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Abstract
Partial similarity problems arise in numerous applications that involve real data acquisition by 3D sensors, inevitably leading
to missing parts due to occlusions and partial views. In this setting, the shapes to be retrieved may undergo a variety of
transformations simultaneously, such as non-rigid deformations (changes in pose), topological noise, and missing parts – a
combination of nuisance factors that renders the retrieval process extremely challenging. With this benchmark, we aim to
evaluate the state of the art in deformable shape retrieval under such kind of transformations. The benchmark is organized in
two sub-challenges exemplifying different data modalities (3D vs. 2.5D). A total of 15 retrieval algorithms were evaluated in
the contest; this paper presents the details of the dataset, and shows thorough comparisons among all competing methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape retrieval concerns the problem of finding 3D shapes from a
shape repository, that are as similar as possible to a given query.
It is an active area of research, finding application in several ar-
eas of computer vision, graphics, and medical imaging among
several others. A challenging setting of 3D shape retrieval oc-
curs when the shapes to be retrieved are allowed to undergo non-
rigid deformations, which may range from simple changes in pose
(near-isometric deformations) to more complicated transformations
such as local stretching, intra-class variation, and topological noise.
Even more challenging is the setting in which the objects in ques-
tion have missing parts in addition to the aforementioned deforma-
tions. In this scenario, the query object is a subset of the full model
and the task is to retrieve similar objects with different partial-
ity patterns (or lack thereof), additionally undergoing a non-rigid
transformation; vice versa, the query object might be a full model,
while the shape repository may contain deformed partial views of
objects of the same class.

With this track, we propose a benchmark to evaluate the per-
formance of partial shape retrieval methods, under the concurrent
presence of:

• Non-rigid deformations;
• Different amounts and types of partiality;
• Topological changes induced by mesh gluing in areas of contact.

Figure 1: Example of shapes from the ‘holes’ (left pair) and ‘range’
(right pair) challenges. Shape boundaries are colored in red.

Related benchmarks. Although recent publications in the field
of shape analysis [DLL∗10, WZZ16, CRA∗16, CRM∗16] suggest
that the community is starting to show interest in the problem
of deformable partial shape retrieval, there is a notable lack of
benchmarks targeting this task. Similar benchmarks addressing
the related problem of correspondence were recently proposed
[CRB∗16,LRB∗16a], but these only include a relatively small num-
ber of shapes – a few hundreds as opposed to the several thou-
sands that would be required to provide a meaningful evaluation
of retrieval pipelines. Partial shape retrieval was recently addressed
in [PSA∗16] for rigid objects (partial views of vases), and a few
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years back in [MPB07, BBC∗10] (mostly CAD models, with only
2 classes presenting mild partiality and changes in pose).

By constructing a new, large, specific and challenging dataset
with partial deformable shapes, we aim to provide a valuable
testbed for the most recent top-performing retrieval methods, which
all too often we see “saturate” existing benchmarks that are not
specifically designed with partiality in mind. We hope that this
new benchmark will foster further interest of the community in this
challenging problem.

2. Dataset

The dataset is composed of transformed versions of shapes be-
longing to the TOSCA repository [BBK08] and to the SHREC’16
Topology [LRB∗16a] benchmark. The former consists of 9 shape
categories (humans and animals) under various changes in pose; the
second includes different poses of a fixed human subject, addition-
ally undergoing topological transformations in the form of mesh
‘gluing’ in areas of self-contact. The dataset we propose is divided
into two subsets, each constituting a different challenge:

• ‘holes’: On each model we consider 70 Euclidean farthest sam-
ples. A random subset of at least 20% of these samples is used
as seed for an erosion process with random geodesic radius (up
to 20% shape diameter per sample). Each resulting partial shape
is remeshed by edge contraction [GH97] to a random amount of
vertices between 300 and the full mesh resolution, followed by
application of a random similarity transformation.
• ‘range’: A virtual orthographic camera is placed in front of 5

randomly rotated versions of each model, at 4 random elevations
and resolutions. The resulting 2.5D snapshot is triangulated ac-
cording to a regular grid, with random maximum allowed edge
length (this generates topological shortcuts between parts that
are originally disconnected).

See Fig. 1 for examples. Note that the shapes might consist of mul-
tiple connected components in both cases. Each set is further di-
vided into a training set, for which (category-level) ground-truth
labels are provided, and a challenge set. We consider ‘david’ and
‘michael’ from the TOSCA repository as belonging to the same
class, while ‘victoria’ and ‘kid’ constitute separate classes.

In total, the dataset consists of 1216 training / 1078 test shapes
for ‘holes’, with resolution spanning 323 to 56172 vertices, and
1082 training / 882 test shapes for ‘range’, with 300 to 7021
vertices. The dataset remains available for download at http:
//sites.google.com/view/shrec17/.

3. Evaluation measures

The participants were asked to submit a full distance/dissimilarity
matrix D ∈ [0,1]n×n for each challenge, where n is the number
of shapes in the test set and (di j) denotes the dissimilarity be-
tween shape i and shape j. Participation to both challenges was
not mandatory; up to 3 runs per method were allowed.

For the evaluation we adopt the standard measures for shape re-
trieval according to the Princeton benchmark protocol [SMKF04]
using code from [LZC∗15]. In particular, we show Precision/Recall
curves, and tabled values for nearest neighbor (NN), 1st tier, 2nd
tier, and discounted cumulative gain (DCG, at rank equal to n).

