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Abstract

During Long Shutdown 2 (LS2, 2019-2021) all the injectors of the CERN LHC
will undergo several upgrades to fulfill the requests of the LHC Injectors Upgrade
(LIU) Project. Among them, an increase in luminosity of the LHC beam by a factor
of ten and two respectively for proton and ion beams is expected. The upgrades of
the CERN PSB, the first synchrotron in the LHC proton injection chain, will be
significant. The injection and extraction beam energies will be increased respectively
from 50 MeV to 160 MeV kinetic energy (via the new Linac4) and from 1.4 GeV to
2 GeV (using new magnet power supplies). The required beam intensities will be a
factor of two higher for High-Luminosity LHC (HL-LHC) beams, and the currently
used narrow-band ferrite RF systems will be replaced by broad-band Finemet®

cavities. For ion beams instead, a fundamental upgrade will concern the CERN
SPS, the LHC injector, where the Low Lever RF functionalities will be considerably
enhanced to allow the interleaving of two batches in longitudinal phase space through
momentum slip-stacking, aiming at halving the bunch spacing.

In order to predict future longitudinal beam stability and optimize complex
RF manipulations both for PSB and SPS, longitudinal macro-particle simulations
have been performed. Concerning the PSB, an accurate impedance model and a
careful estimation of the space charge effects were included in simulations. Beam
and cavity-based feedbacks were also taken into account. Controlled longitudinal
emittance blow-up, currently obtained through phase modulation with a dedicated
higher harmonic RF system, was achieved in measurements and simulations for
the first time injecting RF phase noise in the main harmonic cavity, showing some
advantages in using this new method. As for the SPS, the slip-stacking dynamics
with collective effects has been studied in details aiming at optimizing the numerous
parameters present and satisfying the stringent constraints on losses and bunch
length at extraction. Beam quality issues were analyzed together with possible
remedies. All simulations have been performed with the macro-particle longitudinal
beam dynamics CERN BLonD code, after particular efforts have been spent to
implement several algorithms for non ultra-relativistic energy machines (like the
PSB) and for slip-stacking dynamics in order to easily optimize the large parameter
space available. Benchmarks between BLonD, other codes and analytical formulas
have been performed to study different approaches for induced voltage calculation
and give some guidelines on the pros and cons of each of them.
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Chapter 1

Introduction

1.1 The CERN Accelerator Complex

The European Organization for Nuclear Research, known as CERN, is the largest
particle physics laboratory in the world [1]. CERN was founded in 1954 on the
Franco-Swiss border near Geneva through a convention ratified by twelve countries
in Western Europe. Nowadays CERN has 22 member states and this number is
expected to increase in the future. CERN’s main area of research is particle physics,
or the study of the fundamental constituents of matter and the forces acting between
them.

Figure 1.1 shows the present scheme of the CERN accelerator complex, which is
a succession of machines accelerating particles to increasingly higher energies. The
last element of this chain is the 27 km long Large Hadron Collider (LHC), where two
counter-rotating proton and/or heavy ion beams are accelerated and brought into
collisions inside the four detectors ATLAS, CMS, ALICE and LHCb. In addition
to increasing the particles energy before the injection of the beam into the next
machine in the chain, the major part of the accelerators in the complex have their
own experiments.

Protons are obtained in the proton source, which is a bottle of hydrogen gas,
through the application of an electric field aimed at stripping the hydrogen atoms of
their electrons [2]. The linear accelerator Linac2, the first in the chain, accelerates
the protons to a kinetic energy Ekin of 50 MeV. The beam is then injected into
the Proton Synchrotron Booster (PSB), which accelerates the particles to 1.4 GeV
kinetic energy, followed by the Proton Synchrotron (PS), where the beam reaches at
flat top a momentum p of 26 GeV/c. Then the protons are transferred into the Super
Proton Synchrotron (SPS), where the momentum is increased up to 450 GeV/c.
Finally the protons are sent to the two rings of the LHC. The two counter-rotating
beams reach the maximum energy of 6.5 TeV per beam before colliding at the LHC
experiments with a total energy of 13 TeV at the collision points.

The LHC lead-ion beams are created stripping away all the electrons from the
lead isotope 208

82Pb [3], which has mass number Am = 208 and atomic number
Za = 82, corresponding respectively to the number of nucleons and protons in the
isotope. Firstly, an ion source containing 208

82Pb isotopes is used to generate lead
ions Pb29+ at 2.5 keV/u kinetic energy (u stands for nucleon). These ions are then
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Figure 1.1. Scheme of the present CERN accelerator complex. The names of the accelerators
and experiments are in capital letters. The year of construction, when available, is
visible under those names. The length of the circular accelerators is also shown. The
colored arrows in the scheme mark the type of accelerated particles and the direction of
motion, see the legend. All the acronyms present in the scheme are explained in the
legend as well (Copyright CERN 2016-2018).

accelerated in the Linac3 to a kinetic energy of 4.2 MeV/u. After hitting a stripping
foil at the end of the Linac3 and becoming Pb54+, the particles are injected into the
Low Energy Ion Ring (LEIR) which increases their kinetic energy to 72.2 MeV/u,
followed by the PS which pushes the kinetic energy to 5.9 GeV/u (17 ZaGeV/c or
26 GqV/c, q is the particle charge). The ions are then fully stripped to Pb82+ in the
PS-SPS transfer line before being injected into the SPS, where the kinetic energy is
increased up to 176.4 GeV/u (450 ZaGeV/c). Finally the particles are sent to the
LHC where, analogously to the proton beam case, two counter-rotating beams are
accelerated up to the maximum energy of 6.5 ZaTeV per beam before colliding at
the four interaction points with a center-of-mass energy of 13 ZaTeV.

In order to evaluate the performance of the LHC up to now and understand
the motivation for the studies presented in this thesis, some important physical
quantities able to describe the "quality" of a beam have to be introduced.
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1.2 Luminosity and Brightness Concepts

For two colliding beams the number of events per second dR/dt can be defined as [4]

dR

dt
:= L · σp, (1.1)

where σp, measured in barn (1 b = 10−24 cm2), is the production cross section and
represents a measurement of the probability that an event occurs. The instantaneous
luminosity L, measured in cm−2 s−1, represents the ability of a particle accelerator
to produce the required number of interactions. Let us consider two beams which
collide head-on with the same Gaussian transverse distributions. If one assumes
that they collide with a certain crossing angle without transverse offsets from their
corresponding reference orbits, then the instantaneous luminosity is given by [4]

L := SfN
2
bfrevnB

4πσ∗xσ∗y
= SfN

2
bfrevnBβ0γ0

4π
√
β∗xεx,n

√
β∗yεy,n

, (1.2)

where Nb is the number of particles in one colliding bunch, nB is the number of
bunches per beam, frev the revolution frequency of the particles, σ∗x and σ∗y the
rms transverse beam sizes of one bunch at the collision point assuming negligible
dispersions, Sf ≤ 1 is the so-called reduction factor which takes into account the
impact of the crossing angle on the luminosity, β0 and γ0 are the relativistic Lorentz
factor, β∗x and β∗y are the betatron amplitude functions at the collision point and
εx,n = β0γ0εx and εy,n = β0γ0εy are the normalized 1-rms transverse emittances for
one bunch (being εx and εy the so-called geometrical emittances). See Appendix A
for more details on all the transverse-plane quantities used here.

Integrating both sides of Eq.(1.1) in a generic time interval [0, T ] we obtain the
number of events of interest occurring in the chosen interval

R[0,T ] = L[0,T ]
int · σp, (1.3)

where L[0,T ]
int is the integrated luminosity in the interval [0, T ]

L[0,T ]
int :=

∫ T

0
L(t′)dt′. (1.4)

The instantaneous luminosity quickly decreases from its initial maximum value
due to the protons consumed in the collisions [5]. This peak value cannot usually
exceed some nominal quantity, due to limitations in accepting an arbitrarily high
number of collision events at the experimental detectors (event “pile-up” constraints)
and due to damaging energy deposition in the interaction-region magnets caused
by the collisions. Therefore it can be useful to design a collider in such a way
that the instantaneous luminosity remains constant with time (“leveled” luminosity)
since, for a desired integrated luminosity, the peak luminosity with leveling will be
considerably lower than the one (“virtual”) without leveling.

It is important to note that, in Eq.(1.2), the parameters Sf, frev, β0, γ0, β∗x and
β∗y depend exclusively on the collider itself, while Nb, nB, εx,n, εy,n depend also on
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the injector chain of the collider. If εn = εx,n = εy,n and β∗ = β∗x = β∗y , then Eq.(1.2)
can be written as

L = Sf
4πfrevnBNb

Nb
εn

β0γ0
β∗

. (1.5)

Thus the instantaneous luminosity is proportional to the current of one circulating
beam Ib = qfrevnBNb and to the beam brightness [6]

Bn := Nb
εn
. (1.6)

The instantaneous luminosity is also proportional to the total particle energy Etot
(usually in the collider β0 ≈ 1 and Etot ∝ γ0), and it is inversely proportional to
β∗. Note that the definition of brightness in Eq.(1.6) is not unique (see for example
Refs.[7, 8]).

The quantities brightness and luminosity are important figures of merit of the
beam quality and usually they need to be maximized. As shown below, the LHC
injector chain largely determines the beam brightness at the LHC collision point,
unless significant transverse emittance blow-up or losses occur in the collider itself.

1.3 The HL-LHC and LIU Projects
The proton run of the LHC during 2010-2013 was very successful thanks to the
discovery of the Higgs Boson in 2012 [2, 9]. The accelerators of the injector complex
made a fundamental contribution to the performance of the LHC being able to
deliver beams with Nb ≈ 1.7 · 1011 ppb (protons per bunch) with half the expected
normalized transverse emittance [10]. As a consequence, the beam brightness was
more than doubled and it was possible to almost compensate the significant transverse
emittance blow-up experienced in the LHC, the reduced beam collision energy of
4 TeV relative to the design 7 TeV, and the halved number of bunches injected per
fill. Overall a peak luminosity of 7.5 · 1033 cm−2 s−1 was reached, instead of the
design value of 1034 cm−2 s−1. The on-going second run of the LHC (2015-2018) has
also proven to be successful, since in 2017 a peak luminosity of 2× 1034 cm−2 s−1

was reached, doubling the design value [10].
In spite of being beyond nominal, the current performance of the LHC injector

complex is insufficient to fulfill the requests of the High Luminosity LHC (HL-LHC)
Project, which aims at accumulating about 300 fb−1/year of integrated luminos-
ity with protons starting from Run 4 in 2025, relying on a leveled luminosity of
7.5× 1034 cm−2 s−1 [11]. To reach this challenging target, one of the most significant
directives of the HL-LHC Project is to double the intensity of the beam injected into
the LHC while multiplying by a factor of 2.4 its brightness. This request should be
fulfilled by the end of Run 3 in 2024. The LHC Injector Upgrade (LIU) Project has
the important task to perform all the needed upgrades in the LHC injector chain
in order to fulfill the HL-LHC requests. As mentioned in the previous Section, the
beam brightness has to be increased at the beginning of the LHC injector chain and
then possibly preserved along the accelerator complex. Therefore, in order to attain
the new required beam parameters at LHC injection, the LIU Project has planned
serious upgrades also for the PSB, the first synchrotron in the LHC proton injector
chain.
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Another ambitious goal established by the HL-LHC Project is to double the
number of lead ions at the LHC injection. In the baseline of the LIU Project the
number of bunches extracted from the SPS should be doubled. A sophisticated
RF manipulation called momentum slip-stacking is supposed to interleave two SPS
batches in longitudinal phase space in order to halve the bunch spacing from 100 ns
to 50 ns. Momentum slip-stacking has never been used in the SPS and it will need
a significant upgrade of the Low Level RF system during Long Shutdown 2 (LS2,
2019-2021).

1.4 Motivations and Goals of the Thesis

As discussed in the previous Section, the LIU Project includes different challenging
upgrades of the LHC injector chain completed in LS2. In particular, this thesis
focuses on studies of longitudinal beam dynamics including collective effects for PSB
proton beams and SPS ion beams. Beam dynamics simulations are of paramount
importance to predict future machine performance with the new beam and machine
parameters. Since a numerical code able to simulate complex beam dynamics
in reasonable computing time is needed, the macro-particle code BLonD (Beam
Longitudinal Dynamics) has been developed at CERN and the necessary algorithms
needed for the studies have been implemented and optimized. In order to prove
code reliability, numerous benchmarks between BLonD, other codes and analytical
formulas have been performed.

There are three main goals of this thesis. The first one is to show the fundamental
features of the BLonD code which helped in performing the required studies for
the LIU Project. Relevant benchmarks are also presented for code validation and
optimization. The second aim is to analyze the longitudinal beam stability of the
PSB proton beams after upgrades (in 2021), taking into account in simulations
collective effects and Low Level RF control systems. The third goal is the design
and optimization of the momentum slip-stacking dynamics for SPS ion beams after
LS2, in order to prove the feasibility of the method while providing the required
beam quality at SPS extraction. Simulations of this complicated RF manipulation
using an accurate SPS impedance model and realistic beam parameters are essential
step in realization of this RF gymnastics.

1.5 Outline of the Thesis

Chapter 1 is an Introduction. Chapter 2 presents some fundamental notions of the
theory of synchrotron motion in accelerators. The BLonD code is also introduced,
and its main characteristics are described. Emphasis is placed on some important
algorithms and concepts which have been crucial for the beam dynamics studies
shown later in the thesis. Whenever possible, a link between theory and simulations
has been discussed in presenting theoretical aspects of beam dynamics.

A review of the main approaches used in longitudinal beam dynamics codes to
compute collective effects is presented in Chapter 3. Two of these methods, the
ones used in the BLonD and MuSiC codes, adopt quite different techniques for
induced voltage calculation and for this reason they are examined in detail through
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extensive benchmarks between them and comparison with analytical formulas. The
goal is to check the BLonD reliability for the simulations performed in this thesis,
which in many cases include collective effects. The benchmarks presented here are
also important since they provide a fundamental understanding of numerical issues
encountered when collective effects are included in simulations. Related numerical
pitfalls that need to be avoided are highlighted.

Chapter 4 starts with a detailed description of some of the main PSB machine
and beam parameters, emphasizing the difference between the current situation and
the after-upgrade scenario. The consequences of the LIU Project requests in terms
of parameter values are explained. One Section is then dedicated to describe the
conventions used in the PSB to measure the longitudinal bunch length and emittance.
Studies using both measurements and simulations, needed for taking the decision
to replace the current ferrite RF systems with Finemet® ones after upgrade, are
shown. Then the derivation of the future PSB longitudinal space charge impedance,
very important in non-ultrarelativistic energy machines, is presented. The full PSB
longitudinal impedance model is also described, singling out the Finemet® cavity
contribution with and without the effect of the beam loading compensation through
Low Level RF cavity-based feedbacks. Then double RF operation in the PSB is
analyzed in detail, giving emphasis to the effects of the multi-turn induced voltage
on the RF phase calibration between the main and second RF systems. Finally
simulation results for PSB nominal and high intensity beams are presented, beam
stability issues are highlighted, and suggestions for possible cures are given.

Controlled longitudinal emittance blow-up in the PSB is currently needed to
counteract transverse direct space charge effects at PS injection. After LS2 it will
become even more important due to the higher required longitudinal emittances.
While presently the blow-up is achieved using a high-harmonic RF phase modulation
generated by a dedicated RF cavity, Chapter 5 introduces another method, never
used in the PSB, based on the injection of band-limited RF phase noise into the
main harmonic RF system. The effect of phase noise has very interesting features
and its usage can complement the phase modulation technique. Then attention is
given to the modeling and implementation in the BLonD code of the PSB beam-
based feedbacks (phase and radial loops), which are and will be crucial to preserve
beam stability in operation along the entire cycle. Since the phase noise will be
counteracted by the phase loop, the interaction between them is analyzed. Then
important measurements proving that the phase noise technique will be able to
satisfy the LIU requirements are shown. Finally more realistic simulations for the
after-upgrade beams are performed, using all the tools developed in Chapter 4, and
including beam-based feedbacks and longitudinal emittance blow-up.

Chapter 6 introduces first the principle behind momentum slip-stacking, which
is supposed to be used in the SPS after RF upgrade to interleave two ion batches
in the longitudinal phase space halving the bunch distance. This complicated RF
manipulation needs the design and optimization of numerous parameters, momentum
and RF programs. Therefore Chapter 6 aims at finding the optimal sets of parameters
for the three different optics available in the SPS. Beam dynamics simulations are
performed including an accurate longitudinal impedance model and using realistic
beam parameters. Simulation results are carefully analyzed to establish that the
LIU requests can be fulfilled. The last part of Chapter 6 deals with beam stability
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considerations and it provides suggestions to counteract possible limitations due to
collective effects.

Chapter 7 provides a summary of the thesis, highlighting the main conclusions
and the personal achievements.

Finally Appendix A contains some elements of transverse beam dynamics which
are needed to understand several important concepts presented in this thesis.
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Chapter 2

Fundamentals of Synchrotron
Motion and the BLonD Code

2.1 Introduction

The BLonD (Beam Longitudinal Dynamics) code was started in 2014 in the RF
group of the Beams Department at CERN [12]. During the past years this tool has
been steadily developing and nowadays it allows, through macro-particle simulations,
to perform almost all the tasks required for longitudinal beam dynamics studies
in synchrotrons, such as acceleration of multi-bunch beams in multi-harmonic RF
systems, including RF feedbacks, and beam manipulations, all with intensity effects.
In addition great effort was and is still applied to speed up the computations
through conversion of Python functions into C++ routines, using also parallelization
and vectorization techniques [13, 14]. This is necessary for the computationally-
demanding simulations BLonD has to deal with. The BLonD code has been used to
simulate beams in all the CERN synchrotrons (the first was the SPS [15, 16]) and it
has been adopted also at GSI (Germany) and Fermilab (USA). Figure 2.1 shows
graphically how the particle tracking works in BLonD and illustrates some of the
code features. All of them and many others will be presented either in this Chapter
or later.

Some fundamental notions of longitudinal beam dynamics which will be used
extensively throughout the thesis are also presented in this Chapter. Since often these
concepts have been translated into algorithms, which then have been implemented
into the BLonD code, this Chapter tries to link theory and algorithms whenever
possible.

2.2 Definition of Synchrotron

A synchrotron is a specific type of circular particle accelerator which, through the
use of electromagnetic fields, is able to accelerate and confine a charged particle
beam keeping the same closed orbit. The electric field is responsible for the particles
acceleration. The magnetic field, which bends the beam into its cyclic path, increases
during acceleration, being synchronized to the rising energy of the particles. In this
thesis the term acceleration indicates an increase in energy of the particle and not a
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Figure 2.1. Scheme illustrating some features of the BLonD code. In the center, a schematic
drawing of an example of synchrotron is shown. The several red boxes illustrate, starting
from the top and moving clock-wise: beam acceleration, RF phase noise injection for
longitudinal emittance blow-up, induced-voltage calculations and generation of stationary
beam distributions taking into account intensity effects.

change of the direction of its velocity vector.
The force F acting on a particle with charge q and velocity v in an electromagnetic

field is called Lorentz force and is given by (see e.g. Ref.[17])

F = q(E + v ×B). (2.1)

The electric E and magnetic B fields are provided respectively by radio-frequency
(RF) cavities and dipole magnets placed along the ring. The energy gain per turn of
the particle is given by

(∆E)gain =
∮
Sct

F · ds = q

∮
Sct

E · ds + q

∫ T0

0
v ×B · vdt = q

∫
RF gaps

E · ds, (2.2)

where the contour integrals are taken around the closed trajectory Sct and T0 is the
time needed to perform one revolution turn. Note that the magnetic field, which is
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perpendicular to the particle orbit, does not contribute to the energy increase of the
particle.

Let us suppose that the synchrotron is perfectly circular with the central orbit
having radius ρ0. In other words we suppose that the dipole magnets, responsible
for the particle bending, are placed all around the ring. At a given energy, the
centrifugal force acting on the circulating particle has to be exactly compensated by
the bending magnetic field. Therefore the following relation must hold

F = mv2

ρ0
= qvB, (2.3)

where m is the mass of the particle. Rearranging Eq.(2.3) one obtains the so-called
magnetic rigidity formula [17]

Bρ0 = p

q
. (2.4)

This last expression shows that the magnetic field has to be proportional to the
particle momentum at each revolution turn in order to accelerate the particle while
keeping it on a circular trajectory. In other words, the RF cavities, responsible for
the increase of the particle momentum, have to be synchronized with the magnetic
field.

In reality a synchrotron is never perfectly circular, since the dipoles do not cover
the full ring to leave space, for example, to straight sections where the RF cavities
can be placed. However, to be able to properly bend a particle in a closed trajectory,
combining all the dipoles together a circle of dipole bending radius ρ0 is obtained
and therefore Eq.(2.4) is still valid. It is possible to define a mean radius of the
machine R, with R > ρ0, and the corresponding mean circumference Cring = 2πR.
The average dipole field is defined as [18]

B := 1
Cring

∮
Sct
Bds = 1

Cring

 ∫
straights

Bds+
∫

dipoles

Bds

 = ρ0B

R
, (2.5)

since the dipole field is zero in the straight sections and independent on s along
the dipoles. Using Eq.(2.4) we find indeed a generalization of the magnetic rigidity
formula

BR = p

q
. (2.6)

From now on the mean radius of the machine will be denoted without the
bar. Note that in our derivations above we neglected, as a first approximation,
the presence of higher order (quadrupolar, sextupolar, etc.) magnetic fields and
self-induced electromagnetic fields, since all of these contributions are generally small
relative to the centrifugal and bending forces.

2.3 Energy Gain per Turn

Let us consider an RF cavity having length lgap in a synchrotron. We assume that
a generic particle traverses the RF gap along its central axis, where generally the
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electric field E is purely longitudinal. If we fix a certain point s along the gap then
the electric field at s depends on time according to (see e.g. Ref.[17])

E(t) = Ê sin(ωrf t+ φrf), (2.7)

where Ê is the design amplitude of the electric field, while ωrf and φrf are respectively
the RF angular frequency and phase of E . Starting from Eq.(2.2) and assuming only
one RF gap we have

(∆E)gain = q

∫ lgap
2

− lgap
2

E(s)ds = qÊ
∫ lgap

2

− lgap
2

sin
(
ωrf
v
s+ φrf

)
ds (2.8)

In traveling wave structures, as those used in the SPS [19], the phase velocity of
the RF wave can be adjusted to match the particle speed, in such a way that the
particle sees the same phase φ̂rf of the electric field all along its passage through the
gaps. Equation (2.8) simply becomes

(∆E)gain = qÊ
∫ lgap

2

− lgap
2

sin φ̂rf ds = qVrf sin φ̂rf, (2.9)

where Vrf = Êlgap is the maximum voltage that can be obtained through the cavity.
In standing wave cavities, as those installed in the PSB [20], the RF wave is

not propagating according to the particle speed. In this case the particle will see
different RF phases along its passage through the gap. Assuming that the change
in particle velocity along the gap is negligible and starting from Eq.(2.8), it follows
that

(∆E)gain = qÊ
∫ lgap

2

− lgap
2

cos
(
ωrf
v
s

)
sinφrf ds = 2qÊv sinφrf

ωrf
sin
(
ωrf lgap

2v

)
, (2.10)

where the sum trigonometric identity and the fact that the sinusoidal function is
odd in the interval [−lgap/2, lgap/2] have been used. Rearranging the factors the
following expression is obtained

(∆E)gain = qVrf Ta sinφrf, (2.11)

where

Ta =
sin
(
ωrf lgap

2v

)
ωrf lgap

2v
(2.12)

is called transit time factor. Notice that Ta < 1 and that Ta converges to one when the
argument of the sinusoidal function goes to zero. In addition ωrf lgap/(2v) ∝ lgap/Cring
(see next Section), therefore if lgap � Cring then Ta ≈ 1 in Eq.(2.11). In this thesis
Ta = 1 is always assumed.

2.4 Longitudinal Equations of Motion
In this Section the longitudinal equations of motion for one particle circulating
in a synchrotron will be derived. The derivation here follows the BLonD code
documentation [21] and is in part similar to what is reported in Ref.[22].
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The particle will receive first a kick in energy through all the RF systems (cavities)
present in one RF station and then will drift along the ring through the dipole
magnetic fields (see also Fig.2.1). In the case of multiple RF stations, the particle
will go in one turn through the different stations taking the corresponding kicks
in energy and drifting from one station to the following. In order to simplify the
notation and according to what will be used later, the presence of just one RF
station in the ring is assumed.

The design (synchronous) energy program E
(n)
0 is assumed to be given for each

revolution turn (for every n); roughly said, this program defines the energy values the
circulating beam on average should have turn after turn in order to be accelerated.
From E

(n)
0 the momentum p

(n)
0 and the relativistic quantities β(n)

0 and γ(n)
0 can be

derived. Defining R0 as the average radius of the design orbit (usually the central
orbit of the beam pipe), the angular frequency will be ω(n)

rev,0 = β
(n)
0 c/R0 and the

corresponding revolution period will be T (n)
0 = 2π/ω(n)

rev,0. The design momentum is
assumed to be synchronized with the average magnetic field program B

(n)
0 according

to the previously discussed formula

B
(n)
0 R0 = p

(n)
0 /q. (2.13)

Hence, a particle located on the design orbit and leaving the RF station with the
synchronous energy will remain on the design orbit and will return to the RF station
after exactly one revolution period T0; we will call this particle “synchronous”. Note
that in the present thesis the subscript 0 refers to the synchronous particle or to
the design programs associated with it. As was observed in the previous Section,
it is also assumed that the length of the RF station is small relative to the ring
circumference.

