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Abstract

The “Optimal Control of Systems with memory” is a PhD project that is borne
from the collaboration between the Department of Mechanical and Aerospace
Engineering of Sapienza University of Rome and CNR-INM the Institute for Marine
Engineering of the National Research Council of Italy (ex INSEAN). This project is
part of a larger EDA (European Defence Agency) project called ETLAT: Evaluation
of State of the Art Thin Line Array Technology. ETLAT is aimed at improving
the scientific and technical knowledge of potential performance of current Thin
Line Towed Array (TLA) technologies (element sensors and arrays) in view of
Underwater Surveillance applications.
A towed sonar array has been widely employed as an important tool for naval
defence, ocean exploitation and ocean research. Two main operative limitations
costrain the TLA design such as: a fixed immersion depth and the stabilization of
its horizontal trim. The system is composed by a towed vehicle and a towed line
sonar array (TLA). The two subsystems are towed by a towing cable attached to
the moving boat. The role of the vehicle is to guarantee a TLA’s constant depth of
navigation and the reduction of the entire system oscillations. The vehicle is also
called "depressor" and its motion generates memory effects that influence the proper
operation of the TLA. The dynamic of underwater towed system is affected by
memory effects induced by the fluid-structure interaction, namely: vortex shedding
and added damping due to the presence of a free surface in the fluid. In time
domain, memory effects are represented by convolution integral between special
kernel functions and the state of the system. The mathematical formulation of the
underwater system, implies the use of integral-differential equations in the time
domain, that requires a nonstandard optimal control strategy. The goal of this
PhD work is to developed a new optimal control strategy for mechanical systems
affected by memory effects and described by integral-differential equations. The
innovative control method presented in this thesis, is an extension of the Pontryagin
optimal solution which is normally applied to differential equations. The control is
based on the variational control theory implying a feedback formulation, via model
predictive control.
This work introduces a novel formulation for the control of the vehicle and cable
oscillations that can include in the optimal control integral terms besides the more
conventional differential ones. The innovative method produces very interesting
results, that show how even widely applied control methods (LQR) fail, while the
present formulation exhibits the advantage of the optimal control theory based on
integral-differential equations of motion.



iv

Acknowledgments

I would first like to thank my thesis supervisor, Prof. Antonio Carcaterra, who has always
inspired me and instilled me the passion for research. I would also like to thank my collegue
and friend Gianluca Pepe for helping me and supported along all the doctoral period.
Thank to Francesco La Gala who gave me the chance to do this work, stimulating me with
new technical-scientific challenges. I thank also Prof. Aldo Sestieri and Elena Ciappi for
their kindness and for the very useful advices on drafting this thesis.
I thank my colleagues of CNR-INM Fabrizio and Luca for their sympathy and support
during all these years. Thank to my doctoral collegues in Sapienza for sharing and support-
ing each other during this, sometimes hard, journey. I would like to thank especially, Lina,
Federica and Manuel for their patience, cigarettes and friendship.
Thank to Francesca and Silvia my friends of all time for always trusting me. Finally, I must
express my very profound gratitude to my parents, my sister and my boyfriend for providing
me with unfailing support and continuous encouragement throughout my years of study
and through the process of researching and writing this thesis. This accomplishment would
not have been possible without them. Thank you.



v

Index of contents

1 Introduction 1
1.1 The ETLAT project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Limitations of engineering system . . . . . . . . . . . . . . . . . . . . 1
1.3 Overview of integral-differential control literature . . . . . . . . . . . 4

2 Overall description of the control problem with memory 9
2.1 Introduction to the problem formulation . . . . . . . . . . . . . . . . . 9
2.2 Outline of a possible strategy of optimal control . . . . . . . . . . . . 11
2.3 Memory effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Variations for memory effects . . . . . . . . . . . . . . . . . . . . . . . 13

3 Fluid-body interaction control: A physical example of memory effects 15
3.1 Mathematical formulations of memory effects . . . . . . . . . . . . . 15

3.1.1 Added damping . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Vortex wake model . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 General integro-differential equation of motion . . . . . . . . . . . . . 19
3.3 1-Dof integro-differential prototype model . . . . . . . . . . . . . . . 20
3.4 2-Dof integro-differential model . . . . . . . . . . . . . . . . . . . . . . 21
3.5 N-Dof integro-differential model . . . . . . . . . . . . . . . . . . . . . 24

4 A novel Optimal Control of integral-differential equations 25
4.1 Overview on Standard Pontryagin Theory . . . . . . . . . . . . . . . . 25
4.2 An extended version of the Pontryagin theory to integral-differential

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Implicit solution of the variational problem . . . . . . . . . . . . . . . 29
4.4 Feedback via model predictive control . . . . . . . . . . . . . . . . . . 30

5 Numerical simulations 32
5.1 Vibrations optimal control of the 1-Dof underwater finned depressor

with memory effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Fluttering control of the 2-Dof underwater depressor control surfaces 41

6 Conclusions 54

A Matrix implicit formulation 57

B Matrix MPC formulation 59



Index of contents vi

C Scalar optimal control formulation 61
C.1 Matrix implicit formulation: scalar model . . . . . . . . . . . . . . . . 65
C.2 Matrix MPC: scalar model . . . . . . . . . . . . . . . . . . . . . . . . . 67

D Stability Analysis 68

Bibliography 70



vii

List of Figures

1.1 Underwater cable applications . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Optimal control methods on integral-differential equations . . . . . . 7

2.1 Underwater towed system . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Thin line array (TLA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Finned depressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Mathematical complexity of entire system . . . . . . . . . . . . . . . . 11
2.5 Control system overview . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Fluid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Sketch of 6-Dof depressor . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Generation of added mass and damping effects . . . . . . . . . . . . . 17
3.4 Vortex wake release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Force balance on finned vehicle - 1-Dof prototype . . . . . . . . . . . 20
3.6 Sketch of the typical-section hydrofoil model . . . . . . . . . . . . . . 21
3.7 Force balance on finned vehicle - 2-Dof Theodorsen . . . . . . . . . . 22

4.1 Integral MPC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Zero external disturbances . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Gaussian random + H1(t) . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Gaussian random + H2(t) . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Gaussian random disturbances σ = 0.2 . . . . . . . . . . . . . . . . . 37
5.5 Gaussian random disturbances σ = 0.5 . . . . . . . . . . . . . . . . . 37
5.6 Gaussian random disturbances σ = 0.8 . . . . . . . . . . . . . . . . . 38
5.7 Discrete 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.8 Discrete 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.9 Sinusoidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.10 Cost function J at different disturbance levels - 1-Dof . . . . . . . . . 40
5.11 Hydrofoil geometrical parameters . . . . . . . . . . . . . . . . . . . . 41
5.12 Hydrofoil material composition . . . . . . . . . . . . . . . . . . . . . . 43
5.13 Zero external disturbance: Heave and Pitch . . . . . . . . . . . . . . . 45
5.14 Zero external disturbance: Pitch control . . . . . . . . . . . . . . . . . 46
5.15 Gaussian random + H3(t): Heave and Pitch . . . . . . . . . . . . . . . 47
5.16 Gaussian random + H3(t): Pitch control . . . . . . . . . . . . . . . . . 48
5.17 Gaussian random + H4(t): Heave and Pitch . . . . . . . . . . . . . . . 48
5.18 Gaussian random + H4(t): Pitch control . . . . . . . . . . . . . . . . . 49



List of Figures viii

5.19 Gaussian random σ = 0.2: Heave and Pitch . . . . . . . . . . . . . . . 49
5.20 Gaussian random σ = 0.2: Pitch control . . . . . . . . . . . . . . . . . 50
5.21 Gaussian random σ = 0.6: Heave and Pitch . . . . . . . . . . . . . . . 50
5.22 Gaussian random σ = 0.6: Pitch control . . . . . . . . . . . . . . . . . 51
5.23 Gaussian random σ = 0.9: Heave and Pitch . . . . . . . . . . . . . . . 51
5.24 Gaussian random σ = 0.9: Pitch control . . . . . . . . . . . . . . . . . 52
5.25 Cost function J at different disturbance levels - 2-Dof . . . . . . . . . 52
5.26 Control of fluttering instabilities: state . . . . . . . . . . . . . . . . . . 53
5.27 Control of fluttering instabilities: control law . . . . . . . . . . . . . . 53

C.1 Integral scalar MPC scheme . . . . . . . . . . . . . . . . . . . . . . . . 64



ix

List of Tables

5.1 System parameter - 1-Dof . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 External modeled disturbances 1-Dof . . . . . . . . . . . . . . . . . . 34
5.3 Merit parameter [%] - 1-Dof . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Hydrofoil geometrical parameters . . . . . . . . . . . . . . . . . . . . 42
5.5 Simulation parameters - 2-Dof . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Derivate model parameters - 2-Dof . . . . . . . . . . . . . . . . . . . . 44
5.7 External modeled disturbances - 2-Dof . . . . . . . . . . . . . . . . . . 44
5.8 Merit parameter [%] - 2-Dof . . . . . . . . . . . . . . . . . . . . . . . . 46



1

Chapter 1

Introduction

The goal of this work is to develop a new optimal control strategy for mechanical
systems affected by memory effects and described by integral-differential equations.
In particular, tha main engineering application presented in this work concerns the
control of typical underwater systems for underwater surveillance applications.
This PhD project is borne from the collaboration between the Vibrations, Mechatron-
ics and Vehicle Dynamics Research Group of the Department of Mechanical and
Aerospace Engineering of Sapienza University of Rome and the Council of National
Research Institute of Marine engineering CNR-INM (ex CNR-INSEAN) of Rome.

1.1 The ETLAT project

This work is part of a European project, ETLAT: Evaluation of State of the Art Thin
Line Array Technology (TLA) which goal is to improve the design of the TLAs
systems. These systems and their dynamical behaviour have been evaluated during
this project by comparing numerical simulations with experimental hydrodynamic
tests performed by INM.
The presented work is framed in the major landscape of underwater surveillance.
My personal contribution does not concern only the definition of a control law,
main focus of the present thesis, but it futher involves all those activities necessary
to successfully complete the project.
In this regard, experimental campains have been carried out so to test the dynamical
behaviour of the mechanical system (induced vibrations and self noise) and to
evaluate their hydrodynamic properties (drag force).
Eventually, the data post-processing was the final operation, crucial to extract and
determine the dynamic parameters that have to be compared with the numerical
simulations made by the other partner involved in the project.

1.2 Limitations of engineering system

The underwater mechanical system tests in this project, is composed by a towed
vehicle and a towed line sonar array (TLA)[1–4].



1.2 Limitations of engineering system 2

The towed sonar array has been an important tool for naval defence, ocean exploita-
tion and ocean research [5–9].
The TLA is an underwater array in which sonar, accelerometer and hydrophone
sensors are used to make acoustic, dynamic, vibrational underwater measurements
[10, 11].
The study of underwater arrays has been an area of considerable research effort.
Cables are extensively used for many ocean applications. Just a few examples of
ocean systems that make wide use of cables are the ocean mooring systems, towed
array sonar systems and remotely operated vehicles (ROV) shown in Figure 1.1. The

(a) mooring lines (b) ROV

(c) towed arrays

Figure 1.1. Underwater cable applications

static cable problems have found application in the design of buoy [12] , mooring
lines [13] , suspended pipelines and marine riser [14]. Many theories have been
developed for the static response of submarine cable as [15–18].
The underwater cables are characterized by an unstable dynamic when they are
towed in the fluid flow. The main underwater instabilities can be divided in (i) flow
induced vibrations and vortex shedding [19–22] (ii) hydroelastic instabilities [23,
24].
Vortex induced vibrations (VIV) occur in many engineering situations, such as
bridges, stacks, transmission lines, aircraft control surfaces, offshore structures,
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thermowells, engines, heat exchangers, marine cables, towed cables, drilling and
production risers in petroleum production, mooring cables, moored structures,
tethered structures, buoyancy and spar hulls, pipelines, cable-laying, members of
jacketed structures, and other hydrodynamic and hydroacoustic applications.
One of the classical open-flow problems in fluid mechanics concerns the flow around
a circular cylinder, or more generally, a bluff body. At very low Reynolds numbers
(based on the diameter of the circular member) the streamlines of the resulting flow
is perfectly symmetric as expected from potential theory. However, as the Reynolds
number is increased the flow becomes asymmetric and the so-called Kármán vortex
street occurs. The Strouhal number relates the frequency of shedding multiply by
a characteristic dimension of the body (diameter in the case of a cylinder) to the
velocity of the flow. It is defined as St = fstD/U, where fst is the vortex shedding
frequency (or the Strouhal frequency) of a body at rest, D is the diameter of the
circular cylinder, and U is the velocity of the ambient flow.
The second effect of instability is the hydroelasticity or flexible fluid-structure in-
teraction (FSI) which concernes the motion of deformable bodies into fluids. The
theory of hydroelasticity has been adapted from aeroelasticity, to describe the effect
of structural response of the body on the fluid around it. The interaction between
the elastic behavior of the TLA and the flow field around it generates vortex insta-
bilities.
A good survey on the dynamical behavior of underwater arrays can be found in
[25–29].
Due to the unstable nature of the TLA and the presence of acoustic sensors inside
the array, the TLA’s operating requires specific costrains. One typical application
of the TLA regards the oil detection under the seabed. Many TLA arrays, long
kilometers, are towed in ocean by a moving boat, the hydrophone sensors inside the
TLA are used to emit acoustic waves. Reflection at the seabed implies the presence
or not mineral or gas underwater resources.
The acoustic sensors functioning depends on the TLA dynamic implying operative
limitations on the TLA as:

• An Operative frequency range which is directly correlated to the correct mea-
surements by sensors.