4. Methods

The contest saw the participation of 8 research groups, some of
which participated with multiple submissions (resulting either from
different retrieval methods, or different runs of the same method).
In addition, the organizers implemented two baselines (Sections 4.1
and 4.2), both of which are extensions of existing approaches, prop-
erly modified to account for missing parts.

4.1. Bag of Words (BoW) [L. Cosmo and E. Rodolà]

As a first baseline, we use a simple BoW approach based on the
scale-invariant Heat Kernel Signature (siHKS) [KB10], computed
on keypoints extracted as the local maxima of the original HKS
[SOG09]. The overall pipeline is composed by the following steps:

1. For each shape, salient points are extracted using [SOG09], and
siHKS features are computed with a variant of [KB10];

2. A dictionary is built by descriptor clustering via k-means;
3. Each shape is represented by a frequency histogram, constructed

by assigning each feature to the nearest word in the dictionary;
4. The pairwise distance between shape histograms is computed.

The code for this baseline is available on the track website.

Keypoints and descriptors. Salient points of a mesh M are ex-

tracted using the method proposed in [SOG09]: given a diffusion
time t and the associated self-diffusivity Ht , we consider a point
x ∈M as a salient point if Ht(x)> Ht(x′) for all x′ in the one-ring
neighborhood of x. Boundary vertices are ignored.

The descriptor is then transformed according to:

Ḣt = log(Ht+1)− log(Ht) . (1)

HKS siHKS

1x

HKS
siHKS

1.5x

Scaling of the original shape corre-
sponds to a shift of Ḣ. Conversely
from the original method [KB10], we
do not use the DFT of Ḣ to attain
scale-invariance; instead, we restrict
each descriptor to within a small win-
dow starting from the first local min-
imum/maximum (see inset figure).

BoW representation and matching. Once salient points descrip-

tors are computed for each shape, a dictionary is constructed by
clustering all the descriptors with a k-means algorithm, and by con-
sidering their centroids as words of a dictionary C = (c0, . . . ,ck) .

A frequency histogram is then computed for each shapeM, as-
signing each descriptor dMi to the nearest word in the dictionary:

bM = ∑
i

earg min j d(dMi ,c j)
, (2)

where e j is 1 at position j and 0 at all other indices, and d(ci,c j) =

∑t |ct
i− ct

j| is the cityblock distance.

Finally, the distance between two shapesM andN is computed
using the cosine similarity:

dM,N = 1− b′MbN√
(b′MbM)(b′N bN )

. (3)
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Implementation details. Even if the descriptor used is scale-

invariant, one needs to consider comparable diffusion times to be
able to retrieve the relative scale; to this end, the shapes were nor-
malized by the area of their bounding box. Moreover, for increased
robustness to partiality and to avoid boundary effects, small diffu-
sion times must be used for the computation of the HKS. For this
step we replaced the standard spectral implementation of the heat
kernels [SOG09] with the robust Chebyshev-Padé method intro-
duced in [Pat13]. This proved to be crucial for an accurate evalua-
tion of the descriptors under large amounts of partiality.

The baseline comes in two variants, namely BoW-siHKS (de-
scribed above) and BoW-HKS, where the logarithm of the HKS is
used instead of siHKS. Diffusion times were sampled logarithmi-
cally at 80 samples between 2−16 and 2−6, and the window size
for the scale-invariant feature was set to 20 time samples. The dic-
tionary size was set to k = 128.

4.2. Partial ShapeDNA (DNA) [E. Rodolà and L. Cosmo]

The second baseline is an extension of the ShapeDNA global shape
descriptor described in [RWP06]. This approach is based upon the
observation that, assuming lack of partiality (i.e., in the standard
full shape setting), the spectrum of the Laplace-Beltrami operator
of a shape acts as an isometry-invariant “fingerprint” for recogni-
tion. Recently, Rodolà et al. [RCB∗16] showed how the removal
of shape parts modifies the Laplacian spectrum, providing a strong
prior that was subsequently used for the purpose of shape matching.

In particular, consider a full shapeM and a subset N ⊆M (or
an isometrically deformed version of N ), and denote by (λ j)

k
j=1

and (µi)
k
i=1 the increasingly ordered sequences of the first k Lapla-

cian eigenvalues of M and N respectively. Then, the equality
µi ≈ λ j holds (approximately) for i ≤ j and i = 1, . . . ,r, where

r ≈ bk area(M)
area(N )

c [RCB∗16]. See the inset figure below for an il-
lustration. Note that the standard setting where N is a full isomet-
ric deformation ofM, assumed in the original ShapeDNA method
[RWP06], is obtained with i = j and r = k. Litany et al. [LRB∗16b]
later showed that the part-to-full analysis of [RCB∗16] can be ex-
tended with little modifications to the part-to-part setting.

0 25 50
0

0.1
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µr λk

One may use this knowledge for the
task of partial shape retrieval by com-
paring the spectra (µi) and (λ j) at the
pairs of indices I = {(i,bi k

r c) | i =
1, . . . ,r}, to compute a dissimilarity
score σ(N ,M) = ∑(i, j)∈I |µi − λ j|.
The approach works under the assump-
tion that the two shapes M,N have
the same scale; however, in this challenge, the test shapes are ran-
domly rescaled so thatN ⊆ αM, where α ∈R is unknown. In par-
ticular, this induces a transformation of the eigenvalues µi 7→ 1

α2 µi.