An external reference time t(n)
ref can then be defined using the values T (n)

0

t
(n)
ref :=

n∑
i=1

T
(i)
0 , n = 0, 1, 2 . . . (2.14)

From that, the arrival time t(n) of an arbitrary particle to the RF station relative to
the reference time at turn n− 1 can also be defined

∆t(n) := t(n) − t(n−1)
ref , n = 1, 2, 3 . . . (2.15)

From Eqs.(2.14) and (2.15) it follows that

t(n) ∈
[
t
(n−1)
ref , t

(n)
ref

]
or ∆t(n) ∈

[
0, T (n)

0

]
(2.16)

The phase of the RF voltage of the kth RF system at the arrival time t(n) of the
particle is

φrf,k(t(n)) =
∫ t(n)

0
ωrf,k(τ)dτ + φ

(n)
offset,k =

n−1∑
i=1

ω
(i)
rf,kT

(i)
0 +

(
t(n) − t(n−1)

ref

)
ω

(n)
rf,k + φ

(n)
offset,k = ω

(n)
rf,k∆t

(n) + φ
(n)
rf,k.

(2.17)
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The quantity
∑n−1
i=1 ω

(i)
rf,kT

(i)
0 is a multiple of 2π if and only if the condition

ω
(i)
rf,k = hω

(i)
rev,0 is satisfied for each i, where h is the main harmonic number of the

ring defining the amount of bunches one synchrotron can accelerate simultaneously.
The term φ

(n)
offset,k can describe, for example, the effect of RF phase noise or constant

phase offsets. Thus, according to Eq.(2.11) the total energy change in one turn of
the particle is

E(n+1) = E(n) + q
nrf∑
k=1

V
(n)
rf,k sin

(
ω

(n)
rf,k∆t

(n) + φ
(n)
rf,k

)
, (2.18)

where nrf is the number of RF systems in the section. Defining ∆E(n) := E(n)−E(n)
0

we have

∆E(n+1) = ∆E(n) + q
nrf∑
k=1

V
(n)
rf,k sin

(
ω

(n)
rf,k∆t

(n) + φ
(n)
rf,k

)
−
(
E

(n+1)
0 − E(n)

0

)
. (2.19)

To derive the second equation of motion for a generic particle, we start with the
expression

t(n+1) = t(n) + 2π/ω(n+1)
rev , (2.20)

where ω(n)
rev is the angular revolution frequency of the particle at nth turn. Relative

to the reference time, we obtain

∆t(n+1) = ∆t(n) + 2π
ω

(n+1)
rev

− 2π
ω

(n+1)
rev,0

= ∆t(n) + T
(n+1)
0

 1

1 + ω
(n+1)
rev −ω(n+1)

rev,0

ω
(n+1)
rev,0

− 1

 .
(2.21)

The frequency slippage of an off-momentum particle during one turn is defined with
respect to the design synchronous particle [17],

∆ωrev
ωrev,0

= ωrev − ωrev,0
ωrev,0

= −η(δ)δ = −
(
η0 + η1δ + η2δ

2 + . . .
)
δ, (2.22)

where δ = ∆p/p0 = ∆E/(β2
0E0) is the relative off-momentum of the particle and

ηi are the slippage factors defined through the momentum compaction factors αi
(e.g. η0 = α0 − 1/γ2

0). The factors αi are constant numbers for a given machine and
depend on the optics. Using Eq.(2.22), we can rewrite Eq.(2.21) as

∆t(n+1) = ∆t(n) + T
(n+1)
0

( 1
1− η(δ)(n+1)δ(n+1) − 1

)
. (2.23)

The energy where η0 = 0 is called transition energy and the corresponding gamma
is γtr = 1/√α0. When |γ0 − γtr| � 0 then the linear approximation can be taken in
Eq.(2.22) and, since usually |η0δ| � 1, we obtain

∆t(n+1) ≈ ∆t(n) + T
(n+1)
0

(
1

1− η(n+1)
0 δ(n+1)

− 1
)
≈ ∆t(n) + T

(n+1)
0 η

(n+1)
0 δ(n+1).

(2.24)
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If |γ0 − γtr| ≈ 0 then additional terms should be taken in Eq.(2.22), and Eq.(2.23)
should be used.

Finally, the two discrete longitudinal equations of motion for the particle i in
the bunch can be written in the form

∆E(n+1)
i = ∆E(n)

i + q
nrf∑
k=1

V
(n)
rf,k sin

(
ω

(n)
rf,k∆t

(n)
i + φ

(n)
rf,k

)
−
(
E

(n+1)
0 − E(n)

0

)
+ qV

(n)
ind,i,

(2.25)

∆t(n+1)
i = ∆t(n)

i + T
(n+1)
0 η

(n+1)
0(

β2
0
)(n+1)

E
(n+1)
0

∆E(n+1)
i , (2.26)

where V (n)
ind,i ≡ V

(n)
ind,i({∆t

(n)
m }m) is the so-called induced voltage which acts on the

particle i and is induced by all the other particles in the beam due to collective
effects (see next Chapter).

Equations (2.25) and (2.26) can be considered as a mapM from a point (∆t(n)
i ,

∆E(n)
i ) to another point (∆t(n+1)

i , ∆E(n+1)
i ) in the (∆t, ∆E) plane. Neglecting the

collective effects term in the RHS of Eq.(2.25), the motion of the various particles in
phase space becomes decoupled, and the fact that the Jacobian determinant of the
mapM is equal to one,

J(M) =

∣∣∣∣∣∣∣∣
∂(∆t(n+1)

i )
∂(∆t(n)

i )
∂(∆t(n+1)

i )
∂(∆E(n)

i )
∂(∆E(n+1)

i )
∂(∆t(n)

i )
∂(∆E(n+1)

i )
∂(∆E(n)

i )

∣∣∣∣∣∣∣∣ = 1, (2.27)

implies that the phase space area is conserved underM. This property is related to
the fact that ∆t and ∆E are canonical (or conjugate) variables, that the dynamics
is symplectic and that the Louville theorem holds true.

The two difference Eqs.(2.25) and (2.26) define the so-called synchrotron motion
in the longitudinal phase space (∆t, ∆E). The coordinate ∆t of a particle changes
followed by an impulse which modifies only the other coordinate ∆E. Therefore the
dynamics under study is impulsive where the drift is acceleration-free. A continuous
system can be derived from Eqs.(2.25) and (2.26) to introduce the Hamiltonian
of the synchrotron motion (see next Section), however the differential equations
obtained are only continuous approximations to the impulsive system under study.
Sometimes in literature the opposite reasoning is adopted, considering the difference
equations as a discrete approximation of the continuous system. The differential
equations corresponding to Eqs.(2.25) and (2.26) are

˙∆Ei = q

T0

nrf∑
k=1

Vrf,k sin(ωrf,k∆ti + φrf,k)−
δE0
T0
− q

T0
Vind,i = − ∂H

∂∆ti
, (2.28)

∆̇ti = η0
β2

0E0
∆Ei = ∂H

∂∆Ei
, (2.29)

where the dot operator represents the derivative with respect to time t, assuming
that dt = T0. The Hamiltonian of the system H will be presented later. All the RF
and machine parameters defined in Eqs.(2.25) and (2.26) for every revolution turn n
now depend on the continuous variable t.
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2.5 Small-amplitude Synchrotron Motion
Neglecting collective effects and supposing that only one RF system is present,
Eqs.(2.28) and (2.29) can be rewritten as

∆̇E = q

T0
Vrf(sinφ− sinφs), (2.30)

φ̇ = ωrfη0
β2

0E0
∆E, (2.31)

where φ = ωrf∆t+φrf. In particular the synchronous phase φs = ωrf∆ts+φrf satisfies
by definition the equation

∆E0 = qVrf sin(φs) (2.32)

Expanding sinφ = sin(φs + ∆φ) around φs and supposing a slow variation in time
of φs relative to φ we obtain from Eqs.(2.30) and (2.31) the following differential
equation for ∆φ

∆̈φ+ ω2
s0∆φ = 0, (2.33)

where ωs0 is the so-called small-amplitude angular synchrotron frequency given by

ωs0 =
√
ωrfqVrf(−η0 cosφs)

T0β2
0E0

(2.34)

after imposing the stability condition

η0 cosφs ≤ 0. (2.35)

Solving Eq.(2.33 ) we obtain

φ(t) = φs + φ̂ cos(ωs0t), (2.36)

where φ̂ is the amplitude of the oscillations. Therefore particles close to the syn-
chronous particle perform pendulum-like synchrotron oscillations around it. The
stability condition implies that φs ∈ [−π/2, π/2] below transition energy (η0 < 0)
and φs ∈ [π/2, 3π/2] above transition energy (η0 > 0). Acceleration of the particles
is in particular obtained if φs ∈ [0, π/2] (below transition) and if φs ∈ [π/2, π] (above
transition), while deceleration is obtained taking the corresponding other values for
φs.

2.6 Hamiltonian of the Synchrotron Motion
The Hamiltonian corresponding to Eqs.(2.28) and (2.29) is given by

H(∆t,∆E) =
∫

∆̇t d(∆E)−
∫

∆̇E d(∆t)

= η0
2β2

0E0
∆E2 + q

T0ωrf,k

nrf∑
k=1

Vrf,k cos(ωrf,k∆t+ φrf,k)

+δE0
T0

∆t+ q

T0

∫
Vind(∆t) d(∆t) + CH ,

(2.37)
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where CH is an arbitrary constant. The potential well Utot is defined as the sum of
the RF and induced potentials:

Utot(∆t) := Urf(∆t) + Uind(∆t), (2.38)

where

Urf(∆t) := q

T0ωrf,k

nrf∑
k=1

Vrf,k cos(ωrf,k∆t+ φrf,k) + δE0
T0

∆t, (2.39)

Uind(∆t) := q

T0

∫
Vind(∆t) d(∆t) (2.40)

We fix the constant CH in such a way that the absolute minimum of Utot is equal to
zero.

Every stable particle trajectory in longitudinal phase space is associated to
a maximum time amplitude of oscillations ∆t and to a constant value of the
Hamiltonian H(∆t, 0). The equation of the particle trajectory can be derived
from Eq.(2.37) taking the real values of

∆E(∆t) = ±
√

2β2
0E0
|η0|

[H(∆t, 0)− U(∆t)]. (2.41)

The area εl enclosed by the particle trajectory is named particle emittance and is
given by

εl(∆t) =
√

2β2
0E0
|η0|

∮
[H(∆t, 0)− U(∆t)]

1
2d(∆t). (2.42)

Equations (2.41) and (2.42) can also be used to define the stable trajectory with
maximum ∆t (the separatrix ∆Esep) and the portion of phase space enclosed by it
(the bucket area Ab).

Eliminating ∆E through Eqs.(2.29) and (2.41), inverting and then integrating in
dt, we can obtain the expression for the so-called synchrotron period Ts(∆t), that is
the time needed for a particle to perform a complete oscillation in phase space:

Ts(∆t) =
√
β2

0E0
2|η0|

∮
[H(∆t, 0)− U(∆t)]−

1
2d(∆t). (2.43)

The synchrotron frequency fs(∆t) is obtained inverting Ts(∆t). Another way to
compute Ts is to set U = U(∆t) = H(∆t, 0) in Eq.(2.42) and calculate

dεl

dU
= Ts (2.44)

Equivalently, the synchrotron frequency fs for all the amplitudes ∆t is obtained
computing the ratio of the derivatives of the potential well and the emittance with
respect to ∆t.
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2.7 Frenet-Serret Coordinate System and Longitudinal
Coordinates

As it was mentioned before, the synchronous particle always follows the reference tra-
jectory. A curvilinear right-handed coordinate system (x̂, ŝ, ŷ) (called Frenet-Serret
system) can be associated to a generic particle circulating along the synchrotron,
where the x̂ unit vector points radially outward, ŝ is tangent to the design path
and points in the direction of motion of the particle and ŷ is perpendicular to the
plane where the reference trajectory lies (see for example Fig.2.2). The coordinate s,
which is the path length measured along the design orbit from the point s = 0, can
be thought as independent variable. Therefore the so-called betatron or transverse
coordinates x and y are functions of s. It follows that, for every s, x(s) = 0 and
y(s) = 0 for the synchronous particle.

The Frenet-Serret system is generally used in transverse beam dynamics. However
it cannot describe the relative longitudinal distance between two particles at a given
time. To do that we have to set the time as independent variable and therefore each
particle will be associated with a triple (x(s(t)), s(t), y(s(t))).

Figure 2.2. Curvilinear Frenet-Serret right-handed coordinate system (x̂, ŝ, ŷ) following
a generic particle (in red) along the synchrotron. The unit vector x̂ points radially
outward, ŝ is tangent to the reference circumference (in green) of radius R0 and points
in the direction of motion of the particle and ŷ is perpendicular to the plane of the
design orbit. The coordinate s is the path length measured along the design orbit from
the s = 0 axis, while θ is the corresponding angular displacement. The synchronous
particle (in blue) has always the betatron coordinates x and y equal to 0. For a given
time t̄, s(t̄) equals s1 and s2 for the generic and synchronous particles respectively.

Defining the new longitudinal variable ∆s(n) := 2πR0 − (s(n−1) mod 2πR0), we
can relate ∆s to the ∆t introduced in Eq.(2.15) through the following expression

∆s(n) = β
(n)
0 c∆t(n). (2.45)

If we denote by θ the angular displacement from the s = 0 axis and we define



2.8 Longitudinal Bunch Profile 19

∆θ(n) := 2π − (θ(n−1) mod 2π) then
∆s(n) = R0∆θ(n). (2.46)

Finally, starting from Eq.(2.17), we define ∆φ(n)
rf := φrf(t(n)) mod 2πh. If φoffset = 0

and ωrf = hωrev,0 for each revolution turn then

∆φ(n)
rf = ω

(n)
rf ∆t(n) = h∆θ(n). (2.47)

Analogously to the conjugate pair of longitudinal coordinates (∆t, ∆E), the
betatron x and y coordinates also have their corresponding canonical variables (the
transverse momentums px and py, see [17]), and several of the quantities introduced
before for the longitudinal plane (like the Hamiltonian and emittance) can be defined
also for the transverse planes. Usually the beam dynamics can be decoupled and
studied independently in the longitudinal and transverse planes due to the fact that
the synchrotron motion is much slower than the betatron one. This thesis focuses on
the longitudinal plane, however Appendix A presents some principles of transverse
beam dynamics useful to understand specific concepts introduced in this work (see
for example Eq.(1.2)).

2.8 Longitudinal Bunch Profile
Let us consider a bunch of NM particles in the longitudinal phase space (∆t,∆E),
where ∆t ∈ [0, Trf], being Trf = T0/h the RF period. It is possible to count how
many particles n1 are contained in the bin or slice (∆t1 < ∆t < ∆t2, ∆E), where
∆t2 = ∆t1 + ∆, being ∆ the time step (Fig.2.3, left). Repeating the procedure for
consecutive bins in phase space, and counting how many particles ni are contained
in the bin (∆ti < ∆t < ∆ti+1, ∆E), one obtains the so-called discrete longitudinal
bunch profile n or the continuous not-normalized line-density λ when ∆ converges
to zero and the number of particles is large enough to be considered infinite (Fig.2.3,
right). Supposing that the entire bunch is sliced, then∑

i

ni = NM ,

∫
Trf
λ(t)dt = NM . (2.48)

Once the longitudinal bunch profile is obtained, numerous quantities of interest
can be computed, as for example the bunch position mλ and length τl. Unless
otherwise specified, in the present thesis mλ is defined as the average position of the
bunch profile, therefore

mλ =
∫
Trf
λ(t)t dt∫

Trf
λ(t) dt . (2.49)

For simplicity of notation, mλ will also denote the bunch-profile average position in
phase coordinate, after having multiplied Eq.(2.49) by ωrf.

The bunch length can be computed in numerous ways, and some of them will be
mentioned in the following Chapters. Notice that the chosen convention determines
a certain stable particle-trajectory with Hamiltonian Hτ and longitudinal emittance
εl (see Fig.2.3).

The evolutions of mλ and τl along the acceleration cycle allow to determine
respectively the so-called dipole and quadrupole oscillations, which provide important
indications whether or not the beam suffers any instability or quality degradation.
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Figure 2.3. Example of bunch of particles contained inside an RF bucket in longitudinal
phase space (∆t,∆E) (left) and corresponding longitudinal bunch-profile n (right). The
bucket area Ab is delimited by the separatrix curve in red having Hamiltonian Hsep.
The profile is obtained slicing the bunch in phase space with a certain time step ∆.
In this example the synchronous time ∆ts and the bunch-profile average position mλ

coincide. Moreover, in this case, the end-to-end bunch length τl determines a stable
particle-trajectory with Hamiltonian Hτ and emittance εl.

.

2.9 Bunch Shaping in a Double RF System
Double RF systems can be used to shape the bunch profile, for example making
it longer or shorter once the longitudinal emittance εl is given. This shaping can
be useful for different reasons, such as when the profile cannot be larger than a
certain value in order for the beam to be extracted without losses or when the
maximum value of the line density has to be reduced in order to lower the transverse
space charge tune spread (see Chapter 4). Another important purpose is to increase
the synchrotron frequency spread along the bunch enhancing the so-called Landau
damping mechanism which helps in stabilizing the beam (see Chapter 3).

The total RF voltage seen by the beam is

Vrf,tot(∆t) = Vrf,1 sin(ωrf,1∆t+ φrf,1) + rVrf,1 sin(nωrf,1∆t+ φ1,2), (2.50)

where Vrf,1 and Vrf,2 = rVrf,1 are respectively the voltage amplitudes of the main
and second RF systems (usually r ≤ 1 for bunch shaping), φ1,2 is the relative phase
between them and n > 1 is the integer ratio between the frequencies of the two
systems.

The phase φ1,2 determines the double RF operating mode. The name of the
mode reflects the effect that the double RF system has on the bunch profile. For
a stationary bucket below transition energy and for n even, the bunch-shortening
mode (BSM) is obtained choosing φ1,2 = 0, while bunch-lengthening mode (BLM)
is achieved selecting φ1,2 = π, see for example Fig.2.4. Above transition energy, or
when n is odd, the opposite is true.

Fixing all the other machine and RF parameters, and assuming constant longitu-
dinal emittance, usually the BSM mode gives higher synchrotron frequency spread
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Figure 2.4. RF voltage Vrf,tot (green), RF potential Urf (red), synchrotron frequency
distribution fs (magenta), bunch profile or number of macroparticles per slice (blue)
and longitudinal phase space for the cases of double RF BSM (left), BLM (right) and
single RF (middle). Here r = 0.5 and n = 2. The emittance εl = 0.99 eVs and the bucket
area Ab are also indicated. Realistic examples using current PSB machine and RF
parameters (e.g h = 1 and Vrf,1 = 8 kV), however the buckets are supposed stationary
(p0 = 1 GeV/c).

along the bunch, however the peak line density also increases and the bucket area
decreases, see for example Fig.2.4. On the contrary, the BLM mode is advantageous
in all these respects, even though it requires a large accuracy for φ1,2 difficult to
achieve in the presence of strong collective effects and it can reduce the longitudinal
instability threshold for relatively long bunches [23].

2.10 Bunch Generation in the BLonD Code

Stationary particle distributions can be used for theoretical studies and for generation
of bunches in macro-particle simulations [24]. In this Section we will explain how
to generate a bunch in longitudinal phase space using a stationary distribution
when the Hamiltonian of the synchrotron motion contains both the RF and induced
potential. Sometimes such a generated bunch is said to be “matched” with intensity
effects.

2.10.1 Stationary Distributions

Let’s suppose the bunch we want to generate has Ntot particles enclosed in a domain
D. A longitudinal distribution function ψ = ψ(∆t,∆E, t) is a positive real function
such that the number of particles dN occupying the infinitesimal area d(∆t)d(∆E)
at time t is

dN(t) = Ntotψ(∆t,∆E, t)d(∆t)d(∆E). (2.51)
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Integrating Eq.(2.51) over D we obtain for every t

1 =
∫∫

D
ψ(∆t,∆E, t)d(∆t)d(∆E). (2.52)

Note that ψ can also be interpreted as a probability density function, that is as the
probability to find a particle in the area d(∆t)d(∆E) in the vicinity of the point
(∆t,∆E). The distribution ψ is said to be stationary when it does not depend
explicitly on the time t, that is ψ = ψ(∆t,∆E).

The time evolution of ψ(∆t,∆E, t) can be computed as

dψ

dt
= ∂ψ

∂t
+ ∂ψ

∂∆t∆̇t+ ∂ψ

∂∆E ∆̇E. (2.53)

Using Eqs.(2.28) and (2.29) we obtain

dψ

dt
= ∂ψ

∂t
+ [ψ,H]{∆t,∆E}, (2.54)

where the Poisson bracket of two generic functions f and g relative to a canonical
pair of coordinates q and p is defined as

[f, g]{q,p} = ∂f

∂q

∂g

∂p
− ∂g

∂q

∂f

∂p
. (2.55)

From the continuity equation [25]

∂ψ

∂t
+ ∂

∂∆t(ψ∆̇t) + ∂

∂∆E (ψ∆̇E) = 0, (2.56)

and using again Eqs.(2.28) and (2.29), we obtain the so-called Liouville equation

dψ

dt
= 0, (2.57)

which, together with the hypothesis that ψ is stationary, implies that the Poisson
bracket in Eq.(2.54) vanishes

[ψ,H]{∆t,∆E} = 0. (2.58)

Notice that any distribution of the form ψ = ψ(H) satisfies Eq.(2.58).

2.10.2 Algorithm for Bunch Generation

In the following we describe the algorithm used in BLonD to generate a bunch in
longitudinal phase space according to a generic distribution function ψ = ψ(H), see
also Ref.[26]. We focus on the physical concepts behind the algorithm neglecting the
technicalities necessary to efficiently write the code. We assume given the emittance
εl,τ of the bunch to be generated. It follows that ψ has to depend on a parameter
Hτ (εl,τ ), therefore ψ = ψHτ (H).

First we suppose that the induced potential is identically equal to zero (Utot = Urf).
The following steps have to be performed (we call the entire procedure R)
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1. Utot is computed integrating the energy equation of motion (2.28); then Utot
is restricted to the interval [∆tl,∆tr] where the separatrix is defined (we call
the restriction Ūtot). In general ∆tl and ∆tr are found by analyzing the shape
of Utot, including its local and absolute maxima and minima. In the simplest
case of single RF without acceleration ∆tl = 0, ∆tr = Trf.

2. Since min(Ūtot) = 0 (see Section 2.6) we can find the maximum value of ∆E
for the separatrix using Eq.(2.41)

max(∆Esep) =
√

2β2
0E0
|η0|

max(Ūtot) (2.59)

3. The grid of pointsG = [∆tl,∆tr]×[−max(∆Esep),max(∆Esep)] can be defined;
by construction, G contains the full bucket. The time and energy resolution
steps of G are named respectively ∆1 and ∆2.

4. The trajectories having the values in [∆tl,∆tr] as amplitudes are computed
using Eq.(2.41). Integrating the trajectories using Eq.(2.42) the corresponding
emittances εl are obtained. The values of the Hamiltonian are already available
since H = Ūtot. Therefore a function H(εl) is obtained.

5. The parameter Hτ is found interpolating H(εl) with εl,τ .

6. The values of the Hamiltonian at the points of grid G are obtained as

HG = |η0|
2β2

0E0
∆E2

G + Ūtot(∆tG). (2.60)

7. The distribution ψ is evaluated on the grid points using HG and Hτ , we call
ψG this restriction. If a grid point Q lies on a trajectory having HQ > Hsep,
then ψG(Q) is set to zero in order to avoid generating particles outside of the
RF bucket. This event can happen if and only if ψ(H) decays after Hsep.

8. From the discretization of ψ on G, it follows that∑
Q∈G

ψG(Q)∆1∆2 = A, (2.61)

with A in general different from one. Therefore a discrete probability function
on G can be obtained defining

ΨG(Q) := ψG(Q)∑
Q∈G ψG(Q) , (2.62)

This procedure of renormalization can be applied also when ψ(H) decays after
Hsep, since in this case Eq.(2.52) is violated after having imposed ψ(H) = 0
for H > Hsep.

9. If the resolution steps ∆1 and ∆2 are small enough and if ψ is a continuous
function of H, then we can assume that ψ provides a constant value for each
point belonging to a given cell of the grid. Therefore, if Q ∈ G, then ΨG(Q) is
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the probability that a generic particle of the bunch to be generated belongs to
the cell containing Q. To select a specific point of the cell, a value from the
uniform distribution defined on the cell itself has to be extracted.

10. Following the previous point, particles are generated independently from
each other using three random number generators, one associated with the
probability function ΨG to select the cell in G and the other two related to
two independent uniform distributions in order to determine the coordinates
∆t and ∆E inside the selected cell.

If the induced potential is different from zero, then Uind is added to Urf in R.
However Uind depends on the profile of the bunch to be yet generated. This implies
a circular reasoning. Notice that, if a stationary distribution including collective
effects exists, then the profile used to compute Uind must correspond to the profile
of the generated bunch for every application of R. One possible way to numerically
resolve this circular reasoning is to apply the following iterative algorithm

1. A bunch matched only with the RF potential is generated following R.

2. The corresponding profile is used to compute Uind and another bunch is
generated through R.

3. The previous step is repeated an arbitrary number of times.

At each step of this iterative algorithm we compute the error between two
consecutive beam profiles. The error can be defined for example as the root mean
square of the difference between the two profiles. When the error is relatively small,
the algorithm is terminated and the solution to our problem is found. Sometimes the
error does not converge to zero: this is generally due to the fact that the intensity
effects are relatively high or that the error between the profile of the bunch generated
at point 1. and the solution profile is too large. In this last case more convenient
initial conditions have to be used starting from the solutions obtained applying the
algorithm for lower beam intensities.