• A Stable dynamic, because dynamical instabilities could add noise to the mea-
surements (self noise).

• A Fixed sensing depth which is important to reconstruct the position of the
sensors and to correlated the respective signals recorded.

For these reasons, two main engineering requirements costrain the TLA design such
as: a fixed immersion depth and the stabilization of its horizontal trim [30–32].
During my partecipation in the experimental campain performed in the frame of the
ETLAT project, we faced with these dynamic unstabilities. The tests were performed
at INM on different TLAs geometry (lenght, diameter, material). In order to reduce
these effects during experiments was necessary to adjust the TLA configuration by
adding tail or similar bouy part.
To better deal with those phenomena, has been established to convert the passive
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vehicle into a controlled one.
The role of the vehicle is to guarantee a TLAs constant depth of navigation and
the reduction of the entire system oscillations [17, 33]. The vehicle is also called
depressor and its motion generates memory effects which influence the proper
operation of the TLA [34].
Memory effects are frequently induced by fluid-structure interaction. In this work
two main phenomena claim for these effects in the model: (i) vortex wake and (ii)
added damping due to the presence of a free surface in the fluid.
Underwater autonomous or remotely operated vehicles are examples [35–41]. The
vorticity can be generated by the motion of the vehicle as well as by the presence
of cables (ROV-Sonar array), [2, 42, 43]. A vehicle moving close to the water free
surface induces waves which, in turn, influence the motion of the vehicle [44–47].
In time domain, memory effects are represented by convolution integral between
special kernel functions and the vehicle state [48–50]. In fact, the depressor mo-
tion which is affected by these two kind of memory effects is represented by an
integral-differential mathematical model. In this work an optimal control law for
the underwater depressor motion which guarantees the engineering costrains of
the TLA’s design is developed. The presence of convolution terms in the model
requires a nonstandard optimal control strategy.

1.3 Overview of integral-differential control literature

Robust control techniques are often used to control underwater vehicle [51–54].
Normally, the underwater vehicles are represented by nonlinear rigid body models
[55–57] and these techniques do not involved integral memory effects.
The optimal control applications applied to underwater vehicle present in literature
normally do not take in account memory effects into the model. These effects are
neglected or approximated by small external system perturbations [58–61].
Many problems in economics, biology, epidemiology and memory effects can be
modeled as Volterra control problems which are solvable by dynamic programming
methods [62–66].
The optimal control techniques applied on integral-differential equations present in
literature are mainly based on direct methods.
There are two classes of methods employed to solve the optimal control system
design problems: (i) indirect and (ii) direct optimal control methods.
The indirect methods are based on the variational method of optimal control theory,
which typically consists in the calculus of variations and Pontryagin’s methods [67,
68], that can be used to derive a set of necessary conditions that must be satisfied by
an optimal control law and its associated state-control equations. These necessary
conditions of optimality lead to a (generally nonlinear) boundary-value problem
(BVP) that must be solved to determine the explicit expression for the optimal con-
trol. Except in some special cases, the solution of this BVP is difficult, and in some
cases not practical to obtain. In simple cases the BVP may be solved analytically,
but in more general cases it must be discretized and solved numerically, [69].
Direct optimal control methods take the opposite approach, where the optimal
control problem is discretized at the first step. The state and/or control of the
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original optimal control problem are approximated in some appropriate manner.
In the case where only the control is approximated, the method is called a control
parameterization method. When both the state and control are approximated the
method is called a state and control parameterization method. The state space equations
are discretized to form a system of algebraic equations (known as defect equations
or defect constraints, similar to residual functions). The result is a nonlinear pro-
gram (NLP) that can be solved using standard large-scale optimization algorithms
[70–75].
Direct methods are particularly effective for highly nonlinear systems, problems
with inequality constraints, or other situations where indirect methods fall short
[71, 76].
The principal optimal control direct method applied to integral-differential equa-
tions with a quadratic performance index is founded in [72, 77–79].
The direct methods applied to IDEs optimal control problem present in literature
are divided into different categories on the basis of the kind of discretization used
[80].

• Control parametrization methods

– Direct shooting method is a control parameterization method where the
control is parameterized using a specified functional form, e.g:

u(t) ≈
m

∑
i=1

aiφi(t) (1.1)

where φi(t) are known functions and ai are the parameters to be deter-
mined from the optimization. The NLP that arises from direct shooting
minimizes the cost subject to any path and interior-point constraints.
The most straightforward of the direct methods is singleshooting [81];
state trajectories are obtained for every NLP function evaluation by solv-
ing the defect equations using forward simulation. The control is param-
eterized using either a polynomial approximation or another appropriate
method. Given a set of initial conditions and a control parameterization,
the optimization is then performed with respect to the control parameters
(e.g., polynomial coefficients).

– In the Direct multishooting method, the time interval is divided into subin-
tervals. The direct shooting method is applied in each time subinterval
with the values of the state at the beginning of each subinterval and the
unknown coefficients in the control parameterization being unknowns
in the optimization. It is seen that the direct multiple-shooting method
increases the size of the optimization problem because the values of the
state at the beginning of each subinterval are parameters in the opti-
mization. Despite the increased size of the problem due to these extra
variables, the direct multiple-shooting method is an improvement over
the standard direct shooting method because the sensitivity to errors
in the unknown initial conditions are reduced because integration is
performed over significantly smaller time intervals.
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• State-Control parametrization methods

– Direct collocation method is a state and control parameterization method
where the state and control are approximated using a specified functional
form. The two most common forms of collocation are local collocation
and global collocation. Local collocation has been employed using one
of two categories of discretization: Runge-Kutta methods, [82], and
orthogonal collocation methods.

– Pseudospectral (Global Orthogonal Collocation) Methods is a global form
of orthogonal collocation, i.e., in a pseudospectral method the state is
approximated using a global polynomial and collocation is performed at
chosen points. Thus, as opposed to local collocation, where the degree
of the polynomial is fixed and the number of meshes is varied, in a
pseudospectral method the number of meshes is fixed and the degree of
the polynomial is varied.

Both the collocation and the pseudospectral methods depend on the choise of
the basis functions used in the discretizations of the system. Some collocation
techniques for solving the optimal control problem governed by Volterra
integral equations imply the use of orthogonal functions [83].
The orthogonal functions have received considerable attention dealing with
various optimal control problems. The approach is to convert the underlying
differential equation into an integral equation through integration, approx-
imating various signals involved in the equation by truncated orthogonal
functions, and using the operational matrix of integration to eliminate the
integral operations. This matrix can be uniquely determined based on the
particular orthogonal functions. Among piecewise constant basis functions,
block-pulse functions are found to be very attractive, in view of their prop-
erties of simplicity and disjointedness, among orthogonal polynomials, the
shifted Legendre polynomials is computationally more effective [84–86]. Elna-
gar and Razzaghi in [87] have presented a pseudospectral Legendre method
for linear quadratic optimal control problems .
The Bernoulli polynomials and Taylor series are not based on orthogonal
functions, nevertheless, they possesses the operational matrices of integration.
However, since the integration of the cross product of two Taylor series vectors
is given in terms of a Hilbert matrix, which are known to be ill conditioned,
the applications of Taylor series are limited.
In recent years the hybrid functions consisting of the combination of block-
pulse functions [88] with Chebyshev polynomials [72, 85, 89–92] , Legendre
polynomials [93–96] or Taylor [97, 98] or Fourier [83, 99] series have been
shown to be a mathematical power tool for discretization of selected problems.
Mashayekhi in [100] reduces the optimal control problem on IDEs to a NLP
one by first expanding the state rate vector and the control vector as a hybrid
function with unknown coefficients. These hybrid functions consist of block-
pulse functions and Bernoulli polynomials.
A suitable method with Lipschitz controls has been suggested for Volterra
control problems by Belbas in [64], and a method based on approximating the
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controlled Volterra integral equations by a sequence of systems of controlled
ODEs has been presented in [66].
Maleknejad in [101] exploits the structural properties of triangular orthogonal
functions for reducing the optimal control problem to a set of algebraic equa-
tions by expanding the state vector and control vector as triangular orthogonal
functions in a direct method without any integration.
Shen applies the Galerkin finite element methods to the optimal control prob-
lem governed by an elliptic integral-differential IDEs with random field [102–
105]. A gradient algorithm based on the pre-conditioner conjugate gradient
algorithm (PCG) is developed for this optimal control problem. This algo-
rithm can transform a part of the state equation matrix and co-state equation
matrix into block diagonal matrix and then solve the optimal control systems
iteratively. Other application of the Galerkine finite element method to the
optimal control of IDEs can be found in [106, 107].

Figure 1.2. Optimal control methods on integral-differential equations

The scheme in Figure 2.4 shows a short resume of the principal optimal control
methods applied on integro-differential equations. It is clear from the literature
studies that, there is not an optimal control indirect method which implies a varia-
tional approach to IDEs.
Only direct and nonlinear programming methods are used to control integro-
differential equations of motion.
The great power of the optimal control method theorized in this work is the fomru-
lation of a novel indirect variational optimal control approach for IDEs.
In fact, as already explained, these problems are generally approached with direct
control methods and a general variational theory is missing in the global optimal
control theory of IDEs panorama.
The control method proposed in this work, is an extension of the Pontryagin optimal
solution, normally applied to differential equations.
The present approach, based on the VFC-variational feedback implying a feedback
formulation. This control logic has been applied in recent investigations of car
mechatronics [108, 109]. Moreover the same approach can be applied to optimal



1.3 Overview of integral-differential control literature 8

control problems of damping in structural dynamics as well [110–113]. More specif-
ically, in this work, a feedback via model predictive control (MPC) is formulated
for integral-differential system model. Normally the MPC method is applied to
differential equations [114, 115].

This work is divided into five Chapters. In Chapter 2 the prototypical control
problem is described. The engineering problem and a possible control strategy are
discussed. The introduction of memory effects and the novel variational calculus
on convolution terms is illustred in details (Section 2.4).
The integral-differential equations of motion of the underwater depressor affected
by memory effects is explained in Chapter 3. Starting from the potential theory,
the general equation of motion is illustred. Two main mathematical models are
considered: the 1-Dof motion of the depressor in which the added damping memory
effect and the release of vorticity are modelled; and the classical 2-Dof hydrofoil
model by Theodorsen that models the vortex wake generation of the control surface
of the vehicle.
In Chapter 4 the novel optimal control theory applied to IDEs is shown. The new
control algorithm is presented as an extension of the Pontryagin classical theory
underlying the principal differences between the two approach (Section 4.2). The
implicit solution of the optimal control problem is illustred in Section 4.3 and the
feedback formulation via a novel integral model predictive control is founded in
Section 4.4.
Finally, the numerical results of the integral optimal control applied to different
depressor IDE models are shown in Chapter 5. The novel algorithm exhibits better
results in comparison to the standard LQR (linear quadratic regulator) optimal
control strategy.
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Chapter 2

Overall description of the control
problem with memory

In this Chapter the engineering problem analyzed in this work is illustred in details.
The physical and the related mathematical complexities of the system are intro-
ducted. The necessity of the control of the depressor is justified by introducing the
problems related to the operation of the entire underwater system. The presence of
memory effects in the model due to the fluid-solid interaction implies the presence
of convolution terms in the model that suggests a nonstandard optimal control
strategy.
Finally, the variational calculus is extended to a general convolution term. This is
the first novel result of this work, the starting point of the variational approach used
to extend the Pontryagin’s solution to the optimal control of IDEs.

2.1 Introduction to the problem formulation

A classical towed mechanical system used in ocean exploration and military appli-
cations, is composed by a towed vehicle V and a towed line array (TLA) sonar [116,
117]. The two subsystems are towed by the towing cable attached to the moving

Figure 2.1. Underwater towed system

boat, B (Figure 2.1). The TLAs, employed for the ocean detection, are plastic arrays
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in which are located sonar and accelerometer sensors (Figure2.2).