In order to account for the unknown scale, the score σ(N ,αM)
is computed for a fixed range of scales α ∈ [10−1, . . . ,10] sampled
at N = 103 equally spaced values; then, the minimum score is kept
for the given pair of shapes. We refer to Section 6 for further con-
siderations on the lack of a consistent scale across the dataset.

4.3. Deep aggregation of localized statistical features (DLSF)
[T. Furuya and R. Ohbuchi]

The algorithm aims at extracting 3D shape descriptors that are ro-
bust both against non-rigid deformations and noise, such as irreg-
ular holes on the surfaces. It is built upon previous studies on lo-
cal 3D geometric features [OOFO12] and deep learning-based ag-
gregation of local features [FO16]. Fig. 2 describes the processing
pipeline of DLSF. DLSF takes as its input a set of low-level local
3D geometric features. The low-level feature is inherently invariant
against geometric transformations including translation (1DOF),
uniform scaling (1DOF), and rotation (3DOF) of 3D shapes. DLSF
produces a compact, high-level feature per 3D model for efficient
and effective matching among non-rigid 3D models. The algorithm
consists of the following four steps.

Generating oriented point set. Given a polygon-based 3D model,
it is first converted into a 3D oriented point set by sampling the sur-
face using the algorithm by Osada et al. [OFCD02]. This sampling
process gives DLSF a certain invariance against different shape
representations. The algorithm randomly and uniformly samples
points on the surface; each point is associated with the normal vec-
tor of the triangle on which the point is sampled. For each model,
3K oriented points are sampled. The oriented point set of the 3D
model is uniformly scaled to fit a sphere having unit diameter.

Extracting local statistical features. A set of 100 Spheres-Of-
Interest (SOIs) is sampled from the oriented point set of the 3D
model. Position and radius of each SOI are chosen randomly.
Each SOI is then described by Localized Statistical Feature (LSF)
[OOFO12], which is formed as a 625-dimensional vector. The rea-
sons for employing LSF as descriptor for SOIs are two-fold. First,
LSF has invariance against 3D rotation of points within a local
region, a desirable property for attaining robustness to non-rigid
deformations. In the SHREC 2015 non-rigid 3D shape retrieval
track [LZC∗15], LSF, combined with an unsupervised local feature
aggregation algorithm, is quite capable in comparing non-rigid 3D
models. Secondly, LSF tends to be robust against geometrical and
topological noise caused by irregular holes on the surface. A lo-
cal feature similar to LSF [RBB09] has successfully been applied
to the task of 3D registration, where 3D models generated by 3D
range scanners present surface cracks and holes.

Aggregating local features. A deep neural network (DNN) is em-
ployed to aggregate the set of LSFs into a single feature per 3D
model. The DNN consists of two blocks; (1) E-block, performing
Encoding of LSF, and (2) AC-block, performing Aggregation of
the encoded LSFs into a feature per 3D model, followed by Com-
pression of the aggregated feature. The E-block comprises three
fully-connected layers, each having 3072, 2048, and 512 neurons,
respectively. The AC block pools, by averaging, the set of encoded
mid-level local features into a single feature per 3D model. The
subsequent three fully-connected layers, with their 1024, 512, and
128 neurons, compress the aggregated feature to produce a com-
pact and salient feature per 3D model. ReLU is used as activation
function for the fully-connected layers.

Comparing aggregated features. Finally, a compact (128-
dimensional) aggregated feature of the query model is efficiently
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Figure 2: Processing pipeline of DLSF (Section 4.3). The 3D model is represented as a set of low-level, local 3D geometric features having
invariance against 3D rotation in the SOI. The deep neural network aggregates the local features to a compact and salient feature per 3D
model for effective matching among non-rigid 3D models.

compared against the aggregated features of the targets in the
database. Cosine similarity is used for this step.

The DNN is trained with a two-step process. The E-block is pre-
trained first by using a large set of labeled SOIs. Then, the entire
network is trained by using a set of labeled 3D models.

Pre-training E-block. To learn expressive local feature better
suited for accurate 3D shape retrieval, the E-block is pre-trained by
using a large number of labeled SOIs so that it could predict object
categories of the SOIs. To do so, SOIs are sampled at random po-
sition and scale from the labeled training 3D models. The label for
each SOI is identical to the label for the 3D model from which the
SOI is sampled. A total of 3M labeled SOIs are collected from the
training set. The classification layer is appended at the output end
of the E-block. Parameters in the E-block, i.e., connection weights
among neurons, are randomly initialized and cross-entropy loss is
minimized by using AdaGrad [DHS11] with initial learning rate
equal to 0.1. A 20% dropout is performed for all the hidden layers.
The pre-training is iterated for 10 epochs.

Training whole network. After supervised pre-training of the E-
block, the entire network is trained including both the E-block and
the AC-block by using the labeled 3D models from the training set.
The parameters in E-block inherit as their initial values the result of
the pre-training. The parameters in the AC-block are randomly ini-
tialized. Training of the entire DNN is done by minimizing cross-
entropy loss by using AdaGrad with initial learning rate equal to
0.1 and 20% dropout. The training is iterated for 100 epochs.