2.10.3 Examples of Stationary Distribution and Line Densities

One class of distributions commonly used for proton beams in theoretical studies
and simulations is the so-called binomial amplitude [27]

ψHτ ,µ(H) =

ψ0(Hτ , µ)
(
1− H

Hτ

)µ
, 0 ≤ H

Hτ
≤ 1

0, H
Hτ
≥ 1

(2.63)

where ψ0 is a normalization factor such that Eq.(2.52) is satisfied, Hτ is the value of
the Hamiltonian along the trajectory enclosing all the particles and µ ≥ 0 is a free
parameter.

For small amplitudes, in a stationary single RF bucket without collective effects
and after a rescaling of the phase space coordinates, we have H ∝ r̂2, where r̂ is the
amplitude of the synchrotron motion [24]. Substituting in Eq.(2.63) and integrating
with respect to ∆E to obtain the corresponding line densities, we can easily explain
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the names given to some binomial distribution and line densities: µ = 0 provides a
“water bag” density, while µ = 0.5 and µ = 1 give respectively a parabolic line and
parabolic amplitude densities (see also Fig.2.5).

Another common distribution density, usually used for electron beams, is the
so-called Gaussian [24] (the name is again explained substituting H with r̂2)

ψHτ (H) = ψ0(Hτ )e−2 H
Hτ , H ≥ 0 (2.64)

which, contrary to the binomial one, never vanishes with H. Notice that Hτ

corresponds to the value of the Hamiltonian enclosing around 95% (4σ) of the
particles.

As discussed before, in order to avoid generating particles outside the bucket, the
condition ψHτ (H) = 0 for H > Hsep has to be established; this restriction, which
always concerns the Gaussian distribution, never modifies the binomial distributions
whenever Hτ < Hsep. Notice also that, when generating a bunch with the method
described previously, the normalization factors in Eqs.(2.63) and (2.64) can be
neglected, since the probability function defined in Eq.(2.62) is invariant with
respect to those factors. We can therefore equivalently consider the not-normalized
distributions ψ̃ = ψ/ψ0 for our studies.

Figure 2.5 shows some mentioned not-normalized distributions, together with
the corresponding normalized bunch profiles obtained from the generated bunches
through the method explained in Section 2.8. Fixed a certain emittance εl,τ and
therefore Hτ , all the binomial profiles become zero at ∆t1 and ∆t2, which are identi-
fied through the intersections of the axis ∆E = 0 with the particle-trajectory having
Hτ as Hamiltonian. However the different values taken by µ change significantly
the density of the particles contained in Hτ , implying for example more noticeable
tails of the bunch profile when µ increases. As expected, the bunch profile of the
Gaussian distribution extends along the full bucket length.

2.11 Ring Periodicity

In this Section, to give a concrete example, we consider the discrete equations
of motion (2.25) and (2.26) with only one RF system, h = 1, η0 < 0, without
collective effects, RF phase modulations or corrections. We will give at the end some
considerations useful for generalization.

The simplified equations are

∆E(n+1)
i = ∆E(n)

i + qV
(n)
rf sin

(
ω

(n)
rev,0∆t(n)

i − π
)
−
(
E

(n+1)
0 − E(n)

0

)
, (2.65)

∆t(n+1)
i = ∆t(n)

i −
T

(n+1)
0 |η(n+1)

0 |(
β2

0
)(n+1)

E
(n+1)
0

∆E(n+1)
i . (2.66)

Notice that φrf = −π. Indeed the stability condition for synchrotron motion Eq.(2.35)
implies φs = ωrev,0∆ts + φrf ≈ 0, while Eq.(2.16) requires ∆ts ≈ T0/2. With the
same reasoning it follows that φrf = 0 above transition.

Without loss of generality, we can refer to Fig.2.6 to explain how to correct
Eqs.(2.65) and (2.66) when the geometry of the ring has to be taken into account.
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Figure 2.5. (Left) Different not-normalized stationary distributions ψ̃ = ψ/ψ0: water
bag (magenta), parabolic line (blue), parabolic amplitude (green), binomial with µ = 2
(black) and Gaussian (yellow). (Right) Normalized bunch profiles obtained using the
distributions shown on the Left Figure after the generation of the corresponding bunches
in longitudinal phase space. The points ∆t1 and ∆t2 where the binomial distributions
vanish are identified through Hτ (see the text). The machine and RF parameters chosen
in this example are the same used for the single RF case shown in Fig.2.4 (εl,τ = 0.99 eVs).

We assume that two particles P and Q outside of the RF bucket are about to drift
away from the phase space (∆t,∆E) at first turn, before the first kick in energy is
given through the sine wave in blue. We analyze the behaviors of the two particles
independently:

• particle P . Since ∆EP > 0, this particle drifts to the left in phase space. At
the beginning ∆t(1)

P > 0 and, after the first kick and drift through Eqs.(2.65)
and (2.66), a ∆t(2)

P < 0 is obtained. This means that P has to be kicked in
energy and drifted one more time with the sine wave in blue before being
“synchronized” with the other particles at second turn. In order to do that the
reference time has to be changed, from t

(1)
ref to t(0)

ref , obtaining

∆t(1)
P = ∆t(2)

P + T
(1)
0 . (2.67)

Then the equations of motion with the sine wave in blue are applied again
only on this particle having ¯∆t(1)

P obtaining as a result a new ∆t(2)
P , this time

in [0, T (2)
0 ], as desired. Then the particle will again drift to the left turn after

turn and the procedure is repeated whenever ∆tP < 0.

• particle Q. Since ∆EQ < 0, this particle drifts to the right in phase space.
At the beginning ∆t(1)

Q < T
(1)
0 and, after the first kick and drift with the sine

wave in blue, a ∆t(2)
Q > T

(2)
0 is obtained. This means that the particle will not

be kicked by the sine wave in green skipping the second turn and waiting for
the other particles to be kicked and drifted in order to be synchronized with
them at third turn. Therefore this time only a change of reference time from
t
(1)
ref to t(2)

ref is needed
∆t(3)

Q = ∆t(2)
Q − T

(2)
0 . (2.68)
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Then the particle will again drift to the right turn after turn and the procedure
is repeated whenever ∆t(n)

Q > T
(n)
0 .

Figure 2.6. Scheme showing how the ring periodicity algorithm works for an accelerating
bucket below transition energy with one RF system and h = 1. Three revolution turns
are considered, with T

(1)
0 > T

(2)
0 > T

(3)
0 . The different buckets are represented with

yellow-colored ellipses (the bunches are not identified). The uncaptured particle P (in
gray) with ∆E(1)

P > 0 drifts to the left at first turn and ∆t(2)
P < 0 at second turn. A

second kick from the sine wave in blue makes ∆t(2)
P > 0 and the particle is synchronized

with the bunch at second turn. The uncaptured particle Q (in purple) with ∆E(1)
Q < 0

moves to the right at first turn and ∆t(2)
Q > T

(2)
0 at second turn. This particle skips the

second turn with the sine wave in green and the synchronization with the bunch occurs
at third turn.

Figure 2.7 shows an example of an accelerating bucket below transition energy
with single RF system and h = 1. Notice that if the ring periodicity algorithm is not
applied, Eqs.(2.65) and (2.66) make all the particles crossing the line ∆t = T

(n)
0 in

phase space drift away to the right to plus infinity. This is in contradiction with the
ring geometry the equations indirectly refer to, and could give undesirable results
for example when the beam losses have to be computed accurately or when an
un-bunched beam has to be captured inside an RF bucket.

The algorithm just described can be extended without any complications to
the case above transition energy or in presence of multiple RF systems, since the
procedure depends only on the conventions used to define the longitudinal coordinate
∆t. Notice that there could be cases where parts of the bucket go beyond the line
∆t = T

(n)
0 in phase space, for example when the phase loop changes the design RF

frequency making the bucket shift relative to [0, T (n)
0 ], or when a second RF system

with relatively high voltage is added in BLM during acceleration. In these cases
the bunch will be split in phase space into two portions, which however behave as a
whole.
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Figure 2.7. Example of accelerating bucket below transition energy with single RF system
and h = 1. The particles flowing out from the right edge ∆t = T

(n)
0 enter back from the

left edge ∆t = 0 thanks to the ring periodicity algorithm.

2.12 Differential Equations for Synchronous Parameters
The mean radius R0 of a synchrotron is generally known. If only one of the other
three parameters B0, p0, frev,0 is also known, then the remaining two can be derived
using Eq.(2.13) and the relation frev,0 = β0c/(2πR0). In this Section we will prove
that the same holds if small deviations from the synchronous particle parameters are
considered, namely only two parameters out of four are independent. The differential
relations which we derive are very useful for several RF beam manipulations, as we
will see later in this Section.

For the first relation, we start from frev,0 = β0c/(2πR0). Therefore

∆frev
frev,0

= ∆β
β0
− ∆R

R0
. (2.69)

Since p = m0γv (m0 is the rest mass of the particle) and ∆γ/∆v = v0γ
3
0/c

2 we
obtain

∆p
∆v = γ0m0 + m0v

2
0γ

3
0

c2 = γ3
0m0 (2.70)

or, rearranging the terms,
∆β
β0

= 1
γ2

0

∆p
p0
. (2.71)

Combining Eqs.(2.69) and (2.71) we obtain the first desired relation

∆frev
frev,0

= 1
γ2

0

∆p
p0
− ∆R

R0
. (2.72)

For the second relation, we start from the definition of the momentum compaction
factor αc [17]

αc = p0
R0

∂R

∂p
= α0 + 2α1δ + 3α2δ

2 + . . . . (2.73)
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Truncating the series at the constant term α0 we obtain

∂R

∂p

∣∣∣∣∣
p=p0

= R0
p0
α0, (2.74)

and integrating
R = R0

pα0
0
pα0 . (2.75)

Rearranging the terms it follows that

p = p0

(
R

R0

) 1
α0
. (2.76)

Using the magnetic rigidity formula for the synchronous particle Eq.(2.13) we obtain

p = qB0ρ0

(
R

R0

) 1
α0
, (2.77)

and, taking the logarithms and differentiating, the second desired relation is

∆p
p0

= ∆B
B0

+ γ2
tr

∆R
R0

. (2.78)

From Eqs.(2.72) and (2.78) we can obtain the other two equations in the following
group

∆p
p0

= γ2
0

∆frev
frev,0

+ γ2
0

∆R
R0

, (2.79)

∆p
p0

= γ2
tr

∆R
R0

+ ∆B
B0

, (2.80)

∆B
B0

= γ2
tr

∆frev
frev,0

+ γ2
0 − γ2

tr
γ2

0

∆p
p0
, (2.81)

∆B
B0

= γ2
0

∆frev
frev,0

+ (γ2
0 − γ2

tr)
∆R
R0

. (2.82)

Since the condition of harmonicity between the RF and revolution frequencies must
always hold, we can substitute frf = hfrev in the equations above. Notice also that
these four relations are useful not only to study the changes of the synchronous
particle parameters from turn to turn, but also to quantify the parameters of a
generic particle close to the synchronous one at a given machine turn.

It is instructive to see what happens when one of the quantities ∆R, ∆frev, ∆B,
∆p is set to zero in the above four equations.

2.12.1 Case 1: ∆R = 0
The previous equations reduce to

∆p
p0

= ∆B
B0

,
∆p
p0

= γ2
0

∆frev
frev,0

,
∆B
B0

= γ2
0

∆frf
frf,0

. (2.83)
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We have ∆R = 0 for example in the classical case when the beam is accelerated
keeping it on the same design orbit. The first relation in Eq.(2.83) can be also
derived differentiating directly Eq.(2.13), assuming no radial displacement for the
synchronous particle from turn to turn. The second relation indicates that, when the
beam is maintained on the same orbit while the energy increases, the beam revolution
frequency also raises. The third relation shows how the operational magnetic field
and RF frequency programs have to be related to each other to keep the beam on
the nominal trajectory during acceleration.

2.12.2 Case 2: ∆frev = 0

In this case the equations reduce to

∆p
p0

= γ2
0

∆R
R0

,
∆B
B0

= γ2
0 − γ2

tr
γ2

0

∆p
p0
,

∆B
B0

= (γ2
0 − γ2

tr)
∆R
R0

. (2.84)

One realistic example to explain these relations can be given considering the
fixed-frequency injection currently operationally used at the CERN PSB. In this
machine the injection is done with ∆frf = 0 for few milliseconds, while ∆B > 0.
Since the injection happens below transition energy, Eq.(2.84) implies ∆p < 0 and
∆R < 0, meaning that the beam will experience a deceleration while moving inwards
the beam pipe.

2.12.3 Case 3: ∆p = 0

In this case the equations reduce to

∆frev
frev,0

= −∆R
R0

,
∆B
B0

= −γ2
tr

∆R
R0

,
∆B
B0

= γ2
tr

∆frev
frev,0

. (2.85)

The first relation can be used to understand why a beam debunches when all
the RF systems are turned off at an energy plateau with constant design magnetic
field. When the RF voltages are set to zero, the condition ∆p = 0 holds for all the
particles inside the bunch. All the particles having a radial displacement ∆R < 0
relative to the design trajectory will have ∆frev > 0 and therefore will move to the
left, turn after turn, in the (∆t, ∆E) phase space, which reference system is linked
to the design trajectory. The opposite will happen if ∆R > 0 and the beam will
therefore debunch. Note that this mechanism can also be inferred directly from the
equations of motion Eqs.(2.25) and (2.26) when ∆E(n+1)

i = ∆E(n)
i for every particle

i and every revolution turn n, assuming the intensity effects negligible.
The second relation in Eq.(2.85) can be used for example at injection in a

synchrotron to center a beam which has a radial displacement relative to the central
trajectory. In this case ∆p = 0 (the constant energy at injection is the one coming
from the injector) and a measurement of the displacement ∆R at first turn allows
to find the desired ∆B needed for trajectory alignment.
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2.12.4 Case 4: ∆B = 0
The equations reduce to

∆p
p0

= γ2
tr

∆R
R0

,
∆frev
frev,0

= −η0
∆p
p0
,

∆frev
frev,0

= γ2
tr − γ2

0
γ2

0

∆R
R0

. (2.86)

Focusing at a given revolution turn and supposing that the magnetic field is
constant everywhere, we can notice that the second relation in Eq.(2.86) can also be
obtained from the formula (Eq.(2.22)) of the frequency slippage of an off-momentum
particle relative to the synchronous one, after having truncated the series at the
constant term.

The third relation in Eq.(2.86) will be important in Chapter 5 when beam-based
feedback models will be included in longitudinal beam dynamics simulations for the
CERN PSB. We will see that, since the input of the radial feedback is the radial
displacement of the beam relative to the design trajectory, a convenient way to
compute ∆R is using the third formula in Eq.(2.86), after having calculated the
correction ∆ωrf given by all the feedbacks.

Finally the three relations in Eq.(2.86) will be fundamental when the slip-stacking
dynamics for the CERN SPS will be studied in Chapter 6. There we will see that,
at constant design magnetic field and energy, a circulating beam can be radially
displaced inwards or outwards and accelerated or decelerated simply varying the
design RF frequency program. To give an example above transition energy, an
increase of RF frequency will make the beam decelerate and move inwards the beam
pipe.

Considering again Eq.(2.17), a variation in the design RF frequency leads to a
change in the RF phase according to the relation

φ
(n)
rf = φ

(n)
offset +

n−1∑
i=1

ω
(i)
rf T

(i)
0 = φ

(n)
offset +

n−1∑
i=1

2πh∆ω(i)
rf

ω
(i)
rf,0

. (2.87)

Indeed, the first term φoffset in the previous equation refers to phase modulations
and constant offsets, such as the shift of −π needed below transition energy (see
Eq.(2.65)), while the second term accounts for variations of the RF frequency relative
to the design one ωrf,0 = hωrev,0. When ∆ωrf 6= 0, for example during slip-stacking at
constant magnetic field or during fixed-frequency injection with increasing magnetic
field, this second term has to be explicitly included in the equations of motion
Eqs.(2.25) and (2.26). If not included, wrong results are obtained, for example the
sinusoidal RF voltage as a function of time will not be continuous from turn to turn.
Note finally the shift in indexes between φrf and ∆ωrf: if n is the first index for
which ∆ωrf 6= 0, then the RF phase will be corrected for the first time at turn n+ 1.
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Chapter 3

Calculation of Collective Effects
in Longitudinal Beam Dynamics
Codes

3.1 Introduction

When studying the dynamics of high intensity beams, in addition to the external
guiding fields, it is necessary to take into account, in a self-consistent way, the effects
of the self-induced electromagnetic fields, which in time domain are described using
the concept of wakefields, and in frequency domain that of coupling impedances [28].
This Chapter covers several fundamental issues and solutions which emerge from
simulation codes dealing with longitudinal beam instabilities generated by self-
induced electromagnetic fields in circular machines [29].

To simplify the beam dynamics study, it is generally convenient to distinguish
between short range wakefields, which decay within the length of one bunch, and
long range wakefields, which can last for many revolution turns or influence multiple
bunches in one turn. The latter are generated by resonant impedance modes with high
quality factors and produce, under some conditions, coupled bunch instabilities. A
linear perturbation theory is generally used to analytically study beam instabilities.
However, in order to analyze the behavior of the beam under the influence of
wakefields also in the non-linear regime, and for more complex impedance models,
use of particle simulations is necessary. In the simulation codes, which take into
account collective effects related to impedance-induced fields, the equations of
motion of a single charge in a bunch are quite simple (see e.g. Eqs.(2.25) and (2.26)).
However, the inclusion of the effect of wakefield, which is also called beam induced
voltage, and which couples the motion of different particles, requires care due to the
possible introduction of numerical noise and non-physical phenomena.

The basic idea behind the numerical calculation of the beam-induced voltage in
longitudinal beam dynamics codes has not changed since at least the 1980s [30]. The
first official release in 1984 of the FermiLab code ESME [31] has been an important
reference for many years to calculate the beam induced voltage and its effect on the
beam dynamics. Over a period of more than thirty years, several longitudinal beam
dynamics codes using short range wakefields [32, 33, 34], and both short and long
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range wakefields [35, 36] in circular accelerators have been developed and have been
proven to be reliable tools in the comprehension of the longitudinal collective effects.
Other relatively recent longitudinal beam dynamics codes have been developed
at Fermilab (United States) [37], J-PARC (Japan) [38] and CSNS (China) [39].
All these codes use the same numerical techniques or close variants for induced
voltage calculations. Examples of particle codes which take into account also the
transverse beam dynamics, while containing dedicated routines for induced voltage
computations, can be found in Refs.[40, 41, 42, 43]. Certainly the code evolution
cannot be compared with the exponential increase in computational power during
the past forty years [44]. Nevertheless these days it is possible to simulate many
bunches over a long period of time including beam controls.

The way how the electromagnetic fields acting on a charge and produced by all
the others can be included in simulations is discussed in the following Section. The
evaluation of the effects of short and long range wakefields generally requires different
approaches which are reviewed in Sections 3.3 and 3.4 respectively. The study of this
subject will continue in Section 3.7, where significant benchmarks between two very
different tracking codes will be shown. Other methods of simulation of impedance-
induced instabilities, different from tracking codes, are presented in Section 3.5. The
conventions used in the following Sections refer to Chapter 1, where the equations
of motion used in code BLonD are derived.

3.2 Common Approach in Wakefield Simulations

In order to write the longitudinal equations of motion of a single particle in a circular
accelerator, it is generally assumed, for simplicity, that the energy exchange between
a charge and the surrounding accelerator environment is localized in a single place
of the machine. This assumption can be valid for example when the bunch length is
comparable to the ring circumference (like in CERN PSB where h = 1) or when all
the RF cavities are placed close to each other in the ring and the impedance-induced
electromagnetic fields along the machine are quite uniform. However, in some cases,
the assumption can be too rough. For example, the FCC accelerator [45] has a design
circumference of about 100 km with h = 130680, and the RF cavities are designed to
be positioned in different places along the ring. In such cases it is possible to divide
the circumference in several sectors and consider multiple energy exchanges between
the beam and the environment for each revolution turn. Strong space charge effects
can also require the splitting of the ring circumference, since the local effect of this
force varies over one turn because of different environment conditions along the ring,
such as beam-pipe cross-section shapes and dimensions.

The common approach used in longitudinal simulation codes is to model each
bunch as an ensemble of particles, every particle governed by Eqs.(2.25), (2.26)
and to track these particles turn after turn. Since in a real bunch the number of
charges NP is usually in the range (108-1012) and, sometimes, even more, it would
be necessary to have a very high computing power, with the help of parallel clusters,
to track all the particles. For this reason macro-particles, which gather together
a given number of charges, are generally used. The maximum possible amount of
simulated macro-particles depends on the available computing power. We will see in
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Section 3.6 and 4.4 that the number of macro-particles NM needed to accurately
simulate a system taking into account collective effects is not easily defined. Varying
NM in a given simulation is often necessary to show small dependence of the results
on the simulation parameters.

Without the presence of wakefield, Eqs.(2.25) and (2.26) can be easily numerically
solved turn by turn, since the particles are independent from each other. The
term which couples the equations of different particles, making the tracking more
complicated, is the induced wakefield voltage Vind(∆t). This is the voltage acting
on a charge in a position ∆t, and induced by all the other charges. This voltage
depends on the normalized longitudinal bunch distribution λ(∆t) according to the
relation [46]

Vind(∆t) = Qtot

∫
T0
d∆t′w‖(∆t−∆t′)λ(∆t′), (3.1)

where Qtot is the total charge of the beam, and w‖ is the wake function of a point
charge or Green function. In Eq.(3.1) we assume that the induced voltage decays in
one revolution period T0. In order to include also the multi-turn wakes, we have to
add a sum over previous turns in the above convolution integral, as we will discuss
in Section 3.3. The convolution integral in Eq.(3.1) is also called wake potential. It
represents the energy gained or lost by a unity charge due to the entire beam. If
a charge is traveling with a speed close to the speed of light, due to the causality
property, the upper bound of the integral can be replaced by ∆t because w‖(· ) = 0
for negative arguments.

In writing Eq.(3.1) we have described the behavior of the particle ensemble,
representing a bunch, with a continuous distribution function, as this is often done in
theoretical methods, even if the real structure of a bunch is discrete. In a simulation
code we have the opposite approach, based on a number of macro-particles reduced
with respect to the real number of charges in a bunch. In this case Eq.(3.1), or the
expanded version with the long-range wakefields, can be transformed into

Vind(∆t) = Qtot
NM

NM∑
j=1

w‖(∆ti −∆tj) (3.2)

with ∆ti being the longitudinal position of the ith macro-particle and NM the total
number of macro-particles. If the bunch is traveling close to the speed of light, in
the above summation we have to use w‖(0)/2 instead of w‖(0) at ∆ti = ∆tj , due to
the fundamental theorem of beam loading [47].

Equation (3.2) has to be evaluated at each turn and for each macro-particle.
This means that, at each turn, the calculation of wakefields in simulations requires
order of N2

M operations. For example, in order to track (106 − 107) macro-particles,
at each turn more than about 1012 operations are needed, and this task can be
accomplished, at least for the moment, only on parallel computing clusters. In order
to reduce the computing time in the evaluation of the wakefield effects, the bunch
is usually divided into NS slices, or bins, of width ∆ and center at ∆ti∆, each ith
slice containing ni(∆) macro-particles. Supposing that slices act as point charges,
the induced voltage at the center of each slice can be then evaluated by using the
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relation

Vind(∆ti∆) = Qtot
NM

NS∑
j=1

nj(∆)w‖(∆ti∆ −∆tj∆). (3.3)

Exploiting the fact that the Fourier transform of a convolution sum is equal
to the product of the Fourier transforms of the operands, the induced voltage in
Eq.(3.3) can be also computed as

Vind(∆ti∆) = Qtot
NM∆ IDFT(Z‖S), (3.4)

where Z‖ = DFT(w‖) is the longitudinal impedance and S = DFT(n) is the bunch
spectrum, with n ≡ {nj}NSj=1 the sliced bunch profile. In Eq.(3.4) DFT and IDFT
stand for the discrete Fourier transform and its inverse. The slice size is linked to
the maximum sampled frequency for Z through the relation fmax = 1/(2∆). These
two methods operating in time and frequency domain should in principle give the
same results, but in several cases different number of slices and macro-particles have
to be chosen to obtain the same accuracy (see Section 3.5).

Once the induced voltage is known at the positions ∆ti∆, a linear interpolation (or
higher order one) permits to evaluate the wake potential acting on any macro-particle
of the bunch. Since in general the number of slices needed to resolve accurately a
bunch profile is between few hundreds and some thousands, this greatly reduces the
number of operations.

The approach of using slices to compute the induced voltage has been widely
used in simulations (e.g in BLonD and ESME), and over the years it has been
demonstrated to give reliable results. However, particular care has to be taken when
choosing the size and the number of the slices (and, of course, of macro-particles).
As we will see later, a low number of slices reduces the computing time, but it could
suppress some physical micro-structures in the bunch leading to instabilities. On the
other side, slices can introduce numerical noise, additional to that of macro-particles,
making necessary, in some cases, a parametric study of any possible dependence
of the results on the number of slices and macro-particles. One intuitive approach
(and also preliminary check) to determine the slice size is to consider the product
of the bunch spectrum and the impedance, which appears in Eq.(3.4). This allows
to identify a certain fmax above which the absolute value of this product can be
considered negligible. The chosen frequency defines the slice size and finally the
number of macro-particles has to be increased by steps until a convergence of results
is reached.

