black ethnicity combined with the A/A 

genotype in the cfDNA are useful. A multiplex PCR for all polymorphic variants of the 

LGALS13 locus (including the −98A/C variants), DelT221, and potentially variants of other 

nearby galectin mutations, may be useful in identifying individual patient’s risk and could 

potentially be used for targeted therapy.

Conclusion

This is the first study conducted to identify LGALS13 DNA sequence variants in maternal 

blood in the first trimester. Our findings suggest that the −98A/C gene polymorphisms in the 

promoter region of the LGALS13 gene may be associated with PE development with a 

strong correlation to black ethnicity and high (>35) BMI. The −98 A/C genotype appears to 

provide protection from PE development. More studies are required to verify the use of the 

−98A/C promoter variant for aiding PE prediction alone or in combination with genetic 

variants of other genes with possible diagnostic significance [53–56]. Further studies are 
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also required in PE models to examine the impact of the polymorphism on the disease 

development and in order to find novel therapies.
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Figure 1. Primer details and PCR products
A, The primers used for each exon PCR (Ex1–Ex4) are detailed for their forward (F) and 

reverse (1R) order along with the respective melting temperature (Tm), annealing 

temperature (Ta), and the amplified DNA fragment size. B, PCR amplification of each 

LGALS13 exon (Ex1–Ex4) presented after separation on gel electrophoresis. M, DNA base 

pair marker at 100K unit.
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Figure 2. Sequencing of the −98 site
A, A multiple sequence alignment of the PCR products of exon 1 from several specimens, 

including LGALS13 promoter region and flanking intron. B, Enlarged vision of 20 

nucleotides including the −98 position (peaks after the black vertical line). On top, the 

subject marked in section A that carries the A/A genotype. The two rows below show 

additional subjects with C/C genotype (middle) and A/C genotype (bottom).
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Figure 3. Promoter luciferase assays
A, Partial promoter sequence of LGALS13. Nucleotide positions from the translation 

initiator codon (underlined) are shown on the left. The first exon is shown in bold black, the 

predicted TFAP2A binding site is depicted in bold blue underlined letters, and the “C” in the 

−98 position is highlighted in red. B, Positional probability matrix (PPM) and positional 

weight matrix (PWM) of the canonical TFAP2A binding site (MA0003.1) as downloaded 

from the Jaspar database (http://jaspar.genereg.net/). PPM values provide the normalized 

occurrence of each nucleotide at each position in the canonical TFAP2A binding site, while 

PWM values—log-LR derived from PPM—provide binding affinity scores for each 

nucleotide at each position. The most frequent nucleotides in each position in the PPM are 

depicted with values colored according to the coloring of nucleotides in the PWM. As shown 

with the red square, the “C” in the fourth position of the TFAP2A binding site has a higher 

occurrence and, thus, affinity than “A.” C, Luciferase activity of “−98C” and “−98A” 

LGALS13 promoter clones. Promoter “−98A” variant had 13% lower expression in non-

differentiated BeWo cells (p=0.04) and 26% lower expression in Forskolin-induced BeWo 

cells after 48 hours of differentiation (p<0.001) than the “−98C” variant. While the 

expression of both promoter variants increased during the 48 hours of differentiation, the 

“−98C” variant had 4.55-fold increase, while the “−98A” variant had only a 3.85-fold 

increase in expression (−15%, p<0.001). All experiments were run in triplicate.
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