DLSF has per-query runtime of 0.063s, of which 0.061s are
needed for feature extraction, and 0.002s for comparison (measured
on a machine with Intel Core i7-6700 CPU, Nvidia GeForce GTX
1080 GPU and 64GB DRAM).

4.4. Sparse reconstruction (SR) [L. Wan et al.]

Wan et al. [WZZ16] propose to measure the similarity between
two shapes based on sparse reconstruction of shape descriptors.
For each shape, its local descriptors and sparse dictionary are com-
puted. The similarity between two shapes is then defined by the

error incurred when reconstructing one’s descriptor set using the
other’s dictionary. No training set is needed in the whole process.

In this method, the computation of the HKS [SOG09] descrip-
tors is modified on the following aspects: (1) The descriptors are
calculated on the largest connected component for a disconnected
shape, while some descriptors of the boundary vertices and their 1-
ring neighbors are excluded; (2) The diffusion time scales are adap-
tively set for each shape, rather than some fixed values. The mod-
ified descriptors are called I-HKS descriptors. To compute these
descriptors for a shape, the eigenvalues λ0, . . . ,λ99 and the corre-
sponding eigenfunctions φ0, . . . ,φ99 of the Laplace-Beltrami oper-
ator are used. After setting tmin = 4ln10/λ1 and tmax = 4ln10/λ99
according to [SOG09], the diffusion time scales are chosen from
tstart = tmin to tend = tmin + (tmax− tmin)/10. The time scales are
then formulated as:

ti = 10lg tstart+
lg tend−lg tstart

n−1 (i−1), i = 1, . . . ,n. (4)

Next, sparse dictionary learning [MBPS10] is utilized to com-
pute a dictionary for each shape. For a shape SA, after its I-HKS
set FFFA = { fff A

j | j = 1, . . . ,NA} is computed, its dictionary DDDA can be
obtained by solving the constrained optimization problem

D̃DDA = argmin
DDDA

1
NA

NA

∑
j=1
‖ fff A

j −DDDAγγγ
A
j ‖

2
2 s.t. ‖γγγA

j ‖0 ≤ T, (5)

where γγγ
A
j consists of sparse coefficients and T is a sparsity thresh-

old.

The shape similarity measure is slightly different to [WZZ16].
Given two shapes SA and SB, if using SA’s dictionary DDDA to
sparsely code SB’s I-HKS fff B

j , the reconstruction error is expressed
as:

E( fff B
j ,DDDA) = min‖ fff B

j −DDDAγγγ
B
j ‖

2
2 s.t. ‖γγγB

j ‖0 ≤ T. (6)

Therefore, the average reconstruction error for coding the I-HKS
set FFFB is formulated as:

E(FFFB,DDDA) =
1

NB

NB

∑
j=1

E( fff B
j ,DDDA). (7)
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Similarly, if using SB’s dictionary DDDB to represent SA’s I-HKS set
FFFA, the average reconstruction error is E(FFFA,DDDB). The distance
between SA and SB is finally defined as:

Dist(SA,SB) = min(E(FFFB,DDDA),E(FFFA,DDDB)). (8)

All the parameter settings are the same as [WZZ16].

This method assumes that a partial shape has a large connected
component which still keeps most of the corresponding full shape.
So, if a partial shape is broken into many pieces or misses too much
surface information, this method may be not suitable.

4.5. Geodesic multi-resolution framework (GMR)
[M. Masoumi et al.]

The framework of [MLH16, MH17] is based on the eigensystem
of the Laplace-Beltrami operator, which is invariant to isomet-
ric transformations. A geodesic multi-resolution descriptor is de-
fined by incorporating the vertex area into the definition of spectral
graph wavelet [LB13] in a bid to capture more geometric informa-
tion and, hence, further improve its discriminative ability. A Mexi-
can hat wavelet is utilized as a generating kernel, which considers
all frequencies equally important as opposed to the cubic spline
kernel [LB13]. Furthermore, in order to capture the spatial rela-
tions between features, the geodesic multi-resolution descriptor is
weighted by a geodesic exponential kernel.

The framework consists of four main steps. The first step is
to represent each 3D shape in the dataset D by a spectral graph
wavelet signature matrix S, where S = (s1, . . . ,sm) ∈ Rp×m, si is
the p-dimensional local descriptor at vertex i, and m is the num-
ber of mesh vertices. In the second step, the area-weighted spectral
graph wavelet signatures si are mapped to high-dimensional mid-
level feature vectors using the soft-assignment coding step of the
BoF model, resulting in a k×m matrix U = (u1, . . . ,um) whose
columns are the k-dimensional mid-level feature codes. In the third
step, the k× k geodesic multi-resolution matrix F is computed us-
ing the mid-level feature codes matrix and a geodesic exponential
kernel as:

F = UKUᵀ
, (9)

where U is a k×m matrix of geodesic multi-resolution codes (i.e.
mid-level features), and K = (κi j) is a m×m geodesic exponential
kernel matrix whose elements are given by

κi j = exp

(
−

d2
i j

ε

)
, (10)

with di j denoting the geodesic distance between vertices vi and
v j, and ε is a positive, carefully chosen parameter that deter-
mines the width of the kernel. Matrix F is reshaped into a k2-
dimensional global descriptor xi. In the fourth step, the geodesic
multi-resolution vectors xi of all n shapes in the dataset are ar-
ranged into a k2×n data matrix X = (x1, . . . ,xn). Finally, a query x
is compared to all data points in X using the `1-distance. The lower
the value of this distance, the more similar the shapes.