3.3 Simulations with Short Range Wakefields

Simulations with short range wakefields can be performed according to the previous
equations once the short range wake function w‖ of a beam-coupling impedance is
known.

The coupling impedance model of a machine is generally obtained as a sum
of contributions from different elements. Each device is simulated using the help
of dedicated electromagnetic computer codes, such as CST Particle Studio [48],
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GdfidL [49], or ACE3P [50]. From the impedance, with the inverse discrete Fourier
transform, the wakefield can be obtained.

One important problem that sometimes arises in simulations is the necessity to
use a very big number of slices to properly reconstruct the correct induced voltage.
In such a case the code becomes too cumbersome and other solutions have to be
found. As an example, let us take the wakefield of a broad-band resonator, which
sometimes is also used as a simplified impedance model of an accelerator. Here an
intuitive approach will be used while in Subsection 3.5.1 this subject will be studied
more in detail. The longitudinal wakefield for a resonator is given by [46]

w‖(t) = 2πfrRsh
Qr

e−Γt
[
cos(ω̄t)− Γ

ω̄
sin(ω̄t)

]
, (3.5)

where Γ = πfr/Qr and ω̄ =
√

4π2f2
r − Γ2. The three resonator parameters Rsh, Qr

and fr are respectively the shunt impedance, the quality factor and the resonant
frequency. The corresponding longitudinal impedance is

Z‖(f) = Rsh

1 + iQr
(
fr
f −

f
fr

) . (3.6)

Figure 3.1 shows the induced voltage for a broad-band resonator with unit quality
factor, produced by a Gaussian bunch with rms bunch length σt 2.4 times larger than
the resonant wavelength (relativistic case). If we consider a longitudinal interval of
±5σt for the bunch profile, in order to have about 20 slices per wavelength, about
480 slices for the Gaussian bunch are needed. Indeed, from Fig.3.1, we can see that,
with 500 slices, Eq.(3.3) for the Gaussian bunch gives a slightly different result with
respect to the theoretical wake potential, and only with 1000 slices the induced
voltage is very close to the theoretical one. With such a large number of slices a
very big number of macro-particles has to be used, because there is the need to have
a reasonable number of particles in each slice for proper beam simulations. If the
number is not sufficiently high the strong fluctuations of macro-particles from one
slice to another could produce non-physical effects.

There is however the possibility to bypass this problem by using, in Eq.(3.3),
instead of the Green function, the wake potential (induced voltage) of a very short
Gaussian bunch [51]. Indeed, in the same figure, with the cyan dashed line, we have
also represented the induced voltage as given directly by a simulation with only 100
slices, for which we have used in Eq.(3.3) in place of w‖, the wake potential of a
Gaussian bunch 10 times shorter than the simulated one. As can be seen from the
figure, with 100 slices we obtain a result similar to that obtained with 1000 slices
and the Green function. Also using the method in frequency domain, it is possible
to obtain the correct induced voltage with only about 150 slices (see Subsection
3.5.1 for a similar example).

3.4 Simulations with Long Range Wakefields

For simulations involving long range wakefields, in addition to the slice size problem,
the main issue is the necessity to know the wakefield as a function of time until it
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Figure 3.1. Beam induced voltage for a broad-band resonator produced by a Gaussian
bunch with rms length a factor 2.4 larger than the resonant wavelength. The voltage
has been obtained by using 200 slices (blue), 500 slices (green) and 1000 slices (red).
The cyan dashed line represents the induced voltage obtained with only 100 slices by
using, as Green function, the wake potential of a Gaussian bunch 10 times shorter. The
black line, representing the theoretical induced voltage, is below the cyan line.

becomes negligible. The long range wakefields are usually generated by resonant
modes with a high quality factor, so depending on its value and on the resonant
frequency, the wake can influence many bunches for many turns. This requires the
calculation of a very long interaction of the wakefield with the beam. Different
simulation codes have different approaches to tackle this problem.

For example, in the BLonD code [52], the approach is to store into memory, at
each turn, the sum of the present induced voltage extended to the future and the
induced voltage derived from the past after appropriate time shift of one revolution
period. A complication arises in presence of acceleration: the time frame, which
length is the revolution period, shrinks turn after turn and, as a consequence, an
interpolation is needed each turn when the present voltage is summed with the
voltage from the past.

Another method, used in the tracking parallel code SPACE [43], expands the
long range wakefields in Taylor series and stores the moments of the longitudinal
distribution of all the bunches in previous turns. This method requires a slowly
varying wakefield and, in addition, the number of terms for the Taylor expansion has
to be wisely chosen together with the order of the derivative method to calculate
the derivatives of the wake. However, the strength of the algorithm derives from
the fact that the induced voltage acting on a certain bunch can be calculated in
parallel via master-to-slave processor communications. This means that at each turn,
after having applied the single particle equations of motion, the various moments
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of the present longitudinal bunch profiles are calculated independently by different
processors. These independent computations are then communicated to the master
processor which can sum them with the other calculated moments from previous
turns which have been stored into memory.

In some cases it is reasonable to suppose that the wake function does not change
significantly in a certain longitudinal frame. This idea was explored in [41]. Whenever
the wake amplitude does not change more than 0.1% in a certain longitudinal frame,
all the slices contained in that window are replaced by a single slice characterized by
a wake that is an average of the wake values of all the concerned slices. The frame
length can be even of the order of the bunch length or the revolution period. Using
this approximation, the convolution sum to calculate the long range wakefields can
be significantly simplified.

An alternative approach, which has been developed and used in the simulation
code MuSiC [36], exploits a matrix formalism to transport the wakefield of resonators,
both broad-band and narrow-band, from one macro-particle to the following one,
removing the need to resort to the convolution sum, avoiding problems related to
bunch slices, and eliminating the necessity to store long range wakefields. The code
allows to simulate simultaneously the effects of short and long range wakefields for
both the single and multi-bunch beam dynamics and including intra-bunch motion.
It also contains an algorithm for a frequency domain feedback system to damp
coupled-bunch instabilities. The drawback of the MuSiC approach is that it requires
a fit of the machine coupling impedance with a sum of resonators (as in Eq.(3.6)),
which are used as input in place of the wakefield.

3.5 Vlasov Solvers and Other Methods

In addition to simulation codes, which track macro-particles turn after turn, a
different approach can be used, and it consists in solving numerically the time
domain Vlasov equation with the inclusion of wakefields. Using the same conventions
adopted in Chapter 2, the Vlasov nonlinear integro-differential equation can be
written as [53]

∂ψ

∂t
+ ∂ψ

∂∆t
∂H

∂∆E −
∂ψ

∂∆E
∂H

∂∆t = 0, (3.7)

where ψ is the phase space longitudinal distribution and H is the Hamiltonian in
Eq.(2.37) accounting for both the RF field and the collective forces generated by the
wakefields.

As first approach, it would seem that Eq.(3.7) could be treated by the usual
methods for partial differential equations, as the finite differences, to approximate the
phase space longitudinal distribution function ψ on nodes of a finite grid. However,
such a technique fails completely with or without implicit time stepping, and not
because of any effect of the nonlinear terms, but because it does not preserve the
symplectic form of the equation [54]. Different and more appropriate methods
must therefore be applied, as for example an integration of the equation using a
discretization of the local Perron Frobenius operator [54]. In Ref.[55] instead, an
algebraic technique of solution, that is suited for general evolution-type equations
and that can also be applied to the Vlasov equation, extended to the non-linear
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case, has been developed, and it is based on the evolution operator technique, widely
exploited in the solution of quantum mechanical problems. Codes solving the Vlasov
equation have been developed to study single bunch effects [56, 57] as alternative to
multi-particle tracking codes, and they generally guarantee a very smooth evolution
of the beam distribution function in time that allows to reduce, and in some cases
to completely eliminate, the effect of numerical noise. Usually, the computing time
for a code solving the Vlasov equation is comparable to that of the multi-particle
tracking codes because the problem due to the slices previously discussed is avoided
but, in any case, in order to calculate the collective force in the Hamiltonian term,
the convolution integral of Eq.(3.1) has to be performed over a finite phase space
grid.

3.6 Damping Mechanisms to Counteract Collective Ef-
fects

Damping mechanisms are essential in circular accelerators for beam stabilization,
since wakefields, as well as other sources of noise present in a given machine, can
perturb the beam motion. These mechanisms can be either active or passive.

An example of active damping is given by the RF phase loop related to the
main accelerating RF cavity and implemented in the Low Level RF system of some
accelerators (see Chapter 5 for an example concerning the PSB ring). The phase
loop measures the bunch position relative to the RF bucket center and then corrects
the RF frequency at consecutive revolution turns in order to align the RF bucket
with the bunch. The main effect of the RF phase loop on the beam dynamics is the
damping of the bunch-core (dipole) oscillations.

An example of passive or intrinsic damping mechanism is given by the so-called
Landau damping [58]. In the longitudinal plane and for bunched beams, Landau
damping can reduce, under certain conditions, the bunch dipole oscillations thanks
to the spread in the synchrotron frequencies of the individual particles forming the
bunch. However, when the bunch intensity is sufficiently high, the frequency spread
is significantly reduced by the wakefields and loss of Landau damping (LLD) occurs.

An important threshold formula for LLD can be derived for an accelerator with
constant ImZ/n (n = f/frev,0) and with a small real-part impedance treated as a
perturbation. The formula is given by [59]

Nb <
F |η0|E0
q2β2

0

τ

ImZ/n

(∆E
E0

)2 ∆ωs,ind
ωs0,ind

, (3.8)

where F is a form factor depending on the bunch distribution, τ is the bunch length,
∆ωs,ind/ωs0,ind and ∆E/E0 are respectively the relative synchrotron frequency and
energy spreads. Equation (3.8) will be used in Chapter 6 to evaluate LLD for ion
beams in the SPS after CERN upgrade.

3.7 Benchmarks Between BLonD and MuSiC
As discussed in the previous Sections, different numerical approaches are available to
compute the induced voltage. Here we will briefly review two of them and then two
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significant benchmarks will be presented. From Eq.(3.2), fitting a general wake by
resonators, a propagation matrix can be constructed to compute the induced voltage
from particle to particle and this approach is used by the MuSiC code. On the other
hand, since NM can be large and the number of resonators obtained from the fit of
the realistic impedance can be numerous, a slicing of the bunch profile is used in
BLonD to compute the induced voltage either in time domain with a convolution
between the wake and the line density (Eq.(3.3)), or in frequency domain performing
an inverse Fourier-transform on the product of bunch spectrum and impedance
(Eq.(3.4)). The length of one slice defines the maximum frequency fmax taken into
account (Nyquist theorem) and the resolution in frequency domain ∆f is related to
the length tmax of the induced voltage to be included in simulations (tmax = 1/∆f).
Finally, a linear interpolation is used to define the voltage for particles in-between
slices.

The dedicated studies [60] have shown the consistency of the MuSiC and BLonD
approaches for two different scenarios characterized respectively by a broad-band
(short-range wakefield) and a narrow-band (long-range wakefield) resonators. These
two cases are described below, where the chosen ring and RF parameters do not
refer to any real ring in particular.

3.7.1 Short Range Wakefields

The induced voltage due to a broad-band resonator impedance with a resonant
frequency fr much higher than the bunch cut-off frequency 1/τl (with τl the bunch
length) can be difficult to simulate: physical contributions are lost if fmax is set too
low and noise can be included if fmax is too high.

In the considered example, the resonant frequency fr=100 MHz, the quality
factor Q = 1 and the shunt impedance Rsh = 107Ω. A proton bunch having a
Gaussian line density with rms bunch length σt = 3/fr is used:

λ(t) = 1√
2πσt

e
− t2

2σ2
t , (3.9)

The RF system has harmonic number h=1, RF frequency frf = 1.9 MHz and
peak voltage V1 = 1 MV, the design energy E0 = 13 GeV, the circumference is
Cring = 157 m and the slip factor is η = 0.0549. The bunch intensity, NP = 1012,
is chosen so that the initial induced voltage Vind has a peak value of 0.8 MV (high
intensity effect). The unmatched to the RF bucket initial distribution in phase space
is used to see different beam dynamics (filamentation, losses and later equilibrium
in phase space) during the same simulation.

Figure 3.2 shows the initial normalized bunch spectrum, the resonator impedance
and their product using NS = 5000 slices of the bucket length (frequency axis is in
log scale). It can be seen that 50 slices (first dashed vertical line) are enough to
consider the main frequency components of the induced voltage (red curve), but
the impedance peak at high frequency (blue curve) is not included. Increasing NS

up to 1000, the resonator impedance is resolved. Figure 3.2 shows also that, for a
given NS , the number of macro-particles should be sufficient to avoid noise at high
frequency.
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Figure 3.2. Normalized absolute value of the bunch-spectrum S(f) (green) calculated
from a Gaussian line density with σt = 30 ns, unnormalized impedance |Z(f)| (blue)
computed through Eq.(3.6) and their normalized product (red) for NS = 5000 and
NM = 4 · 106. The vertical dashed lines, from left to right, mark fmax corresponding to
50, 100, 400, 1000, 5000 slices. For NM = 4 · 105 high frequency noise is observed (cyan).
The main contribution of |Z · S| is covered using 50 slices.

The induced voltage generated by the bunch using NM = 4 · 106 macro-particles
using the MuSiC and BLonD approaches is shown in Fig.3.3. The MuSiC voltage,
compared to the analytical formula, is characterized by high amplitude and high
frequency components, since NM is not high enough (increasing NM the voltage
converges to the analytical one). Using NS = 1000 in frequency domain calculations
in BLonD, the voltage is close to the MuSiC one. This is reasonable since, once
NM is chosen, the system is defined, and high values of NS allow higher frequencies
to be sampled. On the other hand a voltage with a significant vertical offset with
respect to the MuSiC solution is obtained using NS = 1000 in time domain approach
in BLonD. Finally, choosing NS = 50 gives an output close in amplitude to the
analytical one, but without high frequency components. Since the frequency domain
algorithm converges faster than the time domain one in this case, the first is used.
The difference between the two BLonD algorithms is explained by the broad-band
nature of the resonator. The wakefield contains many high frequency modulations
and needs more accuracy whereas the broad-band impedance needs not a high
resolution to be resolved.

Figure 3.4 shows the average bunch position as a function of the number of
turns using the MuSiC and BLonD codes. The frequency domain approach is
used in BLonD choosing different number of slices. Figure 3.4 shows the bunch
dipole-oscillations only after that longitudinal emittance blow-up and losses due
to collective effects have occurred. One can see that, increasing NS in BLonD, the
dipole oscillations converge to the MuSiC ones. Notice that using just 50 or 100 slices
the beam dynamics change completely (green and red colors): the bunch is always
stable and there are no instabilities or particle losses, due to the low resolution in
frequency domain which does not allow the resonant impedance-peak to be properly
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Figure 3.3. Zoom in induced voltage (left bottom corner) generated by the initial Gaussian
bunch for NM = 4 · 106. Here ∆φrf = ωrev,0∆t. Different methods of induced-voltage
calculation are shown.

resolved. The collective effects leading to instability and losses start to be visible
choosing NS = 400 (cyan line). Convergence between MuSiC and BLonD results
is reached for NS = 1000 (magenta line) and it is even better with NS = 5000
(yellow color), when also the particle losses are in agreement. Figure 3.5 compares
the bunch distributions in phase space obtained at turn number 23000 using the
MuSiC code (right) and the BLonD code (NS = 50 or NS = 5000, respectively left
and middle). One can see that choosing NS = 50 does not lead to any instability
or emittance blow-up, therefore wrong results are obtained. On the contrary, if
the MuSiC code is used or if NS is properly increased in BLonD, the correct beam
dynamics is recovered: the corresponding bunches blow up covering the full bucket
area. Notice that, in this last case, remarkable agreement is obtained between the
two codes.

Finally in BLonD, assuming NS = 1000, NM was increased from 4 to 50 million in
order to verify convergence of simulation results. No significant differences in beam
losses and bunch dipole/quadrupole oscillations were observed. This convergence
analysis shows that the strong instability observed both with the MuSiC and BLonD
codes is real and not induced by numerical noise.

Concerning the computational cost, the broad-band resonator and the wake
decaying in one turn allow the largest possible ∆f in BLonD to be chosen (∆f =
f0/NS, where f0 is the revolution frequency) or equivalently to consider only the
revolution harmonics in the induced voltage computation. The result is that the
BLonD algorithm is much faster than the MuSiC one (factor 27 for NM = 4 · 106

and NS = 5000).
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Figure 3.4. Bunch dipole-oscillations after turn number 4000 obtained using the MuSiC
and BLonD codes. The number of macroparticles is NM = 4 · 106 for both codes. The
BLonD simulations are performed in frequency domain using different values for the
number of slices NS. The percentage of particle losses is in parentheses.

Figure 3.5. Bunch distributions in phase space at turn number 23000 (see also Fig.3.4)
using the BLonD code with NS = 50 (left), NS = 5000 (middle) or the MuSiC code
(right).

3.7.2 Long Range Wakefields and Robinson Instability

For a resonant impedance with quality factor Q� 1 and relatively low frequency
fr, the wakefield can couple multiple bunches or even the same bunch on multiple
turns. If the resonant frequency fr is close to an integer multiple p of the revolution
frequency, then Robinson instability can be observed [61]. The growth rate of the
instability can be obtained from the imaginary part of the synchrotron frequency
shift computed with the linearized Vlasov’s equation. Supposing a Gaussian line
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density as in Eq.(3.9), the analytical expression for growth rate is [36]

1
τa

= −ηe
2NP

2E0T 2
0ωs

∑
m=±1

m (pωrev,0 +mωs)ReZ(pωrev,0 +mωs)Gm(x), (3.10)

where ωs is the angular synchrotron frequency, e the proton charge and Gm(x) =
2e−x2

Im(x2)/x2 is the form factor with x = (pf0 + mfs)σt and Im the modified
Bessel function of the first kind.

In the case studied below p = 2, the resonator parameters are fr = 2f0 + fs,
Q = 5000 and Rsh = 40 kΩ. In addition, NP = 4 · 1012, E0 = 13 GeV, η = 0.0217,
T0 = 2.1 µs, fs = 264.1 Hz. The RF system has h = 7, frf = 3.3 MHz and
V1 = 165 kV, while Cring = 628 m. Then the instability growth time found from
Eq.(3.10) is τa = 59.3 ms for σt ≤ 3.3 ns and the results from MuSiC and BLonD
should converge to τa for short bunches (no Landau damping).

The initial bunch spectrum with σt = 3.3 ns decays above 200 MHz whereas
the resonant impedance is negligible above 1 MHz, as Fig.3.6 shows. It is then not
straightforward to choose fmax in BLonD simulation. In addition ∆f is another key
parameter, since the wake decays over thousands of revolution periods and it is not
evident how many turns to take into account. The time domain approach is used in
BLonD to simulate this case since the narrow-band resonator requires a very small
∆f in frequency domain making simulations computationally heavy: Fig.3.6 shows
that the impedance peak is not perfectly resolved even choosing ∆f = 70 Hz, which
corresponds to tmax ≈ 7000T0. The MuSiC approach avoids all these difficulties
since no slices are used and NM is the only parameter to be studied.

Figure 3.6. Normalized absolute value of the bunch-spectrum S(f) (green) calculated
from a Gaussian line density with σt = 3.3 ns, unnormalized impedance |Z(f)| (blue)
computed through Eq.(3.6) and their normalized product (red). The vertical dashed lines,
from left to right, mark the values 50 MHz, 200 MHz and 400 MHz. The bunch-spectrum
decays to zero before 200 MHz. Due to the narrowness of the resonator impedance, two
zooms onto it are shown, where ∆f = 160 Hz (tmax ≈ 3000T0, top) and ∆f = 70 Hz
(tmax ≈ 7000T0, bottom).

The instability growth time was examined in MuSiC as a function of NM and
compared with τa = 59.3 ms from Eq.(3.10) (see Fig.3.7). When increasing NM,
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convergence is observed (63.0 ms) but not to τa. This can be explained by the
non-linearities of the RF wave (Landau damping). Decreasing sufficiently the bunch
length, non-linearities are suppressed and, as shown in Fig.3.7, the inverse growth
rate converges to τa. This proves the validity of the MuSiC algorithm and helps the
number of macro-particles to be used for comparison with the BLonD approach to
be chosen.

Figure 3.7. Instability growth time τ as a function of NM for σt = 3.3 ns (blue) and as a
function of σt for NM = 106 (green) from MuSiC simulations. The dashed lines mark
τ = τa = 59.3 ms and τ = 63 ms, which are respectively the convergence values for the
green dots for small σt and for the blue dots for large NM.

Using σt = 3.3 ns and NM = 106 in BLonD, the dependence of the inverse
growth rate on ∆f and fmax was also studied and is shown in Fig.3.8. Fixing
fmax = 200 MHz to cover the bunch spectrum in Fig.3.6, the inverse growth rate
convergences to 63.0 ms for relatively small ∆f < 70 Hz, as expected from the
MuSiC simulations and also examining the zooms shown in Fig.3.6. A scan of fmax
for two given values of ∆f shows consistency of results and therefore agreement
between BLonD and MuSiC simulations.

However the computational time T in MuSiC (T ≈ NM = 106) is lower by
factor 5, since the number of slices used in BLonD to resolve fmax = 200 MHz
is multiplied by the number of memory turns in which the wake decays (T ≈
fmax/∆f = 200 MHz/70 Hz ≈ 3 · 106). One way to speed up the calculations in
BLonD would be to act only on not-empty buckets. In case of multi-bunch beams,
MuSiC is expected to be less efficient than BLonD. The reason is that T scales with
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Figure 3.8. Instability growth time τ as a function of ∆f for fmax = 200 MHz (blue) and
versus fmax for ∆f = 160 Hz (green) and ∆f = 70 Hz (red) from BLonD simulations
(σt = 3.3 ns, NM = 106). The dashed lines mark τ = 63 ms and τ = 65.3 ms, which
are respectively the convergence values for the red and green dots for sufficiently high
fmax. All the results shown are obtained through simulations in time-domain with
tmax = 1/∆f and ∆ = 1/(2fmax).

NM in the MuSiC code while in BLonD T would scale mostly with the parameters
NS and ∆f which would not change from the case of single-bunch simulations if the
entire ring is sliced.

3.8 Conclusions

The first part of this Chapter introduced the concepts of wakefield and impedance,
before presenting the most common approaches used to calculate collective effects in
longitudinal beam dynamics codes. Particular attention has been paid to differentiate
time and frequency domain calculations, as well as computations of short and long-
range wakefields. It also emerged that the choice of numerical parameters such as
number of macro-particles and slices in simulations can be delicate.

Afterwards, two different approaches for longitudinal induced-voltage calculation
have been compared, the ones used by the BLonD and MuSiC codes. Two benchmarks
have been performed: in the first a relatively long bunch is perturbed by a short-range
wakefield generated by a broad-band resonator, in the second a long-range wake
field created by a narrow-band resonator couples the relatively short bunch-profile
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on consecutive revolution turns.
Consistency of the MuSiC and BLonD approaches in induced voltage calculation

was shown for the two different cases. In the benchmark with short-range wakefield,
after having determined a proper number of macro-particles, the BLonD results
obtained in frequency domain converged to the MuSiC result by increasing the
number of slices, as expected. Particular care had to be taken in BLonD to avoid
under-sampling the bunch profile as physical contributions could be lost and wrong
results obtained. The absence of slices in MuSiC allowed all these parameter-space
studies to be avoided, however the computational time was much higher than for
BLonD, since the frequency resolution ∆f could be safely large in BLonD due to
the broad-band nature of the resonator.

In the second benchmark, the analytical value of the Robinson instability growth-
rate was used as a reference. First, results coming from the MuSiC code varying
the bunch length showed that convergence of the instability growth-rate to the
analytical value is obtained for relatively small bunch length, when Landau damping
is negligible. The analysis also determined the minimum number of macro-particles
able to give consistency to the MuSiC results. As for the BLonD code, computations
were performed in time domain due to the narrowness of the resonator impedance
and, after a careful choice of the number of slices and revolution turns to be taken
into account for the multi-turn wake, good agreement with the MuSiC code and the
analytical value for the growth-rate has been found. In this benchmark the BLonD
code required more computational time than the one needed by the MuSiC code
since, even neglecting the cumbersome frequency domain approach, too many points
had to be taken in time domain to obtain reliable results.
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Chapter 4

PSB: Collective Effects

4.1 Introduction

The PS Booster (PSB) at CERN is the first synchrotron in the proton injector chain
of the Large Hadron Collider (LHC). It consists of four super-imposed rings (Fig.4.1),
each of them able to accelerate one or two bunches of protons from 50 MeV to
1.4 GeV kinetic energy, see Table 4.1. In the following, unless otherwise specified, the
expression “PSB” will refer generically to one of the four rings, which are practically
identical.

Figure 4.1. Photo of the CERN PSB. The beam pipes of the four super-imposed rings are
clearly visible. Courtesy of CERN.

The injector of the PSB is the linear accelerator Linac2, while the next synchrotron
in the chain is the Proton Synchrotron (PS). The cycle length of the PSB is 1.2 s, the
acceleration starts at 275 ms (with a positive rate of change of the magnetic field)
and ends at 800 ms, supposing the counting starts at zero. At 275 ms the beam
is un-bunched, covering the full ring and the RF voltage is zero. It takes roughly
10 ms for the beam to be captured inside the longitudinal RF bucket determined by
the accelerating RF voltage.

