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Summary 

In this thesis, a new method for the investigation of aeroelastic phenomena for long-

span bridges is proposed: the aerodynamic fields and the motion of structure are simulated 

simultaneously and in a coupled manner. The structure is represented as a bidimensional 

elastically suspended rigid body with two degrees of freedom whose natural frequencies 

correspond to those of the fundamental flexural and torsional modes of vibration of the 

structure. The aerodynamic fields are simulated by numerically integrating the Unsteady 

Reynolds-Averaged Navier-Stokes (URANS) equations with a finite volume scheme on 

moving grids which adapt to the structural motion. The URANS equations are completed by 

the turbulent closure relations which are expressed as a function of the turbulent kinetic 

energy, the turbulence frequency and the strain tensor according to the k- SST approach. 

The presented model is used in order to identify the critical flutter wind velocity of the Forth 

Road Bridge deck, and the numerical results are compared with those of an experimental 

campaign. For wind velocities equal or greater than the critical wind flutter velocity, the deck 

starts to oscillate increasingly. It is demonstrated that the reason for the onset of the torsional-

branch coupled flutter lies in the fact that, within each of the first oscillation cycles, there is a 

portion of the cycle in which the energy supplied by the aerodynamic field to the deck motion 

is more than the energy extracted in the rest of the cycle. Then it is shown that the reason for 
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the amplification of the instability resides in the drifting of large vortical formations along the 

deck surface. The numerical model is also used to test the effect, on the aeroelastic stability of 

the Forth Road Bridge deck, of the introduction of a couple of sloping barriers at the 

windward and leeward bridge deck edges. It is demonstrated that the aerodynamic 

modifications produced by the introduction of such barriers is effective in increasing the 

critical flutter velocity and mitigating the vibration amplitudes which develop during the 

flutter instability.  
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Chapter 1 

Introduction 

 

Long span bridges are susceptible to an oscillatory unstable aero-elastic phenomenon, 

named flutter, in which the bridge deck motion acquires a divergent character and the 

oscillation amplitudes grow rapidly to the point of causing the structural failure (Dowell, 

2014). Bridge decks with bluff cross-sections are generally prone to the torsional flutter 

phenomenon: the case of the Tacoma Narrows Bridge deck is a well known example. Bridge 

decks with streamlined cross-sections are generally prone to the coupled (torsional-flexural) 

flutter phenomenon: the possibility that the latter kind of instability takes place is relevant in 

the case in which the bridge deck has torsional and flexural natural modes of oscillation 

closely spaced at low natural frequencies (Frandsen, 2004). Matsumoto et al. (2010) carried 

out analytical investigations on the mechanisms of coupled flutter. These authors distinguish 

two different types of coupled flutter. The first type is the torsional branch (TB) coupled 

flutter, which is dominated by a fundamentally torsional vibration and in which the vertical 

oscillations have small amplitudes. The second type is the heaving-branch (HB) coupled 

flutter, which is dominated by a fundamentally heaving vibration accompanied by torsional 

oscillations with small amplitudes. 
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Traditionally the critical flutter wind velocity of long span bridge decks is identified 

through the Scanlan approach (Nieto et al., 2014). A first central element of said approach lies 

in representing the structure as a bidimensional rigid body with two degrees of freedom, 

having mass per unit length and mass moment of inertia per unit length equal to those of the 

deck. In the above-mentioned schematisation the rigid body is considered as attached to an 

elastic vertical spring and to an elastic torsional spring whose stiffnesses are calibrated in 

order to give the natural frequencies corresponding to the fundamental flexural and torsional 

modes of vibration of the structure. Astiz (1998) highlights that schematising the structure as 

a bidimensional rigid body with two degrees of freedom supposes that there is full coherence 

between the shapes of the flexural and torsional modes of vibration along the span. The main 

criticism moved to the previous approach comes from Katsuchi et al. (1999). These authors 

underline that, in some cases, the possibility has been highlighted that in the coupled flutter 

not only the fundamental flexural and torsional modes of vibration participate in the 

instability: the latter authors notice that, in the coupled flutter, further modes of vibration can 

overlap the fundamental modes of vibration, giving rise to aeroelastic instability conditions 

characterized by more complex flutter mode shapes. 

The original method proposed in this thesis is based on the need to overcome the limit 

of the Scanlan traditional approach, which substantially consists in using the above 

fundamental free modes of vibration and, starting from these modes, performing stability 
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analyses. Actually, also an elementary oscillator can oscillate not only with the fundamental 

vibration modes but also with other vibration modes, as a consequence of the load to which it 

is subjected. Consequently, a stability analysis which is able to overcome the above limitation 

must necessarily simulate the aerodynamic field and the structural motion in a coupled 

manner, given the fact that they interact each other. 

A second central element of the above-mentioned Scanlan approach lies in modelling 

the aerodynamic forces as linear functions of the structural displacements, under the 

assumption of purely sinusoidal motions. This linear dependance is expressed via some 

appropriate coefficients, called flutter derivatives. The most widely used method for the 

evaluation of flutter derivatives is based on the following fundamental passages. The 

aerodynamic fields developing around a bridge deck cross-section (that is made to oscillate 

according to a predefined sinusoidal law of motion) are simulated. The time history of the 

forces produced by the aerodynamic fields on the bridge deck surface is approximated by a 

sinusoidal function. Consequently, the forces produced by the aerodynamic fields on the 

bridge deck are assumed to be linearly dependent on the structural displacements. From the 

above-mentioned linear dependence the flutter derivative calculation is performed. 

Many authors (Larsen and Walther, 1998; Mendes and Branco, 1998; Taylor and Vezza, 

2002; Morgenthal and McRobie, 2002; Vairo, 2003; Sarwar et al., 2008) propose models for 

the flutter derivatives estimation and use them in order to identify the critical flutter wind 
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velocity of the bridge decks.. Astiz (1998) and Dowell (2014) highlight that the linear relation 

between the forces produced by the aerodynamic field on the deck and the structural 

displacements (formulated in the Scanlan approach) proves to be acceptable only in the event 

that the amplitude of structural oscillations is limited. Furthermore, the same authors 

underline that the above-mentioned linear relation does not make it possible to take into 

account the effects of the unsteady vortical structures developed in the fluid-structure 

interaction. In this thesis (as said above), the aerodynamic fields and the motion of structure 

are simulated simultaneously and in a coupled manner. According to this approach, the 

pressure and velocity fluid fields, that develop around the structure at every instant, are 

simulated; starting from the aerodynamic pressures, the lift force and the twisting moment, 

acting on the structure at every instant, are computed; once the above-mentioned aerodynamic 

forces are known, the structural displacements are calculated; these displacements, in turn, 

modify the computational domain and the boundary for numerical integration of the fluid 

motion equations and, as a consequence, modify the structure of the aerodynamic fields. 

Thereby the limitation represented by the hypothesis of linear dependence of the aerodynamic 

forces from the structural displacements, which is a central element in the flutter derivatives 

approach, is exceeded. The simultaneous and coupled simulation of the aerodynamic fields 

and the structural motion allows the identification of the critical flutter wind velocity in a 

direct way. Furthermore, the approach based on the coupled and simultaneous simulation of 
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the aerodynamic fields and the structural motion proves to be more effective than that based 

on the flutter derivatives especially in cases where the fluid-structure interaction gives rise to 

the formation of large vortices which, produced at the leading edge, move towards the trailing 

edge and amplify the oscillations of the structure itself. 

The latter methodology presents excessively high computational costs when applied to 

the three-dimensional simulation of the multimodal coupled flutter. However, Starossek 

(1998) underlines that schematizing the structure as a bidimensional system with two degrees 

of freedom makes it possible to favourably predict the critical flutter wind velocity when the 

modal shapes associated with the fundamental flexural and torsional modes of vibration do 

not greatly differ along the span-wise direction; in the latter case, the above-mentioned modes 

of vibration are able to couple and form a common flutter mode shape. In this context, as in 

the bimodal Scanlan approach, the structure can be represented as a bidimensional elastically 

suspended rigid body with two degrees of freedom whose natural frequencies correspond to 

those of the fundamental flexural and torsional modes of vibration of the structure. Braun and 

Awruch (2008) underline that the hypothesis of rigid body is acceptable when the elastic 

deformations of the deck cross-section can be considered small compared with the vertical 

and torsional displacements of the same deck cross-section.  

The simulation of the aerodynamic fields can be performed by finite volume techniques 

on unstructured grids (Gallerano and Napoli, 1999; Oka and Ishihara, 2009) or on boundary-
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conforming curvilinear grids (Gallerano and Cannata, 2011, Rossmanith et al., 2004). The 

continuity and momentum balance equations admit the velocity components and pressure as 

dependent variables. In the case of incompressible fluids, the pressure calculation can be 

performed by adopting explicit methods of fractional step type, or implicit methods of 

pressure-correction type. The first method is based on the calculation of a predictor velocity 

field from the momentum balance equation in which the term related to the pressure gradient 

is omitted: this field is not solenoidal but admits the same curl as that of the velocity field at 

the successive instant. A corrector irrotational field exists whose divergence is equal to those 

of the predictor field, but with opposite sign. This term is explicited in terms of a scalar 

function gradient. The laplacian of the scalar function equalized to the divergence (with 

negative sign) of the predictor velocity field allows the calculation of the above scalar 

function; from this function, the calculation of the corrector field can be performed and, 

consequently, also the calculation of the velocity field at the successive instant. The second 

method consists of gaining, from the velocity and pressure field at the instant t, the velocity 

and pressure field at the instant t+t by means of the so-called outer iterations and inner 

iteration. A predictor velocity field is calculated at the outer iteration implicitly (by means of 

an inner iteration process), where the pressure gradient is assumed to be equal to that of the 

previous iteration. The predictor velocity field is introduced into the equation of the laplacian 

of the pressure, from the solution of which the pressure value is obtained. This pressure value 
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is in turn introduced in the momentum balance equation, thus providing the velocity field at 

the end of the m-th outer iteration. The outer iteration process ends when the velocity and 

pressure field at the instant t+t satisfies both the continuity equation and the momentum 

balance equation. 

.As said above, the instabilities of the decks are related to the unsteady phenomena of 

the aerodynamic fields (Larsen, 2000; Sarwar and Ishihara, 2010; Mannini et al., 2014), and 

in particular to the formation of unsteady vortex structures. In the literature, the most 

complete simulation of the turbulent flow fields is performed through the Large Eddy 

Simulation (LES) by applying a spatial filter to the fluid velocity fields and simulating all the 

vortex structures whose dimensions are equal or greater than those of the spatial filter. Bosch 

and Rodi (1998) highlight that at high Reynolds numbers, the stochastic turbulent fluctuations 

are superimposed on the periodic unsteady motion of the vortex structures. These authors 

proposed the simulation of the flow field characterized by the above-mentioned unsteady 

vortex structures by decomposing the instantaneous flow quantities in a time mean 

component, in a periodic component and in a turbulent fluctuating component. Following this 

approach, the sum of the time mean and the periodic part gives rise to the ensemble-averaged 

component of the flow quantities. The latter are calculated by the numerical integration of the 

ensemble-averaged continuity and momentum equations; the complete spectrum of the 

stochastic motion is simulated by a statistical turbulence model. The models coherent with the 
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above-mentioned approach are named in the literature as Unsteady Reynolds-Averaged 

Navier-Stokes (URANS) models. It must be highlighted that the URANS approach provides a 

more simplified representation of the aerodynamic field compared to the Large Eddy 

Simulation (LES) approach. On the other hand, the URANS methodology has relatively low 

computational costs. Furthermore, the URANS approach makes it possible (even though less 

rigorously than the LES approach) to simulate the quasi-periodic unsteady vortex structures of 

the aerodynamic field (Mannini et al., 2010) and (with reference to aeroelastic instability 

phenomena such as vortex induced vibrations and flutter) to well identify the onset velocities 

and the amplitudes of the induced structural oscillations.  