Figure 2.2. Thin line array (TLA)

As explained in detail in Chapter 1, the correct use of the TLAs is influenced by:

• an operative frequency range (self noise)

• an unstable dynamic

• a stable sensing depth

and operative limitations are required to gaurantee a correct utilization:

• a fixed immersion depth

• the stabilization of the horizontal configuration

The goal of the vehicle V (Figure 2.3) is to guarantee a TLA’s constant depth of
navigation and the reduction of the entire system oscillations [17, 118, 119]. Figure
2.3 shows the prototype and the final design of the depressor. The vehicle has
been designed and created by 3D printing technology by INM. Moreover, CFD
simulations have been carried out to compute the hydrodynamic forces on the
depressor for different configurations (angle of attack). Preliminary experimental
tests have been also developed to validate the numerical simulations. The main
goal of these tests was to check the depressor’s dynamic stability and the reaching
of a fixed navigation depth [17].
The depressor is characterized by a great stability at varying towing speed and

maneuvers. Accelerometers, IMU and GPS sensors are inside the vehicle in order to
reconstruct its motion and compute its vibrations during experiments.
The problem’s formulation imply a very high physical complexity which introduces
complexities in the mathematical model. The presence of different underwater
subsystems interacting each other generates fluid-structure interaction phenomena.
This effects, that are the main contribution on which this thesis is focused, are
formulated as convolution integrals in the model. Also the presence of cables in
the system (towing cable and TLA) make the system highly nonlinear. Moreover,
the presence of incident waves have as mathematical counterpart external random
forces. Finally, the hydroelasticity arises by the interaction between the fluid and
the TLA dynamic makes the model’s operator stochastic.
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Figure 2.3. Finned depressor

The huge mathematical complexities of the model give a final equation of motion
that is a set of nonlinear partial differential equations combined with a set of integro-
differential equations with stochastic operators and external loads (see Figure 2.4).

Figure 2.4. Mathematical complexity of entire system

2.2 Outline of a possible strategy of optimal control

The complexity of the model makes difficult an optimal control strategy on the
depressor’s motion. To control a set of nonlinear PDEs combining with a set of IDEs
with stochastic operator and external loads, it’s necessary formulated a complicated
nonstandard optimal control formulation.
Expressing this model as:

ẋ = f (x, u, y) (2.1)
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where x is the state, u the control variable and y the external forces acting on the
system. The critical components that characterized this optimal control problem
can be summarized as:

• f nonlinear (hydrodynamic forces, cables);

• f integro-differential (memory effects);

• y stochastic (waves, cables hydroelasticity).

At first step of analysis only the fluid-structure interaction has been considered
in the model. In fact, this phenomena has a principal role in the generation of
the dynamical unstabilities of the underwater system. So the focus is only on the
criticality that considers the system f integro-differential.
In the future, also the other effects will be insered in to the mathamtical model.
The role of the depressor is to reach the TLA’s operative conditions that are:

(i) the minimization of the TLA’s vibrations min(v) (v2 < v1);

(ii) the reaching of a stable sensing depth (H2) as shown in Figure 2.5.

V is also called "depressor" [33] and its motion generates memory effects that
influence the proper operation of the TLA [120].
For these reasons, the goal of this work is to developed an optimal control law on
the depressor dynamic in order to:

• minimize its vibrations induced by memory effects that influence the proper
operation of the TLA;

• guarantee the reaching of its fixed depth.

Figure 2.5. Control system overview

The presence of memory effects which affected the depressor motion, implies the use
of integral-differential equations in the time domain, that requires a nonstandard
optimal control strategy.
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2.3 Memory effects

Memory effects are frequently induced by the fluid-structure interaction.
The hydrodynamic load on a body moving into an ideal fluid in waves contains the
memory of the motion history in terms of memory effects.
In this work two main phenomena claim for these effects in the model: vortex
shedding and added damping.
If the vehicle moves close to the free surface, memory effect called added damping
is borne. An oscillating underwater body closed to the free surface radiates out
waves, these will affect the fluid pressure changing the forces applied by the fluid
on the body during all the subsequent time. This ”circular” interation phenomena
starts the so called added damping memory effect. The dynamic of the vehicle is
affected by these effects because the distance of the body from the free surface is
less than its chord length (h<2b). Moreover, the depressor motion could induce the
release of vortex wake which influence the stability of the TLA.
This effect is induced by the interactions between the inertial, elastic, and hydro-
dynamic forces that occur when an elastic body is moving into a fluid flow. The
modelling of the vortex wake will be exposed in Chapter 3.1.2.
The two kind of memory effects are represented in the depressor model by convolu-
tion integrals in time domain:

Fmemory =
∫ t

−∞
K(t− τ)y(τ)dτ (2.2)

These terms are the convolutions between "special" kernel function, K(t), and
the "memory" of the past motion of the underwater depressor, y(t). The kernel
functions, positive defined, depend on the geometry of the body and can computed
by experimental test or by using panel numerical method. For simple geometry
these functions are well known in literature [121].

2.4 Variations for memory effects

In order to develop an indirect variational optimal control algorithm for these kind
of problems, the first innovative result of this work is the variations for the memory
effects terms.
At this step of the study this was the first problematic with we faced. In fact, in
literature is not present a general variational formulation for convolution integrals.
So in this Section, an original variational calculus is proposed for a general convolu-
tion integral.
These results will be foundamental in the mathematical formulation of the integro-
differential optimal control theory proposed.
The variations of the following expression:∫ T

−∞
gT(t)

[
δ
∫ t

−∞
K(t− τ)y(τ) dτ

]
dt (2.3)

are computed with respect to the state variable y(t) when a general convolution
term is multiplied by a general time function g(t) and the kernel matrix K(t) is a
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time function.
Note that the causality of the impulse response implies K(t− τ) = 0 if τ > t, and:∫ t

−∞
K(t− τ)y(τ) dτ =

∫ T

−∞
K(t− τ)y(τ) dτ (2.4)

Expression (2.3) becomes:∫ T

−∞
gT(t)

[
δ
∫ T

−∞
K(t− τ)y(τ) dτ

]
dt (2.5)

Changing the order of integration:∫ T

−∞

∫ T

−∞
gT(t)K(t− τ) dt δy(τ) dτ =

∫ T

−∞

∫ T

τ
gT(t)K(t− τ) dt δy(τ) dτ (2.6)

where the causality property of K(t) has been used. It permits to conclude:∫ T

−∞
gT(t)

[
δ
∫ t

−∞
K(t− τ)y(τ) dτ

]
dt =

∫ T

−∞

∫ T

t
δyT(t)KT(τ − t)g(τ) dτ dt

(2.7)
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Chapter 3

Fluid-body interaction control: A
physical example of memory
effects

In this chapter the integral-differential model of the finned depressor is described.
The general equations of motion of an underwater body moving close to the free
surface is briefly illustred in the frame of the potential theory formulation. The
general mathematical contributes of the memory effect, added mass and damping,
is discussed in Section 3.1. Meanwhile, the Theodorsen model is analysed in Section
3.1.2.
Starting from the formulation of a general integral-differential model of an under-
water body motion affected by the presence of memory effects, two different models
are analysed in detail.
A prototype 1-Dof model, which describes the depressor heave motion when it
is moving close to the free surface releasing wake is presented (Section 3.3). The
second model is the classical 2-Dof hydroelastic Theodorsen model which character-
ize the unsteady hydrodynamic forces on an oscillating hydrofoil vehicle’s control
surface affected by memory effects (Section 3.4).
Both the depressor models are integro-differentials precluding the use of classical
optimal control techniques by requiring a new nonstandard optimal control formu-
lation. A general N-Dof extension of these models is proposed that will be the IDE
model on which the optimal control theory is applied.

3.1 Mathematical formulations of memory effects

In this section the equations of motion of a general submerged body in waves, in the
frame of the potential theory are briefly illustred. This theory concerns a potential,
incompressible, irrotational and inviscid fluid. The potential problem with the
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Figure 3.1. Fluid domain

linearized boundary conditions, is described by the general resolutive system [121]:

∇2φj in Ω

∂φj
∂n = Vj · nj on ∂H

∂φj
∂n = 0 on B

∂2φj

∂2t + g ∂φj
∂n = 0 on F

∂φj
∂R = (− 1

2R + i∗k)φj on S

(3.1)

where the Ω is the fluid domain, H is the body surface, B is the ocean seabed, F is
the sea free surface and S is the far-field (see Figure 3.1). The body motion in terms
of potential velocity is φj = Aje−iσt where j indicates a generic degree of freedom of
the body, ξ j(t), j ∈ [1, 6] as show in Figure 3.2 (1=surge, 2=sway, 3=heave, 4=roll,
5=pitch, 6=yaw).
From the potential theory, the hydrodynamic forces acting on a body moving in

waves is based on the superposition of the radiation forces (R) due to the body
motion in an undisturbed sea and diffraction forces (D) due to the wave forces on a
non-moving body.

FW = FR + FD (3.2)

In this work the focus is on the radiating component of the forces which is due to
the fluid-structure interaction and generates memory effects. The diffracted force
can be neglected as the length of the body is smaller with respect to the wavelength.
The radiating forces, due to the fluid-structure interaction can be computed as:

FR = −
∫

S
ρφndS (3.3)

the integral over the fluid domain surface of the potential velocity.
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Figure 3.2. Sketch of 6-Dof depressor

3.1.1 Added damping

When the body is forced to oscillate, waves will propagate outward from the body.
This will affect the fluid pressure and change the fluid momentum hence the body
force for all subsequent times. This physical memory effect is obviously due to the
presence of the free surface. This effect is taken in account because the vehicle is
moving at a distance from the free surface (h) lower than its chord length (2b). In

Figure 3.3. Generation of added mass and damping effects

Figure 3.3, the generation of this kind of memory effect has been schematized. The
inclusion of the memory effects in the radiating forces has been theorized by Ogilvie
in frequency domain [122]. Moreover, this model is not suitable for controller design
because its coefficients are frequency dependent. For these reasons, the radiating
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force are modelled by Cummins [123] in the time domain as:

FR = −A ξ̈(t)−
∫ t

−∞
KD(t− τ)ξ̇(τ) dτ (3.4)

The hydrodynamic coefficents A and KD are the infinite frequency costant added
mass matrix (ω → ∞) and added damping function in the time domain, respectively.
The memory effects are rapresented by the convolution integral over the previous
history of the fluid motion. The kernel KD(t− τ) can be interpreted as the impulse
force, at time t, due to a delta-function body velocity at an earlier time τ.
Added mass value and added damping function in time are known for different
oscillating body’s geometry [121].

3.1.2 Vortex wake model

In this section the general theory of hydrodynamic instability and the mechanism
of the vortex wake release modelled by Theodorsen is shortly described. The vor-
tex wake model is now presented for a general two degree of freedom hydrofoil
oscillating in heave and pitch ξ=[υ, α]T that model the control surface of the un-
derwater vehicle. Figures in 3.4 show two sketches of the hydofoil vortex wake
generation where FC are the circular memory forces. The Theodorsen theory implies

Figure 3.4. Vortex wake release

the definition of the velocity potential due to the flow around the hydrofoil [48].
The hydrodynamic forces and moments are obtained by integration starting from
the velocity potential definition. The lift force, L and the pitching moment, Mα,
acting on the hydrofoil are composed by two different contributions:

L = LNC + LC (3.5)
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Mα = MNC
α + MC

α (3.6)

the noncirculatory (NC) and circulatory (C) part of the forces.
The expressions of the hydrodynamic forces will be illustred in details in next
Section 3.4. Meanwhile, in this section the focus is on the circulatory part of the
hydrodynamic forces due to the wake generation.
The circulatory part of the lift and pitching moment are:

LC = −2πρUbC(ω) (3.7)

MC
α = 2πρUb2

[(
a +

1
2

)
C(ω)− 1

2

]
(3.8)

where a, b are geometrical hydrofoil parameters that will be illustred in Section
3.4. Moreover, ρ is the water density and U is the inflow velocity. Finally, C(ω)
is a complex function in frequency domain, named Theodorsen function. This
function is a combination of Bessel functions [48, 50]. The Theodorsen vortex
wake model, originally formulated in the frequency domain, can be transposed in
terms of integro-differential equations in the time domain. The circolatory part of
the hydrodynamic forces can be written in terms of Wagner function, KW (t), [50].
Expressions (3.7) and (3.8) become:

LC = −2πρUb
∫ t

−∞
KW (t− τ)ẇ3/4(τ) dτ (3.9)

MC
α = 2πρUb2

[(
a +

1
2

) ∫ t

−∞
KW (t− τ)ẇ3/4(τ) dτ − 1

2

]
(3.10)

where w3/4(t) is the downwash [50] that is function of the degrees of freedom of
the body and will be illustred in details in 3.4.