In the PSB jargon the cycle times are indicated with the letter “C”, for example
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275 ms is expressed as C275; we will use this notation also. The PSB is a relatively
small accelerator with a radius of R0 = 25 m and a bending radius of ρ0 = 8.2 m.
The transition gamma γtr is 4.08 and the zero order momentum compaction factor
α0 = 0.06. The PSB operates below transition energy (γ0 increases from 1.05 to
2.49 along the ramp) and therefore is not an ultra-relativistic machine (β0 rises from
0.31 to 0.92).

Table 4.1. Some of the main CERN PS Booster machine and RF parameters for the
current operation [2, 62]. The last four rows refer to current nominal LHC-type beam
parameters.

Particles accelerated protons

Number of bunches 1 or 2 bunches/ring (4 rings)

Injector, next synchrotron Linac2, PS (Proton Synchrotron)

Cycle length, start-end accel. [ms] 1200, 275-800 (C275-C800)

R0, Cring, ρ0 [m] 25, 157.1, 8.2

γtr, α0 4.08, 0.06

EC275
0,kin [MeV], fC2750,rev [MHz], γC2750 , βC2750 50, 0.60, 1.05, 0.31

EC800
0,kin [GeV], fC8000,rev [MHz] , γC8000 , βC8000 1.4, 1.75, 2.49, 0.92

RF systems C02, C04, C16 (narrow-band, ferrite)

Revolution harmonics C02 h = 1, C04 h = 2, C16 h ∈ [5, 20]

Resonant frequencies [MHz] C02 0.6-1.8, C04 1.2-3.9, C16 6-16

Q factors of RF systems C02 0.7-2.7, C04 1.7-7.6, C16 10-19

Shunt impedance of RF [kΩ] C02 0.25-0.4, C04 0.35-0.47, C16 2-1.5

Maximum peak RF voltages [kV] C02 (V̂rf,1): 8, C04: 8, C16: 6

fC275s0 -fC800s0 [kHz], QC275
s0 -QC800

s0 (V̂rf,1) 1.98-0.45, 3.28 · 10−3 - 0.26 · 10−3

εC285l [eVs], τC285l [ns], δC285rms 1.0, 1100, 2.4 · 10−3

εC800l [eVs], τC800l [ns], δC800rms 1.3, 180, 0.9 · 10−3

NC285
b [ppb], εC285x,y,n [µm], ∆QC285,sc

x,y 17.7 · 1011, 2.14, (0.51, 0.59)

NPS inj
b [ppb], εPS inj

x,y,n [µm], ∆QPS inj,sc
x,y 16.5 · 1011, 2.25, (0.25, 0.30)

Each of the PSB rings has three tunable narrow-band ferrite RF systems called
C02, C04 and C16, see Table 4.1. The main RF system C02 (Fig.4.2, top), used
to accelerate the beam (h = 1), has a maximum peak RF voltage V̂rf,1 of 8 kV and
its resonant frequency fr is in the range 0.6 MHz− 1.8 MHz. Correspondingly to
this frequency range, the quality factor Qr varies from 0.7 to 2.7 while the shunt
impedance Rsh increases from 0.25 kΩ to 0.4 kΩ. The C04 system (h = 2) is used for
bunch shaping, generally in the bunch lengthening mode, to reduce the longitudinal
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peak line density in the PSB and therefore to minimize the transverse direct space
charge tune spread (see the definition later); the C04 maximum peak RF voltage
is V̂rf,2 = 8 kV and the resonator parameters are shown in Table 4.1. Finally the
C16 cavity has harmonic number h in the interval [5,20] and a peak RF voltage of
V̂rf,3 = 6 kV (see Table 4.1 for the resonator parameters). This RF system is used
to blow up the bunch longitudinal emittance in a controlled way using RF phase
modulation, since large longitudinal emittances are needed at the PS flat bottom to
reduce the longitudinal peak line density and transverse space charge effects.

Figure 4.2. Top: photo of the current PSB C02 ferrite RF cavity (left) and corresponding
system layout (right) [20]. Bottom: photo of the Finemet® prototype ten-cell RF system
installed in PSB Ring 4 (left, courtesy of M. Haase, CERN ) and layout of one basic
accelerator cell (right, courtesy of M. Paoluzzi, CERN [63]).

Assuming acceleration in single RF system with Vrf,1 = 8 kV (without considering
collective effects) the zero amplitude synchrotron frequency fs0 decreases along the
ramp from 1.98 kHz to 0.45 kHz, while the synchrotron tune Qs0 diminishes from
3.28 · 10−3 to 0.26 · 10−3.

The PSB accelerates many types of proton beams, each of them having different
parameters and purposes (see next Chapter). One of them is the so-called high-
brightness LHC25ns (or nominal) beam which at the end of the accelerator chain
provides protons to the four LHC experiments for particle physics studies. The
LHC25ns beam intensity at C285 (after RF capture) is Nb = 17.7 · 1011 ppb and
arrives at Nb = 16.5 · 1011 ppb at PSB extraction energy (5% of losses, which is the
maximum allowed value). The longitudinal emittance at C285 is 1 eVs; it becomes
1.3 eVs after controlled longitudinal emittance blow-up in the PSB. The bunch
length τl measured in time significantly decreases during acceleration, varying from
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1100 ns to 180 ns along the ramp (while δrms = ∆prms/p0 changes from 2.4 · 10−3 to
0.9 · 10−3).

The reference convention to measure the longitudinal bunch length in the PSB,
and therefore the longitudinal emittance, according to what explained in Chapter 2,
is called “Foot Tangent Method” [64]. This procedure, together with other relevant
ones, will be described in the following Section. When not directly specified, the
reference conventions will be used in the present Chapter and in Chapter 5.

Transverse direct space charge at PSB and PS injections is one of the main
limitations for beam brightness [65], since the large generated tune spread crosses
crucial resonance lines in the tune diagram. The following expression gives the
maximum betatron tune shift due to transverse direct space charge effects (details
are given in the Appendix A)

∆Qsc
X = − rpλ̂

2πβ2
0γ

3
0

∮
βX(z)

σX(z)[σx(s) + σy(z)]
dz ≈ − rpλ̂Cring

4πβ0γ2
0εn
∝ BnCring

β0γ2
0τs

, (4.1)

where X = x or X = y, rp is the classical particle radius, εn = εx,n = εy,n the
transverse normalized emittance, Bn the brightness and λ̂ the maximum value of
the longitudinal line density, which is expressed in number of charges per meter and
has bunch length τs = β0cτl.

Currently the nominal beam experiences a blow-up of 5% in its normalized
emittance, starting from a value of 2.14 µm at PSB injection and arriving at 2.25 µm
at the end of the PS flat-bottom. The horizontal and vertical maximum tune shifts
vary respectively from 0.51 to 0.25 and from 0.59 to 0.31, see Table 4.1.

It is important to mention that currently the limitation in beam brightness
along the LHC injector chain does not come from the PSB (Fig.4.3, left). Indeed,
the SPS beam loading and longitudinal instabilities limit the maximum bunch
intensity achievable at SPS extraction, while the transverse space charge at PS
flat-bottom determines the largest possible transverse emittance, since the resonance
line 8Qy = 50 limits the maximum vertical tune shift to 0.31 [66, 67].

Notice that the curve representing the PSB brightness is a straight line, suggesting
that, even if ∆Qsc

x 6= ∆Qsc
y at PSB injection, the relation of proportionality between

the tune shift and the brightness in Eq.(4.1) could be used setting εn = (εx,n +
εy,n)/2 [68]. The same does not applies for the PS case, where the beam energy
spread and the ring horizontal dispersion are not negligible in the evaluation of the
horizontal beam size at flat-bottom. Therefore the correct expression in Eq.(4.1)
must be used to compute the maximum tune shifts and, as a result, the corresponding
curve in the limitation diagram is not a straight line.

4.1.1 After-upgrade Scenario

As was outlined in the introductory Chapter, the intensity and brightness for nominal
LHC beams is supposed to increase respectively by a factor of 2 and 2.4 to fulfill
the requests of the HL-LHC Project.

These new beam parameters will be reached directly in the PSB. Indeed, to fully
compensate the double intensity in Eq.(4.1), leaving the current tune spread unvaried,
the kinetic energy at PSB injection after LS2 will be increased from 50 MeV to
160 MeV, since (β0γ

2
0)160 MeV/(β0γ

2
0)50 MeV = 2. Because of the increased injection



4.1 Introduction 53

Figure 4.3. Left: proton limitation diagram for current situation showing which normal-
ized transverse emittances εn and bunch intensities Nb are allowed at SPS extraction
(450 GeV/c). The red star indicates that the optimal brightness currently possible has
been achieved. Transverse emittance limitations are due to the transverse direct space
charge at PS flat-bottom (the maximum vertical tune shift cannot exceed 0.31), while
intensity limitations are given by the SPS beam loading and longitudinal instabilities.
The HL-LHC requests (εn = 2.1 µm, Nb = 2.3 · 1011 ppb) are marked by the yellow star.
Right: predicted proton limitation diagram for the after-LIU scenario, where the green
star indicates that the expected values of bunch transverse emittance and intensity at
SPS extraction coincide with the ones requested by the HL-LHC Project. Courtesy of
G. Rumolo, CERN, 2018 [66].

.

energy, a scaling calculation shows that the longitudinal emittance at the future
PSB injection has to be 1.4 eVs instead of the current 1 eVs; in this way the bunch
length τs in Eq.(4.1) will be preserved changing from 50 MeV to 160 MeV, leaving
again the current tune spread unvaried. Finally, to have the additional increase in
brightness after doubling the intensity, the normalized transverse emittance has to
be decreased from 2.14 µm to 1.72 µm, causing an increase in tune spread relative
to the current situation. Estimations using the correct expression in Eq.(4.1) predict
that the new maximum tune shifts will be ∆Qsc

x = 0.58 and ∆Qsc
y = 0.69. These

two values can be reached moving the PSB working point above the half-integer line
2Qy = 9 after having adequately compensated the corresponding resonance using a
dedicated set of quadrupoles and sextupoles [69, 70].

To enable all these changes at PSB injection, Linac2 will be replaced by the new
Linac4, which will provide H− hydrogen ions to the PSB at 160 MeV kinetic energy.
The new injection scheme, according to the LIU baseline, will consist of a multi-turn
injection of chopped trains of Linac4 micro-bunches at 352.2 MHz with given bunch
length and energy spread [71]. This will allow injecting the micro-bunches directly
inside the RF bucket, avoiding some of the current losses due to the RF capture of an
un-bunched beam. The new, so-called H− charge-exchange injection system, based
on a stripping foil will substitute the scheme currently used with Linac2, which relies
on one septum magnet which deflects the injected beam. This change will allow
first to tailor the required transverse emittance in the PSB using transverse phase
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space painting realized with the new KSW kicker magnets [72]. In addition it will
reduce almost to zero the large amount of losses (50% of the injected beam) currently
experienced, which are due to multiple unwanted interactions of the circulating
beam with the septum magnet during the multi-turn injection process of Linac2
micro-bunches at 202.56 MHz.

As Fig.4.3 shows, all these upgrades at PSB injection would be useless if the
transverse direct space charge would not be reduced at PS flat-bottom. Indeed, to
cope with the current limitation and the future doubling of the bunch intensity at
PS injection, another important upgrade will concern the PSB extraction energy,
which will be raised from 1.4 GeV to 2 GeV for LHC-type beams, see again Eq.(4.1).
In order to achieve that, the main power supply will have to be changed and small
kickers and septa will be modified. Since the cycle length will remain 1.2 s, the
acceleration rate for nominal beams will increase after LS2. Several studies have been
done to propose a realistic momentum program for the after-upgrade scenario [73].
Figure 4.4 compares the suggested future cycle with the one currently used. Notice
that the future acceleration rate will be considerably higher, mostly in the second
half of the cycle. Figure 4.4 shows also the proposed cycle for future high-intensity
fixed-target beams, which are supposed to be extracted at 1.4 GeV kinetic energy.

Figure 4.4. Current PSB kinetic energy program (green) compared to the proposed ones
after LIU upgrade (blue and orange for extraction at 1.4 GeV and 2 GeV kinetic energy
respectively). Their derivatives are also showed (dashed lines).

.

The next important upgrade for the after-LS2 scenario consists in blowing up
the longitudinal emittance in the PSB in a controlled way from 1.4 eVs to 3 eVs,
instead of the current increase from 1 eVs to 1.3 eVs. This will allow to reduce the
peak line density even further at the PS injection, according to Eq.(4.1).

Notice that the PS brightness curve in Fig.4.3 is not a straight line, therefore
the approximated formula for the tune shift in Eq.(4.1) cannot be used, instead
the full calculation has to be done. It has been estimated that, after LIU upgrade,
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the vertical maximum tune shift, responsible for the limitation, will remain equal
to 0.31 [66, 2]. Assuming that all the planned upgrades for the PSB, PS and SPS
will be successful, it will be possible to reach at LHC injection an intensity of
Nb = 2.3 ·1011 ppb with a transverse normalized emittance of 2.1 µm (Fig.4.3, right).
Therefore the HL-LHC requests will be entirely fulfilled.

The next significant upgrade concerns the PSB RF system. The current three
tunable narrow-band ferrite RF cavities C02, C04 and C16 will be replaced by wide-
band Finemet®-based units (see Section 4.3 to understand the motivations behind
this change and Section 4.5 for an accurate description of the Finemet® impedance
model). The new RF system will consist of 144 identical cells (see Fig.4.2), providing
a total of 24 kV RF voltage per ring if the resonant frequency is below 5 MHz,
otherwise the available RF voltage will linearly decay to 4 kV at 18 MHz [63]. The
Finemet® gaps will cover all the frequencies from few hundreds kHz to above 20 MHz
and will allow multi-harmonic operation, namely it will be possible to freely allocate
on each gap a different RF voltage at the desired revolution harmonic, providing
significant operational flexibility. In addition the new system will be modular, since
every gap might be short-circuited in case of an amplifier break without influencing
the other gaps.

Table 4.2 complements Table 4.1 and summarizes all the future parameters which
will change with respect to the present situation. Since most of the PSB longitudinal
beam dynamics studies presented later are focused on the HL-LHC scenario, the
beam parameters reported in Table 4.2 concern the nominal HL-LHC beams in
the PSB. Notice that, for this type of beam, the total losses and the normalized
transverse emittance blow-up in the PSB are expected to be of 5% (maximum
allowed LIU budget).

4.1.2 Outline of This Chapter

It has been explained that after-LS2 more demanding and challenging beam param-
eters will be required in the PSB to fulfill the HL-LHC directives. In addition the
current PSB impedance model will not be valid anymore due, for example, to the
introduction of the new Finemet® cavities. Therefore it is vital to perform accurate
studies of the PSB longitudinal beam dynamics using a trustworthy simulation code
as BLonD in order to predict possible future instability issues [74, 75]. An accurate
longitudinal impedance model is needed which takes also into account reduction of
the Finemet® beam loading voltage. Moreover it is of paramount importance to
derive an accurate estimation of the longitudinal space charge effect along the future
PSB cycle.

This Chapter is structured as follows. Section 4.2 summarizes the conventions
currently used in PSB operation to measure longitudinal bunch length and emit-
tance. Section 4.3 describes analysis, including comparison between some beam
measurements and particle simulations, which helped in the decision to replace the
current ferrite RF system with a new Finemet® one after LIU upgrade. Section 4.4
explains the followed procedure to obtain a reliable estimate of the longitudinal space
charge at PSB injection energy, then used to compute the space charge values for the
entire cycle by scaling. In Section 4.5 the full PSB longitudinal impedance model is
presented in detail. Section 4.6 explains how a second RF harmonic system is used
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Table 4.2. Some of the main CERN PS Booster machine and RF parameters for the after
upgrade scenario [2, 63]. Current parameters which will not change after upgrade are
not reported here (see Table 4.1). The last four rows refer to nominal LHC25ns beam
parameters in the HL-LHC era.

Injector Linac4

EC275
0,kin [MeV], fC2750,rev [MHz], γC2750 , βC2750 160, 0.99, 1.17, 0.52

EC800
0,kin [GeV], fC8000,rev [MHz] , γC8000 , βC8000 2, 1.81, 3.13, 0.95

RF systems Finemet® (broad-band, modular)

Revolution harmonics 1-20 (multi-harmonic operation)

Resonant frequencies [MHz] 1-20

Cavities configuration 36 identical gaps per ring

Total RF voltage [kV] 24 kV per ring if hf0,rev <5 MHz

fC275s0 -fC800s0 [kHz], QC275
s0 -QC800

s0 (V̂rf,1= 8 kV) 1.67-0.26, 1.69 · 10−3 - 0.14 · 10−3

εC285l [eVs], τC285l [ns], δC285rms 1.4, 650, 1.8 · 10−3

εC800l [eVs], τC800l [ns], δC800rms 3, 205, 1.5 · 10−3

NC285
b [ppb], εC285x,y,n [µm], ∆QC285,sc

x,y 34.2 · 1011, 1.72, (0.58, 0.69)

NPS inj
b [ppb], εPS inj

x,y,n [µm], ∆QPS inj,sc
x,y 32.5 · 1011, 1.80, (0.18, 0.30)

in the PSB, together with the problem of RF phase calibration in the presence of
collective effects. Finally Section 4.7 shows the simulation results for future nominal
LHC25ns and high-intensity beams, providing for the second ones suggestions to
reduce the observed instability.

4.2 Methods for Bunch Length Calculation in the PSB
In PSB operation, the beam current (or longitudinal profile) is measured using
a tomoscope. Records of consecutive beam profiles allows to reconstruct in post-
processing the bunch in longitudinal phase space using the principle of tomogra-
phy [64], see Fig.4.5. The tomogram gives as output a density function ψi,j such
that, if G = ∆t×∆E is a m× n grid on the longitudinal phase space with time and
energy resolutions d(∆t) and d(∆E) then

m∑
i=1

n∑
j=1

ψi,jd(∆t)d(∆E) = A eVs (4.2)

Note that the stable phase is equal to zero in the tomogram conventions, contrary
to what assumed when the equations of motion were derived in Chapter 2 below
transition energy. Therefore ∆t ∈ [−T0/2, T0/2].

Three different ways of computing the longitudinal emittance are available in
operation. The first one is the so-called statistical RMS Emittance, or 1σ emittance,
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Figure 4.5. (Left) Example of PSB measurements of consecutive beam profiles obtained
through the tomoscope. (Right) Consequent reconstruction of the bunch distribution in
longitudinal phase space using the tomography principle (density of particles expressed
through the color bar, the separatrix is in blue). The two profiles shown are the
projections in time and energy of the distribution. The decaying curve on the top-right
corner gives an indication of the error of the reconstructed bunch versus the number
of iterations of the tomogram algorithm. The red square highlights the three methods
used in operation to evaluate the bunch longitudinal emittance (see text for details).

given by the following formula [76]:

εl,rms = π

√
(∆t2 −∆t2)(∆E2 −∆E2)− (∆t∆E −∆t ∆E)2 (4.3)

where

∆tp∆Eq =
∑m
i=1

∑n
j=1 ψi,j∆t

p
i∆E

q
j d(∆t)d(∆E)

A eVs p, q = 0, 1, 2. (4.4)

Notice that the possible bunch displacement in phase space relative to the stable
fixed point ∆t = 0, ∆E = 0 is taken into account in Eq.(4.3).

The second definition is called 90% Emittance, which gives the area of the
longitudinal phase space S containing 90% of the total number of particles, that is

εl,90% = d(∆t)d(∆E)X, (4.5)

where X is the number of squares d(∆t)× d(∆E) contained in S. The value of X is
determined sorting the values ψi,j in decreasing order obtaining a sequence ψ̃k and
then

X∑
k=1

ψ̃kd(∆t)d(∆E) ≤ 0.9A eVs and
X+1∑
k=1

ψ̃kd(∆t)d(∆E) > 0.9A eVs. (4.6)

Finally the third definition of longitudinal emittance is called Matched Area
since it corresponds to the area enclosed by a stable particle-trajectory with a given
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Hamiltonian in longitudinal phase space. This definition has been and currently still
is the most important since it is the reference convention used in beam-parameter
PSB reports. As it was discussed in Chapter 2, the particle-trajectory needed to
define the bunch emittance depends on the convention used to characterize the length
of the bunch profile. In the particular case of the Matched Area, the profile length in
the PSB tomogram is determined using the so-called Foot Tangent Method (Fig.4.6)
after having smoothed the possibly noisy bunch profile with a Savitzky-Golay filter of
order 4 [77]. Savitzky-Golay filters, when properly used in presence of over-sampled
signals corrupted by high-frequency noise, are preferred to other low-pass filters,
since they tend to preserve the bunch profile length and height.

Figure 4.6. Example of bunch profile before and after the use of the Savitzky-Golay filter of
order 4, similarly to what is done in the post-processing of the PSB tomogram algorithm.
Three methods of bunch length computation are shown. FTM (Foot Tangent Method,
used in the tomogram): the intersection points between the profile and the horizontal
line at 15% of its peak are first considered, then the two tangent lines to the profile at
these points are made intersect with the profile base. The resulting points (in black)
determine the FTM bunch length. FWHM (Full Width Half Maximum) and τ5: the
intersection points between the profile and the horizontal lines at 50% and 5% of its
peak determine the corresponding bunch lengths (in blue and yellow respectively).

For our PSB studies, we will often refer to the Matched Area (denoted simply
with εl). Whenever needed we will also compute the bunch length (and therefore
the emittance) using other conventions, namely the Full Width Half Maximum and
the “τ5” ones, see Fig.4.6.

4.3 Finemet® RF System: Comparison Between Mea-
surements and Simulations

A ten cell Finemet® prototype cavity was installed in 2014 in one of the four PSB
rings for studies of RF upgrade project [78] and several beam measurements were
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performed [79]. The goals of beam measurements were multiple: on one hand to
understand which cavity system (current ferrite or new Finemet®) behaves better in
the present situation from a longitudinal beam dynamics perspective, on the other
hand to test the BLonD code so that it can be used to predict the beam parameters
after upgrade.

The Finemet® cavities during measurements could be operated in three differ-
ent configurations (see Section 4.5): the gaps could be short circuited (negligible
impedance where the bunch spectrum sits), or set in open loop state (full impedance
without any reduction) or programmed in closed loop configuration, where RF
feedbacks decrease the beam-loading voltage in such a way that the full impedance
has notches centered at the beam revolution harmonics 1, 2, 3 and 5. In addition it
was possible in measurements to switch on and off the beam-based feedbacks (phase
and radial loops) which allow a stable acceleration along the cycle (see Chapter 5).

Figure 4.7 shows important measurements indicating that the Finemet® gaps
are preferable to the ferrite system from a longitudinal beam dynamics perspective.
Peak-to-peak oscillation amplitudes of the bunch average positionmFWHM and length
τFWHM, computed through the full-width-half-maximum, are plotted for ferrite and
Finemet® systems between C500 and C700. Acceleration is done in a single RF
system (h = 1) with the maximum available RF voltage: 8 kV for the C02 cavity
and 7.2 kV for the Finemet® system (each of the ten gaps can provide approximately
720 V). The chosen bunch intensity for this measurements was Nb = 4.5 · 1012 ppb.
Phase and radial loops were active and the Finemet® system was operated in closed
loop configuration. Figure 4.7 shows that the dipole and quadrupole oscillations of
a beam accelerated through the ferrite system are larger respectively by a factor of
4 and 3 compared to the ones obtained with the Finemet® system, averaging on
the cycle time interval C500-C700. In addition, looking at the error bars, it can be
seen that Finemet® measurements benefit in general of more reproducibility and
consistency.

Having ascertained in operation that the Finemet® gaps are preferable to the
ferrite system, several comparisons between BLonD simulations and measurements
of a bunch accelerated in a single RF system (using the C02 cavity with Vrf,1 = 8 kV)
were performed. Longitudinal space charge and the full PSB impedance model
were included in simulations, counting also the contribution coming from the ten
Finemet® gaps which were powered just to provide an additional source of impedance
without delivering RF voltage to the beam. Phase and radial loops were turned off
in measurements and therefore not included in simulations. As remarked before, the
goal was to prove code reliability and predict the effects of the different RF systems
on the after-upgrade longitudinal beam dynamics.