The experiments were conducted on a desktop computer with
an Intel Core i5 3.10 GHz CPU and 8 GB RAM; the algorithms

were implemented in MATLAB. In this setup, a total of 201 eigen-
values and associated eigenfunctions of the LBO were computed.
The resolution parameter was set to R = 2 (i.e., the spectral graph
wavelet signature matrix is of size 5×m, where m is the number
of vertices) and the kernel width to ε = 0.1. The parameter of the
soft-assignment coding is computed as α = 1/(8µ2), where µ is the
median size of the clusters in the vocabulary.

4.6. SnapNet [A. Boulch et al.]

The objective of the approach is to learn a classifier that will pro-
duce similar outputs for the same shapes with different poses. The
training set is composed of 10 different classes. For a new shape,
the classification vector obtained with this new shape is used as a
description of the shape.

Training dataset. The training dataset is
generated by taking snapshots around the
3D model (see inset) [Gra14]. In order to
create visually consistent snapshots, the
point cloud is remeshed using [MRB09].
The snapshots are 3-channel images: the
first channel encodes the distance to the
camera (i.e., depth map), the second is the normal orientation to
the camera direction, and the third channel is an estimation of the
local noise in the point cloud (ratio of eigenvalues of the neighbor-
hood covariance matrix).

The adopted CNN is a VGG16 [SZ14] with a final fully-
connected layer with 10 outputs. The weights are initialized with
the model trained on the ILSVRC12 contest; the network is then
fine-tuned using a step learning rate policy.

Distance computation. The classifier is then applied to images and
produces images classification vectors vim. For each model, a pre-
diction vector VM is computed based on the images :

VM =
∑im∈M vim

||∑im∈M vim||2
.

The distance matrix X contains the pairwise `2 distances be-
tween the VM . Each line is then normalized using a soft max :

Xi, j =
exp(Xi, j)

∑ j exp(Xi, j)
.

Note that matrix X is not symmetric. Finally, a symmetric distance
matrix is defined D = XT X. The values of D are clipped according
to the 5th and 50th percentiles and then re-scaled in [0,1].

The method was implemented Python and C++, using the deep
learning framework PyTorch. The experiments were performed on
a CPU Intel Xeon(R) E5-1620 3.50GHz. The training part was op-
erated on a Nvidia Titan X Maxwell GPU and the test part (predic-
tions) on a Nvidia GTX 1070. Generating the snapshot took around
10 seconds per model. The training took around 8 hours. The pre-
diction vectors were generated in 2 seconds per model and the dis-
similarity matrix was computed in less than 10s.

c© 2017 The Author(s)
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Figure 3: Pipeline of the 2VDI-CNN method (Section 4.7).

4.7. 2D-view depth image and CNN-based method
(2VDI-CNN) [Y. Hong and J. Kim]

This method makes use of 2D-view depth images [PTK06,LGS10]
and a convolutional neural network (CNN); Fig. 3 shows the gen-
eral pipeline.

A given 3D shape is represented by 42 depth images which are
used for training. In order to take depth images, the center (average
of vertices coordinates) of the 3D shape is translated to the origin
and the maximum polar distance of the vertices is scaled to one.
Then, 42 depth images are taken on the vertices of a Pentakis icosi-
dodecahedron (subdivided icosahedron), which is a convex polyhe-
dron with 80 triangular faces and 42 vertices.

The training shapes are labeled to 10 categories, and each depth
image is assigned the label of the corresponding class. These depth
images and corresponding labels are put into a CNN for train-
ing. The chosen architecture is GoogLeNet [SLJ∗15] (also referred
to as Inception v1), the winning architecture on ImageNet 2014.
Although there are other architectures that perform better than
GoogLeNet, such as Inception v4 [SIVA16] and ResNet [HZRS16],
the 4GB GPU used for the contest set a hardware limit on the type
of architecture. GoogLeNet’s last softmax layer was changed to
output 10-way prediction values.

In the training step, a total of 1216× 42 = 51072 (‘holes’) and
1082×42= 45444 (‘range’) depth images (of size 224×224) were
used as training data, where 10% of these were used for valida-
tion. The training used momentum with a decay of 0.9, learning
rate of 0.01, and every epoch was decayed using an exponential
rate of 0.96 with dropout ratio set to 0.1. All training data was
zero-centered and then scaled by its standard deviation as a pre-
processing step; batch size was set to 64. Training for ‘holes’ was
stopped after 38 epochs, where the validation accuracy reached
84.49% with no further growth. Training for ‘range’ was stopped
after 34 epochs, with 86.47% validation accuracy and no further
growth.

In the test step, for a given 3D shape, a 10-dim. feature vec-
tor is extracted to represent the model. As in the training step, 42
depth images are taken from the 3D shape and input to the trained
GoogLeNet, which outputs 10 prediction values per depth image,
making for a total of 42×10 prediction values. These are averaged
on each dimension to generate a 10-dim. vector, which is taken as
the final feature vector for the test shape. The final score between
two 3D shapes is given by the Euclidean distance of the correspond-
ing feature vectors.