3.2 General integro-differential equation of motion

The final equations of motion of the finned underwater depressor affects by memory
effects in the time domain is represented by the general equations:

(M + A) ¨ξ(t) +
∫ t

−∞
KD(t− τ)ξ̇ j(τ) dτ+∫ t

−∞
KW (t− τ)ẇ(τ)3/4 dτ = fCtrl(u, ξ(t), ξ̇(t))

(3.11)

The depressor model (3.11) is an integral-differential system which is completed
with the initial conditions ξ(τ)=ξ0(τ), τ ∈ (−∞, t]. One can add in the model the
loads fctrl which represent the control forces on the depressor. The control forces
are dependent on the state ξ(t), the depressor velocity ξ̇(t) and the control variable
u.
From this theoretical general integro-differential model, two different models are
formulated in details:

• 1-dof prototype model, starting from eq. (3.11) in which the control is made
on heave motion;
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• 2-dof Theodorsen model: the coupled heave/pitch depressor’s control surface
motion induces the generation of the vortex wake and the control of all the
degree of freedom is made by applying a torque applied to the pitch dof.

3.3 1-Dof integro-differential prototype model

In this section a prototype model of the underwater finned depressor motion
affected by both memory effects is described. In particular we refer our analysis to
the body response in waves in the frame of the linear potential theory by Newmann
[121].
An engineering control application which presents a single degree of freedom is
here investigated (see Figure 3.5).

Figure 3.5. Force balance on finned vehicle - 1-Dof prototype

The x-axis is chord-wise and the z-axis is the heave direction. The equation of
motion is written as:

mz̈ = −Fext − F (3.12)

where m is the mass of the vehicle, ż the heave velocity, Fext the external hydro-
dynamic forces and F the control force along the z-axis. Fext = L + FH where L
is the lift force due to the wake generation and FH the hydrodynamic load due to
the presence of the free surface. For an incompressible one-dimensional flow, the
following expression for the lift L is found, [48]

L =
z̈
µ
+

2V
µ

∫ t

−∞
KW(t− τ)z̈(τ) dτ (3.13)

where µ = πρb2/m is the mass ratio, KW(t) the Wagner function [50], V the dimen-
sionless inflow velocity along the x-axis. The first term is the added inertial force,
and the integral represents the circulatory part of the lift, due to the wake. A second
effect contributing to the memory effects is borne when the vehicle V navigates
close to the free surface [121]. The general expression of the hydrodynamic load in
this case can be represented as

FH = az̈ +
∫ t

−∞
KD(t− τ)ż(τ) dτ (3.14)

where a is costant infinite frequency added mass and the convolution term is the
the added damping to which KD(t) remain associated [121]. The final equation of
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motion of the vehicle is(
m + a +

1
µ

)
z̈ +

∫ t

−∞
KW(t− τ)z̈(τ) dτ +

∫ t

−∞
KD(t− τ)ż(τ) dτ + F = 0 (3.15)

Using the property of the convolution, equation (3.15) becomes:

Mz̈ +
∫ t

−∞
K(t− τ)ż(τ) dτ + F = 0 (3.16)

where M = m + 1
µ + a and K(t) = K̇W(t) + KD(t). Using standard notation in

control theory, eq. (3.16) becomes:

ẋ = bu + b
∫ t

−∞
K(t− τ)x(τ) dτ (3.17)

where x = ż, F=bu which b = − 1
M and u is the control variable. Equation (3.17) is

completed with the initial conditions x(τ)=x0(τ), τ ∈ (−∞, t].

3.4 2-Dof integro-differential model

An engineering control application of a two degree of freedom hydrofoil is here
investigated. Theodorsen’s theory [48] for this problem is employed to achieve the
mathematical model of the hydrodynamic problem. This theory provide the gener-
alized unsteady hydrodynamic forces due to an arbitrary motion of the hydrofoil
that represent the vehicle’s control surface which releases vortex wake. As shown in
Section 3.1.2, the Theodorsen model, originally formulated in the frequency domain,
can be transposed in terms of integral-differential equations in the time domain.
The x-axis is chord-wise axis (positive towards the trailing edge) and E is the center

Figure 3.6. Sketch of the typical-section hydrofoil model

of rotation. The hydrofoil is studied in this way as a simple two degree-of-freedom
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system, elastically constrained by a pair of translational and torsional equivalent
linear springs, oscillating in plunge and pitch (Figure 3.6). By using standard nota-
tions, the non-dimensional plunge deflection at the elastic center is denoted by υ
meanwhile α represents the pitch motion. The elastic axis, E, is located at a distance
OE = ahc/2 from the mid-chord (ah is the dimensionless distance, considered with
respect to the half-cord length, c/2, between the center of the hydrofoil, O, and the
elastic axis), while the mass center, G, is located at a distance EG = xαc/2 from the
elastic axis.
With these assumptions, the hydroelastic equations of the typical section are:

ϋ + xαα̈ + Ω2υ = −p(υ, α)

xα

r2
α

ϋ + α̈ + α = r(υ, α)
(3.18)

where Ω = ωυ/ωα, being ωυ and ωα the uncoupled natural frequencies of heave and
pitch modes, respectively; rα =

√
4J/mc2 is the dimensionless radius of gyration

about the elastic axis where m and J are the mass and the moment of inertia per
unit length (with respect to the elastic center), respectively. For an incompressible
two-dimensional flow, the following hydrofoil expressions for the lift p and the
pitching moment r, are respectively, [49]:

p(υ, α) = (ϋ− ahα̈ + Uα̇)
1
µ
+

2U
µ

∫ t

−∞
KW(t− τ)ẇ(τ)3/4 dτ

r(υ, α) = [ah(ϋ− ahα̈) +
1
2

U(1− ah)α̇−
1
8

α̈]
1

µr2
α

− U(1 + 2ah)

µr2
α

∫ t

−∞
KW(t− τ)ẇ(τ)3/4 dτ

(3.19)

where µ = πρc2/4m is the mass ratio, w3/4(t) is the downwash, KW(t) is the Wagner
function [50], U = 2V/cωα the dimensionless inflow velocity and V is the inflow
velocity, oriented along the x-axis. The integral terms represent the circulatory part
of the lift, due to the wake generation.

Figure 3.7. Force balance on finned vehicle - 2-Dof Theodorsen

In this case we want to reduce the release of vorticity induced by the depressor
heave motion by controlling the pitch motion. The control, f, is now inserted into
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the model as torque applied on the pitch dof (Figure 3.7). Mtot = r− f .
The equations of motion becames:

ϋ + xαα̈ + Ω2υ + (ϋ− ahα̈ + Uα̇)
1
µ
+

2U
µ

∫ t

−∞
KW(t− τ)ẇ(τ)3/4 dτ = 0

xα

r2
α

ϋ + α̈ + α− [ah(ϋ− ahα̈) +
1
2

U(1− ah)α̇−
1
8

α̈]
1

µr2
α

+

−U(1 + 2ah)

µr2
α

∫ t

−∞
KW(t− τ)ẇ(τ)3/4 dτ = f

(3.20)
The downwash function is w3/4(t) = υ̇(t)− (1/2− ah)α̇(t) + Uα(t) and using the
property of the convolution, the system in matrix form becames: 1 + 1

µ xα − ah
µ

xα

r2
α
− ah

µr2
α

1 + a2
h

µr2
α
+ 1

8µr2
α


 ϋ

α̈

+

0 U
µ

0 1 + U(1−ah)
2µr2

α

 υ̇

α̇

+

Ω2 0

0 1

 υ

α

+

 2U
µ K̈W

2U
µ [(ah − 1

2 )K̈W + UK̇W ]

− (1+2ah)U
µr2

α
K̈W − (1+2ah)U

µr2
α

[(ah − 1
2 )K̈W + UK̇W ]

 ∗
 υ

α

 =

 0

f


(3.21)

where ∗ is the convolution product. The final expression of the system is:

Mq̈ + Cq̇ + Kq + Ψ(t) ∗ q = f̃ (3.22)

where q = {υ, α}T is the state vector, M, C, K, Ψ(t) are the mass, damping, stiffness
and the kernel square matrix, respectively. The matrix have n×n dimension. In this
case n=2 where n is the number of the degree of freedom of the model. The f̃ is the
vector of the external force.
Using a standard notation in control theory, defining a new state vector x =
{x1, x2}T as:  x1 = q

x2 = q̇
(3.23)

The equation of motion becomes: ẋ1 = x2

ẋ2 = −M−1Cx2−M−1Kx1−M−1[Ψ(t) ∗ x1] + M−1 f̃
(3.24)

The system (3.24) in matrix form is

ẋ =

 0 I

−M−1K −M−1C

 x1

x2

+

 0 0

M−1Ψ(t) 0

 ∗
 x1

x2

+

 0

M−1

 f̃

(3.25)
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Defining the control variable, f=u equation (3.25) becames:

ẋ = Ax + Σ(t) ∗ x + bu (3.26)

where A is the dynamical matrix and Σ(t) the convolution matrix which have
2n× 2n dimension. The vector b is defined as:

b =


0
0

M−1(1, 2)
M−1(2, 2)

 (3.27)

which dimension is 2n× 1. Equation (3.26) is completed with the initial conditions
x(τ)=x0(τ), τ ∈ (−∞, t].

3.5 N-Dof integro-differential model

The presented model can be extend to a general N-Dof integral-differential model.
Equations (3.26) becomes:

ẋ = Ax + Σ(t) ∗ x + Bu (3.28)

with initial conditions x(τ)=x0(τ), τ ∈ (−∞, t].
Where x is the state vector composed by the N degree of freedom which dimension
is 2N × 1, A is the dynamical matrix of the N-Dof system which dimension is
2N × 2N and B is the 2N × 2N control matrix. Moreover, u is the general N-Dof
control vector.
This case is formulated in a general way in order to permitt the control of the N-Dof
of the body with the possibility to apply the control forces on whatever degree of
freedom is preferred. The kernel matrix Σ(t) implies the convolution between the
kernel function and all the N-Dof of the system and it has dimension 2N × 2N.
The proposed optimal control algorithm will be formulated for this N-Dof equations
of motion.
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Chapter 4

A novel Optimal Control of
integral-differential equations

In this Chapter the proposed new control logic applied to integro-differential equa-
tions is illustrated in detail. The optimal control theorized in this work is an
extension of the Pontryagin optimal control theory normally applied to differential
equations.
An overview of the optimal control theory by Pontryagin is shortly described in the
first part of the Chapter.
The mathematical formulation of the new integral optimal control algorithm is
deeply discussed by emphasising its novelty from the classical Pontryagin theory
(Section 4.2). The open loop control is founded solving the variational ID opti-
mal control problem (Section 4.3). Finally, the integral-differential control law is
switched into a feedback control by formulating a novel integral model predictive
control, integral MPC (Section 4.4).
This novel optimal control theory applied to integral-differential equations of mo-
tion and it is developed for the N-Dof matricial form of the IDE model in Section
3.5.
The same formulation applie to the scalar model is reported in Appendix C.

4.1 Overview on Standard Pontryagin Theory

Optimal Control can be seen as a generalization of the classical calculus of variations.
The statement of the problem is formulated as:

min J =
∫ T

0
L(x, u, y) dt

subjected to

ẋ− f (x, u, y) = 0, x(0) = x0

(4.1)

The goal of the optimal control problem is to determine the controller design, u(t),
and the associated evolution of the controlled system state, x(t) which minimize
the value of the KPI-key performance index. The definition of the KPI is crucial in



4.1 Overview on Standard Pontryagin Theory 26

the optimal control theory because it defines quantitatively the goal of the designed
system. The KPI is the integral over the observation time T of J, it is a real number.
J is the cost functional which depend on the state of the system x(t), the control
evolution u(t) and sometimes also on the external uncontrollable forces y(t). The
function L is the Lagrangian that is chosen by the designer. The second equation
represents the dynamic of the controlled system, ẋ− f (x, u, y) = 0 with the initial
conditions x(0) = x0. The most important and powerful tool to look for an explicit
solution to an Optimal Control Problem is the well known Pontryagin method that
gives a first order necessary condition for optimality.
Pontryagin theory is very powerful and implies the following conditions:

• L is an algebraic operator.

• f is a differential costrain, ODEs.

• The optimality criterion implies a minimization or maximization of the func-
tional J.

The problem of minimizing a functional depending on other functions constrained
by differential equations, is treated by introducing the Lagrangian multipliers λ.
The modified functional is introduced in the form:

min J̃ =
∫ T

0
L(x, u, y)− λT[ẋ− f (x, u, y)] dt =

∫ T

0
L̃(x, ẋ, u, λ, y) dt (4.2)

that must be minimized or maximized with respect to the three variables x, ẋ, u, λ.
The minimization of the functional implies the perturbation of the three functions
δx, δẋ, δu, δλ that produce an associated perturbation of the the functional, δ J̃ as
shown in eq. (4.3).