The fluid velocity field around an object is always three-dimensional since (as has been 

said) is characterised by high vorticity, flow separation and unsteady vortex structures 

(Mannini et al., 2011). The bidimensional simulations are not able to adequately represent the 

energy transfer from the larger vortical structures to the smaller vortical structures, as this 

transfer is related to the vortex stretching (which is three-dimensional). However, Frandsen 

(2004) stresses that the effects of the aerodynamic field in the span-wise direction of the deck 

can be neglected in cases where the deck cross-section has sharp edges. Furthermore, many 

authors (Bruno and Khris, 2003; Mannini et al., 2010; Mannini et al., 2010b; Shimada and 

Ishihara, 2011) highlight that the aerodynamic field around the bridge decks show relevant 

quasi-periodic vortical structures characterised by the direction of the vorticity vector parallel 
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with the span-wise direction: the quasi-periodic vortical structures, characterised by the 

direction of the vorticity vector parallel to the transverse direction, are negligible in the 

opinion of the above-mentioned authors. In the above-mentioned conditions, bidimensional 

simulation schemes can produce acceptable results from an engineering point of view. 

The above-mentioned authors follow the line indicated by Bosch and Rodi and simulate 

the aerodynamic instabilities by using a two-dimensional URANS model in which the fluid 

motion equations are completed by two turbulence statistical equation models. In the models 

proposed by the above-mentioned authors the span-wise diffusion processes are taken into 

account by a conveniently calibrated eddy viscosity introduced in the turbulent closure 

relations. The turbulent closure relations for the fluid motion equations are expressed as a 

function of the transport equations of turbulent kinetic energy k and the rate of viscous 

dissipation , or as a function of the transport equations of the turbulent kinetic energy and the 

turbulence frequency . Brusiani et al. (2013) argue that the k- model has to be preferred to 

the k- model for the simulation of the fluid dynamic fields near the wall: the k- model does 

not allow the direct integration through the boundary layer and over-estimates the turbulent 

kinetic energy in stagnation regions near the wall, while the k- model allows the direct 

integration through the boundary layer and improves the wall boundary layer unsteady 

solution, but is highly sensitive to the inlet turbulent boundary condition. Menter (2009) 
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proposed the k- Shear Stress Transport (SST) model, which consists of a blending between 

the k- model and k- model and preserves the main advantages of the k- model. 

In this thesis, a new method for the investigation of aeroelastic phenomena for long-

span bridges is proposed: the aerodynamic fields and the motion of structure are simulated 

simultaneously and in a coupled manner. The structure is represented as a bidimensional 

elastically suspended rigid body with two degrees of freedom whose natural frequencies 

correspond to those of the fundamental flexural and torsional modes of vibration of the 

structure. The Unsteady Reynolds Averaged Navier-Stokes (URANS) equations are solved on 

block-structured moving grids and are defined in integral form starting from the three-

dimensional Leibniz rule and the substantial derivative of the material volume integral of the 

momentum. The solution procedure of the momentum balance equation in implicit form is of 

pressure-correction type. The finite-volume method of collocated type implies the 

reconstruction of the velocity and pressure values in the calculation cells which, in this thesis, 

uses the Rhie-Chow procedure. 

The model has been validated by comparing the numerical results with the experimental 

ones related to a slender body with rectangular cross-section and the Forth-Road Bridge deck. 

The model validation is performed both in static conditions (i.e. under the assumption that all 

the degrees of freedom of the body are restrained) and dynamic conditions (i.e. under the 
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assumption that the body is free to oscillate in the bending degree of freedom and in the 

torsional degree of freedom). In the static case, the Strouhal number, the lift and drag 

coefficients are taken as benchmark parameters by comparing the numerical results with those 

obtained experimentally with regard to the case study of the slender body with rectangular 

cross-section. In the dynamic case, the comparison is performed in terms of critical flutter 

wind velocity by comparing the numerical results with those obtained experimentally with 

regard to the case study of the Forth Road Bridge deck. 

A deep insight into the analysis and the detailed representation of the different 

phenomena that produce the onset of flutter for long span bridge decks with streamlined 

cross-section is proposed. Such detailed representation makes it possible to deduce that the 

reason for the coupled flutter onset lies in the fact that, within each of the first oscillation 

cycles, there is a portion of the cycle in which the energy supplied by the aerodynamic field to 

the deck motion is more than the energy extracted in the rest of the cycle. Moreover, the same 

detailed representation allows one to deduce that the reason for the amplification of the 

aeroelastic instability is ascribable to the formation and drift of large vortical formations 

along the surface of the deck. The numerical model is also used to test the effect, on the 

aeroelastic stability of the deck, of the introduction of a couple of sloping barriers at the 

windward and leeward bridge deck edges. It is demonstrated that the aerodynamic 

modifications, produced by the introduction of such barriers, is effective in increasing the 
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critical flutter velocity and mitigating the vibration amplitudes which develop during the 

flutter instability.  
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Chapter 2 

The model 

 

In this chapter, the model utilized in order to perform the numerical investigation of the 

bridge flutter phenomenon is described. The chapter is organized as follows:  

 in paragraph 2.1, the procedure is presented by which the integral form of the 

Navier-Stokes equations over a moving control volume is deduced; 

 starting from the integral form of the Navier-Stokes equations over a moving 

control volume, in paragraph 2.2 the procedure is then presented by which the 

integral form of the Unsteady-Averaged Navier-Stokes (URANS) equations, 

which are numerically solved in this work, is deduced; 

 in paragraph 2.3, the structural motion equations used in the present work are 

presented; 

 in paragraph 2.4, a general overview on the implicit pressure correction methods 

is provided; 

 in paragraph 2.5, the finite volume method is shown by which the URANS 

equations adopted in this work are solved. 
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2.1 Integral form of the Navier-Stokes equations over a moving control volume 

In this paragraph, the Navier-Stokes equations are defined in integral form starting from 

the three-dimensional Leibniz rule and the substantial derivative of the material volume 

integral of the momentum.  

Let ρ and uሬ⃗  be, respectively, the density and the fluid velocity vector. Let ∆Vଵ(τ) be a 

time-varying control volume bounded by a surface, of area ∆Aଵ(τ), every point of which 

moves with a velocity that is different from the fluid velocity. By using the three dimensional 

Leibniz integral rule, the time derivative of the integral of ρuሬ⃗  over the volume ∆Vଵ(τ) can be 

expressed as 

ௗ
ௗఛ ∫ ሬ⃗ݑߩ 	݀ ଵܸ∆௏భ(ఛ) = ∫ డఘ௨ሬሬ⃗

డఛ
݀ ଵܸ∆௏భ(ఛ) + ∫ ሬ⃗ݑߩ ݒ⃗) ∙ ሬ݊⃗ )∆஺భ(ఛ)  ଵ   (1)ܣ݀

in which nሬ⃗  is the outward unit vector normal to the surface of area ∆Aଵ(τ) and vሬ⃗  is the 

velocity vector with which the points belonging to the surface of area ∆Aଵ(τ) move. 

Let us consider a material fluid volume, i.e. a time-varying volume which moves with 

the fluid and always encloses the same fluid particles. Let ∆V(τ) be a time-varying material 

volume and that is delimited by a surface of area ∆A(τ) every point of which moves with the 

same velocity of the fluid. It is known that the time derivative of the integral of ρuሬ⃗  over the 

above material fluid volume (material derivative), ୈ
ୈத∫ ρuሬ⃗ 	dV∆୚(த) , is expressed as (Aris, 1989) 
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஽
஽ఛ ∫ ሬ⃗ݑߩ ܸ݀∆௏(ఛ) = ∫ డఘ௨ሬሬ⃗

డఛ
ܸ݀∆௏(ఛ) + ∫ ሬ⃗ݑߩ ሬ⃗ݑ) ∙ ሬ݊⃗ )∆஺(ఛ)  (2)     ܣ݀

in which the velocity vector with which the points belonging to the surface of area 

∆A(τ) coincides with the fluid velocity vector uሬ⃗ . It is assumed that at instant τ,∆Vଵ(τ) =

∆V(τ). By replacing the first term on the right hand side of Eq. 2 by the term  ∫ ப஡୳ሬሬ⃗
பத

dVଵ∆୚భ(த)  

extracted from the right hand side of Eq. 1, Eq. 2 becomes 

஽
஽ఛ ∫ ሬ⃗ݑߩ ܸ݀∆௏(ఛ) = ௗ

ௗఛ ∫ ሬ⃗ݑߩ ܸ݀∆௏భ(ఛ) + ∫ ሬ⃗ݑߩ ሬ⃗ݑ) − (ݒ⃗ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀	    (3) 

The left hand side of Eq. 3 represents the expression of the time derivative of the 

integral of ρuሬ⃗  over a material volume (material derivative), which is valid in the case of a 

control volume whose boundary surface points move with a velocity, vሬ⃗ , that is different from 

the fluid velocity, uሬ⃗ . By equating the rate of change of the momentum of a material volume, 

expressed by the right hand side of Eq. 3, to the total net force in this direction (Newton’s 

law), we obtain the integral form of the momentum equation over a moving control volume 

ௗ
ௗఛ ∫ ሬ⃗ݑߩ ܸ݀∆௏భ(ఛ) + ∫ ሬ⃗ݑߩ ሬ⃗ݑ) − (ݒ⃗ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀ = ∫ ௏భ(ఛ)∆ܸ݂݀⃗ߩ + ∫ തܶ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀  (4) 

in which തܶ is the stress tensor. From Eq. 4, it is possible to deduce that, for an 

incompressible fluid, the integral form of the momentum equation over a moving control 

volume reads 
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ௗ
ௗఛ ∫ ሬ⃗ݑ ܸ݀∆௏భ(ఛ) + ∫ ሬ⃗ݑ ሬ⃗ݑ) − (ݒ⃗ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀ = ∫ ݂ܸ⃗݀∆௏భ(ఛ) + ଵ

ఘ ∫
തܶ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀  (5) 

in which 

തܶ = ܫ݌− ̅+  (6)         ̅ܵߤ2

where ߤ is the dynamic viscosity, ܵ̅ is the rate of strain tensor and ܫ  ̅ is the identity 

matrix. By introducing Eq. 6 into Eq. 5 and using the divergence theorem, Eq. 5 can be 

rewritten as 

ௗ
ௗఛ ∫ ሬ⃗ݑ ܸ݀∆௏భ(ఛ) + ∫ ሬ⃗ݑ ሬ⃗ݑ) − (ݒ⃗ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀ = ∫ ݂ܸ⃗݀∆௏భ(ఛ) − ଵ

ఘ ∫ ௏భ(ఛ)∆ܸ݀݌∇   

+∫ ̅ܵߥ2 ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀           (7) 

in which ߥ is the dynamic fluid viscosity and ∇= ቀ డడ௫
డ
డ௬

డ
డ௭ቁ. 

By adopting the same control volume, ∆ ଵܸ(߬), the expression of the time derivative of 

the integral of ρ over the material fluid volume reads 

஽
஽ఛ ∫ ܸ݀ߩ =∆௏(ఛ)

ௗ
ௗఛ ∫ ௏భ(ఛ)∆ܸ݀ߩ + ∫ ሬ⃗ݑ)ߩ − (ݒ⃗ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀     (8) 

From Eq. 8 it is possible to deduce that, for an incompressible fluid, the integral form of 

the continuity equation over a moving control volume reads 

ௗ
ௗఛ ∫ ܸ݀∆௏భ(ఛ) + ∫ ሬ⃗ݑ) − (ݒ⃗ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀ = 0       (9) 
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Bearing in mind that ∆A(τ) is the area of the surface delimiting the time-varying control 

volume ∆V(τ) that at instant τ coincides with the material volume, also the following relation 

holds valid for an incompressible fluid 

∫ ሬ⃗ݑ ∙ ሬ݊⃗ ஺(ఛ)∆ܣ݀ = 0          (10) 

Following the same logical procedure already indicated for the definition of Eq. 3, if we 

assume that, at instant τ,∆Vଵ(τ) = ∆V(τ) and introduce Eq. 10 into Eq. 9, we obtain 

ௗ
ௗఛ
	∫ ܸ݀ +	∆௏భ(ఛ) ∫ ݒ⃗ ∙ ሬ݊⃗∆஺భ(ఛ) ܣ݀	 = 0       (11) 

which is known in literature as the so-called Geometric Conservation Law (GCL, see 

Hertel et al., 2013). 