GoogLeNet was built by TFLearn (http://tflearn.org)
on top of Tensorflow. Depth images were taken with MAT-
LAB 3D Model Renderer (http://www.openu.ac.il/home/
hassner/projects/poses/). The method was implemented on
a 3.60 GHz i7-4790 CPU, 8GB DDR3 RAM, GeForce GTX 960
4GB rig. On this system, the average runtimes for taking depth im-
ages and generating the predictions for 10 shapes is 3.25s and 0.31s
(on GPU) respectively. Calculating the similarity between a query
and 882 shapes takes only 0.005s. Better performance could possi-
bly be achieved by tuning the hyperparameters for training and by
using better CNN architectures.

4.8. Non-parametric spectral model (NPSM)
[A. Gasparetto et al.]

The method described in [GMT15] is a supervised approach for the
construction of a generative model based on the spectral decom-
position of the Laplace-Beltrami operator. The idea is to define a
statistical framework that models a shape as two independent gen-
erative models for the eigenvector and the eigenvalue components
of the spectral representation of the Laplacian. In particular, it is as-
sumed that the spectral embedding space of the eigenvector part is
a set of independent observations which follows an unknown distri-
bution. The underlying distribution is estimated in a non-parametric
way, through kernel density estimation. In particular, the posterior
probability P

(
Φ

M |ΘΦ
)

can be computed by solving the problem:

max
O∈O(d)

max
S∈{±1}d

(Nhd)−n
n

∏
i=1

N

∑
j=1

e−
‖OSφ

M
i −θ

Φ
j ‖

2

2h2 , (11)

where d is the embedding dimension. For the results produced for
this contest, d = 50, hence the first 50 smallest eigenvalues (and
corresponding eigenvectors) have been used to build the models
and to infer them.

The two most important benefits brought by this point-wise ap-
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proach regard the robustness (and somehow, the scalability) of the
algorithm and its acquired invariance to vertex correspondences.

Two alignment steps are defined and applied to the eigenvector
model in order to take care of the residual rotations between eigen-
vector matrices. The first one deals with the non-uniqueness of the
retrieved eigenvectors, problem which often takes the name of sign
ambiguity. A heuristic-based method is used to solve this problem,
even if it does not guarantee the identification of all the sign flips
that should be performed.

The second alignment step deals with the mixing-eigenspaces
problem. The problem concerns the retrieval of eigenvectors that
correspond to very close eigenvalues, which could result in a swap
between them. To solve it, a rotation matrix which aligns the eigen-
vector matrices is introduced into the model computation process.
Such rotation is computed by casting the problem as an Orthogo-
nal Procrustes problem, in which the orthonormal transformation
which maximizes a certain probability (defined in terms of Parzen-
Rosenblatt kernel density estimator) is sought.

On the other hand, in order to define a descriptor that is robust to
small non-isometric perturbations, the eigenvalues are assumed to
be log-normally distributed:

P(ΛM |ΘΛ) = (2π)
d
2

d

∏
i=1

1
λiσi

e
−(ln λi−µi)

2

2σ2
i . (12)

Finally, the posterior probability of a mesh with respect to a cer-
tain class is computed as the combination of posterior probabilities
of both models as follows:

P(M|Θ) = P(ΛM |ΘΛ)P(ΦM |ΘΦ) . (13)

The posterior probabilities of a mesh with respect to each class of
the training set are treated as components of a feature vector which
characterizes a mesh. The distance (in this contest, Chebyshev’s
distance) between the feature vectors of two meshes represents the
score between them.

4.9. A statistical model of Riemannian metric variation
(RMVM) [A. Gasparetto and A. Torsello]

The method proposed in [GT15] consists in a supervised technique
to learn a statistical model build on the Riemannian metric varia-
tions on deformable shapes based on the spectral decomposition of
the Laplace-Beltrami operator. Similarly to NPSM (Section 4.8),
the method employs a statistical framework that models a shape as
two independent models for the eigenvectors and for the eigenval-
ues. The eigenvector matrices of a set of discrete representations
(i.e., meshes representing the shape in different poses) are assumed
to be points on the manifold of special orthogonal matrices SO(n).
Here the model is assumed to follow a Γ-distribution over the man-
ifold geodesic distances from a manifold centroid Φ0

dg (φ,φ0)≈ 2n−Tr
(

φ
T

φ0

)
+O(Θ4

i ) , (14)

where Θi are the angles of the residual rotation φ
T

φ0.

The eigenvalues are assumed to be log-normally dis-
tributed for the same stability considerations presented by

Aubry et al. [ASC11]. The shape centroid is computed as follows:

argmax
φ0,Ri∈SO(p)

Tr

(
N

∑
i
Riφ

T
i φ0

)
, (15)

where the rotation matrix Ri is introduced in order to align the
eigenvectors of the Laplacian of a mesh i, since its embedding is
defined up to an isometry. This is solved by separately optimizing
for φ0 andRi in an iterative process

Φ0 = argmax
Φ0∈O(n)

Tr

((
N

∑
i
RiΦ

T
i

)
Φ0

)
(16)

Ri = argmax
Ri∈SO(n)

Tr

((
N

∑
i

Φ
T
i Φ0

)
Ri

)
(17)

where both optimizations can be solved exactly through Singular
Value Decomposition.