The first comparison concerned the evolution along the PSB cycle of the full-
width-half-maximum bunch length of a beam with intensity Nb = 5 · 1012 ppb. The
ten Finemet® gaps were short circuited. As mentioned before, the current injection
process with Linac2 cannot be satisfactorily simulated in the longitudinal plane, due
to the impossibility to take into account the considerable losses due to the septum
magnet. Therefore the comparison started at 350 ms, after beam recapture in the
RF bucket. The measured profile at 350 ms (Fig.4.8, left) was fitted by a binomial
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Figure 4.7. Measurements of the dipole (left) and quadrupole (right) peak-to-peak oscil-
lation amplitudes for beams accelerated in a single RF system (h = 1) with the C02
ferrite cavity (blue, Vrf,1 = 8 kV) or with ten Finemet® gaps (red, Vrf,1 = 7.2 kV).
The bunch intensity is Nb = 4.5 · 1012 ppb, phase and radial loops are on. The effect
of dedicated Finemet® beam-loading feedbacks consists in reducing the full Finemet®
impedance through notches centered at the beam revolution harmonics 1, 2, 3 and 5 (see
Section 4.5). The error bars on the measured values are determined by one standard
deviation for each side. Courtesy of S. Albright, CERN, 2015.

line-density

λ(t) =

λ0(τee, µ)
(
1− 4 t2

τ2
ee

)µ
, |t| ≤ τee/2

0, |t| > τee/2
, (4.7)

where λ0(τee, µ) is the normalization factor. The end-to-end bunch length was
τee = 679.3 ns and µ = 1.05 (curve very close to a parabola). Different from
the bunch-generation method described in Chapter 2, an algorithm in the BLonD
code [80] allowed, using the Abel transform [81]

ψ(H(∆t, 0)) = − 1
π

√
|η0|

2β2
0E0

∫ ∞
∆t

dλ(t)
dt

dt√
U(t)−H(∆t, 0)

, (4.8)

to retrieve in simulations the stationary bunch distribution ψ which had line density
λ and which was matched inside the RF bucket with collective effects. Notice that
it was decided to match the distribution with an RF voltage of 9 kV, instead of
the 8 kV used in measurements. The reason for this discrepancy in RF voltage for
bunch generation was to create at the start of simulations, when Vrf,1 = 8 kV, a
mismatch leading to the same quadrupole oscillations as observed in measurements.
An analogous approach, with an horizontal shift in time applied to the generated
bunch distribution, was used to obtain the same dipole oscillations at 350 ms as
seen in measurements.

Figure 4.8 (right) shows the full-width-half-maximum bunch length as a function
of the cycle time from BLonD simulations and measurements. Each of the four sets
of measured points in the figure contains values from two different PSB cycles (blue).
In fact it is impossible to obtain data belonging to the same cycle for the entire
ramp with sufficient resolution in time. In addition there are significant variations
in intensity and bunch length from cycle to cycle. One can see significantly larger
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Figure 4.8. Left: comparison between measured (blue) and simulated (orange) longitudinal
bunch profile at 350 ms PSB cycle-time. The simulated bunch profile is obtained fitting
the measured one by a binomial line-density with end-to-end bunch length equal to
679.3 ns and µ = 1.05. Right: full-width-half-maximum bunch length as a function of
the cycle time in measurements and BLonD simulations for Nb = 5 · 1012 ppb, from
350 ms to 775 ms cycle-times. Acceleration is done in a single RF system (C02 cavity,
h = 1) with constant RF voltage equal to 8 kV. Phase and radial loops are not active.
Simulations are performed without (red) and with (green) collective effects (full PSB
impedance model with space charge and the additional contribution of ten short-circuited
Finemet® RF gaps). Each of the four shown sets of measurements (blue) refers to two
different PSB cycles. Averages of τFWHM for the distinct groups of measurements are
also shown (black). Simulations start at 350 ms with the bunch profile shown on the left
figure. Measurements courtesy of S. Albright, CERN, 2015.

quadrupole oscillations in measurements than in simulations. This can be due for
example to sources of noise present in the magnetic and RF frequency programs used
in operation, in contrast to the smooth design ones adopted in simulations. However,
if averages of τFWHM for the various groups of measurements are considered (black),
good agreement is found between simulations including collective effects (green)
and measurements, while underestimated bunch lengths are obtained neglecting
intensity effects (red). Notice that the difference in τFWHM between simulations with
and without collective effects is mostly due to the longitudinal space charge which
increases the bunch length below transition energy.

Having gained trust in the ability of the BLonD code to reproduce measured
beam parameters along the PSB cycle, the second comparison between simulations
and measurements concerned the behavior of the extracted bunch length as a
function of the extracted intensity. The bunch was again accelerated using only
the C02 cavity with Vrf,1 = 8 kV, and the ten Finemet® RF gaps were at first
short circuited and then set in open loop mode. Figure 4.9 shows the results of the
comparison and a reasonable agreement between measurements and simulations can
be seen. This study also indicated that the Finemet® cavities, considered only as
source of impedance without accelerating the beam, do not alter the considered
longitudinal beam parameters for bunch intensities between Nb = 50 · 1010 ppb and
Nb = 500 · 1010 ppb.
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Figure 4.9. Comparison between measurements and BLonD simulations of the full-width-
half-maximum bunch length at PSB extraction as a function of the extracted intensity.
Acceleration is done in a single RF system (C02 cavity, h = 1) with constant RF voltage
equal to 8 kV all along the cycle. Beam-based feedbacks (phase and radial loops) are off.
Ten Finemet® RF gaps, short circuited or in open loop configuration, contribute to the
total impedance seen by the beam. Measurements courtesy of S. Albright, CERN, 2015.

Finally simulations for after-upgrade beams in a single RF system were performed
with the BLonD code to compare the effects of the ferrite and Finemet® RF systems
on the future longitudinal beam dynamics. In the first simulated case (Fig.4.10,
left), the bunch intensity and the h = 1 RF voltage were set to Nb = 9 · 1012 ppb
and Vrf,1 = 8 kV respectively, while the kinetic energy at extraction was 2 GeV (see
Fig.4.4 for the adopted momentum program). In the second simulated case (Fig.4.10,
right), the bunch intensity and the RF voltage were set to Nb = 1.5 · 1013 ppb and
Vrf,1 = 15 kV respectively, with a kinetic energy at flat top equal to 1.4 GeV (see
again Fig.4.4). In both cases phase and radial loops were not included.

These two chosen bunch intensities, with the corresponding different acceleration
cycles, were selected based on expected extreme values for future high-intensity
beams. As mentioned in the introduction of this Chapter, the 36 Finemet® gaps
planned to be installed after-upgrade in each of the four PSB rings will provide a
maximum RF voltage of 24 kV. Therefore the value of Vrf,1 = 15 kV used as an
example in the second simulated case is feasible for the Finemet® system and, to
allow comparison, was assumed to be deliverable also by the C02 ferrite cavity, which
current maximum RF voltage is only 8 kV. The 36 Finemet® gaps were supposed to
be in an optimistic closed loop configuration, meaning that the feedbacks reduce the
full Finemet® impedance at all frequencies by the maximum possible factor of 63.

All simulations shown in Fig.4.10 started at C275 with the same rectangular
distribution in longitudinal phase space formed by micro-bunches coming from
Linac4. The distribution was uniform in time and water-bag in energy, with a total
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Figure 4.10. Simulations comparing the effects of the ferrite and Finemet® RF systems
on the full-width-half-maximum bunch length along the future PSB cycles (Fig.4.4) for
high-intensity beams. The bunches are accelerated in a single RF system (h = 1) with
phase and radial loops off. All simulations start at C275 with the same micro-bunches
coming from Linac4 and forming, in an accelerating bucket at 160 MeV, a rectangle
which parameters correspond to the optimal case of unmodulated injection studied
in [82]. The RF cavity impedance is given by the C02 resonator-like contribution for
acceleration with the ferrite system (blue curve), while the impedance of 36 Finemet®
gaps in an optimistic closed loop configuration (reduction of the full impedance at all
frequencies by the maximum possible factor of 63) is considered for acceleration with
the Finemet® system (red curve).

injected bunch length equal to 474 ns and an rms energy spread of 336 keV. These
last two values were chosen to match the optimal case studied in [82] for a future
unmodulated multi-turn injection of Linac4 micro-bunches into a PSB double RF
bucket with Vrf,1 = 8 kV (h = 1), Vrf,2 = 6 kV (h = 2) and relative RF phase set in
the bunch lengthening mode (see also Section 4.6). The optimal parameters found
in [82] derived from a compromise between minimization of the peak line density for
transverse space charge effect reduction and minimization of the needed number of
turns in the multi-turn injection to reduce the amount of foil hits and blow-up due
to the scattering at the screen in the new H− charge-exchange injection system.

Figure 4.10 shows that the bunch length oscillations along the future PSB cycles
are significantly smaller if the acceleration is performed with the Finemet® system.
In addition the ferrite cavity leads to an uncontrolled increase in bunch length during
the interval C275-C300, when the initial rectangular distribution filaments in an
accelerating bucket.

The results shown in this Section strongly contributed to the important decision
to replace, after upgrade, all the present ferrite systems with Finemet® ones [63, 78].

4.4 Longitudinal Space Charge After LIU Upgrade

4.4.1 Space Charge Calculation Along the Ramp

The longitudinal space charge effect is very significant in low energy machines and
an accurate estimation of its contribution to collective effects is very important. The
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PSB, which can be considered a low energy machine with its current relativistic
beta at injection equal to 0.31, operates below transition energy and therefore the
longitudinal space charge has a defocusing effect [82, 83].

The longitudinal space charge Zsc can be modeled by a purely imaginary
impedance [84]. In the following, we assume that |Zsc|/n does not depend on
f , or that |Zsc| is directly proportional to f at a given energy [85]. Most of the times
this approximation is reasonable and we will see later that the same can also be
assumed in the PSB case.

The results derived in this Section will show that |Zsc|/n ≈ 600 Ω at the future
PSB injection kinetic energy of 160 MeV. For the sake of comparison and to show
the magnitude of this space charge value, |Zsc|/n ≈ 1 Ω at CERN SPS injection
(Ekin = 25 GeV), where longitudinal space charge plays an important role being
even comparable to other impedance sources [80].

The longitudinal space charge induced voltage can be calculated starting from
its expression involving the inverse Fourier transform F−1

Vsc(t) = eF−1(ZscS) = e

2π

∫ +∞

−∞
dω Zsc(ω)S(ω) eiωt (4.9)

Using the assumptions given before we can compute

Vsc(t) = e

2π

∫ +∞

−∞
dω i
|Zsc|
n

nS eiωt = e

2π
|Zsc|
n

1
ωrev,0

∫ +∞

−∞
dω i ω S eiωt

= e

2πωrev,0
|Zsc|
n

∫ +∞

−∞
dωS

d

dt
eiωt = e

2πωrev,0
|Zsc|
n

d

dt

∫ +∞

−∞
dωS eiωt.

(4.10)

Finally, noting that the integral term in the last expression of Eq.(4.10) is equal to
2πλ, we obtain

Vsc(t) = e

ωrev,0

|Zsc|
n

d

dt
λ(t). (4.11)

Equation (4.11) shows that the calculation of the space-charge induced-voltage is
reduced to the computation of |Zsc|/n for each beam energy through the acceleration
cycle.

As observed above, the future bunch distribution at cycle-time C275 (Ekin =
160 MeV), being a rectangle in phase space, will start filamenting in an accelerating
bucket. At cycle-time C285 (Ekin = 170 MeV, β0 = 0.53, γ0 = 1.18) the bunch is
expected to be matched with the RF bucket. Therefore in this Subsection we will
focus on the calculation of |Zsc|/n at C285, when the bunch will be at equilibrium,
before using a rescaling formula to estimate the space charge values for all the
energies along the future cycle, from 160 MeV to 2 GeV.

The following formula is often used to obtain a first approximation for |Zsc|/n [86]

|Zsc|
n

= Z0g

2β0γ2
0

= Z0
2β0γ2

0

(
1 + 2 ln b

a

)
, (4.12)

where Z0 ≈ 377Ω is the free-space impedance, g is the so-called geometrical or
form factor, b and a the radii of the chamber and beam longitudinal cross sections
respectively. In fact Eq.(4.12) is exact only for chambers and beams having a longi-
tudinal circular cross section and for beams with an uniform transverse distribution.
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An additional hypothesis is that the field is calculated on axis, where the field is
maximum. Therefore the impedance value obtained with Eq.(4.12) refers to the
worst case scenario.

In order to obtain a first approximation for |Zsc|/n at 170 MeV using Eq.(4.12),
the values of b and a have to be found. Focusing first on b, it is important to
note that the PSB can be divided into 211 sections, where each part differs from
the two adjacent ones in cross section shape, dimension, or both. Figure 4.11
shows how the horizontal bx and vertical by half-heights of the cross sections change
as a function of the position s in the PSB, see also Fig.4.13. Averaging along
the ring, we obtain 〈bx〉 = 66.6 mm and 〈by〉 = 51.1 mm. Therefore we can set
b = (〈bx〉+ 〈by〉)/2 = 58.8 mm.

Figure 4.11. Left: horizontal (red) and vertical (black) half-heights of the different
beam-pipe cross sections along the PSB ring. Right: rms sizes along the PSB ring
of the horizontal and vertical Gaussian distributions (blue and green respectively) if
Ekin = 170 MeV, εx,y = 1.72 µm and δrms = 1.8 · 10−3. The dashed horizontal lines mark
the averages of the corresponding curves.

In order to find a, we first have to notice that the horizontal and vertical
transverse distributions for nominal LHC beams after upgrade will not be uniform
but will resemble a Gaussian, as it is currently the case. In addition the horizontal
and vertical rms bunch sizes σx and σy will vary along the ring. Therefore, in rough
approximation, we can suppose that the beam radius a of a bi-Gaussian transverse
distribution can be interpreted as twice the average of the averages of the horizontal
and vertical rms bunch sizes along the ring, that is a = 〈σx〉+ 〈σy〉.

To calculate σx and σy we can use the formulas derived in Appendix A

σx(s) =
√
βx(s)εx +D2

x(s)δ2
rms, σy(s) =

√
βy(s)εy, (4.13)

where εx,y are the geometrical emittances, βx,y are the transverse beta functions and
Dx is the horizontal dispersion function (Dy is negligible in the PSB).

Table 4.2 has been used to estimate δrms and εx,y at 170 MeV, therefore δrms =
1.8 ·10−3 and εx,y = εx,y,n/(β0γ0) = 2.74 µm. Using the PSB betatron and dispersion
functions shown in Fig.4.12, σx and σy can be computed for every position s along
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Figure 4.12. Horizontal and vertical PSB beta functions (left) and horizontal dispersion
function (right) as a function of the position s along the ring. Courtesy of G. Rumolo,
CERN, 2015.

the ring, see Fig.4.11. The averages are 〈σx〉 = 4.93 mm and 〈σy〉 = 4.27 mm,
therefore a = 9.2 mm.

Substituting a and b in Eq.(4.12), the following approximation for |Zsc|/n at
170 MeV was obtained

|Zsc|
n

= 1195.6Ω. (4.14)

As observed above, this impedance value refers to the worst case scenario of a field
calculated on axis.

It has been suggested in Ref.[86] that it is more realistic to consider the average
potential instead of the on-axis potential. Equation (4.12) then becomes

|Zsc|
n

= Z0
2β0γ2

0

(
0.5 + 2 ln b

a

)
. (4.15)

This expression, with the same values of a and b as used before, gives a second
approximation for |Zsc|/n at 170 MeV

|Zsc|
n

= 1068.7Ω. (4.16)

In reality, as outlined previously, neither the beam nor the pipe cross sections are
round and of constant dimensions along the ring. Therefore we expect that the two
just found impedance values can only indicate the order of magnitude of |Zsc|/n at
170 MeV. This is surely not sufficient for our studies, due to the strong contribution
of the longitudinal space charge to the full impedance model (see Section 4.5). In
addition an accurate value for |Zsc|/n is needed since, from the relation

Vsc ∝ Nb
|Zsc|
n

d

dt

λ(t)
Nb

, (4.17)

it follows that the threshold beam intensity Nb and the space charge impedance
|Zsc|/n are inversely proportional to each other, given a normalized longitudinal line
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density and a threshold value of the space-charge induced-voltage. Consequently,
errors in properly estimating |Zsc|/n lead to uncertainties on the threshold beam
intensity.

Therefore a tool able to accurately calculate the longitudinal space charge field in
the PSB becomes necessary. A precise value of |Zsc|/n, used as an input in BLonD
simulations, would allow to avoid unrealistic predictions for the after-LIU scenario.

The LSC Code

At SLAC Laboratory it was developed a code called LSC (Longitudinal Space
Charge) [84] able to solve the wave equation

∇2E − 1
c2
∂E
∂t

= ∇ρ
ε0

+ µ0
∂J

∂t
(4.18)

for the longitudinal component Ez of the space charge electric field. Here ρ and J are
the charge and current densities respectively, while ε0 and µ0 are the permittivity
and permeability of free space.

In order to compute the space charge field in each of the 211 different PSB
sections, the LSC code takes as input for each section: one pair of values for the rms
transverse beam sizes σx and σy (we chose to average the values in Fig.4.11 (right)
along the section), the aperture shape and size, the horizontal and vertical particle
distribution types (Gaussian), and the beam energy (170 MeV). The LSC code then
gives as output the length-normalized space-charge impedance |Zsc|/L, calculated
either as an average over one rms transverse bunch width or on axis (L stands for
the length of the section). In the computations, the LSC code considers both the
direct and indirect longitudinal space charge, meaning that the repulsive Coulomb
forces between particles and the interactions between the beam and the pipe are
taken into account.

The LSC code solves Eq.(4.18) using a Finite Element Method. Therefore it
requires meshed models of the various cross sections as an input. There are four
different aperture shapes in the PSB, see Fig.4.13: round for drift tubes (117),
“rectangular” for dipoles (47), “diamond” for quadrupoles (44) and “oblong” for
septum magnets at injection and extraction (3). The “rectangular” and “oblong”
shapes are slightly different: the boundary of the “rectangular” shape is formed
entirely by arcs of circumference (three different values for the radius are used)
while the boundary of the “oblong” shape is composed of straight lines and arcs
of circumference (only one radius is used), see again Fig.4.13. However, because
of the similarity, every “rectangular” shape with a certain horizontal and vertical
half-heights bx and by has been converted to an “oblong” shape with the same
half-sizes.

After having extrapolated the different cross-section boundaries from the drawings
in Fig.4.13, the desired meshes for the LSC code were computed, see Fig.4.14. Notice
that these grids are not banally uniform, as often happens when Finite Element
Methods are used to solve partial differential equations.

Figure 4.15 shows two expected normalized bunch spectra at 170 MeV together
with the output of the LSC code, each line refers to one of the 211 sections in which
the PSB has been decomposed. When Eq.(4.11) was derived, it was supposed that
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Figure 4.13. Drawings of the different types of chamber cross section in the PSB ring:
“rectangular” (left) for dipoles, “diamond” (center) for quadrupoles and “oblong” (right)
for septum magnets. The quantities bx and by represent the horizontal and vertical
half-heights of the cross-section. The radii of the different arcs of circumference are
denoted by a numbered r. The drift tube cross-section is simply round with radius
r1 = bx = by and therefore not shown. Courtesy of C. Zannini, M. Hourican and
F. Chapuis, CERN, 2015.

Figure 4.14. Dedicated meshes for the “diamond” (left) and “oblong” (right) PSB apertures
to be used as inputs for the LSC code. Courtesy of L. Wang, SLAC, 2015.

|Zsc|/n does not depend on the frequency. Figure 4.15 proves that this assumption
is reasonable for the PSB case, at least at 170 MeV, since the beam spectra decay to
zero before |Zsc|/n starts dropping at roughly 100 MHz. For each of the 211 sections,
the average of the correspondent |Zsc|/(Ln) over the positive frequencies smaller
than 30 MHz is taken (see Fig.4.15). Including the information about the section
lengths, Fig.4.16 shows the variation of the length-normalized |Zsc|/n along the ring.

In order to obtain one single value for the longitudinal space charge impedance
at 170 MeV over one revolution turn, a weighted average has to be computed

|Zsc|
n

=
211∑
i=1

Li

( |Zsc|
Ln

)
i
. (4.19)

This expression gives the following value

|Zsc|
n

= 608.3 Ω, (4.20)
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which refers to a space charge force averaged over one rms transverse beam width.
Using the LSC code to evaluate the space charge force on beam axis and applying
again Eq.(4.19), the value 637.6 Ω is obtained. Notice how these last two space charge
estimations significantly differ from the ones obtained in Eqs.(4.14) and (4.16).

Figure 4.15. The length-normalized longitudinal space charge impedance Zsc/n as a
function of frequency for the 211 different PSB sections at 170 MeV (output of the LSC
code). Two different beam spectra of a bunch having a parabolic distribution density
with emittance εl = 1.4 eVs at 170 MeV are also shown: one refers to a bunch matched
inside a single RF bucket (Vrf,1 = 16 kV, blue line), the other corresponds to a bunch
at equilibrium inside a double RF bucket (Vrf,1 = 8 kV, Vrf,2 = 8 kV, relative phase in
bunch lengthening mode, green line). The dashed vertical line marks f = 30 MHz.

Figure 4.16. Variation of the length-normalized |Zsc|/n as a function of the position along
the PSB ring.

Finally, Eq.(4.15) and the value in Eq.(4.20) have been used to have a rough
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estimation of the space charge impedance at different energies of the future PSB
cycle. The following relation for the average beam radius a derives from Eq.(4.13)

a(Ekin) ∝
√
εx,y,n(170MeV)Cbu(Ekin)

β0(Ekin)γ0(Ekin) . (4.21)

where Cbu is a factor depending on the kinetic energy which takes into account
the expected 5% blow-up of the transverse normalized emittance along the PSB
cycle. Considering the values in Table 4.2, we can assume that Cbu = 1 for
Ekin ∈ [160MeV, 170MeV], Cbu = 1.80/1.72 for Ekin = 2 GeV and that a linear
interpolation can be done for all the kinetic energies between 170 MeV and 2 GeV.
From Eq.(4.21) it follows that

a(Ekin) = a(170MeV)
√
Cbu(Ekin)β0(170MeV)γ0(170MeV)

β0(Ekin)γ0(Ekin) . (4.22)

Computing the expression log(b/a) at 170 MeV using Eqs.(4.15) and (4.20), and
developing log(b/a) at a generic energy using Eq.(4.22), the following formula is
obtained

|Zsc|
n

(Ekin) = β0(170MeV)γ2
0(170MeV)

β0(Ekin)γ2
0(Ekin)

|Zsc|
n

(170MeV)

+ Z0
2β0(Ekin)γ2

0(Ekin)
log

(
β0(Ekin)γ0(Ekin)

Cbu(Ekin)β0(170MeV)γ0(170MeV)

) (4.23)

Equation (4.23) has been used to compute the longitudinal space charge impedance
along the future PSB cycle with extraction at 2 GeV, see Fig.4.17. Note an impedance
reduction of almost factor 8 between the injection and extraction energies. These
values for |Zsc|/n have been used in the BLonD code to evaluate the PSB longitudinal
space charge induced voltage through Eq.(4.11).

Figure 4.17. Estimation of the PSB longitudinal space charge impedance |Zsc|/n (black)
after CERN upgrade in the cycle-time interval 275 ms–805 ms (160 MeV–2 GeV cycle,
blue). The red line marks the cycle-time 285 ms, when |Zsc|/n = 608.3 Ω (value computed
using the LSC code). At PSB flat top |Zsc|/n = 79.2 Ω.
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4.4.2 Benchmarks with the PyORBIT Code at the Future Injection
Energy

Several longitudinal space charge studies using the PyORBIT code [87] have been
performed at CERN to optimize the future injection of Linac4 micro-bunches into
the PSB [88, 82]. In order to validate the results coming from simulations, many
benchmarks have been performed with the BLonD code.

PyORBIT is a so-called Particle-in-Cell (PIC) code [89] which, in addition to
perform longitudinal and transverse tracking of particles considering the machine
optics, is able to numerically compute the space charge effects in three dimensions.
At each revolution turn, the PSB beam was sliced with two-dimensional grids
perpendicular to the longitudinal axis, the transverse space charge forces were
computed for each of them, and the beam transverse coordinates were updated.
After these operations, before the starting of the next revolution turn, the longitudinal
space charge induced voltage was computed in frequency domain using Eq.(4.9) and
the energy coordinates of the particles were updated accordingly.

On the other hand, there are in BLonD possibilities to compute the longitudinal
space-charge induced voltage either in frequency or time domain using respectively
Eqs.(4.9) and (4.11). As we will see later, the second approach is generally used
to reduce numerical noise. Therefore, in the following three benchmarks, the time
domain computation has been chosen in the BLonD code.

Benchmark 1: PSB Injection Without Space Charge

Six rectangular particle distributions having different longitudinal emittances, uni-
form in time and water-bag in energy, were tracked for 10000 turns with acceleration,
double RF system in bunch-lengthening mode (Vrf,1 = 8 kV, Vrf,2 = 8 kV) but
without considering longitudinal space charge effects. Defining the bunching factor
Bf as the ratio of the average and the peak line density

Bf = 〈λ〉
λ̂
, (4.24)

Fig.4.18 shows the evolution of Bf in the PyORBIT and BLonD codes. Since the
transverse dynamics are not supposed to influence the longitudinal one, the expected
agreement between the two codes was found.

Benchmark 2: PSB Parabolic Bunch at 160 MeV With Space Charge

The small-amplitude synchrotron frequency fs0,ind of a parabolic bunch matched in
a single RF bucket including space charge voltage below transition energy is given
by [85]

fs0,ind = fs0

√√√√1− 3qNbfrev,0
π2hVrf

(
Cring
β0cτl,eq

)3 ∣∣∣∣Zn
∣∣∣∣
sc

(4.25)

where fs0 is the synchrotron frequency without space charge effect and τl,eq is the
end-to-end bunch length of the parabolic bunch at equilibrium.

A parabolic bunch having τl,0 = 148 ns at 160 MeV in a single RF system
with Vrf = 8 kV was used as initial condition in the benchmark simulations. The
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Figure 4.18. First benchmark between the PyORBIT (left) and BLonD (right) codes:
evolution of the bunching factor Bf along the first 10000 turns at future PSB injection.
Acceleration in a double RF system in bunch-lengthening mode (Vrf,1 = 8 kV, Vrf,2 =
8 kV). No space charge effects included. PyORBIT simulations courtesy of V. Forte,
CERN, 2015.

longitudinal space charge impedance was assumed to be |Zsc/n| = 796 Ω. Notice
that this impedance value has been computed using Eq.(4.12), with a = 11 mm
(assuming σx,y = 5.5 mm) and b = 30 mm (roughly the lowest half-height of all the
apertures). As previously discussed, these assumptions are not realistic, however
they provided a quick estimation for code benchmarking purposes. The parabolic
bunch was chosen to be in equilibrium only with the RF voltage, since the matching
of the distribution with intensity effects could be dependent on the specific code.
The particles were tracked for 10000 turns and afterwards the synchrotron frequency
distribution was numerically calculated.