 

2.2 Integral form of the URANS equations over a moving control volume 

Bosch and Rodi (1998) highlight that at high Reynolds numbers, the stochastic turbulent 

fluctuations are superimposed on the periodic unsteady motion of the vortex structures. These 

authors proposed the simulation of the flow field characterized by the above-mentioned 

unsteady vortex structures by decomposing the instantaneous flow quantities in a time mean 

component, in a periodic component and in a turbulent fluctuating component. Following this 

approach, the sum of the time mean and the periodic part gives rise to the ensemble-averaged 
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component of the flow quantities. The latter are calculated by the numerical integration of the 

ensemble-averaged continuity and momentum equations; the complete spectrum of the 

stochastic motion is simulated by a statistical turbulence model. The models coherent with the 

above-mentioned approach are named in the literature as Unsteady Reynolds-Averaged 

Navier-Stokes (URANS) models. 

Following this approach, the instantaneous values of the fluid velocity ݑሬ⃗  and the (ݐ)

fluid pressure (ݐ)݌ are decomposed in the time mean components ݑതሬ⃗  and ̅݌, the periodic 

components ݑ෤ሬ⃗ ሬ⃗ݑ and the fluctuating components ,(ݐ)෤݌ and (ݐ) ᇱ and ݌ᇱ 

ሬ⃗ݑ (ݐ) = തሬ⃗ݑ + ෤ሬ⃗ݑ (ݐ) 	+ ሬ⃗ݑ ᇱ         (12) 

(ݐ)݌ 	= ̅݌ + (ݐ)෤݌ + ܲᇱ         (13) 

The sum of the time mean and the periodic part are defined as the ensemble averaged 

component 〈ݑሬ⃗  which are resolved in the numerical calculation. Eqs. (12), (13) ,〈(ݐ)݌〉 and 〈(ݐ)

become respectively 

ሬ⃗ݑ (ݐ) = ሬ⃗ݑ〉 〈(ݐ) + ሬ⃗ݑ ᇱ          (14) 

(ݐ)݌ 	= +〈(ݐ)݌〉 ܲᇱ         (15) 

For an incompressible fluid, by neglecting the viscous term the integral form of the 

ensemble averaged continuity and momentum equations over a moving control volume read 
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ௗ
ௗఛ ∫ ܸ݀∆௏భ(ఛ) + ∫ ሬ⃗ݑ〉) 〉 − (ݒ⃗ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀ = 0      (16) 

ௗ
ௗఛ ∫ ሬ⃗ݑ〉 〉ܸ݀∆௏భ(ఛ) + ∫ ሬ⃗ݑ〉 ሬ⃗ݑ〉)〈 〉 − (ݒ⃗ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀ = ∫ ݂ܸ⃗݀∆௏భ(ఛ) − ଵ

ఘ ∫ ௏భ(ఛ)∆ܸ݀〈݌〉∇   

+∫ തܴ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀          (17) 

in which തܴ is the Reynolds stress tensor, which is defined as 

തܴ = ሬ⃗ݑ〉− ᇱ⨂	ݑሬ⃗ ᇱ〉          (18) 

where ⨂	 is the tensor product operator. The unknown term 〈ݑሬ⃗ ᇱ⨂	ݑሬ⃗ ᇱ〉 is related to the 

ensemble averaged strain rate tensor 〈ܵ̅〉 and the ensemble averaged turbulent kinetic energy 

per unit mass 〈݇〉 through the relation 

ሬ⃗ݑ〉 ᇱ⨂	ݑሬ⃗ ᇱ〉 	= 〈̅ܵ〉௧ߥ2− + ଶ
ଷ
 (19)       ̅ ܫ〈݇〉

where t is the kinematic eddy viscosity. 

The turbulent closure relations for the fluid motion equations can be expressed as a 

function of the transport equations of turbulent kinetic energy k and the rate of viscous 

dissipation , or as a function of the transport equations of the turbulent kinetic energy and the 

turbulence frequency . Brusiani et al. (2013) argue that the k- model has to be preferred to 

the k- model for the simulation of the fluid dynamic fields near the wall: the k- model does 

not allow the direct integration through the boundary layer and over-estimates the turbulent 
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kinetic energy in stagnation regions near the wall, while the k- model allows the direct 

integration through the boundary layer and improves the wall boundary layer unsteady 

solution, but is highly sensitive to the inlet turbulent boundary condition. Menter (2009) 

proposed the k- Shear Stress Transport (SST) model, which consists of a blending between 

the k- model and k- model and preserves the main advantages of the k- model. In this 

work, the turbulent closure relations are completed by the k- SST model. In integral form, 

the integral form of the k and w equations over a moving control volume read 

ௗ
ௗఛ ∫ 〈݇〉ܸ݀∆௏భ(ఛ) + ∫ ሬ⃗ݑ〉)〈݇〉 〉 − (ݒ⃗ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀ = ∫ ቂଵ

ఘ
෨ܲ௞ − ቃ〈߱〉〈݇〉∗ߚ ܸ݀∆௏భ(ఛ)   

+∫ ∇ ∙ ߥ)] + ௧)∇〈݇〉]ܸ݀∆௏భ(ఛ)ߥ௞ߪ         (20) 

ௗ
ௗఛ ∫ 〈߱〉ܸ݀∆௏భ(ఛ) + ∫ ሬ⃗ݑ〉)〈߱〉 〉 − (ݒ⃗ ∙ ሬ݊⃗ ஺భ(ఛ)∆ܣ݀ = ∫ ቂߙ ଵ

ఘఔ೟
෨ܲ௞ − ଶቃ〈߱〉ߚ ܸ݀∆௏భ(ఛ)   

+∫ ∇ ∙ ߥ)] + ௧)∇〈߱〉]ܸ݀∆௏భ(ఛ)ߥఠߪ + ∫ ቂ2(1− ௪ଶߪ(ଵܨ
ଵ
〈ఠ〉

∇〈݇〉 ∙ ∇〈߱〉ቃ ܸ݀∆௏భ(ఛ)   (21) 

in which ‹› is the ensemble averaged turbulence frequency and 

௧ߥ = ௔భ〈௞〉
୫ୟ୶	(௔భ〈ఠ〉,ௌிమ)

         (22) 

ܵ = ඥ2〈 ௜ܵ௝〉〈 ௜ܵ௝〉         (23) 

෨ܲ௞ = min( ௞ܲ, 10 ∙  (24)        (〈߱〉〈݇〉ߩ∗ߚ
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௞ܲ = ௧ߥߩ
డ〈௨೔〉
డ௫ೕ

൬డ〈௨೔〉
డ௫ೕ

+ డ〈௨ೕ〉

డ௫೔
൰       (25) 

ଵܨ = ℎ݊ܽݐ ቊ൜݉݅݊ ൤݉ܽݔ ൬ ඥ〈௞〉
ఉ∗〈ఠ〉௬

, ହ଴଴ఔ
௬మ〈ఠ〉

൰ , ସఘఙഘమ〈௞〉
஼஽ೖഘ௬మ

൨ൠ
ସ
ቋ     (26) 

ଶܨ = ℎ݊ܽݐ ቈ൤݉ܽݔ ൬ ଶඥ〈௞〉
ఉ∗〈ఠ〉௬

, ହ଴଴ఔ
௬మ〈ఠ〉

൰൨
ଶ
቉      (27) 

௞ఠܦܥ = ݔܽ݉ ቀ2ߪߩఠଶ
ଵ
〈ఠ〉

డ〈௞〉
డ௫೔

డ〈ఠ〉
డ௫೔

, 10ିଵ଴ቁ      (28) 

where y is the distance to the nearest wall, S is the invariant measure of the strain rate, 

F1 and F2 are blending functions. All constants are computed as  =  1F1 +  2(1-F1). The 

constants for this model are: * = 0.09, 1 = 5/9, 1 = 3/40, k1 = 0.85, 1 = 0.5, 2 = 0.44, 

2 = 0.0828, k2 = 1, 2 = 0.856. 

With respect to the turbulence modelling of the near-wall region, two different 

approaches are usually adopted. The first one is the Low-Reynolds Number (LRN) approach, 

which uses a refined mesh close to wall in order to resolve all the important physics. The 

second one is the High-Reynolds Number (HRN) approach, which bridge the near-wall region 

by using the wall functions. In this work, at the solid walls the near-wall treatment proposed 

by Menter et al. (2003) is used. Such approach consists in automatically switching from a 

LRN approach to a HRN approach as the grid is coarsened. The k- SST model has the 

advantage that an analytical expression is known for  in the viscous sub-layer and the 
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logarithmic region. However, the analytical expression of  is not known in the buffer region. 

Therefore this method consists in blending the wall value of  between the viscous sub layer 

and the logarithmic region. A blending function depending on y+ is used (y+ = (y u /  where 

y is the distance from the wall and u is the friction velocity). The solutions for  in the 

viscous sub layer and the logarithmic region are respectively 

߱௏௜௦ = 	 ଺జ
଴.଴଻ହ	௬మ

; 	߱௟௢௚ = 	 ଵ
଴.ଷ఑

௨ഓ
௬

        (29) 

where  is the Von Karman constant. They are reformulated in terms of y+ and the 

following smooth blending is performed: 

߱௕(ݕା) = 	ට߱௏௜௦
ଶ (ାݕ) + 	߱௟௢௚

ଶ  (30)       (ାݕ)

A similar formulation is used for the velocity profile near the wall 

ఛ௏௜௦ݑ = 	 ௎భ
௬శ
	 ; ఛݑ	

௟௢௚ = ௎భ
భ
ഉ ୪୬(௬శ)ା	஼

        (31) 

where U1 is the velocity of the first calculation cell and 

ఛݑ = 	 ට(ݑఛ௏௜௦)ସ + ఛݑ)
௟௢௚)ସ

ర
         (32) 

This formulation gives the relation between the velocity near the wall and the wall shear 

stress. For the k-equation, a zero flux boundary is applied, as this is correct for both the low-

Re and the logarithmic limit. The zero gradient boundary condition has been imposed at the 
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outlet for all the fluid dynamic quantities (fluid velocity, turbulent kinetic energy, turbulence 

frequency). 

 

2.3 The structural motion equations 

The motion of the body can be described in terms of three displacement components, 

, where  and  are respectively the translational displacement component in the 

horizontal direction x (positive from left to right) and the translational displacement 

component in the vertical direction y (positive upwards), and  denotes the rotational 

displacement component (positive nose-up). The governing equation for the body motion is 

̈ܺ	ܯ + ̇ܺ	ܥ	 + ܺ	ܭ	 =  (33)         ܨ

where M, C and K are respectively the mass matrix, the damping matrix and the 

stiffness matrix; X is a vector which lists the displacement components ; F is a vector 

which lists the component fx in the x direction of the force exerted by the aerodynamic field 

on the body, the component fy in the y direction of the above-mentioned force and the twisting 

moment m generated by the above-mentioned force on the body. The components fx, fy and 

the twisting moment m are calculated by integrating the pressures, the viscous stresses and 

the turbulent stresses over the surface of the structure. 

By neglecting the displacements in the x-direction, Eq. (33) gives rise to two equations 
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ߟ̈	݉ + ܿఎ ߟ̇	 + ݇௬	ߟ = ௬݂(ߟ, ,ߟ̇ ,ߠ,ߟ̈ ,ߠ̇  (34)      (ߠ̈

ߠ̈	ܫ + 	 ܿఏ	̇ߠ + ݇ఏ	ߠ = 	݉ఏ ,ߟ)	 ,ߟ̇ ,ߠ,ߟ̈ ,ߠ̇  (35)      (ߠ̈

where m and I are respectively the mass and the mass moment of inertia per unit length 

of the deck; cy and c are respectively the structural damping coefficients in the vertical and 

torsional degree of freedom; ky and k are respectively the stiffness constant of the vertical 

elastic spring and the stiffness constant of the torsional elastic spring, and  and  are 

respectively the vertical displacement of the centre of gravity of the body and the rotational 

angle of the body around the shear centre. The stiffness ky and k are calibrated in order to 

give the natural frequencies corresponding to the fundamental flexural and torsional natural 

modes of vibration of the structure. The damping coefficients are calculated according to the 

formulation proposed in the work by Hines et al. (2009) on the basis of the given damping 

ratios. 