The two statistical models are combined to compute the posterior
probability of a mesh to belong to a certain class:

p( j) =

(
∏

i
logN (xi j;µi,σi)

)
Γ(k,θ)(gd j ) . (18)

The main drawback of this method concerns the manifold in
which the eigenvector matrices lie. Indeed, to compute the eigen-
vector centroid, the eigenvector matrices must share a common in-
trinsic space. Hence, the meshes are assumed to have both the same
number of vertices and a vertex-to-vertex correspondence (at least
for the training set). Unfortunately, this is not the case for this con-
test. The issue is addressed by (sub)sampling the meshes to a com-
mon number of vertices, and approximating the correspondence
map by casting the problem as an assignment problem. The same
process, which is explained in detail in the original work [GT15],
is applied to the meshes to be classified.

From a practical point of view, the embedding dimension d is set
to 50, i.e., the 50 smallest eigenvalues (and corresponding eigen-
vectors) are used to build the models and to infer them. The score
between two meshes is computed as the Euclidean (RMVM-Euc)
and Spearman’s (RMVM-Spe) distance between the score vectors
whose components are the probability density computed with re-
spect to each class of the training set.

4.10. Bag of Words framework with RoPS (BoW+RoPS)
[M-T. Tran et al.]

In this method, the similarity of two query objects qi and q j is not
measured directly, but via an intermediate domain consisting of the
training set. Similar objects are retrieved per-query from the train-
ing set; then, the two queries are compared indirectly (see Fig. 4).

Let R(qi) and R(q j) be the rank lists of training objects corre-
sponding to the query objects qi and q j, respectively. Let nK(q,c)
be the number of training objects in category c appearing among
the top K of rank list R(q). Define sK(q,c) = nK(q,c)/K to rep-
resent the score of a query object q being in category c. This
way, each query q is encoded as a normalized 20-dim. vector
v(q) = (sK(q,1),sK(q,2)...,sK(q,20)). To achieve high precision,
only the top 1 or 2 best score values are kept in the feature vector
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Figure 4: Encoding a 3D object using BoW (Section 4.10).

v(q); other elements in v(q) are zeroed. Finally, the similarity of qi
and q j is defined as the dot product of v(qi) and v(q j).

The framework for 3D object retrieval [PSA∗16] is further en-
riched using RoPS features [GSB∗13] to retrieve similar objects
in the training set corresponding to a query object. The method
is based on the Bag-of-Words (BoW) scheme for visual object re-
trieval [SZ03, NNT∗15].

First, each 3D object is normalized to fit in a unit cube. Then,
uniform random samples of 5% ≤ pSampling ≤ 20% of the total
number of vertices are taken for each object. RoPS [GSB∗13] is
used as a local feature, restricted to a Euclidean sphere with radius
r ∈ [0.01,0.2] around each sampled vertex.

The extracted features are used to build a codebook with size
equal to 10% of the total number of features in the corpus, using
Approximate K-Means. Soft-assignment [PCI∗08] with 3 nearest
neighbors is used to reduce quantization error. As a query can be
part of a training object and vice versa, an `1 asymmetric distance
[ZJS13] is used to measure the dissimilarity of each pair of objects.

For the ‘holes’ challenge: since shapes have irregular mesh,
they are subdivided to reduce significant difference in vertex den-
sity between different parts of the surface. A random sampling
pSampling = 10% and support radius r = 0.05 are used for RoPS,
and the codebook size is set to 180K. Three runs are provided:

• Run1: The top K = 1 in the rank list is considered.
• Run2: The top K = 9 are considered, with a voting scheme for

the best category.
• Run3: The top K = 9 are considered, with a voting scheme for

the two best categories.

For the ‘range’ challenge: topological noise is removed by
deleting triangles with abnormally long edge. Random sampling
pSampling = 10% is used. Due to low mesh quality, a support radius
r = 0.1 is used for RoPS. Since the grid-like topology induces a
large amount of vertices, the codebook size is increased to 1.2M.
Three runs are provided as above, with Run2 and Run3 using K = 5
instead of K = 9.

The codebook training module was implemented in Python 2.7
and run on a 2.4 GHz Intel Xeon CPU E5-2620 v3, 64 GB RAM.
The 3D feature extraction and description module was written in

C++ and run on a 2GHz Intel Xeon CPU E5-2620, 1GB RAM.
The retrieval process was written in Matlab R2012b, where feature
quantization and distance calculation were performed on a 2.2GHz
Intel Xeon CPU E5-2660, 12 GB RAM. The average time to cal-
culate model features is 1-2s, whereas it takes on average 0.1s to
compare a test object against the entire training set.

4.11. Supervised bag-of-features (SBoF) [R. Litman et al.]

This is an implementation of the method proposed in [LBBC14],
with some slight modifications made specifically for this chal-
lenge. The first and major change is the selection of point de-
scriptors, where the original intrinsic descriptors were replaced
by the extrinsic SHOT [STDS14] descriptor, due to its good per-
formance in other recent challenges dealing with partial shapes
[RCB∗16, CRB∗16]. The second change is due to the higher di-
mensionality of the SHOT descriptor, where a bigger dictionary of
size 256 is adopted as opposed to the original 32.