δ J̃ =
∫ T

0
δL̃(x, ẋ, u, λ, y) dt =

∫ T

0

∂L̃
∂x

δx +
∂L̃
∂ẋ

δẋ +
∂L̃
∂u

δu +
∂L̃
∂λ

δλ dt (4.3)

If x, u, λ are the optimal functions that make the functional minimum, then the
functional perturbation should be zero:

δ J̃ =
∫ T

0

∂L̃
∂x

δx +
∂L̃
∂ẋ

δẋ +
∂L̃
∂u

δu +
∂L̃
∂λ

δλ dt = 0 (4.4)

The associated Euler-Lagrange equations are:

∂L̃
∂x
− λ

∂ f
∂x
− λ̇ = 0

∂L̃
∂u
− λ

∂ f
∂u

= 0

ẋ− f (x, u, y) = 0

x(0) = x0

λ(T) = 0

(4.5)
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The final system is a two boundary problem, composed by two differential equa-
tions (the first and the third). The solution of the evolution of the system is in
terms of time evolution x(t), u(t), λ(t). The Pontryaging solution is in terms of
control program, and not a feedback control u(x), as it would be preferred from
an engineering point of view. Therefore, the problem depends on two opposite
boundary conditions: x(0) = x0 and λ(T) = 0 in the time domain.
The Pontryagin optimal control theory presents, for these reasons, two main disad-
vantages which are:

• The Pontryagin result in equation (4.5) gives a control program solution, open
loop control, u(t).

• The associated Euler-Lagrange equations represents a two boundary condi-
tions problem.

• The solution depends only on the initial condition of the state. (no dynamical
measures by sensors).

To overcame the disadvantages of the Pontryagin method the use of model predic-
tive control techniques are required. The switch from an open loop solution to a
feedback control, using MPC methods, increases the numerical computational costs
proportionally to the numbers of the degrees of freedom of the system.

4.2 An extended version of the Pontryagin theory to integral-
differential equations

In this Section the Pontryagin method is extended to the control of integro-differential
equations. The optimal control starting conditions, explained for the standard Pon-
tryagin method in the Section 4.1, are now modified:

• L is an algebraic operator.

• f is an integro-differential costrain, IDEs.

• The optimality criterion implies a minimization or maximization of the func-
tional J.

To generalize the Pontryagin control theory including convolution terms, it is
necessary to formalize the variations of the integral part of the equation. This
crucial first and innovative result is expressed by equation (2.7).
The integral control theory is now formulated for the integral-differential equation of
motion equation (3.28) completed with the initial conditions x(τ) = x0, τ ∈ (−∞, t].
A and B can be time dependent coefficent matrix, precluding the use of Laplace
domain based control techniques.
The cost function of the variational optimal control problem is described by the
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quadratic functional J̃, and the optimal control problem is stated as:

min J̃ =
∫ T

−∞

1
2

xT Qx +
1
2

uT Ru dt

subjected to

ẋ = Ax + Σ(t) ∗ x + Bu

(4.6)

Introducing the Lagrange multiplier vector λ, the cost function becomes:

J =
∫ T

−∞

1
2

xT Qx +
1
2

uT Ru + λT(ẋ− Ax− Σ(t) ∗ x− Bu) dt (4.7)

where Q and R are the gain parameters. The minimization of the functional J
implies:

δJ = δ
∫ T

−∞
L(x, ẋ, λ, u) dt− δ

∫ T

−∞
λTΣ(t) ∗ x dt (4.8)

that when expressed in terms of the variations δxT, δẋT, δλT, δuT, produces:

δJ =
∫ T
−∞

∂L
∂xT δxT + ∂L

∂ẋT δẋT + ∂L
∂λT δλT + ∂L

∂uT δuT dt−
∫ T
−∞ δλTΣ(t) ∗ x dt+

−
∫ T
−∞ λT δ (Σ(t) ∗ x) dt = 0

(4.9)
or (using integration by parts of ∂L

∂ẋ δẋ)

δJ =
∫ T
−∞ δxT

(
Qx− λ̇− ATλ

)
+ λT (ẋ− Ax− Σ(t) ∗ x− Bu) +

+δuT (Ru− BTλ
)

dt−
∫ T
−∞ λT δ (Σ(t) ∗ x) dt = 0

(4.10)

and λ(T) = 0.
The variations of the last term of equation are shown in (2.7). The stationary
condition in (4.10) for J becomes:

δJ =
∫ T
−∞ δxT

(
Qx− λ̇− ATλ−

∫ T
t ΣT(τ − t)λ dτ

)
+

+δλT (ẋ− Ax− Σ(t) ∗ x− Bu) + δuT (Ru− BTλ
)

dt = 0
(4.11)

and the associated Euler-Lagrange equations are:

λ̇ = Qx− ATλ−
∫ T

t
ΣT(τ − t)λ(τ) dτ

Ru− BTλ = 0

ẋ = Ax + Bu +
∫ t

−∞
Σ(t− τ)x(τ) dτ = 0

x(τ) = x0(τ), τ ∈ (−∞, t]

λ(T) = 0

(4.12)
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The system (4.12) consists of two integral-differential equations (the first and the
third) and one linear algebraic equation (the second), this last providing u =
R−1BTλ, that permits to reduce the system as:

λ̇ = Qx− ATλ−
∫ T

t
ΣT(τ − t)λ(τ) dτ

ẋ = Ax + BR−1BTλ +
∫ t

−∞
Σ(t− τ)x(τ) dτ = 0

x(τ) = x0(τ), τ ∈ (−∞, t]

λ(T) = 0

(4.13)

This statement of the problem shows that, theoretically, its solution is possible only
based on the knowledge of x(τ) = x0(τ), τ ∈ (−∞, t], i.e. only based on the past
values for the trajectory x(t). However, engineering practice suggests a different
operative solution, as pointed out later. Stability considerations for the system of
integral-differential equations (4.13) is illustrated in Appendix D.

4.3 Implicit solution of the variational problem

Equations (4.13) can be solved by numerical techniques, for example based on
forward finite differences formulation:

λi+1

∆T
− λi

∆T
−Qxi + ATλi +

N

∑
j=i

ΣT
j−iλj∆T

xi

∆T
− xi+1

∆T
+ Axi + BR−1BTλi +

i

∑
j=1

Σi−jxj∆T = 0

xj = x0, j ∈ (−∞, i]

λT = 0

(4.14)

with N = T
∆T and ∆t the discretization time interval.

We start with the vector of unknowns as {χ(1,N)
x , χ

(0,N−1)
λ }T, χ

(1,N)
x ={x1, ..., xi, ..., xN}T,

χ
(0,N−1)
λ ={λ0, λ1, ..., λi, ..., λN−1}T, where (N,M) indicates dependence on the time

values of ti for i ∈ [N, M]. Analogusly, {ζ(0)
x , 0}T where ζ

(0)
x ={x0}. Equation (4.14)

in matrix form becomes:

Ω(0,N−2)

{
χ
(1,N)
x

χ
(0,N−1)
λ

}
= Λ(0,N−1)

{
ζ
(0)
x
0

}
(4.15)

with obvious solution:{
χ
(1,N)
x

χ
(0,N−1)
λ

}
= Ω(0,N−2)−1

Λ(0,N−1)

{
ζ
(0)
x
0

}
(4.16)

The structure of the matrices are shown in Appendix A.
Equation (4.16) reveals that the system response depends only on the initial con-
dition of the system. As it is usual in optimal control problems, the solution of
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equations (4.13) or (4.14) is expressed in terms of a control program x(t), u(t), λ(t),
i.e, through a prescribed time-dependent control u(t). Theoretically, this would
not be a problem if the model of the physical investigated system is error-free. In
this case equations (4.13) or (4.14) make use only of the past values of the state
that are known: x(τ) = x0(τ), τ ∈ (−∞, t]. All the remaing part of the trajec-
tory is determined on this basis. This way of solving the problem, has a strong
engineering weakness. In fact, models are not perfect and the u(t) determined
by solving (4.13) or (4.14) is based, at the end, only on (i) the past known values
x(τ) = x0(τ), τ ∈ (−∞, t] and (ii) the theoretical model of the system represented
by A, b, Σ(t). When sensor measurements are available, a technique that makes
use of all the acquired information by the sensor over (−∞, t] is much more robust.
This process modifies the exposed technique, switching from a control program to a
feedback control, as illustrated in the following Section.

4.4 Feedback via model predictive control

The key strategy does not imply the use of the complete solution {χ(1,N)
x , χ

(0,N−1)
λ }T

and u = B
R χ

(0,N−1)
λ along the time interval [0, T] determined in the previous section.

We use only the first output for u, associated at the time t = t0, to which is also
associated the first output for the state at the time t = t1. Therefore, at the time t = t1

we know x0, x1, λ0 (and u0). This terms are collected into the vector {ζ(0,1)
x , ζ

(0)
λ }T

and the unknowns are reduced to {χ(2,N)
x , χ

(1,N−1)
λ }T={x2, x3..., xN , λ1, ..., λN−1}T .

The matrix Ω(1,N−2) reduces obviously its dimensions (Appendix B), following
the reduction of the number of the unknowns. The matrix Λ(1,N−1) increases its
dimension (Appendix B), following the increase of the known term {ζ(0,1)

x , ζ
(0)
λ }T.

We can iterate this process and at the generic k-th step one obtains:

{
χ
(k,N)
x

χ
(k−1,N−1)
λ

}
= Ω(k−1,N−2)−1

Λ(k−1,N−1)


ζ
(0,k−1)
x

ζ
(0,k−2)
λ

0

 (4.17)

For the reasons explained in Section 4.3, in equation (4.13) an external disturbance
nx(t) is introduced which models an error in the theoretical modelling of the system
or/and an external not controllable force. In fact, the solution of the two boundary
problem in (4.13) precludes the knowledge of these external disturbances along the
entire time domain [0, T], that would imply the knowledge of the future values for
nx(t).
Introducing nx(t) equation (3.26) becomes:

ẋ = Ax + Σ(t) ∗ x + Bu + nx(t) (4.18)

with the initial condition x(τ) = x0(τ), τ ∈ (−∞, t]. Equation (4.18) corresponds to
the model of the system that includes the noise (model or/and disturbance), while
equation (4.13), that is the best representation of the system, is used to determine
the control law to be applied to equation (4.18). The scheme in Figure 4.1 shows
how the open loop optimal control has been converted into an integral feedback
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MPC, taking into account the past history of the state which represents the initial
condition of (4.18).

Figure 4.1. Integral MPC scheme
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Chapter 5

Numerical simulations

In this Chapter the numerical results of the integral optimal control simulations
applied to different integro-differential models are illustred.
The results obtained from the integral MPC simulations are compared with the
standard LQR solution. The simulations have been performed with Matlab and
Simulink software.
Preliminary simulations have been developed to study the stability of both the
models. The tuning of dynamic and control parameters of the systems has been
done in order to chose the ones which guarantee the stability of the systems. Finally,
the integral MPC simulations are compared with the LQR classical method for
different value of external noise. In this Chapter only few kind of disturbance
(deterministic or random) are considered.

5.1 Vibrations optimal control of the 1-Dof underwater finned
depressor with memory effects

The theorized integral MPC control, which includes memory effects, is applied to
the control of the heave motion of the underwater 1-Dof vehicle.
This optimal control starting from an initial known value of the vehicle velocity, is
finalized to reach a given immersion depth.
This optimal control problem is solved with the integral MPC method illustred in
Section 4.4. The optimal control theory proposed applied to this scalar example is
shown in Appendix C.
Starting from the prototype model introduced in Section 3.3, the external distur-
bances nx(t) have been included into the dynamic equation of motion in eq. (3.17):

ẋ = ax + bK ∗ x + bu + nx(t) (5.1)

nx(µ, σ) is a random variable described by Gaussian normal distribution, µ its mean
value, σ its standard deviation and H(t) is the heaviside function. The values of the
parameters which characterize the dynamic of the model are shown in Table 5.1. The
choice of the matrices Q and R, following Bryson [124], is tuned with the maximum
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value expected for vz and F as::

Q = diag(qi)

R = diag(ri)

(5.2)

where
qi =

1
vz,i M

2

ri =
1

Fi M
2

(5.3)

In the present case q=r=1, since the maximum values for the vehicle velocity and
the control force are 1 m/s and 1 N, respectively.