Figure 4.19 shows comparison of the synchrotron frequency distributions calcu-
lated by PyORBIT and BLonD for different bunch intensities. Since the parabolic
bunch was not matched with intensity effects, emittance blow-up occurred for rel-
atively high intensities and therefore the analytical value provided by Eq.(4.25),
which assumes a parabolic bunch in equilibrium, was not valid anymore. However
good agreement in results between the two codes was found for all the examined
cases.

Benchmark 3: Realistic PSB Distribution with Space Charge at 160 MeV

As a final benchmark, a realistic particle distribution in the PSB at 160 MeV,
composed by micro-bunches coming from the future Linac4, has been tracked
for 10000 turns considering acceleration and space charge effects. The uniform
distribution in time was 474 ns long with δrms = 1.36 · 10−3 and the bunch intensity
was Nb = 3·1012 ppb. Double RF operation in bunch-lengthening mode (Vrf,1 = 8 kV,
Vrf,2 = 8 kV) has been chosen, while |Z/n|sc = 796 Ω.

Figure 4.20 shows the normalized peak line density evolution from PyORBIT
and BLonD simulations, with and without inclusion of space charge effect. For both
codes the defocusing effect coming from space charge is visible (bunch lengthening)
and good agreement was found.
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Figure 4.19. Second benchmark between the PyORBIT (blue) and BLonD (red) codes:
synchrotron frequency distribution as a function of particle amplitude for different
bunch intensities at 160 MeV. The distributions are computed after particle-tracking
of 10000 turns, space charge effects are included. Initial conditions: parabolic bunch
with end-to-end length φ0 matched with the RF voltage but not with space charge
effects. The green horizontal line marks the small-amplitude synchrotron frequency with
space charge effects, see Eq.4.25. The bottom-right plot is a zoom on the figure for
Nb = 3 · 1010, the magenta line indicates the small-amplitude synchrotron frequency
without space charge effects. PyORBIT simulations courtesy of V. Forte, CERN, 2015.

4.4.3 Space-charge Induced-voltage Computations in Time and Fre-
quency Domain

As mentioned before, the longitudinal space charge induced voltage can be computed
either in frequency or time domain using Eqs.(4.9) and (4.11) respectively. These
two mathematically equivalent methods can provide different results when numerical
simulations are involved. Moreover, in the just described three benchmarks no
importance has been given to the numerical method used to compute the derivative
of the line density in the BLonD code. The first-order difference scheme [90] has
been used in all the three cases.

In this Subsection we consider again the simulation parameters utilized in the
third benchmark and compare four methods to compute Vsc, three in time and
one in frequency domain. In time domain, the derivative of the line density is
computed through the first-order difference scheme, then with the second-order
gradient algorithm [90], and finally using the Savitzky-Golay derivative smoothing
filter of fourth order. The choice of this filter for derivative computation is motivated
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Figure 4.20. Third benchmark between the PyORBIT (top) and BLonD (bottom) codes:
peak line density normalized to the initial one as a function of the number of revolution
turns in the PSB, with and without consideration of space charge effects. Initial
conditions: rectangular distribution at 160 MeV, acceleration in a double RF system in
bunch lengthening mode (Vrf,1 = 8 kV, Vrf,2 = 8 kV). PyORBIT simulations courtesy of
V. Forte, CERN, 2015.

by the fact that this method has been used for years in the PSB operation to smooth
measured longitudinal bunch profiles and their derivatives in order to reconstruct
the phase space distribution through tomography taking into account space charge
effects (see Section 4.2).

The comparison of the several approaches to compute Vsc is performed for two
reasons. The first is to prove consistency of the four methods and reliability of the
results obtained in the third benchmark, which describes a case close to the expected
PSB scenario after LIU upgrade. The second is to estimate the sensitivity of the
different methods to numerical noise introduced in the bunch profile increasing the
number of slices while keeping the amount of macro-particles unvaried. Indeed,
after having obtained an accurate estimation for |Zsc/n|, the next goal is to identify
a sufficiently reliable numerical method to compute the longitudinal space charge
induced voltage.

Figure 4.21 shows the comparison results, taking as parameters of interest the
percentage of lost particles, the bunching factor and the longitudinal emittance
as a function of the number of revolution turns. If 300 slices are used, the four
chosen methods for induced voltage computation provide roughly the same outputs
if NM = 5 ·105 (colors black, red, blue and green in Fig.4.21, left): there are no losses
in all the cases, the bunching-factor curves converge on average towards the same
value and the emittance curves are almost superimposed. This proves consistency of
the four methods when NS = 300 and NM = 5 · 105 (numerical parameters used in
the third benchmark). Increasing the number of macro-particles to NM = 5 · 106, no
visible difference appears (colors magenta and yellow in Fig.4.21, left). This suggests



4.4 Longitudinal Space Charge After LIU Upgrade 75

that the results obtained using NS = 300 and NM = 5 · 105 are also reliable. Notice
that the fourth order Savitzky-Golay filter is applied choosing the lowest value of 5
for the number of window points. The aim is to avoid unnecessary smoothing which
could suppress important physical information while at the same time exploiting the
smoothing to counteract possible sources of noise.

Figure 4.21. Percentage of losses (top), bunching factor (middle) and longitudinal emittance
(bottom) as a function of the number of revolution turns using the same simulation
parameters chosen in the third benchmark between the PyORBIT and BLonD codes,
see Fig.4.20. The number of slices per bucket is 300 (left) or 1000 (right). Results
obtained using four methods for space charge induced voltage calculation: first-order
difference scheme (black), second-order gradient method (red), Savitzky-Golay derivative
smoothing filter of fourth order with 5 or 17 window points (blue, see the text for
details) and frequency domain approach (green). The magenta and yellow curves refer
respectively to the gradient and frequency methods when the number of macro-particles
is NM = 5 · 106, all the other curves assume NM = 5 · 105.

Increasing the number of slices from NS = 300 to NS = 1000 while keeping
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NM = 5 · 105 fixed (colors black, red, blue and green in Fig.4.21, right), numerical
noise is introduced. Adopting the results obtained using NS = 300 as a reference,
the frequency domain approach gives the worst result: losses of 0.5 %, increasing
of bunching factor and significant emittance blow-up at the end of the simulation.
This could be explained by the fact that with 1000 slices the numerical noise is
amplified in frequency domain by the multiplication of a linear increase of space
charge impedance with frequency. The best result comes from the use of the fourth
order Savitzky-Golay filter, after having rescaled the number of window points from
5 to 17 in order to preserve the length of the window on which the filter acts (NS
increases by slightly more than a factor of 3): zero losses are obtained and the
correct emittance curve is reproduced, even if there is a visible decrease in bunching
factor. Finally the difference and gradient schemes provide zero losses and relatively
low emittance blow-up, while the decrease in bunching factor is comparable to the
one obtained with the Savitzky-Golay filter. Notice that the proper choice of the
number of window points for the filter is important: varying it for example from 17
to 5, the noise introduced by choosing NS = 1000 is not smoothed anymore and a
considerable emittance blow-up occurs (see the dashed line in the bottom-right plot
of Fig.4.21).

Increasing the number of macro-particles by a factor of 10 when NS = 1000
(colors magenta and yellow in Fig.4.21, right), the frequency and gradient methods
provide results respectively close and in total accordance with what found previously
using NS = 300, see Fig.4.21. The difference and Savitzky-Golay approaches recover
the correct solution as well. This suggests the rescaling

NS ∝
√
NM (4.26)

for the selection of the histogram parameters in order to preserve the correctness of
the obtained results. Notice that several studies on how to choose NS and NM when
dealing with longitudinal space charge induced voltage computations have been done
in the past [91, 92, 93]. Instead of Eq.(4.26), these studies recommend the rescaling

NS ∝ 3
√
NM, (4.27)

for both time and frequency domain calculations, in order to preserve the rms error
of the induced voltage gained per turn by a particle in a generic bin.

To summarize, the comparison in Fig.4.21 shows that the frequency domain
approach is the most sensitive to noise, therefore its use cannot be suggested. The
Savitzky-Golay filter provides the best result, however the success of this method
strongly depends on the proper choice of the number of window points. In order to
avoid any risk in under or over-smoothing the bunch profile in the complex and varied
realistic beam dynamics simulations performed in this thesis, the Savitzky-Golay
approach has been neglected as well. Finally the gradient and difference schemes
show a similar sensitivity to noise when NS = 1000 and the correct result is recovered
after a proper increase of the number of macro-particles. Taking into account the
order of these two methods, the gradient scheme has been generally preferred in this
thesis for longitudinal space charge induced voltage computations.

Note that the use of filters to smooth the bunch profiles in simulations has not
been considered in the present work: a dedicated study is needed since filters, if
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not properly used, can suppress physical information, fail to counteract numerical
noise or even enhance it (see the Savitzky-Golay example just discussed). As an
alternative, control of numerical noise and consequent validation of simulation results
have been achieved in this thesis through numerical convergence studies: keeping
fixed the amount of bins (usually determined by physics reasonings), the number of
macro-particles has been increased by steps until agreement in results was found.

4.5 Longitudinal Impedance Model After the PSB Up-
grade

4.5.1 PSB Impedance Model

Finemet® Cavities

As described in the introduction of this Chapter, after LIU upgrade the PSB beam
will be accelerated by Finemet® loaded cavities with broad-band impedance. In each
of the four PSB rings there will be 36 Finemet® gaps able to provide a total RF
voltage of 24 kV.

The Finemet® system can be operated in one of the following four configurations:

• Short-circuited: the cavities are installed in the ring but are short-circuited by
gap relays. This mode of operation is usually adopted when the cavities are
temporarily unused. The beam still sees some residual impedance, mostly at
high frequencies.

• Open-loop: the RF gaps act without cavity feedback reducing their impedances.

• Closed-loop (power amplifier feedback): the RF gaps act with a fast RF
feedback loop for beam loading compensation. This feedback is implemented
in the power amplifier and is able to reduce the open-loop gap impedance by
10 amplitude-ratio dB [63].

• Closed-loop (power amplifier and Low Level RF feedbacks): in addition to
the just mentioned fast RF feedback, the Finemet® gaps benefit from a wake-
voltage cancellation feedback implemented in the Low Level RF electronics and
able to lower the impedance at some given number of harmonics of revolution
frequency by an average factor of 36 dB [94].

Figure 4.22 shows the longitudinal impedances related to the first three listed
configurations for 36 Finemet® gaps. These impedances, which do not depend on
the beam energy, have been both measured and numerically calculated [62]. Notice
that the impedance for short-circuited gaps is significant only at relatively high
frequencies compared to the beam revolution frequency after upgrade, which will
range from 1 MHz to 1.8 MHz. Notice also that, in this same frequency range, the
gap impedance for the closed-loop configuration with power-amplifier feedback is
flat with negligible imaginary part.

Concerning the fourth listed configuration of the Finemet® RF system, impedance
reduction at frequencies hfrev,0 (h = 1, . . . , 8) has been included in BLonD simula-
tions taking into account the measured gain of the transfer function of the LLRF
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Figure 4.22. Impedance of 36 Finemet® RF gaps versus frequency: absolute value and real
part (top, continuous and dashed lines respectively), imaginary part (bottom). Three
different configurations for the cavities are shown: short-circuited (blue), open-loop
(no feedback for impedance reduction, green) and closed-loop with power-amplifier fast
RF feedback (open-loop impedance reduced by 10 dB at 1 MHz, red). The shown
impedances do not depend on the beam energy. Courtesy of M. Paoluzzi, CERN, 2015.

wake-voltage cancellation feedback, as Fig.4.23 shows. Resonator impedances with
parameters

fr = hfrev,0, Rsh ≈ ReZ|f=fr , Qr = fr/Bw, (4.28)

where Bw is the resonator bandwidth at -3 dB [95], have been subtracted from the
impedance Z in closed-loop configuration where only the power-amplifier feedback
is active. The expression for the resonant frequency in Eq.(4.28) is due to the fact
that the resonator has to be centered where the maximum impedance reduction
occurs. Since the Finemet® impedance is in good approximation resistive, the value
of Z in fr can be reduced to the desired value imposing Rsh ≈ ReZ|f=fr . Finally
every subtracted resonator, independently of its resonant frequency, should have
a bandwidth of 16 kHz at -3 dB, as measurements indicate. Therefore the quality
factor should be set as specified in Eq.(4.28), where Bw = 16 kHz.
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Figure 4.23. Left: measured gain of the transfer function of the Low Level RF feedback
for Finemet®-wake reduction at different revolution frequencies. The average bandwidth
at -3 dB is 16 kHz, the average gain is -36 dB. Courtesy of M. Paoluzzi, CERN, 2015.
Right: example of Finemet® impedance reduction in simulations taking into account
the measured gain of the transfer function shown on the left figure. Starting from
the impedance Z where only the power-amplifier feedback is active (red), the reduced
impedance (yellow) is obtained subtracting a resonator with parameters fr = frev,0 =
1000 kHz, Rsh = ReZ|f=fr = 1 kΩ and Qr = frev,0/Bw = 62.5, where Bw = 16 kHz is
the resonator bandwidth at -3 dB.

Other impedances

In addition to the impedance of the Finemet® cavities, the other sources of impedance
that have been taken into account in simulations are [96, 97]

• one extraction kicker

• extraction kicker cables

• KSW magnets to perform transverse painting at injection [72]

• resistive wall

• beam-pipe step-transitions

The impedances coming from the extraction kicker and resistive wall depend on
the beam energy while the impedances of the cables and KSW magnets do not. The
real and imaginary parts of these four impedances are shown in Fig.4.24. Notice
that the model of the extraction kicker has been recently improved [98], however it
has been proved in simulations that the updated impedance does not influence the
longitudinal beam dynamics [99].

The last impedance in the previous list is purely imaginary, broad band and
has a defocusing effect on the bunch [96], as the space charge impedance discussed
above. Its value is

|Zst|
f

= 34.67 Ω
GHz . (4.29)

Figure 4.25 shows that this impedance is negligible in comparison with the space
charge one.
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Figure 4.24. From top to bottom, real-part (left) and imaginary-part (right) impedance
coming from the PSB extraction kicker, its cables, magnets to perform transverse painting
at 160 MeV and resistive wall. Only the contributions from the extraction kicker and
resistive wall depend on the beam energy. Courtesy of C. Zannini, CERN, 2015.

Figure 4.26 (left) compares the absolute value of the different impedance con-
tributions at 160 MeV and 2 GeV kinetic energy. One can see that the Finemet®

closed-loop impedance reduction is important since the lowered impedance is compa-
rable to the other contributions at the affected harmonics of the revolution frequency.
Figure 4.26 (right) shows the absolute value of the sum of the several impedances.
Notice that the Finemet® contribution largely dominates all the other components.

Finally Fig.4.27 shows a bunch profile (left) for nominal LHC beam after-upgrade
at 160 MeV, together with its spectrum (right). The longitudinal emittance is
εl = 1.4 eVs and Vrf,1 = 8 kV, Vrf,2 = 8 kV with relative phase in bunch lengthening
mode (see later).

As expected, the induced voltage generated by space charge (red) follows the
derivative of the line density, see Eq.(4.11).

The induced voltage generated by the sum of all the other impedances, considering
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Figure 4.25. Variation of the beam-pipe step-transition impedance |Zst|/n as a function
of kinetic energy from 160 MeV to 2 GeV in the PSB.

Figure 4.26. Absolute value of impedance for different sources (left) and absolute value of
the sum of all the five contributions (right) at 160 MeV (top) and 2 GeV (bottom) in
the PSB. The different impedance sources are: Finemet® RF cavities with closed-loop
configuration (purple), KSW kicker magnets (orange), extraction kicker (green) and its
cables (blue), resistive wall (red).
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36 Finemet® gaps without LLRF impedance reduction, provides a voltage (magenta)
which follows the shape of the line density. This can be explained considering that
the Finemet® impedance without LLRF feedback is broad-band and resistive where
the beam spectrum is located. Therefore

Vind(t) = e

2π

∫ +∞

−∞
dω Z(ω)S(ω) eiωt ≈ eReZ

2π

∫ +∞

−∞
dω S(ω) eiωt = eReZ λ(t).

(4.30)
However this resistive voltage does not decay in one revolution turn, helped by the
fact that the PSB has h = 1 with bunches almost covering the full ring. Summing
turn-by-turn the contributions coming from the previous revolution turns (see next
Subsection), the accumulated induced voltage reaches an equilibrium if the bunch is
stable. The magenta line in Fig.(4.27) represents the resistive voltage at equilibrium
for a bunch matched inside the RF bucket with intensity effects.

Finally notice that, if space charge is neglected, the Low Level RF feedback for
wake-voltage cancellation reduces drastically the induced voltage generated by the
sum of all the impedances (black line). The reduction is so significant that, at low
PSB energies, the total induced voltage (green line) coincides effectively with the
space charge one.

Figure 4.27. Left: bunch profile (blue) with εl = 1.4 eVs and Nb = 3.42 · 1012 ppb at
160 MeV in a double RF system (Vrf,1 = 8 kV, Vrf,2 = 8 kV in bunch-lengthening
mode). The time axis covers one revolution turn. The total induced voltage (green)
generated by the bunch is the sum of the space charge contribution (red) and all the other
impedance sources (black) described in Fig.(4.26) (left). If no Low Level RF feedback
for wake-voltage cancellation is included, the black curve changes in the magenta-dashed
line. The bunch is at equilibrium inside the RF bucket. Right: absolute value of the
sum of all the considered impedances without space charge (red) and absolute value
of the beam spectrum corresponding to the line density on the left image. The eight
dashed vertical lines mark hfrev,0, h = 1, . . . , 8.

4.5.2 Multi-turn Wake

As was mentioned already in Chapter 3, in BLonD the multi-turn induced voltage
is computed summing, at each revolution turn, the contribution coming from the
past to the current one. In the presence of acceleration, an interpolation is needed
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when these two contributions are summed together, independently on which time
step ∆ is chosen at each turn. This interpolation, together with the potentially
high number of revolution periods to be considered in memory in order to see the
induced voltage decay to zero and become negligible, can lead to relatively large
computational costs.

The space-charge induced-voltage, calculated using Eq.(4.11), is not multi-turn.
The one derived from other impedance sources can be calculated numerically in
frequency domain through Eq.(3.4), where the discrete Fourier transform and its
inverse suppose that the signal is periodic in time, with fmax = 1/(2∆) the maximum
frequency that one is interested in and ∆ the sample time interval.

In the case without acceleration and with stationary line density, one can consider
the bunch profile as being periodic on the ring if there is no necessity to accurately
resolve narrow-band parts of the impedance model. The period would be T0 and
consequently only the points corresponding to frev,0 and its multiples would be
considered for calculation of induced voltage when the spectrum is multiplied by the
impedance in Eq.(3.4).

In the PSB it is fundamental to consider an extended period for the bunch
because the revolution period approximately halves from injection to extraction,
the line density varies considerably along the ramp due to RF manipulations and
high resolution in frequency domain is needed for example to accurately resolve
the notches coming from the Finemet®-cavity LLRF feedback. This leads to the
required resolution of the impedance curve in frequency domain.

Taking as an example the impedance model in Fig.(4.27) (right), assuming
a period T0 in PSB simulations implies that only the minima of the notches at
frequencies hfrev,0 are considered, obtaining a reduction of the impedance without
feedback by -36 dB at all frequencies. This optimistic assumption is not realistic,
since the particle synchrotron motion implies that the frequencies hfrev,0 + pfs0
have also to be taken into account in calculations (being p an integer). Therefore
the structure of the notches, for example their bandwidths of 16 kHz at -3 dB, is
important and therefore it has to be properly resolved in frequency domain.

Let us examine again the case shown in Fig.(4.27) (left), where this time only
the Finemet® induced voltage with wake-cancellation feedback is considered. As
before, we assume for simplicity of explanation that the bunch is matched with
intensity effects to the RF bucket and that the multi-turn induced voltage is at
equilibrium. However the principle here described can also apply to general cases in
simulations. Figure 4.28 (left) shows that the bunch generates a multi-turn induced
voltage lasting at least 100 revolution turns. Figure 4.28 (right) shows that the
multi-turn voltage in T (1)

0 generated by the bunch profile in T (0)
0 is such to almost

compensate the current induced voltage (magenta) which assumes a sufficiently large
period T0 in the Fourier calculation or, equivalently, that the beam passes only once
throughout the cavities. Therefore, the effective induced voltage seen by the beam at
a given turn is the sum of these two contributions (see the green curve in T (0)

0 ). As
expected, the current induced-voltage assuming infinite period (magenta) is resistive
where the bunch profile is located, since the Finemet® impedance without LLRF
feedback is resistive and the effect of the notches can be seen only after the induced
voltage reaches an equilibrium.
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The PSB simulations performed for the after-LIU studies presented in this thesis
assume a fixed multi-turn-wake period of tmax = 700T0, where T0 is the revolution
period at 160 MeV. This corresponds to a frequency-resolution of ∆f = 1.43 kHz,
which is sufficient to resolve the notches with bandwidth of 16 kHz at -3 dB shown
in Fig.4.27 (right). Notice that, due to the fixed ∆f , the depths of the notches in a
given simulation can change together with frev,0, and therefore they can be different
from the desired average value of -63 dB determined in measurements. However this
variability is not more significant than the one found in measurements, where the
gain bandwidth at -3 dB and depth at -36 dB change with frev,0 (Fig.4.23, left).

Figure 4.28. Left: multi-turn induced voltage (green) generated in simulation by the
bunch profile in Fig.(4.27 (left) taking into account only the Finemet® contribution with
wake-cancellation feedback. The bunch is matched with collective inside the RF bucket
effects and the induced voltage, decaying after roughly 105 revolution periods, is at
equilibrium. Right: zoom onto the bunch profile shown on the left. The red vertical
lines mark the different revolution periods. The magenta curve indicates the current
resistive induced voltage seen by the beam in one given revolution turn assuming that
the beam passes only once through the cavities (sufficiently large period T0 in the Fourier
calculation).

4.6 Double RF Operation with Intensity Effects
In the current PSB operation with nominal-LHC and high-intensity beams, the
voltage of the second RF system (h = 2) is currently added to the accelerating voltage
in bunch lengthening mode for most of the acceleration cycle (usually Vrf,1 = 8 kV
and Vrf,2 = rVrf,1, r ∈ [0.5, 1]). Bunch lengthening mode is used to reduce the
longitudinal peak line density and consequently the transverse space charge tune
spread. Figure 4.27 (left) shows an example of bunch profile obtained in simulation
where the two RF systems are in bunch lengthening mode, with a relative phase
calibrated in such a way that the two peaks of the bunch profile have the same
height.

It is expected that there will be double RF operation in bunch lengthening mode
also after upgrade [88]. Therefore it is essential to determine the desired relative
phase φ1,2 between the two RF systems for given Vrf,1 and Vrf,2. We will see that
φ1,2 depends also on the synchronous phase shift caused by acceleration and the
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resistive part of the induced voltage.
Considering Eq.(2.50), the total voltage seen by the PSB beam is

Vtot(∆t) = Vrf,1 sin(ωrf,1∆t+ π) + rVrf,1 sin(2ωrf,1∆t+ φ1,2)
− Vrf,1 sin(φs)− Vind(∆t), (4.31)

where ∆t ∈ [0, T0].
Without acceleration and intensity effects φ1,2 = −π is the solution, independently

of the value of r ∈ [0.5, 1]. The problem of determining φ1,2 becomes difficult when
acceleration and collective effects are present. For this reason an algorithm to
numerically determine φ1,2 has been developed in the BLonD code.

The idea of the algorithm is to integrate the total voltage Vtot to obtain the
total potential Utot and then determine φ1,2 through an iterative procedure in such
a way that Utot has two minima with the same depth, see Fig.4.29 (right). This
procedure has to be done turn by turn while tracking since the impact of intensity
effects are not foreseen at the beginning of a simulation: the phase computed at a
given turn is used as initial condition to determine the phase at the consecutive turn.
If the minima of Utot have the same depth, then the two peaks in the bunch profile
have the same height (Fig.4.29, right). On the contrary, choosing a wrong phase is
equivalent to have a potential well with two not-aligned minima, see Fig.4.29 (left
and middle), where φ1,2 is determined neglecting acceleration and collective effects
(φ1,2 = −π rad, left) or just intensity effects (middle).

Figure 4.29. Bunch profile (blue) with εl = 1.4 eVs and Nb = 3.42 · 1012 ppb at 160 MeV
matched in a double RF bucket with intensity effects. The voltages are Vrf,1 = 8 kV and
Vrf,2 = 8 kV, while the relative phase between the two RF systems is φ1,2 = −π rad
(left), φ1,2 = −3.46 rad (middle) and φ1,2 = −3.59 rad (right). The corresponding total
potentials are in red. Space charge and all the impedance sources shown in Fig.(4.26)
(left) are included in simulations, however the Finemet® impedance is considered without
the action of the LLRF feedback.