 

2.4 Implicit pressure correction methods 

The continuity and momentum balance equations admit the velocity components and 

pressure as dependent variables. In the case of incompressible fluids, the pressure calculation 

can be performed by adopting explicit methods of fractional step type, or implicit methods of 

pressure-correction type. The first method is based on the calculation of a predictor velocity 
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field from the momentum balance equation in which the term related to the pressure gradient 

is omitted: this field is not solenoidal but admits the same curl as that of the velocity field at 

the successive instant. A corrector irrotational field exists whose divergence is equal to those 

of the predictor field, but with opposite sign. This term is explicited in terms of a scalar 

function gradient. The laplacian of the scalar function equalized to the divergence (with 

negative sign) of the predictor velocity field allows the calculation of the above scalar 

function; from this function, the calculation of the corrector field can be performed and, 

consequently, also the calculation of the velocity field at the successive instant. The second 

method consists of gaining, from the velocity and pressure field at the instant t, the velocity 

and pressure field at the instant t+t by means of the so-called outer iterations and inner 

iteration. A predictor velocity field is calculated at the outer iteration implicitly (by means of 

an inner iteration process), where the pressure gradient is assumed to be equal to that of the 

previous iteration. The predictor velocity field is introduced into the equation of the laplacian 

of the pressure, from the solution of which the pressure value is obtained. This pressure value 

is in turn introduced in the momentum balance equation, thus providing the velocity field at 

the end of the m-th outer iteration. The outer iteration process ends when the velocity and 

pressure field at the instant t+t satisfies both the continuity equation and the momentum 

balance equation. Since in this work a solution procedure of pressure-correction type is 
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adopted for the solution of the momentum balance equation in implicit form, in the following 

a general overview on the implicit pressure correction methods is provided. 

In general, if an implicit method is used to advance the fluid velocity in time, the 

discretized form of the momentum equation at the new time step ݐ + 1 may be written as 

ܽ௉௧ାଵݑሬ⃗ ௉௧ାଵ + ∑ ܽே௧ାଵݑሬ⃗ ே௧ାଵே = ሬܳ⃗ ௧ାଵ −  ௉௧ାଵ      (36)(݌∇)

where ܲ is the index of the arbitrary velocity node and ܰ is the index of the generic 

neighbor node. Eq. 36 cannot be solved directly as the coefficients ܽ (and possibly the source 

term ሬܳ⃗ ) depend on the unknown solution ݑሬ⃗ ௧ାଵ. It follows that Eq. 36 must be solved 

iteratively. 

With regards to the simulation of an unsteady flow, two different levels of iterations 

exist within one time step. The first level refers to the so-called outer iterations, which are 

those iterations at the end of which the coefficients and the source term of the momentum 

equation are updated. The second level refers to the so-called inner iterations, which are those 

iterations that are performed on the momentum equation in which the coefficients and the 

source term are computed on the basis of the velocity and pressure field obtained at the 

previous outer iteration. On each outer iteration ݉, the following equation is solved by 

successive inner iterations 

෤ܽ௉௠ିଵݑሬ⃗ ௉௠∗ + ∑ ෤ܽே௠ିଵݑሬ⃗ ே௠∗
ே = ሬܳ⃗ ௠ିଵ −  ௉௠ିଵ      (37)(݌∇)
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in which the last term on the right hand side is computed on the basis of pressure field 

obtained at the end of the previous outer iteration. It is easy to deduce that the velocity field 

ሬ⃗ݑ ௠∗ obtained by solving Eq. 37 does not normally satisfy the continuity equation. It follows 

that ݑሬ⃗ ௠∗ cannot represent the estimate of the solution ݑሬ⃗ ௧ାଵ at the end of the current outer 

iteration; instead, it is a predictor velocity field (which is the reason for it carries an asterisk) 

and need to be corrected in order that the continuity equation is satisfied. 

The predicted velocity value at node ܲ, which has been obtained by solving Eq. 37, can 

be formally expressed by using the following relation 

ሬ⃗ݑ ௉௠∗ = ு෩ሬሬ⃗ ು
௔෤ು
೘షభ −

ଵ
௔෤ು
೘షభ  ௉௠ିଵ        (38)(݌∇)

in which 

෩ሬሬ⃗ܪ ௉ = ሬܳ⃗ ௉௠ିଵ − ∑ ෤ܽே௠ିଵݑሬ⃗ ே௠∗
ே         (39) 

A better estimate of ݑሬ⃗ ௧ାଵ at the end of the current iteration would be given by 

ሬ⃗ݑ ௉௠ = ு෩ሬሬ⃗ ು
௔෤ು
೘షభ −

ଵ
௔෤ು
೘షభ  ௉௠         (40)(݌∇)

in which the pressure gradient (∇݌)௉௠ is unknown. To follow, the procedure is shown by 

which the pressure gradient (∇݌)௉௠ to introduce into Eq. 40 is calculated: bearing in mind that, 

for an incompressible flow, the discretized form of the continuity condition at the new time 

ݐ + 1 may be written as 
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∑ ሬ⃗ݑ ௙ ∙ ሬ݊⃗ ௙௧ାଵܣ௙௧ାଵ௙ = 0         (41) 

we enforce the continuity condition by inserting the value of ݑሬ⃗ ௙௠ into Eq. 41. According 

to the momentum interpolation method, if a collocated grid is used this velocity value can be 

expressed by mimicking Eq. 40 as follows 

ሬ⃗ݑ ௙௠ = ൬ு
෩ሬሬ⃗

௔෤
൰
௙
− ቀଵ

௔෤
ቁ
௙

 ௙௠         (42)(݌∇)

where ൬ு
෩ሬሬ⃗

௔෤
൰
௙

 and ቀଵ
௔෤
ቁ
௙

 can be calculated by interpolating ு෩ሬሬ⃗ ು
௔෤ು
೘షభ, 

ு෩ሬሬ⃗ಿ
௔෤ಿ
೘షభ and ଵ

௔෤ು
೘షభ, 

ଵ
௔෤ಿ
೘షభ 

respectively. By inserting Eq. 42 into Eq. 41, we obtain the so-called discretized Poisson 

pressure equation 

∑ ቈ൬ு
෩ሬሬ⃗

௔෤
൰
௙
቉ ∙ ሬ݊⃗ ௙௧ାଵܣ௙௧ାଵ௙ = ∑ ൤ቀଵ

௔෤
ቁ
௙

௙௠൨(݌∇) ∙ ሬ݊⃗ ௙௧ାଵܣ௙௧ାଵ௙      (43) 

Once Eq. 43 has been solved, the pressure gradient (∇݌)௉௠ can be computed and used 

into Eq. 40 to correct the velocity value at node ܲ. We then have, at the end of the current 

outer iteration, a velocity field which satisfies the continuity equation (and hence is called 

corrector velocity field), but both the velocity and pressure fields do not satisfy Eq. 36. We 

then begin another outer iteration, and the process is continued until a velocity field which 

satisfies both the momentum equation and the continuity equation is obtained. 
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Synthetically, with regards to the simulation of an unsteady incompressible flow on a 

collocated grid, the numerical procedure consists of the following passages: 

1. based on the velocity field obtained at the previous outer iteration, calculate the 

coefficients ෤ܽ௉௠ିଵ, ෤ܽே௠ିଵ and the source term ሬܳ⃗ ௠ିଵ; furthermore, based on the 

pressure field obtained at the previous outer iteration, calculate the pressure term 

 ;௉௠ିଵ(݌∇)

2. solve Eq. 37 iteratively (inner iterations), thus obtaining ݑሬ⃗ ௉௠∗, ݑሬ⃗ ே௠∗; 

3. calculate ܪ෩ሬሬ⃗ ௉, ܪ෩ሬሬ⃗ ே from Eq. 39; 

4. calculate  ൬ு
෩ሬሬ⃗

௔෤
൰
௙

 and ቀଵ
௔෤
ቁ
௙

 by interpolating ு෩ሬሬ⃗ ು
௔෤ು
೘షభ, 

ு෩ሬሬ⃗ಿ
௔෤ಿ
೘షభ and ଵ

௔෤ು
೘షభ, 

ଵ
௔෤ಿ
೘షభ 

respectively; 

5. solve Eq. 43 iteratively (inner iterations), thus obtaining the pressure field at the 

current outer iteration ݉; 

6. calculate ݑሬ⃗ ௉௠, ݑሬ⃗ ே௠ from Eq. 40; 

7. if the velocity field ݑሬ⃗ ௠ satisfies the momentum equation, go to the next time 

step; otherwise, start another outer iteration and go to step 1. 
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2.5 The numerical model used in this work 

In this paragraph, the finite volume method is shown by which Eqs. 10, 11 and 17 

equations used in this work are solved. In order to make the text easier to follow, in the 

following the ensemble averaged quantities are not enclosed by brackets 〈 〉. 

 

2.5.1 Discretisation of the momentum equation 

The discretised form of Eq. 17 is 

ଷ௨ሬሬ⃗ ು
೟శభ௏ು

೟శభିସ௨ሬሬ⃗ ು
೟ ௏ು

೟ା௨ሬሬ⃗ ು
೟షభ௏ು

೟షభ

ଶ∆௧
+ ∑ ൫ሬ݊⃗ ௙௧ାଵ ∙ ሬ⃗ݑ ௙௧ାଵܣ௙௧ାଵ − ܸ̇௙௧ାଵ൯௙ ሬ⃗ݑ ௙௧ାଵ  

= ∑ ்ߥ ,௙௙ ሬ݊⃗ ௙௧ାଵ ∙ ሬ⃗ݑ∇) )௙௧ାଵ ௙ܵ
௧ାଵ − ௣௧ାଵ(݌∇) ௣ܸ

௧ାଵ      (44) 

where the three-level second-order accurate backward scheme is used for temporal 

discretization (Ferziger and Peric, 2012). In Eq. 44, the subscript ܲ and ݂ indicate the cell-

centre and the face-centre values of the generic fluid quantity, while ݐ + ݐ and ݐ ,1 − 1 

indicate the new time instant and the two previous time instant. 

The face-centre velocity ݑሬ⃗ ௙௧ାଵ in the convective term of Eq. 44 is calculated by using the 

so-called Gamma interpolation scheme (Jasak et al., 1999). When this scheme reduces to a 

linear interpolation of the neighbouring cell-centre values, the face-centre velocity results by 

the relation 
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ሬ⃗ݑ ௙௧ାଵ = ௫݂
௧ାଵݑሬ⃗ ௉௧ାଵ + (1 − ௫݂

௧ାଵ)ݑሬ⃗ ே௧ାଵ       (45) 

in which ௫݂ = ௙ேതതതത

௣ேതതതത
. 

The face normal derivative of velocity ሬ݊⃗ ௙௧ାଵ ∙ ሬ⃗ݑ∇) )௙௧ାଵ in the diffusive term is calculated 

as follows 

ሬ݊⃗ ௙௧ାଵ ∙ ሬ⃗ݑ∇) )௙௧ାଵ = ห∆ሬሬ⃗ ௙௧ାଵห
௨ሬሬ⃗ ಿ
೟శభି௨ሬሬ⃗ ು

೟శభ

ቚௗ⃗೑೙
೟శభቚ

+ ൫ሬ݊⃗ ௙௧ାଵ − ∆ሬሬ⃗ ௙௧ାଵ൯ ∙ ሬ⃗ݑ∇) )௙௧ାଵ    (46) 

in which the second term at the right-hand side is used to take into account the non-

orthogonality of the mesh (Jasak, 1996). 