Parameter Value Unit

m 10 kg

ρ 1000 kg
m3

x0(τ) 1 m
s

∆T 0.1 s

T 15 s

Table 5.1. System parameter - 1-Dof

Different kind of external disturbances are considered deterministic or stochastic.
When nvz is a random variable described by Gaussian normal distribution it is
expressed as nvz(µ, σ) where µ its mean value and σ its standard deviation. Table 5.2
shows the expression of the disturbances inserted into the simulated dynamic
system, where H(t) is the heaviside function, in particular H1(t) = 0.35[H(t− 1)−
H(t− 3)] + 0.4[H(t− 4.5)− H(t− 7)], H2(t) = 0.9[H(t)− H(t− 8)] + 0.2[H(t−
14)− H(t− 7)], H

′
1(t) = 0.3[H(t− 3)− H(t− 1)]− 0.4[H(t− 7)− H(t− 4.5)] and

H
′
2(t) = H

′
1(t)(t) + H(t− 11)− H(t− 10.5).

The analytical expression of the kernel function has been chosen as: K(t) = −2.954 ·
10−9exp(0.801t) + 4.688 · 10−10exp(0.9289t).
The performance of the integral MPC are compared with the LQR solution. The
efficency of the integral MPC is measured by the merit parameter:

QMPC,LQR =
JMPC − JLQR

JP
· 100 (5.4)

where JMPC and JLQR represent the cost function of the integral MPC and the LQR
solution, respectively and JP is the cost function of the optimal Pontryagin’s solution.
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Disturbances Expression
Zero nvz = 0
Gaussian random + H1(t) nvz = N(0, 0.5) + H1(t)
Gaussian random + H2(t) nvz = N(0, 0.3) · H2(t)
Discrete 1 nvz = H

′
1(t)

Discrete 2 nvz = H
′
1(t) + H

′
2(t)

Sinusoidal nvz = 0.6 sin(0.4πt)
Gaussian random σ = 0.2 nvz = N(0, 0.2)
Gaussian random σ = 0.5 nvz = N(0, 0.5)
Gaussian random σ = 0.8 nvz = N(0, 0.8)

Table 5.2. External modeled disturbances 1-Dof
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Figure 5.1. Zero external disturbances

The numerical results have been published in [125].
Figures 5.1 show the heave velocity and the control force for nx = 0. In this

case the integral MPC matches with the Pontryagin solution and presents best
performaces than the LQR control method. The performance of the integral MPC
are compared with the LQR solution. Figures 5.2 and 5.3 show the comparison
between the two control methods where an external force is a combination of a
random signal and of the deterministic signals H1(t) and H2(t), as described in
Table 5.2, acting on the vehicle dynamic. Different levels of the disturbance in terms
of standard deviation σ are considered: σ = 0.2 (Figure 5.4), σ = 0.5 (Figure 5.5)
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Figure 5.2. Gaussian random + H1(t)

and σ = 0.8 (Figure 5.6).
Discrete (Figures 5.13 and 5.8) and both continuous deterministic signals (Figure
5.9) have been applied in the integro-differential model.
It appears that the integral MPC shows better performances with respect to the
benchmark LQR method for any type of test. Table 5.4 shows the comparison
between the Q’s, defined by eq. (5.4).

Simulation QMPC,LQR
Zero disturbances 7.3
Discrete 1 48
Discrete 2 55
Sinusoidal 153
Gaussian random + H1(t) 102.9
Gaussian random + H2(t) 72.4
Gaussian random σ = 0.2 24.4
Gaussian random σ = 0.5 58.1
Gaussian random σ = 0.8 101.5

Table 5.3. Merit parameter [%] - 1-Dof

Figure 5.10 shows the cost function values J for each solution method for increasing
random noise levels. The random external disturbance applied to the system
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Figure 5.3. Gaussian random + H2(t)

nx(µ, σ) has zero mean value µ and a standard deviation, σ, from zero value up to 1.
The results show higher performaces in term of minimization of cost function of the
integral MPC method respect to the LQR one for any kind of external disturbance.
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Figure 5.4. Gaussian random disturbances σ = 0.2
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Figure 5.5. Gaussian random disturbances σ = 0.5
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Figure 5.6. Gaussian random disturbances σ = 0.8
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Figure 5.7. Discrete 1
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Figure 5.8. Discrete 2
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Figure 5.9. Sinusoidal
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Figure 5.10. Cost function J at different disturbance levels - 1-Dof
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5.2 Fluttering control of the 2-Dof underwater depressor con-
trol surfaces

The integral optimal control algorithm is now applied on the integro-differential
Theodorsen model shown in Section 3.4. In this model the convolution term repre-
sents the release of wake vorticity induced by the coupled heave/pitch motion of
an hydrofoil in a fluid flow.
The hydroil model can approximate the underwater depressor 2-Dof motion when
the release of vortex wake is induced by the motion of the control lifting surface of
the vehicle.
This control problem has as goal the minimization of all the degrees of freedom by
applying a control torque on the pitch degree of freedom, as shown in Section 3.4.
Starting from the equation of motion in (3.26) external random disturbances have
been inserted into the IDEs model:

ẋ = Ax + Σ(t) ∗ x + bu + nx(t) (5.5)

nx(µ, σ) is a random vector described by Gaussian normal distribution, µ its mean
value, σ its standard deviation.
The geometrical parameter (Figure 5.11) of the hydrofoil that are referred to the

Figure 5.11. Hydrofoil geometrical parameters

geometry in Section 3.4, are expressed in next table 5.4 where S and m are the
thickness and the mass of the hydrofoil, respectively.
Table 5.5 shows the dynamical system parameters chosen in the simulation where
ωυ, ωα are the uncoupled frequency of heave and pitch degree of freedom, respec-
tively. Moreover, x0(τ) are the initial condition of the system, ∆T is the time step
and T is the final time of simulation.
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Parameters Value Unit

ρ 1000 kg
m3

c 1 m

S 0.1 m

m 30 kg

V 10 m
s

xα 0.2 −

ah 0.2 −

Table 5.4. Hydrofoil geometrical parameters

Parameters Value Unit

ωυ 0.5 Hz

ωα 0.9 Hz

x0(τ) 1 m
s

∆T 0.1 s

T 15 s

Table 5.5. Simulation parameters - 2-Dof
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The mass moment of inertia of the hydrofoil has been computed by the Huy-
gens–Steiner theorem:

J = Jc + md2 (5.6)

where Jc is the mass moment of inertia referred to the hydrofoil center, O, and d is
the distance between the elastic center and the center of the wing (d = ah

c
2 ).

The hydrofoil is composed by an interior part make by foam and the external
coverage in aluminium as shown in Figure 5.12.
The mass moment of inertia referred to the hydrofoil center is computed as:

Figure 5.12. Hydrofoil material composition

Jc = ρeq ∗ c ∗ I (5.7)

where I is the geometrical mass moment of inertia, c is the wing length and the
equivalent density of the hydrofoil is:

ρeq =
ρF ∗ ρA

ρA ∗mF + ρF ∗mA
m (5.8)

where ρF, mF, ρA, mA are the density and the mass of the foam and aluminium,
respectively (Figure5.12). The geometrical mass moment of inertia is [126]:

I = 0.0384cS3 (5.9)

The model parameter obtained from the geometrical and dynamical parameter are
shown in Table 5.6.
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Parameter Value Unit

µ = πρc2

4m 26.2 kg

Ω = ωυ
ωα

0.55 −

rα =
√

4J
mc2 0.22 −

U = 2V
cωα

22 m
s

Table 5.6. Derivate model parameters - 2-Dof

The control gain, Q and r, choosen to control the IDEs 2-Dof hydrofoil model
are:

Q =


0.3 0 0 0
0 0.3 0 0
0 0 0.4 0
0 0 0 0.01

 r = 0.03 (5.10)

Different kind of external disturbances are considered. Table 5.7 shows the expres-
sion of the disturbances inserted into the simulated dynamic system, where H3(t) =
0.35H(t − 6) and H4(t) = [H(t − 11) − H(t − 9)] · −0.4[H(t − 8) − H(t − 4)].
The analytical expression of the kernel function has been chosen as: K(t) =
1− 0.165exp(−0.0455t)− 0.335exp(−0.3t).

Disturbances Expression
Zero nx = 0
Gaussian random + H3(t) nx = N(0, 0.2) + H3(t)
Gaussian random + H4(t) nx = N(0, 0.2) · H2(t)
Gaussian random σ = 0.2 nx = N(0, 0.2)
Gaussian random σ = 0.6 nx = N(0, 0.6)
Gaussian random σ = 0.9 nx = N(0, 0.9)

Table 5.7. External modeled disturbances - 2-Dof

The performances of the integral MPC are measured by the same merit parameter
used for the 1-Dof model in eq. 5.4.
Figures 5.13 - 5.14 show the heave and pitch motion, their associated velocities and
the control force applied on the pitch dof, respectively, for nx = 0. In this case the
integral MPC matches with the Pontryagin’s solution and presents best performaces
than the LQR control method.
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Figure 5.13. Zero external disturbance: Heave and Pitch

The performance of the integral MPC are compared with the LQR solution.
Figures 5.15 - 5.18 show the comparison between the two control methods where an
external force is a combination of a random signal and of the deterministic signals
H3(t) and H4(t), as described in Table 5.7, acting on the vehicle dynamic. Different
levels of the disturbance in terms of standard deviation σ are considered: σ = 0.2
(Figure 5.19 - 5.20), σ = 0.6 (Figure 5.21 - 5.22) and σ = 0.9 (Figure 5.23 - 5.24).
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Figure 5.14. Zero external disturbance: Pitch control

It appears that the integral MPC shows better performances with respect to
the benchmark LQR method for any type of test. Table 5.8 shows the comparison
between the Q’s, defined by eq. (5.4). Figure 5.25 shows the cost function values J

Simulation QMPC,LQR
Zero disturbances 1
Gaussian random + H3(t) 129
Gaussian random + H4(t) 6
Gaussian random σ = 0.2 22
Gaussian random σ = 0.6 164
Gaussian random σ = 0.9 435

Table 5.8. Merit parameter [%] - 2-Dof

for each solution method for increasing random noise levels. The random external
disturbance applied to the system nx(µ, σ) has zero mean value µ and a standard
deviation, σ, from zero value up to 1. The results show higher performaces in term
of minimization of cost function of the integral MPC method respect to the LQR for
any type of external random disturbance.
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Figure 5.15. Gaussian random + H3(t): Heave and Pitch

An insteresting application of the proposed algorithm is the optimal control of
the hydrofoil flutter instabilities. In fact, Theodorsen 2-Dof hydrofoil model is in
general used to study this phenomena when the hydrofoil is moving in water with
the velocity of its flutter speed.
For the hydrofoil geometry chosen in the simulations before illustred, the fluttering
speed is 0.1m/s.
In Figures (5.26) and (5.27) the control law and the system response are illustred
when the system is not controlled and when the integral MPC control method is
applied. In the simulation external disturbance are not acting on the system. The
goodness of the proposed method is also compare to the LQR logic, as for the other
simulations. It is clear from the results, in Figure (5.26), that with the proposed
control algorithm it possible to totally control che instabilities due to the fluttering
condition of the hydrofoil. The value of the merit parameter respect to the LQR
performance is QMPC,LQR = 7%, so the integral MPC shows even in this case better
results in term of cost function minimization.
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Figure 5.16. Gaussian random + H3(t): Pitch control
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Figure 5.17. Gaussian random + H4(t): Heave and Pitch
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Figure 5.18. Gaussian random + H4(t): Pitch control

0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20
-0.3

-0.2

-0.1

0

0.1

0.2

0 5 10 15 20
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 5.19. Gaussian random σ = 0.2: Heave and Pitch
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Figure 5.20. Gaussian random σ = 0.2: Pitch control
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Figure 5.21. Gaussian random σ = 0.6: Heave and Pitch
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Figure 5.22. Gaussian random σ = 0.6: Pitch control
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Figure 5.23. Gaussian random σ = 0.9: Heave and Pitch
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Figure 5.24. Gaussian random σ = 0.9: Pitch control

Figure 5.25. Cost function J at different disturbance levels - 2-Dof
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Figure 5.26. Control of fluttering instabilities: state

Figure 5.27. Control of fluttering instabilities: control law
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Chapter 6