The rest of the hyper-parameters were selected in a manner simi-
lar to [PSR∗14], by cross validation over the training set. First, as a
pre-processing step, all shapes from the ‘holes’ set were downsam-
pled to 15K faces. Sparse coding was done over unit `2 norm SHOT
descriptors, with regularization value set to λ = 0.25. Each shape’s
sparse codes were pooled into a single histogram using average-
pooling, and compared using the `1 metric. The triplet loss margin
was selected to be µ = 0.2.

The method was implemented in MATLAB, with parts in C++
for the computation of SHOT features. Dictionary learning took
about 5h on a 12-core 2.4GHz XEON processor with 48GB of
memory. At test time, shapes were ranked according the the `1
similarity of their 256 histogram descriptor, which took less than
100ms.

5. Results

Precision/Recall curves for all methods on the two challenges are
shown in Fig. 5; NN, 1-Tier, 2-Tier and DCG scores are reported in
Tables 1 and 2.

Reading the P/R curves, the best performing method for the
‘holes’ challenge is DLSF (Section 4.3), followed closely by
BoW+RoPS (Section 4.10). In terms of NN, the best perform-
ing methods are DLSF, 2VDI-CNN (Section 4.7), and SBoF (Sec-
tion 4.11). DLSF, 2VDI-CNN, and BoW+RoPS also exhibit the
best scores in the 1-Tier, 2-Tier, and DCG measures.

The ‘range’ challenge received less submissions (9 against the
15 for ‘holes’, baselines included). In terms of P/R, the best per-
forming methods are BoW+RoPS and 2VDI-CNN, which also re-
ceive top scores in the 1-Tier, 2-Tier, and DCG measures. The high-
est NN scores are attained again by 2VDI-CNN and SBoF. Over-
all, we note a consistent behavior for methods that participated in
both challenges. In particular, SBoF has a higher NN score than
BoW+RoPS in both challenges, despite the latter having a signifi-
cant advantage in terms of P/R.

c© 2017 The Author(s)
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Method NN 1-Tier 2-Tier DCG
2VDI-CNN 0.969 0.906 0.977 0.980

SBoF 0.811 0.317 0.510 0.769
BoW+RoPS-2 0.643 0.910 0.962 0.962
BoW+RoPS-3 0.639 0.908 0.964 0.965

BoW-HKS (baseline) 0.519 0.326 0.537 0.736
BoW+RoPS-1 0.515 0.915 0.959 0.960

BoW-siHKS (baseline) 0.377 0.268 0.485 0.699
GMR 0.178 0.184 0.371 0.640

DNA (baseline) 0.130 0.183 0.366 0.640

Table 1: Retrieval accuracy for the ‘range’ challenge, sorted de-
creasingly by NN score. Best results are reported in bold.

Method NN 1-Tier 2-Tier DCG
DLSF 1.000 0.971 0.999 0.998

2VDI-CNN 0.906 0.818 0.937 0.954
SBoF 0.815 0.326 0.494 0.780

BoW-siHKS (baseline) 0.710 0.370 0.566 0.790
BoW+RoPS-3 0.607 0.918 0.970 0.968
BoW+RoPS-1 0.597 0.877 0.963 0.956

BoW-HKS (baseline) 0.578 0.261 0.436 0.725
RMVM-Euc 0.392 0.226 0.402 0.679

BoW+RoPS-2 0.380 0.894 0.965 0.955
NPSM 0.347 0.222 0.395 0.676

RMVM-Spe 0.251 0.228 0.410 0.676
SR 0.241 0.225 0.395 0.676

GMR 0.186 0.172 0.343 0.642
SnapNet 0.117 0.172 0.349 0.641

DNA (baseline) 0.078 0.163 0.348 0.632

Table 2: Retrieval accuracy for the ‘holes’ challenge, sorted de-
creasingly by NN score. Best results are reported in bold.

6. Discussion and conclusions

Out of the 11 participating methods (without counting different
runs), 6 were supervised learning techniques and the remaining 5
were non learning-based. Despite coming from separate research
groups, we note a surprising consistency in the general approach:
the adoption of BoW-like frameworks on one hand, and the use of
synthetic 2D views on the other. In both cases, we observe a wide
variance in the accuracy among the different submissions, suggest-
ing that the old adagio “the devil is in the details” is as valid for
learning-based approaches as it is for axiomatic modeling. At the
same time, we did not observe a significant difficulty bias across
different shape categories or deformations.

Given the non-rigid nature of the dataset, it is interesting to
note that the best performing methods only rely on extrinsic, not
deformation-invariant quantities. We conjecture that this is in part
due to the piecewise-rigid transformations, and the presence of sim-
ilar shapes in the training and test sets. In particular, the only purely
intrinsic spectral approach (DNA) achieved the worst scores in both
challenges. We further note the lack of intrinsic CNN-based meth-
ods such as [BMRB16].

Finally, a notable difficulty is the lack of a consistent scale in the
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Figure 5: Precision/Recall curves for all methods in the two chal-
lenges. In the legend, ‘(b)’ identifies the baselines.

‘holes’ dataset, due to the random similarity transformation being
applied to each shape. This has a detrimental effect on all methods
relying on spectral (Laplacian-based) quantities and heat diffusion.
Defining local, deformation- and scale-invariant features remains
an open challenge tackled by few.
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