By inserting Eqs. 45, 46 into Eq. 44, one obtains 

ଷ௨ሬሬ⃗ ು
೟శభ௏ು

೟శభିସ௨ሬሬ⃗ ು
೟ ௏ು

೟ା௨ሬሬ⃗ ು
೟షభ௏ು

೟షభ

ଶ∆௧
+ ∑ ൫ሬ݊⃗ ௙௧ାଵ ∙ ሬ⃗ݑ ௙௧ାଵ ௙ܵ

௧ାଵ − ܸ̇௙௧ାଵ൯௙ [ ௫݂
௧ାଵݑሬ⃗ ௉௧ାଵ + (1 − ௫݂

௧ାଵ)ݑሬ⃗ ே௧ାଵ]  

= ∑ ்ߥ ,௙௙ ቈห∆ሬሬ⃗ ௙௧ାଵห
௨ሬሬ⃗ ಿ
೟శభି௨ሬሬ⃗ ು

೟శభ

ቚௗ⃗೑೙
೟శభቚ

+ ൫ሬ݊⃗ ௙௧ାଵ − ∆ሬሬ⃗ ௙௧ାଵ൯ ∙ ሬ⃗ݑ∇) )௙௧ାଵ቉ ௙௧ାଵܣ − ௣௧ାଵ(݌∇) ௣ܸ
௧ାଵ  

(47) 

By dividing Eq. 47 for ௉ܸ
௧ାଵ and by posing 

ܽ௉ = ଵ
௏ು
೟శభ ቈ∑ ൫ሬ݊⃗ ௙௧ାଵ ∙ ሬ⃗ݑ ௙௧ାଵܣ௙௧ାଵ − ܸ̇௙௧ାଵ൯ ௫݂

௧ାଵ + ௙,்ߥ
ቚ∆ሬሬ⃗ ೑
೟శభቚ

ቚௗ⃗೑೙
೟శభቚ௙ ௙௧ାଵ቉ܣ + ଷ

ଶ∆௧
   (48) 
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ሬܳ⃗ ௉௧ାଵ = ଵ
௏ು
೟శభ∑ ௙൫ሬ݊⃗,்ߥൣ	 ௙௧ାଵ − ∆ሬሬ⃗ ௙௧ାଵ൯ ∙ ሬ⃗ݑ∇) )௙௧ାଵܣ௙௧ାଵ൧௙ + ଶ௏ು

೟

௏ು
೟శభ∆௧

ሬ⃗ݑ ௉௧ −	
௏ು
೙షభ

ଶ௏ು
೟శభ∆௧

ሬ⃗ݑ ௉௧ିଵ  

            (49) 

Eq. 47 can be rewritten as 

ܽ௉ݑሬ⃗ ௉௧ାଵ + ∑ ܽேே ሬ⃗ݑ ே௧ାଵ = ሬܳ⃗ ௉௧ାଵ −  ௉௧ାଵ       (50)(݌∇)

 

2.5.2 Derivation of the discretised pressure equation 

The discretised form of Eq. 10 is 

∑ ሬ݊⃗ ௙௧ାଵ ∙ ሬ⃗ݑ ௙௧ାଵܣ௙௧ାଵ௙ = 0         (51) 

From Eq. 50 we have 

ሬ⃗ݑ ௉௧ାଵ = 	ொ
ሬ⃗ು
೟శభି∑ ஺ಿ௨ሬሬ⃗ ಿ

೟శభ
ಿ
௔ು

− ଵ
௔ು

 ௉௧ାଵ       (52)(݌∇)

By posing 

ሬሬ⃗ܪ ௉ = ሬܳ⃗ ௉௧ାଵ −∑ ܽேݑሬ⃗ ே௧ାଵே          (53) 

Eq. 52 can be rewritten as 

ሬ⃗ݑ ௉௧ାଵ = ுሬሬ⃗ ು
௔ು
− ଵ

௔ು
 ௉௧ାଵ         (54)(݌∇)
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According to the momentum interpolation method (Norris, 2000), the cell-face velocity 

ሬ⃗ݑ ௙௧ାଵ in Eq. 51 can be expressed by mimicking Eq. 54 as follows 

ሬ⃗ݑ ௙௧ାଵ = ቀு
ሬሬ⃗

௔
ቁ
௙
− ቀଵ

௔
ቁ
௙

 ௙௧ାଵ        (55)(݌∇)

where ቀு
ሬሬ⃗

௔
ቁ
௙

 and ቀଵ
௔
ቁ
௙

 can be calculated by linearly interpolating ு
ሬሬ⃗ ು
௔ು

, ு
ሬሬ⃗ ಿ
௔ಿ

 and ଵ
௔ು

, ଵ
௔ಿ

 

respectively (Rhie and Chow, 1983). 

By inserting Eq. 55 into Eq. 51, the discrete pressure equation for the cell ܲ is obtained 

∑ ቀଵ
௔
ቁ
௙

௙ ሬ݊⃗ ௙௧ାଵ ∙ ௙௧ାଵܣ	௙௧ାଵ(݌∇) = ∑ ሬ݊⃗ ௙௙ ∙ ቀு
ሬሬ⃗

௔
ቁ
௙
 ௙௧ାଵ     (56)ܣ

 

2.5.3 Calculation of the cell-face volume fluxes 

The discretised form of Eq. 11 is 

ଷ௏ು
೟శభିସ௏ು

೟ା௏ು
೟షభ

ଶ∆௧
−∑ ܸ̇௙௧ାଵ௧ = 0        (57) 

where the three-level second-order accurate backward scheme is used for temporal 

discretisation. 

The difference between the cell volumes at consecutive time levels ݐ ,ݐ + 1 can be 

calculated as 
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௉ܸ
௡ାଵ − ௉ܸ

௡ = ∑ ߜ ௙ܸ
௧ାଵ

௙          (58) 

Analogously, the difference between the cell volumes at consecutive time levels ݐ −  ݐ ,1

can be calculated as 

௉ܸ
௡ − ௉ܸ

௡ିଵ = ∑ ߜ ௙ܸ
௧

௙          (59) 

It’s easy to verify that, by simple passages, the following relations can be derived from 

Eqs. 58, 59 

3 ௉ܸ
௡ାଵ − 4 ௉ܸ

௡ + ௉ܸ
௡ିଵ = ∑ ൫3ߜ ௙ܸ

௧ାଵ − ߜ ௙ܸ
௧൯௙       (60) 

By inserting Eq. 60 into Eq. 57, we obtain 

ଵ
ଶ∆௧

∑ ൫3ߜ ௙ܸ
௧ାଵ − ߜ ௙ܸ

௧൯௙ = ∑ ܸ̇௙௧ାଵ௙         (61) 

from which it derives that, if the cell-face volume fluxes are calculated by means of the 

following expression 

ܸ̇௙௧ାଵ = ଷ
ଶ

ఋ௏೑
೟శభ

∆௧
− ଵ

ଶ

ఋ௏೑
೟

∆௧
         (62) 

Eq. 57 is identically satisfied. 
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2.5.4 Numerical calculation procedure 

1. Calculate global lift force and twisting moment acting on the structure at the current 

time step. 

2. Once the global face acting on the structure at the current time step are known, solve 

the equations governing the motion of the 2DOF system. 

3. Once the displacements of the 2DOF system at the current time step are known, 

calculate the displacements of the mesh nodes belonging to the structure. 

4. Together with the position of the boundary mesh nodes (which are fixed), the updated 

position of the mesh nodes belonging to the structure acts as a boundary condition for the 

mesh motion problem, whose solution provides the displacements of the interior mesh nodes. 

In this work, the mesh motion problem has been solved by using a mesh movement algorithm 

based on using Inverse Distance Weighting (see Uyttersprot, 2014).  

5. Once the whole mesh is updated, calculate the cell-face volume fluxes using the 

expression 

ܸ̇௙௧ାଵ = ଷ
ଶ

ఋ௏೑
೟శభ

∆௧
− ଵ

ଶ

ఋ௏೑
೟

∆௧
         (63) 

6. Start the outer iteration loop in order to calculate the velocity and pressure filed at the 

current time step: 
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(i) solve the discretised momentum equation 

෤ܽ௉௠ିଵݑሬ⃗ ௉௠∗ + ∑ ෤ܽே௠ିଵݑሬ⃗ ே௠∗
ே = ሬܳ⃗ ௠ିଵ −  ௉௠ିଵ      (64)(݌∇)

in which the coefficients ܽ௉௠ିଵ, ෤ܽே௠ିଵ and the source term ሬܳ⃗ ௠ିଵ are explicitly 

computed from the velocity field obtained at the end of the previous outer iteration and the 

cell-face volume fluxes obtained at step 6, and the pressure gradient (∇݌)௉௠ିଵ is computed 

form the pressure field obtained at the end of the previous outer iteration; 

(ii) solve the discretised pressure equation 

∑ ቈ൬ு
෩ሬሬ⃗

௔෤
൰
௙
቉ ∙ ሬ݊⃗ ௙௧ାଵܣ௙௧ାଵ௙ = ∑ ൤ቀଵ

௔෤
ቁ
௙

௙௠൨(ߩ∇) ∙ ሬ݊⃗ ௙௧ାଵܣ௙௧ାଵ௙      (65) 

in which the coefficients ൬ு
෩ሬሬ⃗

௔෤
൰
௙

, ቀଵ
௔෤
ቁ
௙

 are computed by linearly interpolating the 

corresponding coefficients ு
ሬሬ⃗ ು
௔෤ು

, ு
ሬሬ⃗ಿ
௔෤ಿ

 and ଵ
஺෨ು

, ଵ
஺෨ಿ

 respectively, and the coefficients ܪሬሬ⃗ ௉, ܪሬሬ⃗ ே are 

computed from the velocity field obtained at step (i); 

(iii) calculate the corrected velocity field by using the relation 

ሬ⃗ݑ ௉௠ = ு෩ሬሬ⃗ ು
௔෤ು
೘షభ −

ଵ
௔෤ು
೘షభ  ௉௠         (66)(݌∇)

and update the cell-face values ሬ݊⃗ ௙௧ାଵ ∙ ሬ⃗ݑ ௙௠ ௙ܵ
௧ାଵ which appear in the convective term by 

using the relation 
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ሬ݊⃗ ௙௧ାଵ ∙ ሬ⃗ݑ ௙௠ ௙ܵ
௧ାଵ = ቈ ሬ݊⃗ ௙௡ାଵ ∙ ൬

ு෩ሬሬ⃗

௔෤
൰
௙
− ቀଵ

௔෤
ቁ
௙
ሬ݊⃗ ௙௧ାଵ ∙ ௙௠቉(݌∇)  ௙௧ାଵ    (67)ܣ

in which the pressure gradient (∇݌)௙௠ is computed from the pressure field obtained at 

step (ii); 

(iv) if the velocity field obtained at step (iii) satisfies the momentum equation, go to 

step 1; otherwise, return to step (i).  
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Chapter 3 

Test case 1: slender body with rectangular cross-section 

 

In this chapter, the aerodynamic fields which develop around a slender body with 

rectangular cross-section with aspect ratio B/D equal to 5 (where B and D are respectively the 

width and the depth of the cross-section) are simulated. The static validation of the model (i.e. 

under the assumption that all the degrees of freedom of the cross-section are restrained) is 

performed by comparing numerical and experimental results. The simulations used for the 

static validation are performed for increasing Reynolds number values (1.0 ˣ 103 < Re < 1.8 ˣ 

105). The model is also tested in dynamic conditions (i.e. the cross-section is free to oscillate 

in the bending degree of freedom and in the torsional degree of freedom). In Table 1 the 

values of the geometrical parameters (width and depth of the cross-section) and the structural 

parameters (bending vibration frequency and torsional vibration frequency of the body, 

bending and torsional damping ratios) adopted in the present numerical test are reported. 

 

3.1. Geometry and numerical modelling 

The flow domain considered for the body is 8B by 4B. The total number of cells is 

36800. At the upwind boundary of the computational domain a zero gradient boundary 
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condition is imposed for the fluid pressure, while a constant value is set for the other fluid 

quantities (velocity, turbulent kinetic energy and turbulence frequency). For every simulation 

performed, the undisturbed wind velocity U set at the domain inlet derives from the Reynolds 

number used, the actual kinematic viscosity ( = 1.23 ˣ 10-5 m2/s) and the width B of the 

cross-section. For the simulation performed at Re = 5.0 ˣ 104, at the solid walls the average 

value of the non-dimensional height y+ is close to 3 and the maximum value is close to 6. The 

cell size varies gradually with a geometric progression ratio of 1.03 in all directions. At the 

solid walls the near-wall treatment proposed by Menter et al. (2003) is used. At the outlet a 

constant pressure boundary condition is set, while the zero gradient boundary condition is 

imposed for the other fluid dynamic quantities (fluid velocity, turbulent kinetic energy and 

turbulence frequency). In all the simulations performed to validate the model, a maximum 

Courant number of 1.0 is imposed. 

 

3.2. Static validation 

The time-averaged drag coefficient CD = FD / (0.5  U2 D) and the time-averaged lift 

coefficient CL = FL / (0.5  U2 B) (in which FD and FL are the drag and the lift forces exerted 

by the fluid on the structure, U the undisturbed wind velocity, D and B the depth and the 

width of the deck cross-section,  the fluid density) obtained numerically are reported in 
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Table 2 together with those evaluated in the wind tunnel tests performed by Schewe (2006, 

2009). From Table 2 it can be seen that the values calculated from the numerical simulations 

are very close to those obtained experimentally by the latter author. 