Conclusions

The “Optimal Control of systems with memory” is a PhD project that is borne
from the collaboration between the Department of Mechanical and Aerospace En-
gineering of Sapienza University of Rome and the CNR-INM Institute of Marine
Engineering Rome. This project is part of a larger EDA project called ETLAT: Evalu-
ation of State of the Art Thin Line Array Technology (TLA).
A sonar TLA has been widely employed as an important tool for naval defence,
ocean exploitation and ocean research. Two main operative limitations costrain the
TLA design such as: a fixed immersion depth and the stabilization of its horizontal
trim.
The entire system is composed by a towed vehicle and a towed line sonar array
(TLA). The two subsystems are towed by a towing cable attached to the moving
boat.
The role of the vehicle is to guarantee a TLA’s constant depth of navigation and the
reduction of the entire system oscillations. The vehicle is also called "depressor" and
its motion generates memory effects that influence the proper operation of the TLA.
In this thesis a simplified mathematical formulation of the system is considered.
The presence of nonlinearities, stochastic operator and external forces have been
neglected in the model. These mathematical complexities are due to the presence of
cables and incident external waves, respectively. At this stage, only the effects of
interaction between fluid and structure has been introduced in to the model.
The dynamic of underwater towed system is affected by memory effects induced
by the fluid-structure interaction, namely: vortex shedding and added damping
due to the presence of a free surface in the fluid. In time domain, memory effects
are represented by convolution integral between special kernel functions and the
state of the system.
The mathematical formulation of the underwater system, implies the use of integral-
differential equations in the time domain. Two different IDEs models of the un-
derwater vehicle motion affected by memory effects are proposed in this work. A
prototype 1-Dof model in which both memory effects are included and the 2-Dof
hydrofoil model by Theodorsen. The second model proposed takes inclusion of
only the release of the vortex wake induced by the unsteady flow in which the
hydrofoil is moving.
The goal of this work has been to develop an optimal control law for the underwater
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depressor motion which guarantees the engineering costrains of the TLA’s design.
The presence of convolution terms in the model requires a nonstandard optimal
control strategy.
Robust control techniques are often used to control underwater vehicle but they do
not involve integral-differential equations. The optimal control applications applied
to underwater vehicle present in literature normally do not take in account memory
effects into the model. They are neglected or approximated by small external system
perturbations. Others optimal control techniques applied on integral-differential
equations present in literature are mainly based on direct methods. Direct optimal
control methods imply the discretization of the optimal control problem to form a
system of algebraic equations. The result is a nonlinear program (NLP) that can be
solved using standard large-scale optimization algorithms.
In particular in this work, a new indirect variational control method applied to IDEs
has been formalized. The control method proposed in this work, is an extension of
the Pontryagin optimal solution, normally applied to differential equations. The
first innovative result imply the extension of the variational calculus of the convolu-
tion term presents in the integral-differential equation of motion.
The implicit solution of the IDE optimal control problem is proposed by using the
finite differences method from which derives the open loop control law. The open
loop control reveals that the system response depends only on the initial condition
of the system. As it is usual in optimal control problems, the solution is expressed
in terms of a control program, i.e, through a prescribed time-dependent control.
Theoretically, this would not be a problem if the model of the physical investigated
system is error-free. In this case the solution of the optimal control problem make
use only of the past values of the state that are known: the initial conditions. All the
remaing part of the trajectory is determined on this basis.
This way of solving the problem, has a strong engineering weakness. In fact,
models are not perfect and the open loop control law determined by solving the
Euler-Lagrange optimal control equations is based, at the end, only on the past
known values and the theoretical model of the system represented. When sensor
measurements are available, a technique that makes use of all the acquired informa-
tion by the sensor over all the time history is much more robust.
This process modifies the exposed technique, switching from a control program
to a feedback control. This allows the inclusion in the IDE model of external dis-
turbances that are not known a priori. A feedback via model predictive control
(MPC) is formulated for integral-differential system model. Normally the efficency
of the MPC method is proportional to the computational costs of the numerical
simulations. In the proposed applications the system is linear with a low number of
degree of freedom precludind high computational costs.
Different numerical simulations have been developed applying the innovative in-
tegral MPC method to the two different IDE models. Different kinds of external
disturbances have been applied: gaussian random and deterministic one.
The innovative method produces very interesting results, that show how even
widely applied control methods (LQR) fail, while the present formulation exhibits
the advantage of the optimal control theory based on integral-differential equations
of motion.
The optimal control proposed is a general algorithm that can be applied to every sys-
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tems which present memory effects represented by convolution terms (e.g.: floating
bodies, materials with memory, surface vessels, etc.). The limitation of this method
is its restriction to only linear integro-differential equations and the possible high
computational cost of MPC method for high number of the degree of freedom of
the system.
The last point could be not a real limitation, because it can be avoided by using
dedicated online electronic boards normally used in control applications.
For these reasons, the future perspectives of this study will imply the extension of
this optimal control theory to nonlinearities. In the next step the algorithm will be
modified to control of the entire underwater mechanical system in analysis. The
hydroelastic model of thin line array (TLA) and the presence of the external waves
load that imply complexities in the mathematical model will be consider in the final
model. The presence of cable involves nonlinearities in the model, the external
waves loads give random external forces and the hydroelasticity of the TLA makes
the model’s operator random. In this way the integral optimal control strategy
here proposed will be extend to the control of set of nonlinear partial differential
equations and integro-differential equations with stochastic operator and stochastic
external loads. Finally, the experimental validation of the control algorithm will
be also perform on the already existing depressor prototype at CNR-INM Marine
Institute of Rome.
The proposed algorithm will be also test when measurements by sensors are affected
by uncertinities, that is an ongoing step of the study.
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Appendix A

Matrix implicit formulation

The analitical form of the matrix that are involved in the implicit solution of the
N-Dof variational optimal control IDE theory is here reported.
The matrix Ω(0,N−2) is composed by four quadratic matrix of (N − 1)× (N − 1)
dimension:

Ω(0,N−2) =

[
Ω1 Ω2
Ω3 Ω4

]
(A.1)

in which the expressions of each matrix are:

Ω1 =



0 . . . . . . . . . . . . 0

−Q
. . .

...

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 . . . . . . 0 −Q 0


Ω4 =



−BR−1BT 0 . . . . . . . . . 0

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . 0
0 . . . . . . . . . 0 −BR−1BT


(A.2)

Ω2 =



− I
∆T + AT + ΣT

0 ∆T I
∆T + ΣT

1 ∆T ΣT
2 ∆T . . . . . . ΣT

N−2∆T

0
. . . . . . . . .

...
. . . . . . . . . . . .

...
. . . . . . . . . ΣT

2 ∆T
...

. . . . . . I
∆T + ΣT

1 ∆T
0 . . . . . . . . . 0 − I

∆T + AT + ΣT
0 ∆T


(A.3)

Ω3 =



I
∆T 0 . . . . . . . . . 0

− I
∆T − A− Σ0∆T

. . . . . .
...

−Σ1∆T
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . 0

−ΣN−3∆T −Σ1∆T − I
∆T − A− Σ0∆T I

∆T


(A.4)
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Λ(0,N−1) =



Q −ΣT
N−1∆T

0 −ΣT
N−2∆T

...
...

...
...

... −ΣT
0 ∆T

0 − I
∆T − ΣT

1 ∆T
I

∆T + A + Σ0∆T 0

Σ1∆T
...

...
...

...
...

...
...

ΣN−2∆T 0



(A.5)
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Appendix B

Matrix MPC formulation

In this section the analitical expressions of the changing size matrix in the MPC
method are illustred starting from the matrix defined in Appendix A.
The new matrix formulations are:

Ω
(1,N−2)
k =

[
Ωk,1 Ωk,2
Ωk,3 Ωk,4

]
(B.1)

The originary matrix Ω(1,N−2) and Φ(1,N−1) in Appendix A, shows the limit case
when k=1, when the state evolves the new matrix Ωk,1, Ωk,2, Ωk,3, Ωk,4 are created
from the originary matrix (case k=1) when the only columns (k, ..., N − 1) are
selected. The Ω1, Ω2, Ω3, Ω4 from (A.2)-(A.4) can be divided into two submatrix:

Ω1 = [Ω1(N− 1, 1, ..., k− 1) Ω1(N− 1, k, ..., N− 1)]

Ω2 = [Ω2(N− 1, 1, ..., k− 1) Ω2(N− 1, k, ..., N− 1)]

Ω3 = [Ω3(N− 1, 1, ..., k− 1) Ω3(N− 1, k, ..., N− 1)]

Ω4 = [Ω4(N− 1, 1, ..., k− 1) Ω4(N− 1, k, ..., N− 1)]

(B.2)

The matrix Ωk,1, ..., Ωk,4 are the (k,N-1) selection of the Ω1, ..., Ω4 matrix as (B.3)
shows:

Ωk,1 = [Ω1(N− 1, k, ..., N− 1)]

Ωk,2 = [Ω2(N− 1, k, ..., N− 1)]

Ωk,3 = [Ω3(N− 1, k, ..., N− 1)]

Ωk,4 = [Ω4(N− 1, k, ..., N− 1)]

(B.3)
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The remaining part of the Ω1, Ω2, Ω3, Ω4 columns (1, ..., k− 1) which have not been
selected, take part of the composition of the new matrix Λ

(1,N−1)
k . Defining as:

Ω1,3 =

[
Ω1(N− 1, 1, ..., k− 1)
Ω3(N− 1, 1, ..., k− 1)

]
Ω2,4 =

[
Ω2(N− 1, 1, ..., k− 1)
Ω4(N− 1, 1, ..., k− 1)

] (B.4)

The Λ(1,N−1) matrix defined in (C.19) was composition of two vectors Λ1 and Λ2.

Λ(1,N−1) = [Λ1 Λ2]

Λ
(1,N−1)
k = [Λ1 Ω1,3 Ω2,4 Λ2]

(B.5)
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Appendix C

Scalar optimal control formulation

In this appendix the optimal control algorithm proposed in this work is applied
on the pototype 1-Dof integro-differential equation of motion shown in Section 3.3.
The scalar formulation of the optimal control algorithm can be found in detail in
[125].
The variational formulation of the control problem, the implicit solution of the
problem and the extension to a feedback one by model MPC are here shown in
detail for the particular scalar form of the integral-differential equation of motion.
The integral control theory is formulated for the integral-differential equation of
motion eq. (3.17) completed with the initial conditions x(τ)=x0(τ), τ ∈ (−∞, t].

Scalar variational problem The cost function of the variational optimal control
problem is described by the quadratic functional J̃, and the optimal control problem
is stated as:

min J̃ =
∫ T

−∞

1
2

qx2 +
1
2

ru2 dt

subjected to

ẋ = bu + bK ∗ x

(C.1)

where ∗ is the convolution product. Introducing the Lagrange multiplier λ, the cost
function becomes:

J =
∫ T

−∞

1
2

qx2 +
1
2

ru2 + λ(ẋ− bu− bK ∗ x) dt (C.2)

where q and r are gain parameters. The minimization of the functional J implies:

δJ = δ
∫ T

−∞
L(x, ẋ, λ, u) dt− δ

∫ T

−∞
λbK ∗ x dt (C.3)

that when expressed in terms of the variations δx, δẋ, δλ, δu, produces:

δJ =
∫ T

−∞

∂L
∂x

δx+
∂L
∂ẋ

δẋ+
∂L
∂λ

δλ+
∂L
∂u

δu dt−
∫ T

−∞
δλ bK ∗ x dt−

∫ T

−∞
λ δ (bK ∗ x) dt = 0

(C.4)
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[127] or (using integration by parts of ∂L
∂ẋ δẋ)

δJ =
∫ T

−∞

(
qx− λ̇

)
δx + (ẋ− bu− K ∗ x) δλ + (ru− bλ) δu dt+

−
∫ T
−∞ λδ (bK ∗ x) dt = 0

(C.5)

and λ(T) = 0.
The variations of the last term of equation (C.5) are now extended to the 1-Dof
integral model starting from the variational matrix form in eq. (2.7). The variation
of the convolution term in the scalar form are expressed by:∫ T

−∞
λ(t)

[
δ
∫ t

−∞
K(t− τ)x(τ) dτ

]
dt =

∫ T

−∞

∫ T

t
λ(τ)K(τ − t) dτ δx(t) dt (C.6)

So the stationary condition (C.5) for J becomes:

δJ =
∫ T

−∞

[(
qx− λ̇ − b

∫ T

t
λ(τ)K(τ − t) dτ

)
δx + (ẋ− bu− bK ∗ x) δλ

+ (ru− bλ) δu] dt = 0
(C.7)

and the associated Euler-Lagrange equations are:

λ̇ = qx− b
∫ T

t
λ(τ)K(τ − t) dτ

ru− bλ = 0

ẋ = bu + b
∫ t

−∞
K(t− τ)x(τ) dτ = 0

x(τ) = x0(τ), τ ∈ (−∞, t]

λ(T) = 0

(C.8)

The system (C.8) consists of two integral-differential equations (the first and the
third) and one linear algebraic equation (the second), this last providing u = b

r λ,
that permits to reduce the system as:

λ̇ = qx− b
∫ T

t
λ(τ)K(τ − t) dτ

ẋ = λ
b2

r
+ b

∫ t

−∞
K(t− τ)x(τ) dt

x(τ) = x0(τ), τ ∈ (−∞, t]

λ(T) = 0

(C.9)
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Implicit solution in the scalar case The implicit solution of the equations (C.9)
implies a forward finite differences formulation of the problem:

qxi −
λi+1

∆T
+

λi

∆T
−

N

∑
j=i

λjKj−i∆t = 0

xi+1

∆T
− xi

∆T
− λi

b2

r
−

i

∑
j=−∞

xjKi−j∆t = 0

xj = x0, j ∈ (−∞, i]

λT = 0

(C.10)

with N = T
∆t and ∆t the discretization time interval.