In Fig. 1 the Strouhal number values obtained numerically are reported together with 

those obtained in the wind tunnel test performed by Schewe (2013). For every simulation 

performed, the Strouhal number is calculated as St = (fs D) / U∞, where the shedding 

frequency fs is computed by the time history of the fluid velocity at the two different points 

placed in the wake of the body. From Fig. 1 it can be seen that the Strouhal number values 

calculated from the numerical simulations range between values of 0.11 and 0.12, in good 

agreement with the experimental data.  

 

3.3. Dynamic simulations 

The aerodynamic fields and the structural motion of the body in dynamic conditions (as 

previously defined) are simulated simultaneously and in a coupled manner for two different 

undisturbed wind velocity values. In Fig. 2 the time history of the torsional displacements 

obtained for a wind reduced velocity U = 4.58 (U = U / (fB), where f is the torsional 

vibration frequency of the body) is shown. In agreement with the results shown by Liu et al. 

(2012), for this wind reduced velocity the body exhibits the flutter behaviour. In particular, 
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coherently with that obtained numerically by the above authors, there is a phase in which the 

amplitude of the torsional displacements gradually increases, followed by a phase in which 

the amplitude of the same displacements reaches a nearly constant value. The simultaneous 

and coupled simulation of the aerodynamic fields and the structural motion is also performed 

for a wind reduced velocity U = 3.05. According to the experimental findings of the latter 

authors, from the numerical simulation it emerges that the amplitude of the oscillations of the 

body is substantially stable for this wind reduced velocity. In particular, in Fig. 3 the time 

history of the torsional displacements obtained from the simulation performed for this wind 

reduced velocity is shown: from Fig. 3, it can be seen that in this case the torsional 

displacements are very small.  
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Figure 1. Strouhal number of the slender body with rectangular cross-section vs Reynolds number 

 

Table 1. Geometrical and structural parameters of the slender body with rectangular cross-section  
Width 0.04 m   
Maximum depth 0.008 m   
Torsional damping ratio 0.50%   
Heaving damping ratio 0.50%   
Natural torsional frequency 180 Hz   
Natural heaving frequency 120 Hz   
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Figure 2. Time history of the torsional displacements of the slender body with rectangular cross-section 

(U = 4.58) 

 

Figure 3. Time history of the torsional displacements of the slender body with rectangular cross-section 

(U = 3.05) 
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Chapter 4 

Test case 2: Forth Road Bridge deck 

 

In this chapter, the aerodynamic fields which develop around the Forth Road Bridge 

deck in its current configuration (Configuration I). In Fig. 4 the geometric characteristics of 

the Forth Road Bridge deck in the current configuration are shown. The dynamic validation of 

the model (i.e. under the assumption that the cross-section is free to oscillate in the bending 

degree of freedom and in the torsional degree of freedom) is performed by comparing 

numerical and experimental results. 

The simulations used for the dynamic validation are performed for increasing Reynolds 

number values (7.3 ˣ 103 < Re < 1.2 ˣ 104). In Table 3 the values of the geometrical parameters 

(overall width and maximum depth) and the structural parameters (mass per unit length and 

mass moment of inertia per unit length, natural heaving frequency and natural torsional 

frequency, heaving and torsional damping ratios) of the Forth Road Bridge deck are listed. In 

order to perform the integration of the fluid motion equations near the wall without excessive 

computational costs, the simulations have been performed at a reduced scale (1:780). 
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4.1. Geometry and numerical modelling 

The results related to the bridge deck in its current configuration are obtained by using a 

block-structured grid which is made up of 33850 cells. In this grid, a geometric progression of 

1.02 for the cell size varying is used in all directions. The dimensions of the computational 

domain in the x and y directions are respectively equal to Dx = 8B e Dy = 4B (being B the 

width of the cross-section of the reduced-scale deck). For every simulation performed, the 

undisturbed wind velocity U set at the domain inlet derives from the Reynolds number used, 

the actual kinematic viscosity ( = 1.23 ˣ 10-5 m2/s) and the width B of the reduced model 

cross-section. For the simulation performed at Re = 1.0 ˣ 104, at the solid walls the average 

value of the non-dimensional height y+ is close to 4 and the maximum value is close to 11. 

 

4.2. Initial conditions for the stability analysis 

The initial conditions in the stability analyses must be treated carefully. The 

instantaneous application of the full wind speed to an initially stationary structure leads to 

large transient initial motions from which it is difficult to extract definitive conclusions about 

the stability of small oscillations. To eliminate this problem, (according to Frandsen, 2004) 

for every simulation the structural damping values are set close to the critical values for the 

first instants of the simulation until the structure settles into a near-stationary configuration, 



 
 
 
 

 
 
 

51 
 

after which the damping values are changed to their estimated values. During this transient 

phase, the stiffness constants of the vertical and torsional spring are gradually relaxed from 

magnified values to those calibrated to give the correct natural frequencies in the fundamental 

modes. 

In Fig. 5 the time histories of the torsional displacements and the vertical displacements 

produced for a reduced wind velocity U = 6.0 are shown. From the figure it can be seen that, 

during the first instants of the simulation (t < 0.08) in which the structure is gradually 

released, the gravity centre slightly drifts downward from the equilibrium position and the 

deck slightly rotates in a clockwise direction. In the instants immediately after t = 0.08 the 

structure continues to rotate clockwise, so much so that the wind angle of attack exceeds the 

value for which the resultant of the aerodynamic forces and, consequently, the vertical 

displacement of the gravity centre change direction (from downward to upward). From the 

figure itself it can be seen that the oscillatory motion produced after this transient phase 

shows a slow but constant decay of both the vertical and angular displacements: the value of 

the imposed wind velocity (U = 6.0) lies under the critical flutter wind velocity value. In Fig. 

6 the time histories of the rotations and the vertical displacements obtained for a reduced wind 

velocity U = 7.0 are shown. In both cases, a constant growth of the displacements is 

observed: the value of the imposed wind velocity (U = 7.0) lies above the critical flutter wind 

velocity. From Figs. 4(b), 5(b) it can be seen that the value of the mean rotation around which 
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the instantaneous values of the rotation oscillate is not fixed, but increases (in absolute value) 

going from the first to the second case. It follows that also the mean wind angle of attack 

increases (in absolute value) going from the first to the second case. Specifically, for U = 6.0 

the instantaneous values of the wind angle of attack oscillate around a mean angle of attack 

roughly equal to -0.019 rad, whilst for U = 7.0 the instantaneous values of the wind angle of 

attack oscillate around -0.027 rad. Consequently the aerostatic vertical displacement, which is 

due to the aerostatic component of the wind load, increases from about 0.013 to about 0.05, 

i.e. more than linearly with the square of the wind velocity. 

 

4.3 Dynamic validation 

The model validation is performed by comparing the numerical results with those 

obtained from the wind tunnel tests described in Robertson et al. (2003). Fig. 7 shows the plot 

of the growth/decay rate of the rotations against the reduced velocity U of the wind (U = U / 

(f B), being f the natural torsional frequency of the deck). From Fig. 7 it can observed that 

the reduced critical velocity obtained by the presented model is U* = 6.12 (which 

corresponds to a full-scale critical wind velocity of 76.5 m/s). This value matches well the 

experimental result of U* ≈ 6.35 reported in Robertson et al. (2003). Furthermore, the 

frequencies of the rotational and the vertical motion of the deck are identified for the 



 
 
 
 

 
 
 

53 
 

considered reduced velocities U. In agreement with that reported in Robertson et al. (2003), 

it is found that at the point of flutter instability the frequencies of the translational and 

rotational motion are identical.  
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Figure 4. Forth Road Bridge deck cross-section in its construction state configuration 

(Configuration I) 

 

Table 3. Geometrical and structural parameters of the Forth Road Bridge deck (Robertson et al., 2003) 
Overall width 31.2 m   
Maximum depth 3.2 m   
Mass moment of inertia per unit length 2.13 x 106 kgm2/m   
Mass per unit length 17.3 x 103 kg/m   
Torsional damping ratio 0.14%   
Heaving damping ratio 0.31%   
Natural torsional frequency 0.4 Hz   
Natural heaving frequency 0.174 Hz   

   



 
 
 
 

 
 
 

55 
 

 

Figure 5. Time history of the vertical displacements (a) and the torsional displacements (b) of the Forth 

Road Bridge deck (Configuration I - U = 6.0) 
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Figure 6. Time history of the vertical displacements (a) and the torsional displacements (b) of the Forth 

Road Bridge deck (Configuration I - U = 7.0) 
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Figure 7. Growth/decay rate of the rotations of Forth Road Bridge deck vs reduced velocity 

(Configuration I)  
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Chapter 5 

Aeroelastic stability study of the Forth Road Bridge deck 

 

In this section, the presented simulation model is utilised to analyse the full fluid-

structure interaction of the Forth Road Bridge deck in the current configuration. A deep 

insight into the analysis and the detailed representation of the different phenomena that 

produce the onset of flutter for long span bridge decks with streamlined cross-section is 

proposed. In particular, at first it is identified the type of coupled flutter to which the Forth 

Road bridge deck is prone. It is then demonstrated that the reason for the onset of the 

torsional-branch coupled flutter lies in the fact that, within each of the first oscillation cycles, 

there is a portion of the cycle in which the energy supplied by the aerodynamic field to the 

deck motion is more than the energy extracted in the rest of the cycle. Lastly, it is shown that 

the reason for the amplification of the instability resides in the drifting of large vortical 

formations along the deck surface. 

 

5.1 Coupled flutter type characterisation 

In order to characterise the type of coupled flutter to which the Forth Road Bridge deck 

is prone, consistently with the treatise of Matsumoto et al. (2010) the angle  defined as the 
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phase lag of the heaving response (vertical displacements) to the torsional response (rotations) 

of the structure is used. The latter authors highlight that the motion of a deck cross-section 

undergoing coupled flutter can be regarded as the superimposition of two fundamental 

oscillatory motions: the torsional fundamental mode and the heaving fundamental mode. The 

first one (torsional fundamental mode) is defined as a substantially torsional oscillatory 

motion around a certain point apart from the mid-chord point, accompanied by a vertical 

oscillatory motion of small entity. In the torsional fundamental mode, the phase angle  is 

equal to 0° or 180° depending on whether the centre of rotation is placed upstream or 

downstream the mid-chord point of the deck cross-section (see Figs. 8(a), 8(c)). The second 

fundamental oscillatory motion (heaving fundamental mode) is defined as a substantially 

vertical oscillatory motion accompanied by a torsional oscillatory motion of small entity. In 

the heaving fundamental mode, the phase angle  is equal to 90° or -90° depending on 

whether the sign of the small rotation of the upward moving cross-section is clockwise or 

anti-clockwise (see Figs. 8(b), 8(d)). That said, the relative contributions of the torsional 

fundamental mode and the heaving fundamental mode to the structural instability are 

respectively quantified as the absolute values of the cosine and the sine of the above angle . 

According to the treatise of the above authors, the torsional branch (TB) coupled flutter is 

defined as a coupled (torsional-flexural) flutter instability dominated by the fundamental 

torsional mode previously defined. In the case under examination (Forth Road Bridge in its 
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current configuration), the phase angle  is found to be equal to around -16°, so that the 

relative contribution of the torsional fundamental mode to the instability of the structure is 

quantified as a value equal to |cos (-16°)| = 0.96 and the relative contribution of the heaving 

fundamental mode in a value equal to |sen (-16°)| = 0.27. Therefore it is concluded that in its 

current configuration the Forth Road Bridge deck is prone to a TB coupled flutter in which 

the torsional fundamental mode clearly dominates the heaving fundamental mode. 

 

5.2 Coupled flutter onset mechanism 

In the following the onset mechanism of the aeroelastic instability is shown. The 

evolution of the aerodynamic fields and the structural motion for a reduced wind velocity U 

= 7.0 is analysed during a structural oscillation cycle in which the oscillation amplitudes are 

still limited. In Fig. 9(a) the time histories of the infinitesimal vertical displacement of the 

gravity centre and the resultant of the forces (per unit area) normal to the deck surface exerted 

by the fluid on the structure (aerodynamic forces) are shown jointly. In Fig. 9(b) the time 

histories of the infinitesimal angular displacement of the deck and the twisting moment 

generated by the same resultant are shown jointly. The cycle of structural oscillation shown in 

Figs. 9(a), 9(b) corresponds to the time interval between two instants (indicated with the 
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letters A and E in Figs. 9(a), 9(b)) when the infinitesimal vertical displacement of the 

downward moving gravity centre assumes a relative minimum value.  

 By observing Fig. 9(a) it is deduced that in the time interval between instants A 

and B the gravity centre moves downward and passes from the position which corresponds to 

the static equilibrium to the position of minimum height (within the considered cycle), when 

the vertical velocity of the gravity centre of the structure vanishes. In this interval the resultant 

of the aerodynamic forces is directed upward, thus acting in opposition to the downward 

translational motion of the deck and, consequently, provides a damping effect on the same 

translational motion. 

 In the time interval between instants B and C the gravity centre of the structure 

inverts the direction of the translational motion and passes from the position of minimum 

height to the position which corresponds to the static equilibrium, when the vertical velocity 

of the gravity centre assumes a relative maximum value. In this interval the resultant of the 

aerodynamic forces, which is still directed upward, acts in the same direction as that of the 

upward translational motion of the deck and then produces an effect of amplification of the 

same motion. 

 In the time interval between instants C and D the gravity centre of the deck still 

moves upward until it reaches the position of maximum height (within the considered 

oscillation cycle), when the vertical velocity of the gravity centre vanishes again. In this 
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interval the magnitude of the resultant of the aerodynamic forces switches from positive 

values to values close to zero. Within this interval the above resultant acts in the same 

direction as that of the upward translational motion of the deck and then still amplifies the 

translational motion of the deck. 

 In the time interval between the instants D and E the gravity centre of the structure 

inverts the direction of the translational motion and passes from the position of maximum 

height to the position which corresponds to the static equilibrium, when the vertical velocity 

of the gravity centre assumes a relative minimum value. In this last portion of the oscillation 

cycle the resultant of the aerodynamic forces starts to grow one more from values close to 

zero. In this interval the above resultant acts in opposition to the downward translational 

motion of the deck and then provides a damping effect of the same translational motion. 

The examination of Fig. 9 stresses that during the time interval A-B and D-E of the 

above cycle the resultant of the aerodynamic forces acts in the opposite direction to the 

vertical velocity of the deck gravity centre, whilst in the time interval B-D the resultant acts in 

the same direction as the vertical velocity. The result of the integral of the work, defined as 

the product between the resultant and the infinitesimal displacement of the gravity centre of 

the deck, over the interval B-D is approximately equal to 9.63 ˣ 10-5 J. This integral is much 

higher, in absolute value, than the sum of the integral calculated over A-B (approximately -

3.51 ˣ 10-5 J) and the integral calculated over D-E (approximately -1.95 ˣ 10-5 J). The net 
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energy contribution (approximately 4.17 ˣ 10-5 J) of the resultant of the aerodynamic forces to 

the translational motion of the deck is that of making the same motion unstable. 

Similar considerations can be made regarding the twisting moment generated by the 

resultant of the aerodynamic forces. As shown in Fig. 9(b), in the time intervals between the 

instants A and B1 and the instants D1 and E the deck rotates clockwise and the above moment 

acts in the same direction as that of the angular velocity. In these intervals the twisting 

moment provides an effect of amplification of the rotating motion. In the time interval 

between the instants B1 and D1 the deck rotates counter-clockwise and the above moment 

acts in the opposite direction as that of the angular velocity. In this interval the twisting 

moment provides a damping effect of the rotational motion of the deck. The result of the 

integral of the work, defined as the product between the twisting moment and the 

infinitesimal rotation of the deck, over the whole oscillation cycle A-E is approximately equal 

to 0.15 ˣ 10-5 J. Then it is deduced that the net energy contribution provided from the twisting 

moment to the rotational motion has a destabilising effect on the same rotational motion. 

Based on the analysis of the aerodynamic fields and the structural motion during the 

first cycles of oscillations of the deck (when the structure still exhibits oscillations of small 

amplitudes), it is then possible to deduce that the reason for the onset of the instability lies in 

the fact that there are some portions of the cycle, within each of the first oscillation cycles, in 
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which the aerodynamic field provides both the translational and the rotational motion with a 

higher supply of energy than that subtracted from the deck motion in the rest of the cycle. 

Once the two-degree-of-freedom instability has been triggered, a progressive increase of 

the maximum amplitudes of the rotation angle takes place. As shown in the following 

subsection, once a threshold value of the above angle is exceeded the recirculation bubble, 

which pulsates in proximity of the leading edge during the onset phase just described, starts to 

drift along the deck surface. From this point on, the modalities of amplification of the 

oscillations have a different dynamic to the one described above. 

 

5.3 Post-critical flutter mechanism 

In the following the mechanism of amplification of the aeroelastic instability is shown 

in detail. The evolution of the structural motion and the aerodynamic fields which develop for 

a reduced wind velocity U = 7.0 within ½ cycle of oscillations of the structure, in which the 

amplitudes of the oscillations have reached high values, is shown. Figs. 10(a), 10(c), 10(e), 

10(g) show the fluid velocity fields that develop around the deck in four instants within this ½ 

cycle. By ½ cycle of structural oscillations is meant the temporal interval between the instant 

when the gravity centre of the downward moving structure corresponds to the static 

equilibrium position of the structure’s centre of gravity and the instant when the gravity centre 
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of the upward moving structure corresponds to the static equilibrium position of the 

structure’s centre of gravity. In Figs. 10(b), 10(d), 10 (f), 10 (h) are shown the distributions of 

the forces per unit area normal to the deck surface exerted by the fluid on the structure 

(aerodynamic forces) in the same instants. 

 In the first of the four considered instants a downward translation and a clockwise 

rotation of the deck is ongoing. The angle of attack is sufficiently high to cause the flow 

detachment near the leading edge. In Fig. 10(a) the vortex formed immediately downline this 

detachment zone is shown. In Fig. 10(b) the distribution of the aerodynamic forces can be 

seen. The resultant of these forces is an upward force directed normally to the upper surface 

of the deck. In this instant, this resultant acts in opposition to the downward velocity of the 

gravity centre and, therefore, provides a damping effect on the translational vertical motion of 

the deck. The point of application of the resultant is placed near the centre of the vortex, in an 

extremely far position from the mid-chord point of the deck cross-section. This resultant gives 

rise to a clockwise twisting moment which prevails against the elastic and the damping 

moment acting in the same instant and, together with the inertial torque, leads to an 

amplification of the clockwise rotation of the deck. 

 In Fig. 10(c) it can be seen that, compared to the previous instant, the vortex has 

drifted along the upper surface toward the trailing edge. This change of position is 

accompanied with a growth in the dimensions of the vortical formation. By observing Fig. 
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10(d) it can be seen that an overall increase of the aerodynamic forces is associated to the 

growth of the vortex. The point of application of the resultant, placed near the centre of the 

vortex, has got close to the mid-chord point of the deck cross-section. The effect produced by 

the increase of the intensity of the resultant prevails against the effect produced by the change 

of its point of application, causing an increase of the intensity of the clockwise twisting 

moment due to this resultant. Consequently this twisting moment acts in opposition to the 

elastic and the damping moment and, together with the inertial torque, produces a further 

amplification of the clockwise rotation of the deck. As well as in the previous instant, the 

resultant of the aerodynamic forces acts in opposition to the downward translational motion of 

the gravity centre and, therefore, still provides a damping effect on the motion itself. 

 By examining Fig. 10(e) it can be seen that, compared to the previous instant, the 

vortex has further drifted along the upper surface, getting close to the trailing edge. In Fig. 

10(f) it is seen that an overall increase of the aerodynamic forces corresponds to the growth of 

the vortex. At the same time it can be seen that the point of application of the resultant has got 

closer to the mid-chord point of the deck cross-section. The effect produced by the change of 

position of the resultant’s point of application prevails against the effect produced by the 

increase of its intensity, causing a decrease of the intensity of the clockwise twisting moment 

due to this resultant. The twisting moment continues to act in opposition to the elastic and the 

damping moment, but its intensity has reduced. 



 
 
 
 

 
 
 

67 
 

 In the latest of the four considered instants the inversion of the translational and 

rotational motion of the deck has taken place. In Fig. 10(g) it is shown that the vortex still 

drifts along the upper surface till reaching the trailing edge. Fig. 10(h) shows the distribution 

of the aerodynamic forces. The resultant of these forces slightly decreases compared to the 

previous instant. The point of application of the resultant, previously placed between the 

leading edge and the mid-chord point, is now placed between the mid-chord point and the 

trailing edge. Consequently the moment due to the resultant changes sign and, as a result of 

the simultaneous change in the rotation direction of the deck, acts in the same direction as that 

of the angular velocity. In this instant, the resultant of the aerodynamic forces acts in the same 

direction as the upward velocity of the gravity centre. Consequently, in such instant the above 

resultant provides a contribution in the amplification of the upward translational motion of the 

deck.  

From the examination of Figs. 10(a), 10(c), 10(e), 10(g) and 10(b), 10(d), 10(f), 10(h) it 

results that the reason for the amplification of the instability lies in the formation and the drift 

of large vortical formations along the deck surface. From the simulation of the phenomenon it 

emerges that, during the whole ½ cycle of structural oscillations (as previously defined), the 

sign of the twisting moment generated by the resultant of the components normal to the upper 

surface of the forces acting on the structure is always coherent with the sign of rotation. 

Consequently, there is a continuous supply of energy from the fluid dynamic field to the 
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structure, that constitutes the reason for the amplification of the instability of the torsional 

motion. The result of the integral of the work, defined as the product between the resultant 

and the infinitesimal displacement of the gravity centre of the deck, over the whole cycle of 

structural oscillation is positive. Consequently, the net effect of the resultant on the 

translational motion of the deck is to amplify the above-mentioned motion and provide a 

destabilising contribution. 
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Figure 8. Fundamental oscillatory motions in coupled flutter: (a) torsional fundamental 

mode with =0°, (b) heaving fundamental mode with  =-90°, (c) torsional fundamental mode 

with  =180°, (d) heaving fundamental mode with  =90° 
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Figure 9. (a) Time histories of the infinitesimal vertical displacement of the gravity centre (blue) and the 

resultant of the aerodynamic forces (green); (b) time histories of the infinitesimal angular displacement of 

the deck (blue) and the twisting moment generated by the resultant (green) 
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Figure 10(a). Forth Road Bridge deck (Configuration I): velocity fields of the fluid at T1 

 

 

Figure 10(b). Forth Road Bridge deck (Configuration I): surface pressures at T1 
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Figure 10(c). Forth Road Bridge deck (Configuration I): velocity fields of the fluid at T2 

 

 

Figure 10(d). Forth Road Bridge deck (Configuration I): surface pressures at T2 
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Figure 10(e). Forth Road Bridge deck (Configuration I): velocity fields of the fluid at T3 

 

 

Figure 10(f). Forth Road Bridge deck (Configuration I): surface pressures at T3 
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Figure 10(g). Forth Road Bridge deck (Configuration I): velocity fields of the fluid at T4 

 

 

Figure 10(h). Forth Road Bridge deck (Configuration I): surface pressures at T4 
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Chapter 6 

Aeroelastic optimisation study of the Forth Road Bridge deck 

 

In this section, the presented simulation model is utilised to analyse the full fluid-

structure interaction of the Forth Road Bridge deck in a configuration modified by the 

introduction of a couple of sloping barriers at the windward and leeward bridge deck edges. In 

Fig. 11 the geometric characteristics of the Forth Road Bridge deck in the modified 

configuration are shown. The wind barriers are 2.0 m high and inclined by 45 degrees with 

respect to the vertical direction. The fluid-structure interaction for the modified configuration 

is simulated by means of a block-structured grid made up of 39552 cells. 

With the purpose of characterising the flutter type of the modified configuration, the 

angle  defined as the phase-lag of the heaving response to the torsional response of the 

structure is used. In the case under examination, this angle is around  = -29°. It is thus 

concluded that, in this case, the Forth Road Bridge deck is prone to a TB coupled flutter in 

which the torsional fundamental mode still dominates but to which the heaving fundamental 

mode contributes to a greater extent than in the case related to the bridge deck in the current 

configuration. 