We start with the vector of unknowns as {η(1,N)
x , η

(0,N−1)
λ }T, η

(1,N)
x ={x1, ..., xi, ..., xN}T,

η
(0,N−1)
λ ={λ0, λ1, ..., λi, ..., λN−1}T, where the (N,M) indicates dependence on the

time values of ti for i ∈ [N, M]. Analogusly, {ξ(0)
x , 0}T where ξ

(0)
x ={x0}. Equation

(C.10) in matrix form becomes:

Π(0,N−2)

{
η
(1,N)
x

η
(0,N−1)
λ

}
= Φ(0,N−1)

{
ξ
(0)
x
0

}
(C.11)

with obvious solution:{
η
(1,N)
x

η
(0,N−1)
λ

}
= Π(0,N−2)−1

Φ(0,N−1)

{
ξ
(0)
x
0

}
(C.12)

the structures of the evolution matrices are shown in Appendix C.1.
The open loop control resulted by the implicit solution of the 1-Dof variational IDE
problem has been switched into a feedback control via a model predictive method
(integral MPC).

Scalar MPC application The key strategy does not implies the use of the com-
plete solution {η(1,N)

x , η
(0,N−1)
λ }T and u = b

r η
(0,N−1)
λ along the time interval [0, T]

determined in the previous section, as for equation (C.12).
We use only the first output for u, associated at the time t = t0, to which is also asso-
ciated the first output for the state at the time t = t1. Therefore, at the time t = t1 we
know x0, x1, λ0 (and u0). This terms are collected into the vector {ξ(0,1)

x , ξ
(0)
λ }T and

the unknowns are reduced to {η(2,N)
x , η

(1,N−1)
λ }T={x2, x3..., xN , λ1, ..., λN−1}T. The

matrix Π(1,N−2) reduces obviously its dimensions, following the reduction of the
number of the unknowns. The matrix Φ(1,N−1) increases its dimension, following
the increase of the known term {ξ(0,1)

x , ξ
(0)
λ }T.

We can iterate this process and at the generic k-th step one obtains:

{
η
(k,N)
x

η
(k−1,N−1)
λ

}
= Π(k−1,N−2)−1

Φ(k−1,N−1)


ξ
(0,k−1)
x

ξ
(0,k−2)
λ

0

 (C.13)
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The MPC matrix form is shown in Appendix C.2. An external disturbance nx(t) is
introduced which models an error in the theoretical modelling of the system or/and
an external not controllable force.
Introducing nx(t) equation (3.17) becomes:

ẋ = bu + b
∫ t

−∞
K(t− τ)x(τ) dt + nx(t) (C.14)

with the initial condition x(τ) = x0(τ), τ ∈ (−∞, t]. Equation (C.14) corresponds to
the model of the system that includes the noise (model or/and disturbance), while
equation (C.9), that is our best representation of the system, is used to determine
the control law to be applied to equation (C.14). The scheme in Figure C.1 shows
how the open loop optimal control has been converted into an integral feedback
MPC, taking into account the past history of the state which represents the initial
condition of (C.14).

Figure C.1. Integral scalar MPC scheme
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C.1 Matrix implicit formulation: scalar model

The matrix Π(0,N−2) is composed by four quadratic matrix of (N − 1)× (N − 1)
dimension:

Π(0,N−2) =

[
Π1 Π2
Π3 Π4

]
(C.15)

in which the expressions of each matrix are:

Π1 =



0 . . . . . . . . . . . . 0

q
. . .

...

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 . . . . . . 0 q 0


Π4 =



− b2

r 0 . . . . . . . . . 0

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . 0
0 . . . . . . . . . 0 − b2

r


(C.16)

Π2 =



1
∆T − a + K0∆T − 1

∆T + K1∆T K2∆T . . . . . . KN−2∆T

0
. . . . . . . . .

...
. . . . . . . . . . . .

...
. . . . . . . . . K2∆T

...
. . . . . . − 1

∆T + K1∆t
0 . . . . . . . . . 0 1

∆T − a + K0∆T


(C.17)

Π3 =



1
∆T 0 . . . . . . . . . 0

− 1
∆T − a + K0∆T

. . . . . .
...

−K1∆T
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . 0

−KN−3∆T −K1∆T − 1
∆T − a + K0∆T 1

∆T


(C.18)
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Φ(0,N−1) =



−q −KN−1∆T
0 −KN−2∆T
...

...
...

...
... −K0∆T
0 − 1

∆T − K1∆T
− 1

∆T + a + K0∆T 0

K1∆T
...

...
...

...
...

...
...

KN−2∆T 0



(C.19)
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C.2 Matrix MPC: scalar model

The new matrix formulations are:

Π
(1,N−2)
k =

[
Πk,1 Πk,2
Πk,3 Πk,4

]
(C.20)

The originary matrix Π(1,N−2) and Φ(1,N−1) in Appendix ??, shows the limit case
when k=1, when the state evolves the new matrix Πk,1, Πk,2, Πk,3, Πk,4 are created
from the originary matrix (case k=1) when the only columns (k, ..., N − 1) are
selected. The Π1, Π2, Π3, Π4 from (C.16)-(C.18) can be divided into two submatrix:

Π1 = [Π1(N− 1, 1, ..., k− 1) Π1(N− 1, k, ..., N− 1)]

Π2 = [Π2(N− 1, 1, ..., k− 1) Π2(N− 1, k, ..., N− 1)]

Π3 = [Π3(N− 1, 1, ..., k− 1) Π3(N− 1, k, ..., N− 1)]

Π4 = [Π4(N− 1, 1, ..., k− 1) Π4(N− 1, k, ..., N− 1)]

(C.21)

The matrix Πk,1, ..., Πk,4 are the (k,N-1) selection of the Π1, ..., Π4 matrix as (C.22)
shows:

Πk,1 = [Π1(N− 1, k, ..., N− 1)]

Πk,2 = [Π2(N− 1, k, ..., N− 1)]

Πk,3 = [Π3(N− 1, k, ..., N− 1)]

Πk,4 = [Π4(N− 1, k, ..., N− 1)]

(C.22)

The remaining part of the Π1, Π2, Π3, Π4 columns (1, ..., k− 1) which have not been
selected, take part of the composition of the new matrix Φ

(1,N−1)
k . Defining as:

Π1,3 =

[
Π1(N− 1, 1, ..., k− 1)
Π3(N− 1, 1, ..., k− 1)

]
Π2,4 =

[
Π2(N− 1, 1, ..., k− 1)
Π4(N− 1, 1, ..., k− 1)

] (C.23)

The Φ(1,N−1) matrix defined in (C.19) was composition of two vectors Φ1 and Φ2.

Φ(1,N−1) = [Φ1 Φ2]

Φ
(1,N−1)
k = [Φ1 Π1,3 Π2,4 Φ2]

(C.24)
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Appendix D

Stability Analysis

The question of the stability of the controlled integral-differential dynamics is not
the key point of the present work. In fact, we are investigating finite time horizon
with a two-points boundary value problem, one at the initial time, another at the
final time, solved by an implicit numerical scheme over a finite time interval. A sta-
bility problem emerges in general only when considering the infinite time horizon.
However, the question shows some analogies with the problem of stability ap-
proached in the frame of the LQR. In that case, when the Euler-Lagrange equations
are determined, as the conditions for the quadratic functional minimization, the
linear differential equations in terms of the state and co-state variables are set. This
system is characterized by the Hamilton matrix H (see later). The Euler-Lagrange
equations produce an open-loop time dependent solution for the control, and both
the state and the control variables are characterized by pairs of decaying expo-
nentials and exponentially diverging terms. Namely, it is a known result that the
Hamilton matrix admits pair of symmetric eigenvalues, i.e. for each negative-real-
part eigenvalue, a symmetric corresponding positive-real-part exists. The diverging
terms do not cause any problem for the finite time horizon, rather they help in
fitting the boundary values (at initial and final times). For the infinite time horizon
case, it is known that, when the steady algebraic Riccati’s equation is set finding a
closed-loop feedback solution, the determined gain matrix, when inserted into the
system dynamics, produces only the set of negative-real-part exponentials of the
Hamiltonian matrix, and the controlled system is asymptotically stable.
In the present Appendix we demonstrated the stability analysis of the integral-
differential optimal control (4.13) starting from its scalar form. We determined the
Euler-Lagrange equations (C.9) associated to the optimal control of the integral-
differential problem (C.1), that are solved only for the finite time horizon case. In
fact, we have not an analogous of the algebraic Riccati’s equation to solve directly
the closed-loop problem, and for this reason the stability problem is not crucial
in this context. However, the chance of determining an analogous of the Riccati’s
equation, even for the integral-differential problem (C.9), is interesting and will the
subject of further investigations.
Let us make the point about the Euler-Lagrange equation (C.9) in the infinite hori-
zon case, analyzing the properties of a generalized Hamilton matrix that shows
some analogies with the Hamilton matrix H associated to the LQR theory.
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Assume initial conditions, x(τ)=0, τ ∈ (−∞, 0]. Without loss of generality we have:
ẋ = ax + λ

b2

r
+ b

∫ t

0
K(t− τ)x(τ) dτ

λ̇ = qx− aλ− b
∫ T

t
K(τ − t)λ(τ) dτ

λ(T) = 0

(D.1)

Consider, additionally, an infinite time horizon T → ∞ and constant values for a, b,
q, r. Moreover, since the kernel K(t) = 0 for t<0, finally we have:

ẋ = ax + λ
b2

r
+ b

∫ ∞

0
K(t− τ)x(τ) dτ

λ̇ = qx− aλ− b
∫ ∞

0
K(τ − t)λ(τ) dτ

lim
t→∞

λ(t) = 0

(D.2)

The two integrals are reduced to convolutions: the first of K(t) and x(t), the second
of K(−t) and λ(t). Introducing the two matrices:

H =

[
a b2

r
q −a

]
K(t) =

[
K(t) 0

0 K(−t)

]
(D.3)

the problem shows the compact form:

ζ̇ = Hζ + K ∗ ζ ζ =

{
x
λ

}
(D.4)

Passing to the Laplace transform ·̂

sζ̂(s) = H ζ̂(s) + K̂(s)ζ̂(s) (D.5)

i.e.
M(s)ζ̂(s) =

[
sI − H − K̂(s)

]
ζ̂(s) = 0 (D.6)

The matrix M = sI − H − K̂(s) is a generalized Hamilton matrix associated to
integral-differential problem. In the absence of K̂(s), M = H. Its eigenvalues are
determined solving the equation det

(
sI − H − K̂(s)

)
= 0. Considering elemental

properties of the Laplace transform, the generalized Hamilton matrix is:

M(s) =
[

s− a− K̂(s) − b2

r
−q s + a− K̂(−s)

]
(D.7)

and

det (M) = 0→
(
s− a− K̂(s)

) (
s + a− K̂(−s)

)
− qb2

r
= 0 (D.8)

A direct inspection of this expression shows that if p is an eigenvalue, then −p
is also an eigenvalue. Therefore, the generalized Hamilton matrix M shares this
eigenvalues symmetry with the Hamilton matrix H. This implies that certainly, a
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direct time-marching solution over an infinite time horizon of the equation (D.4)
produces diverging terms. However, this is not the case of the solution proposed
in Appendix C, because it is based on an implicit numerical scheme. Nevertheless,
these diverging terms affect also equation (D.4) for K̂(s) = 0 as it appears in the
LQR Hamilton equation, i.e. ζ̇ = Hζ, that is well known produces instability when
integrated over an unlimited time domain with a marching scheme. To go more in
depth, consider that in hydrodynamics the Wagner function can be approximated
by a series of exponentials, so that:

K(t) =
N

∑
i=1

Aie−βit K(−t) =
N

∑
i=1

Aieβit (D.9)

with βi < 0 and K̂(s) shows the explicit form:

K̂(s) =

[
∑N

i=1
Ai

s+βi
0

0 ∑N
i=1

Ai
s−βi

]
(D.10)

M(s) = sI − H − K̂(s) =

[
s− a−∑N

i=1
Ai

s+βi
− b2

r

−q s + a−∑N
i=1

Ai
s−βi

]
(D.11)

The eigenvalues are determined solving the secular equation:(
s− a−

N

∑
i=1

Ai

s + βi

)(
s + a +

N

∑
i=1

Ai

s− βi

)
− qb2

r
= 0 (D.12)

This theory is the same also for the general N-Dof integral-differential model,
however it is not here reported.
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