As it can be deduced from Fig. 12, the critical flutter wind velocity value is U* = 82.0 
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m/s (U* = 6.58), which is higher than the one identified for the deck in its current 

configuration. Therefore this modification is to be considered effective in the improvement of 

the aero-elastic stability of the deck. Moreover, as observed with regard to the current 

configuration it is found that, for wind velocity values equal or greater than the critical flutter 

wind velocity value, the frequencies of the rotational and vertical wind-induced motion 

synchronise on a common frequency. 

Figs. 13(a), 13(c), 13(e), 13(g) show the fluid velocity field which form around the deck 

in four time instants T1-T4 included in ½ of an oscillation cycle when flutter oscillations have 

been already developed. Figs. 13(b), 13(d), 13(f), 13(h) show the distribution of the surface 

normal unit-area forces exerted by the fluid on the deck (aerodynamic forces) in the same 

time instants.  

 In Fig. 13(a) the velocity field in the first of the four considered instants is shown. 

In this instant a downward translation and a clockwise rotation of the deck is ongoing. The 

angle between the velocity vector that develop between the outer edge of the barrier placed on 

the left side of the deck (leading edge) and the direction identified by the barrier itself is not 

as high as to cause the flow detachment near the above-mentioned leading edge. Differently 

from that observed in the current configuration (I), a vortex does not form at the leading edge. 

Due to the abrupt change in direction of the velocity vector, the formation of a small vortical 

structure is observed in proximity to junction between the barrier and the deck. In Fig. 13(b) 
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the distribution of the components normal to the deck surface of the forces per unit area 

exerted by the fluid on the structure is shown. The higher values of the above-mentioned 

normal components are placed in proximity to the small vortical formation. The resultant of 

the components normal to the upper surface of the forces acting on the structure is directed in 

opposition to the downward translational motion of the deck. In this instant, the above-

mentioned resultant acts in opposition to the downward displacement of the gravity centre 

and, therefore, provides a damping effect on the translational vertical motion of the deck. The 

point of application of the resultant is placed near the centre of the vortex, in an extremely far 

position from the centre of rotation of the deck. This resultant gives rise to a clockwise 

twisting moment. If, in this instant, the only elastic moment acted, the structure would rotate 

in an anti-clockwise direction. On the other hand, the above-mentioned clockwise twisting 

moment acts on the structure. This twisting moment prevails on the elastic moment and, 

consequently, is destined to amplify the clockwise rotation of the deck. 

 By examining Fig. 13(c) it can be seen that, compared to the previous instant, 

there has been a growth of the dimensions of the vortical formation. By observing Fig. 13(d) 

it can be seen that an overall increase of the components normal to the upper surface of the 

forces acting on the structure is associated to the growth of the vortex. Differently from that 

observed in the current configuration (I), the vortex (in configuration II) does not drift along 

the upper deck surface. Consequently, the point of application of the resultant, placed near the 
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centre of the vortex, remains very far from the centre of rotation of the deck. The clockwise 

twisting moment due to this resultant grows but, since the intensity of the above-mentioned 

resultant is moderate, it reduces the contribution to the amplification of the clockwise rotation 

of the deck. As well as in the previous instant, the resultant of the components normal to the 

deck surface of the forces per unit area exerted by the fluid on the structure acts in opposition 

to the downward translational motion of the gravity centre and, therefore, still provides a 

damping effect on the motion itself. 

 In the third of the four considered instants, the inversion of the translational and 

the rotational motion of the deck has already taken place. In Fig. 13(e) a growth of the 

dimensions of the vortical formation is observed. By examining Fig. 13(f) it can be seen that 

an overall increase of the components normal to the upper surface of the forces acting on the 

structure is associated to the growth of the vortex. Consequently, the intensity of the resultant 

of these normal components increases. The vortex remains in the zone immediately downline 

the point of junction between the barrier and the deck, so that the point of application of the 

resultant, placed near the centre of the vortex, remains in an extremely far position from the 

centre of rotation of the deck. In this instant the clockwise twisting moment, due to the 

components normal to the upper surface of the forces acting on the structure, and the inertial 

torque are opposite in sign to the elastic moment, which is dominant and acts in the same 

direction as that of the rotation. In this instant, the resultant of the components normal to the 
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deck surface of the forces per unit area exerted by the fluid on the structure acts in the same 

direction as the upward displacement of the gravity centre. Consequently, in such instant the 

above-mentioned resultant provides a contribution in the amplification of the upward 

translational motion of the deck. 

 In Fig. 13(g) it can be seen the gradual disappearing of the previously formed 

vortex. By examining Fig. 13(h) it is deduced that an overall increase of the components 

normal to the upper surface of the forces acting on the structure is associated to the 

dissolvement of the vortex. The elastic moment still acts in the same direction as that of the 

rotation. As well as in the previous instant,  the resultant of the components normal to the 

deck surface of the forces per unit area exerted by the fluid on the structure acts in the same 

direction as the upward displacement of the gravity centre. Consequently, even in this instant 

the above-mentioned resultant provides a contribution in the amplification of the upward 

translational motion of the deck. 

From the examination of Figs. 13(a), 13(c), 13(e), 13(g) and 13(b), 13(d), 13(f), 13(h) it 

is deduced that the presence of the sloped wind barriers produces a modification, compared to 

the current configuration (I), of the dynamics of vortices developed in the fluid-structure 

interaction. In configuration I, the angle between the velocity vector that develops in close 

vicinity to the leading edge and the direction identified by the line indicating the upper deck 

surface is sufficiently high to cause the flow detachment near the above-mentioned leading 
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edge. Immediately downline this detachment zone a large vortical structure forms, which 

drifts along the upper deck surface. The resultant of the components normal to the upper 

surface of the forces acting on the structure, whose point of application is placed near the 

vortex, moves along the upper deck surface. The twisting moment generated by the above-

mentioned resultant changes in sign (from clockwise to anti-clockwise) during the ½ cycle of 

structural oscillations (as previously defined). Consequently (in configuration I) during the 

whole ½ cycle of structural oscillations the sign of the twisting moment is always coherent 

with the sign of rotation, and there is a continuous supply of energy from the fluid dynamic 

field to the structure that constitutes the reason for the instability of the torsional motion. The 

net effect of the resultant on the translational motion of the deck is to amplify the above-

mentioned motion and provide a destabilising contribution. 

In configuration II, the angle between the velocity vector that develops between the 

leading edge and the direction identified by the barrier itself is not as high as to cause the flow 

detachment near the above-mentioned leading edge. A small vortical structure is formed near 

the point of junction between the barrier and the deck. This vortical structure does not drift 

along the upper deck surface, but remains immediately downline the above-mentioned 

junction point. The components normal to the upper surface of the forces acting on the 

structure, whose point of application is placed near the vortex, does not drift along the upper 

deck surface, remaining always in an extremely far position from the centre of rotation of the 
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deck. The twisting moment generated by the above-mentioned resultant does not change in 

sign: this twisting moment acts in a clockwise direction during the whole ½ cycle of structural 

oscillations (as previously defined). Consequently, there is a phase of the ½ cycle of 

oscillations (the second) when the sign of the twisting moment generated by the above-

mentioned resultant is not coherent with the sign of rotation, and creates a contrast and 

damping effect of the rotational motion itself. It is thus concluded that the aerodynamic 

modification can be considered effective in the mitigation of the amplitudes of the vibration 

which develop during the evolution of the flutter instability.  
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Figure 11. Forth Road Bridge deck cross-section configuration modified through a couple of sloping 

barriers (Configuration II) 

 

 

Figure 12. Growth/decay rate of the rotations of Forth Road Bridge deck vs reduced 

velocity (Configuration II) 
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Figure 13(a). Forth Road Bridge deck (Configuration II): velocity fields of the fluid at T1 

 

 

Figure 13(b). Forth Road Bridge deck (Configuration II): surface pressures at T1 
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Figure 13(c). Forth Road Bridge deck (Configuration II): velocity fields of the fluid at T2 

 

 

Figure 13(d). Forth Road Bridge deck (Configuration II): surface pressures at T2 
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Figure 13(e). Forth Road Bridge deck (Configuration II): velocity fields of the fluid at T3 

 

 

Figure 13(f). Forth Road Bridge deck (Configuration II): surface pressures at T3 
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Figure 13(g). Forth Road Bridge deck (Configuration II): velocity fields of the fluid at T4 

 

 

Figure 13(h). Forth Road Bridge deck (Configuration II): surface pressures at T4 
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Conclusions 

In this thesis, a new method has been proposed for the investigation of aeroelastic 

phenomena for long-span bridges: the aerodynamic fields and the motion of structure are 

simulated simultaneously and in a coupled manner. The structure is represented as a 

bidimensional elastically suspended rigid body with two degrees of freedom whose natural 

frequencies correspond to those of the fundamental flexural and torsional modes of vibration 

of the structure. The aerodynamic fields are simulated by numerically integrating the 

Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a finite volume 

scheme on moving grids which adapt to the structural motion. The URANS equations are 

completed by the turbulent closure relations which are expressed as a function of the turbulent 

kinetic energy, the turbulence frequency and the strain tensor according to the k- SST 

approach. 

The model has been validated by comparing the numerical results with the experimental 

ones related to a slender body with rectangular cross-section and the Forth-Road Bridge deck. 

The model validation has been performed both in static conditions (i.e. under the assumption 

that all the degrees of freedom of the body are restrained) and dynamic conditions (i.e. under 

the assumption that the body is free to oscillate in the bending degree of freedom and in the 

torsional degree of freedom). In the static case, the Strouhal number, the lift and drag 



 
 
 
 

 
 
 

88 
 

coefficients have been taken as benchmark parameters by comparing the numerical results 

with those obtained experimentally with regard to the case study of a slender body with 

rectangular cross-section. In the dynamic case, the comparison has been performed in terms of 

critical flutter wind velocity by comparing the numerical results with those obtained 

experimentally with regard to the case study of the Forth Road Bridge deck. 

The motion of the cross-section of the deck can be regarded as the superimposition of a 

rotational motion around the leading edge and a translational vertical motion of small entity. 

The torsional branch (TB) coupled flutter is defined as a coupled (torsional-flexural) flutter 

instability dominated by the fundamental torsional mode. It is demonstrated that in its current 

configuration the Forth Road Bridge deck is prone to a TB coupled flutter in which the 

torsional fundamental mode clearly dominates the heaving fundamental mode. 

For wind velocities equal or greater than the critical wind flutter velocity, the deck starts 

to oscillate increasingly. Based on the analysis of the aerodynamic fields and the structural 

motion during the first cycles of oscillations of the deck (when the structure still exhibits 

oscillations of small amplitudes), it has been deduced that the reason for the onset of the 

instability lies in the fact that there are some portions of the cycle (within each of the first 

oscillation cycles) in which the aerodynamic field provides both the translational and the 

rotational motion with a higher supply of energy than that subtracted from the deck motion in 

the rest of the cycle. 
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Once the two-degree-of-freedom instability has been triggered, a progressive increase of 

the maximum amplitudes of the rotation angle takes place. Once a threshold value of the 

above angle is exceeded the recirculation bubble (which pulsates in proximity of the leading 

edge during the onset phase) starts to drift along the deck surface. 

It has been shown that the reason for the amplification of the instability lies in the 

formation and the drift of large vortical formations along the deck surface. From the 

simulation of the phenomenon it emerges that, during the whole ½ cycle of structural 

oscillations, the sign of the twisting moment (generated by the resultant of the components 

normal to the upper surface of the forces acting on the structure) is always coherent with the 

sign of rotation. Consequently, there is a continuous supply of energy from the fluid dynamic 

field to the structure, that constitutes the reason for the amplification of the instability of the 

torsional motion. The result of the integral of the work, defined as the product between the 

resultant and the infinitesimal displacement of the gravity centre of the deck, over the whole 

cycle of structural oscillation is positive. Consequently, the net effect of the resultant on the 

translational motion of the deck is to amplify the above-mentioned motion and provide a 

destabilising contribution. 

The numerical model has been also used to test the effect, on the aeroelastic stability of 

the Forth Road Bridge deck, of the introduction of a couple of sloping barriers at the 

windward and leeward bridge deck edges. It has been demonstrated that the aerodynamic 
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modifications, produced by the introduction of such barriers, is effective in increasing the 

critical flutter velocity and mitigating the vibration amplitudes which develop during the 

flutter instability. 
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