Figure 4.30 (left) shows examples of numerically calculated φ1,2 for BLM operation
after LIU upgrade in the cycle-time interval C300–C350. One can see that, neglecting
collective effects but including acceleration (green), φ1,2 is significantly different from
the solution φ1,2 = −π valid for the case without acceleration. Adding collective
effects and in particular the impedance of 36 Finemet® gaps without LLRF impedance
reduction, φ1,2 reaches its minimum values (blue). Taking into account the Finemet®

LLRF feedback, the obtained φ1,2 (red) lies in between the other two curves, closer
to the green one.
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The qualitative behavior of these three curves can be explained examining
Fig.4.30 (right), where the average position of the bunch profile is shown as a
function of the cycle time. One can notice that higher values for the synchronous
phase shift, due only to acceleration (green) or also to collective effects (red and blue),
correspond to lower values for φ1,2. Indeed, for a given φ1,2, larger synchronous phase
shifts make the right peak in the bunch rise relative to the left one, therefore lower
values for φ1,2 are needed in order to realign the two peaks, see Fig.4.29. Finally,
as mentioned above, the LLRF wake-cancellation feedback drastically reduces the
Finemet® impedance which is in good approximation resistive and dominates the
PSB impedance model: this explains why the red curves are relatively close to the
green ones in Fig.4.30.

Figure 4.30. Left: calculated relative phase between the h = 1 and h = 2 PSB RF
systems for bunch-lengthening mode as a function of the cycle time between C300
(Ekin = 187 MeV) and C350 (Ekin = 247 MeV). The voltages are constant and equal to
Vrf,1 = 8 kV and Vrf,2 = 8 kV, the bunch emittance is εl = 1.4 eVs. Neglecting collective
effects, the green line is obtained. Including space charge and the full PSB impedance
model with Nb = 3.42 · 1012 ppb, the red and blue curves are obtained, which assume
respectively 36 Finemet® gaps with and without impedance reduction by the LLRF
feedback. Right: average position of the bunch profile as a function of the cycle time
considering the same parameters and configurations described for the left image.

In operation, the programmed relative phase φ1,2 does not correspond to the
phase of the two RF systems. This discrepancy, due mostly to cable delays and the
different positions of the RF cavities along the ring, is also sensitive to hardware and
LLRF settings, beam intensity and which of the four PSB rings is used. A manual
calibration of φ1,2 is therefore needed: the phase has to be empirically determined
using beam measurements at different times of the acceleration cycle and then a
linear interpolation is performed for intermediate intervals. Being unknown the
relationship between the programmed and actual relative phase, it is currently not
possible to compare simulation results similar to those shown in Fig.4.30 (left) with
measurements.
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4.7 Simulation Results for the After-upgrade Scenario
All the studies presented here assume the full PSB impedance model discussed in
the previous Sections. Closed-loop operation of the Finemet® gaps with impedance
reduction through the LLRF feedback is considered in simulations. Unless otherwise
specified, the first eight harmonics of the revolution frequency are affected by the
feedback, being this the baseline for the after-upgrade scenario [100].

Two types of beam were examined, both with kinetic energy of 2 GeV at PSB
extraction. The first, which has already been described above, is the nominal-LHC
beam with Nb = 3.42 · 1012 ppb and εl = 1.4 eVs at injection energy. The second is
the expected high-intensity beam with Nb = 1.6 · 1013 ppb for the ISOLDE (On-Line
Isotope Mass Separator) fixed-target experiment [101, 102, 103]. As a first test,
the longitudinal emittance for this high-intensity beam was set to 1.0 eVs (current
operational value), but recent optimization studies assume εl = 1.5 eVs after LIU
upgrade [104].

The designed RF voltage programs used in simulations are shown in Fig.4.31
(Cycle I). The first part of the ramp (from C275 to C350) is performed with a double
RF system in bunch lengthening mode to reduce the transverse space charge tune
spread, using Vrf,1 = 10 kV and Vrf,2 = 10 kV. With Vrf,1 = Vrf,2 the line density has
two peaks of similar height, see for example Fig.4.27.

Figure 4.31. Example of designed voltage programs (cycle I) for the h = 1 and h = 2
PSB RF systems for nominal-LHC (Nb = 3.42 · 1012 ppb) and high-intensity (Nb =
1.6 · 1013 ppb) beams after LIU upgrade. Double RF operation in bunch lengthening
mode is performed between the injection time TX0 = 275 ms and TX1 = 350 ms with
Vrf,1 = 10 kV and Vrf,2 = 10 kV. Controlled longitudinal emittance blow-up in a single
RF system is performed between TX2 = 550 ms and TX3 = 650 ms with RF voltage
equal to 18 kV and 16 kV for nominal and high-intensity beams respectively. At flat top,
which starts at TX4 = 775 ms, the voltage is Vrf,1 = 8 kV.

In the interval C350–C550 Vrf,2 is dropped to zero, while Vrf,1 is increased to
18 kV and 16 kV for LHC and high-intensity beams respectively. This difference is
due to the fact that the Finemet® amplifiers have to provide a part of their available
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current to reduce beam loading (impedance reduction mentioned above), which is
larger for bunches with higher current [73].

During C550–C650 it is planned to increase the initial emittance to 2.6 eVs for
high-intensity and 3 eVs for LHC beams in a single RF system. Band-limited RF
noise injected in the phase loop of the h = 1 RF system has been used for blow-up
(see next Chapter).

Finally Vrf,1 is dropped to 8 kV (current peak accelerating voltage) in the interval
C650–C775 and then is kept constant at flat-top until C800 to have the desired
bunch length τl < 205 ns at extraction for both beams. This limitation is defined
by the rise-time of the PSB recombination-kicker located in the beam transfer-line
connecting the PSB and the PS [105].

Simulations started at cycle time C290, assuming a bunch matched with intensity
effects inside the RF bucket, and ended at C800. Beam-based feedbacks (phase and
radial loops, see next Chapter) acted from TX2 until flat top.

4.7.1 LHC-nominal Beams

No instability was found for LHC-nominal beams and it was possible to smoothly
blow up the emittance to the requested 3 eVs in the interval C550–C650 using all
the voltage manipulations described earlier. The bunch length at extraction was
τl = 200 ns and there were only few losses (<0.01%) when the RF voltage was
decreased from 18 kV to 8 kV.

Figure 4.32 (left) shows the average bunch position along the cycle, together with
the synchronous phase in a single RF system with voltage Vrf,1 neglecting collective
effects. Notice that the phase loop is able to damp, in a relatively short time after
TX3, the significant dipole oscillations coming from the RF phase noise injection
before TX3. On the contrary and as expected from its function, the phase loop is
not able to damp after TX3 the quadrupole oscillations, which persist up to flat top.

4.7.2 High-intensity Beams

It was impossible to smoothly accelerate the high-intensity beam along the acceler-
ation cycle while performing controlled longitudinal emittance blow-up. This was
due to instabilities occurring at 480 ms, 640 ms and 700 ms, which led to significant
dipole and quadrupole oscillations in addition to bunch-length growth, as shown in
Fig.4.33, where the planned RF phase noise injection in [TX2, TX3] is not applied.
As expected, the synchronous phase shift due to the resistive part of the impedance
is larger here relative to the one visible in Fig.(4.32), due to the higher intensity
simulated. Notice also the dipole oscillations at C290 which are damped before TX1:
due to the high intensity it was even difficult to match the bunch with collective
effects inside the RF bucket.

The reason for these instabilities can be found examining the bunch distribution
in the longitudinal phase space, as shown for example in Fig.4.34, which refers to
the cycle-time C483, soon after the start of the first instability. One can see that
a modulation with a frequency of 21 MHz perturbs the bunch. Observe also that
the Finemet® impedance has a significant peak at 19 MHz with a large bandwidth
of 7.5 MHz at -3 dB if the LLRF feedback is neglected (Fig.4.26, right). This is a
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Figure 4.32. Left: average bunch position (blue) as a function of the cycle time for
nominal-LHC beams with Nb = 3.42 · 1012 ppb and εl = 1.4 eVs at C290, when the
bunch is matched inside the RF bucket with intensity effects. The used RF programs
are shown in Fig.4.31. The green curve represents the synchronous phase in a single
RF system with voltage Vrf,1 neglecting collective effects. RF phase noise for controlled
emittance blow-up is applied between TX2 and TX3. Phase and radial loops act from
TX2 onward. Right: 1-rms bunch length as a function of the cycle time with the same
conditions described for the left image.

Figure 4.33. Left: average bunch position (blue) as a function of the cycle time for
high-intensity beams with Nb = 1.6 · 1013 ppb and εl = 1.0 eVs at C290, when the bunch
is matched inside the RF bucket with intensity effects. The used RF programs are shown
in Fig.4.31. The green curve represents the synchronous phase in a single RF system
with voltage Vrf,1 neglecting collective effects. The three red vertical lines mark the cycle
times when the instabilities start, namely C480, C640 and C700. RF phase noise for
controlled emittance blow-up is not applied. Phase and radial loops are not included.
Right: 1-rms bunch length as a function of the cycle time with the same conditions
described for the left image.

clear indication that the high-frequency induced voltage generated by the Finemet®

cavities leads to micro-wave instability [106] as the bunch becomes shorter during the
acceleration cycle, or equivalently as the bunch spectrum becomes longer interacting
more with the 19 MHz peak in the impedance model.

Figure 4.33 (right) confirms what just observed. Whenever the bunch length
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becomes too small, the instability is triggered and leads to fast bunch-length growth,
which in turn makes the beam stable again. Later in the acceleration cycle, higher
beam energies and possibly some RF manipulations reduce again the bunch-length
to such a degree that the next instability starts and the same pattern repeats.

Notice that the LLRF feedback assumed in simulations is not supposed to
suppress this instability since, even considering the maximum revolution frequency
along the cycle of 2 MHz and supposing that the 16 kHz bandwidth at -3 dB of the
notches is sufficient to properly reduce the Finemet® impedance, eight harmonics of
the revolution frequency can cover only up to 16 MHz.

Figure 4.34. High-frequency modulation in the bunch distribution at cycle time C483
(frev,0 = 1.46 MHz), after the start of the first instability shown in Fig.4.33. The
separatrix is in red, the yellow and black curves correspond respectively to the stable
particle-trajectories determined by the Foot Tangent Method and τ5 conventions for
bunch-length calculation. The color bar indicates the particle density. Since 8 oscillations
occur in 375 ns, the modulation frequency is 21 MHz.

Since it should be possible to increase the number of revolution harmonics at
which the Finemet® impedance is reduced, that number was raised in simulations
from 8 to 16 in order to cover the impedance peak at 19 MHz from cycle-time
C480, when frev,0 = 1.46 MHz, onward. In this way, the start of the first instability
remained the same and the only positive effect was the delay of the second instability
until 700 ms (compare the green and red curves in Fig.4.35). This so mediocre
improvement is due to the insufficient bandwidth of the notches compared to the
one of the impedance peak located at 19 MHz: increasing for example the notch
bandwidth at -3 dB from 16 kHz to 160 kHz, and again considering the first 16
revolution harmonics in the impedance reduction, no instabilities were observed
until C730. However, since the notch bandwidth of 16 kHz is not expected to change
after LIU upgrade, no parametric studies were performed in this respect.

Similar studies were done neglecting all the RF manipulations present in Cycle I
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Figure 4.35. Longitudinal emittance εl as a function of the cycle time for simulated
high-intensity future beams with Nb = 1.6 · 1013 ppb and εl = 1.0 eVs at 290 ms, when
the bunch is matched with intensity effects inside the RF bucket. The extraction energy
is 2 GeV. No controlled longitudinal blow-up is applied, the emittance growths are
due to instabilities. The RF voltage programs for Cycle I are shown in Fig.4.31, while
Cycle II assumes acceleration in a single RF system from C290 to flat top with constant
Vrf,1 = 16 kV. Finemet® impedance reduction by the LLRF feedback at the first 8 or 16
harmonics of the revolution frequency is considered. Instability for Cycle I configuration
starts at 480 ms (vertical line). The bucket areas for the two cycles along the ramp are
also shown.

and accelerating the beam in a single RF system with constant Vrf,1 = 16 kV (Cycle
II, magenta and yellow curves in Fig.4.35). These additional simulations were
performed in order to verify that the RF manipulations do not contribute to the
observed instabilities and to determine simpler RF settings able to reproduce the
instabilities without including unnecessary complications.

Using Cycle II, the instability started at 505 ms and 560 ms considering 8 and 16
revolution harmonics respectively. This indicates that the RF voltage manipulations
performed in Cycle I make the first instability start earlier. However, the final
emittance at 800 ms is smaller for beams accelerated in Cycle I since, similarly to
what observed above, an instability which starts earlier in the cycle increases the
bunch length and emittance providing relatively more stability and margin for bunch
shrinking later in the ramp.

Finally notice that negligible losses (<0.001%) have been found in the simulations
presented in this Subsection. This can be explained examining Fig.4.35: although
the micro-wave instability leads to considerable uncontrolled emittance blow-up, the
bucket areas for both Cycles I and II are large enough to contain the bunch along
the ramp.
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4.7.3 Requirements for the LLRF Wake-cancellation Feedback af-
ter LIU-upgrade

The instability found above for high-intensity beams with initial emittance of 1.0 eVs
is quite critical and can heavily influence the future beam quality for PSB fixed-
target experiments like ISOLDE. In addition, increasing from 8 to 16 the number
of harmonics of the revolution frequency which are affected by the LLRF wake-
cancellation feedback did not lead to significant improvements.

For this reason dedicated studies have been performed to determine in simulations
how many revolution harmonics the LLRF feedback should be acting on to suppress
the observed micro-wave instability, varying εl from 1.0 eVs to 1.4 eVs and Nb from
1 · 1013 ppb to 1.6 · 1013 at cycle-time C290. Acceleration in a single RF system with
constant Vrf,1 = 16 kV has been assumed, with no controlled longitudinal emittance
blow-up and inactive phase and radial loops. The notch bandwidth is assumed to
be 16 kHz at -3 dB.

As one can see from the left image in Fig.4.36, supposing a LLRF feedback acting
on the first eight revolution harmonics, the beam becomes always unstable along
the ramp. As expected, fixed a certain bunch intensity, the instability starts later
with larger emittances (or bunch lengths), since for those cases the beam spectrum
components at 19 MHz have lower amplitudes at a given cycle-time. Moreover and
reasonably, for a given longitudinal emittance, the instability starts earlier increasing
the bunch intensity.

Figure 4.36. Instability diagrams for after-LIU high-intensity beams supposing that the
LLRF feedback reduces the Finemet® impedance at the first 8 harmonics of the revolution
frequency with a notch bandwidth of 16 kHz at -3 dB. Acceleration in a single RF
system with constant Vrf,1 = 16 kV is assumed, with no controlled longitudinal emittance
blow-up and no action of the phase and radial loops. The color bars indicate when
the first instability starts along the cycle (left) and the extracted emittance (right) as
a function of the bunch intensity and emittance at C290. The simulation results are
marked by red dots, an interpolation is performed for intermediate points. All the
combinations shown lead to instability and emittance blow-up.
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A similar reasoning can be applied for the right image in Fig.4.36, where the
extracted emittance after uncontrolled blow-up is larger for initial higher intensities
and lower emittances. However, one can notice that, when the bunch intensity is
large enough (Nb ≥ 1.2 · 1013 ppb), the extracted emittance for initial 1 eVs and
1.4 eVs bunches is roughly the same. As observed in the previous Subsection, this can
be due to the fact that 1.0 eVs bunches start to be unstable earlier in the ramp than
1.4 eVs bunches (see Fig.4.36, left) and earlier but smaller increases in bunch-length
lead to relatively more stable beams later in the cycle.

Increasing the number of revolution harmonics for Finemet®-impedance reduction
from 8 to 16, the instability diagrams change significantly, as shown in Fig.4.37.
Examining in particular the case with initial emittance of 1.4 eVs (close to the
expected value for ISOLDE beams after upgrade), one can see that the bunch is
always stable up to Nb = 1.4 · 1013 ppb, while for higher intensities the emittance
blow-up is minimum (εl = 1.6 eVs at extraction for Nb = 1.6 · 1013 ppb).

Figure 4.37. Instability diagrams for after-upgrade high-intensity beams supposing that
the LLRF feedback reduces the Finemet® impedance at the first 16 harmonics of the
revolution frequency. All the other parameters and conditions are equal to the ones
described in Fig.4.36. The red marks represent simulation results and an interpolation
is performed for intermediate points. A dot-mark indicates that the corresponding
combination of bunch intensity and emittance at C290 leads to instability and emittance
growth, a diamond-mark represents a combination which does not lead to any instability.
For visual reasons the start time of the instability is set to C800 (end of the cycle) when
the bunch is stable throughout the ramp.

These studies suggest that, in order to accelerate the planned highest-intensity
beam after LIU upgrade, Finemet® impedance reduction at the first sixteen harmonics
of the revolution frequency should be considered as a requirement for the LLRF
wake-cancellation feedback. If this specification cannot be fulfilled and a lower
number of revolution harmonics will be considered, further optimizations of the RF
settings along the cycle become necessary: for example, the use of a double RF
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system in bunch-lengthening mode for both acceleration and controlled longitudinal
emittance blow-up (performed as soon as possible in the cycle) would allow probably
to keep the bunch length far from the micro-wave instability threshold.

4.8 Conclusions
Several critical upgrades will concern the CERN PSB after 2021, following the
challenging directives of the LIU Project which aim is to provide beams to the LHC
with a brightness increased by more than a factor of 2 relative to the present situation.
Many of the changes which the PSB will experience concern the longitudinal beam
dynamics. Therefore dedicated studies and realistic simulations are needed to foresee
possible beam-instability issues in the after-upgrade scenario.

This Chapter showed how these studies were carried out. The macro-particle
simulations were performed with the CERN BLonD code.

Beam measurements and beam dynamics simulations significantly contributed to
the important decision to completely replace the currently-used ferrite RF systems
with Finemet® ones after LIU upgrade.

Numerous benchmarks against the PyORBIT code and comparisons with analyti-
cal formulas have been done in order to give the BLonD code reliability when dealing
with space charge computations. In this respect, additional numerical studies have
been carried out to determine a trustworthy method to calculate the space charge
induced voltage, very important contribution to the total induced voltage in the
not-ultra-relativistic PSB machine.

For the first time, full-cycle simulations of the future PSB longitudinal beam
dynamics were performed using a realistic impedance model, a careful estimation of
the longitudinal space charge, Low Level RF feedbacks and controlled longitudinal
emittance blow-up. Moreover, it was emphasized the importance to properly take
into account multi-turn wakefields in simulations and to have an algorithm able to
determine the relative phase between two RF systems in a double RF operation in
bunch-lengthening mode in presence of collective effects.

Two types of beam were analyzed for the after-upgrade scenario, the nominal-
LHC high-brightness beam and the ISOLDE high-intensity one. For the first, no
instability was found and it was possible to smoothly accelerate the bunch along
the cycle with negligible losses and performing the required controlled longitudinal
emittance blow-up in the presence of phase and radial beam-based feedbacks. On
the contrary, micro-wave instability due to the Finemet® impedance was found for
the high-intensity beam. This instability, which led to severe uncontrolled emittance
blow-up, was observable with different RF voltage programs. It was suggested to
increase from 8 to 16 the number of harmonics of the revolution frequency which
are affected by the LLRF wake-cancellation feedback.
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Chapter 5

PSB: Beam-based Feedbacks
and RF Phase Noise for
Controlled Longitudinal
Emittance Blow-up

5.1 Introduction

As was described in the previous Chapter, controlled longitudinal emittance blow-up
in the PSB is needed to decrease the peak line density of the bunches injected into
the PS and therefore reduce the transverse space charge tune spread.

Controlled emittance blow-up (from 1 eVs to 1.4 eVs) for nominal-LHC beams
in the CERN PSB is currently achieved using sinusoidal phase modulation of a
dedicated high-harmonic RF system, the so-called C16 RF cavity [107, 108]. In 2021,
after the LIU upgrade, beams with 3 eVs emittance should be extracted to the PS.
Beam measurements and simulation studies have shown that the future required
emittance blow-up can be achieved using an optimized phase modulation of the C16
RF system [108].

In this Chapter another method of blow-up in the PSB is presented [109], that
is the injection of band-limited phase noise in the main RF system (h = 1). Bunch
shaping and blow-up using band-limited noise have already been studied in several
papers (see for example [110]). This technique, never tried in the PSB, has been
successfully implemented at CERN in the SPS and LHC [111, 112], where there are
no dedicated RF systems for blow-up and the acceleration cycles are longer.

There are three main reasons to propose an alternative to the current method of
blow-up. As mentioned in the previous Chapter, the RF phases between the different
PSB RF systems are not accurately known in operation. Since the theory of high-
harmonic phase modulation requires the knowledge of these RF phases, in general
longer times are needed in operation to properly set the parameters for an effective
blow-up with this technique. On the contrary, band-limited phase noise requires
only the knowledge of the synchrotron frequency distributions along the acceleration
cycle, which usually can be determined with good accuracy in simulations having at
disposal a reliable estimation of the synchrotron phase shift caused by longitudinal
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space charge effects. The second reason is that the present method for blow-up
implies the use of a dedicated RF system that can be removed with noise injection
in the main RF system. Finally, the proposed technique, in addition to blow up
the beam, is able to reduce even more the peak line density of the beam decreasing
further the impact of longitudinal and transverse space charge effects.

One possible disadvantage of using band-limited phase noise concerns the time
needed for blow-up, which in general is higher when phase noise is applied relative
to phase modulation. Another complication could arise from the interaction of
the LLRF phase loop with the injected RF noise, since both act on the RF phase.
In addition, phase noise cannot be injected turn by turn through the phase loop
but only at a limited sampling rate, therefore the designed noise spectrum has a
limitation on its maximum (Nyquist) frequency. However, as the present Chapter
will show, all these possible disadvantages will not be a limitation for the PSB, both
in the current and after-upgrade scenarios.

5.2 The Band-limited RF Phase Noise

The effect of band-limited phase noise on particles lies in-between the diffusion
generated by white phase noise acting on all synchrotron frequencies and the resonant
excitation created by sinusoidal phase modulation at frequencies close to zero-
amplitude synchrotron frequency.

Specifically, only the particles with a synchrotron frequency inside a certain band
are affected by RF phase noise (see Fig.5.1).The band upper limit fup is above the
bunch zero-amplitude synchrotron frequency fs0,ind to affect fully the bunch core
and its lower limit fdown is related to the target bunch length (or emittance) to be
reached. Figure 5.1 shows also that space charge, defocusing in the PSB (below
transition), lowers the zero-intensity synchrotron frequency fs0 and the noise band
should follow this shift.

Band-limited RF phase noise was obtained “coloring” white phase noise in
frequency domain with the desired probability density and Fourier-transforming
the result to time domain, similarly to the implementation in the LHC [113]. The
detailed procedure is shown below.

Let us assume that the RF phase noise is applied at revolution turns 1, . . . , Nturns
and that T0 is constant. The first step is to generate white noise wn in time domain
using

wn = cos(2πun)
√
−2 ln vn n = 1, . . . , Nturns (5.1)

where un and vn are uniform independent random variables in the interval [0, 1].
Then the discrete Fourier transform is applied to wn

Wl =
Nturns∑
n=1

wne
−2πi ln

Nturns , l = −frev,02 , . . . , 0, . . . , frev,02 , (5.2)

where, to give a concrete example, it is assumed that Nturns is an odd number.
Notice that the maximum frequency is fmax = frev,0/2, the frequency step is ∆f =
frev,0/Nturns and the arrayWl has Nturns values. Afterwards the desired band-limited
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Figure 5.1. Synchrotron frequency distribution as a function of emittance in a single RF
system (Vrf,1 = 16 kV) calculated without (green) and with (blue) collective effects for
after-upgrade LHC beams (Nb = 3.42 ·1012 ppb) in the PSB at Ekin = 1 GeV (cycle-time
C600). The bunch emittance is 1.8 eVs (continuous black line). RF phase noise in the
band defined by fdown = 725 Hz and fup = 875 Hz (magenta lines) has to be applied if
the target emittance is 3 eVs (dashed black line)

.

noise probability density is constructed

sl =
√
Sd
noise,lfrev,0, l = −frev,02 , . . . , 0, . . . , frev,02 , (5.3)

where Sd
noise [rad2/Hz] is a real function called double-sided noise-power spectral

density. Then the white noise in frequency domain is multiplied by sl obtaining

Φl = slWl, l = −frev,02 , . . . , 0, . . . , frev,02 . (5.4)

Finally, performing an inverse discrete Fourier transform on Φl, the phase noise in
time domain is obtained

φ
(n)
noise = 1

Nturns

frev,0/2∑
l=−frev,0/2

Φle
2πi ln

Nturns , n = 1, . . . , Nturns. (5.5)

The double-sided noise-power spectral density Sd
noise determines the rms phase noise

as [114]

φrms
noise =

√
frev,0〈Sd

noise〉, (5.6)

where

〈Sd
noise〉 =

∑frev,0/2
l=−frev,0/2 S

d
noise,l

Nturns
. (5.7)
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Figure 5.2. Examples of flat (left axis) and exponential (right axis) one-sided power-noise
spectral density as a function of frequency. These functions were used respectively in
simulations without and with phase loop to generate RF phase noise at Ekin = 425 MeV
(cycle time 450 ms).

Notice that, equivalently, in simulations one-sided spectral densities Snoise = 2Sd
noise

have been used, which are defined only for positive frequencies and assume that real
discrete Fourier transforms are performed (see for example Fig.5.2).

Starting from Eq.(4.31), the expression for the total RF voltage in the PSB at
revolution turn n when phase noise is injected directly into the main-harmonic cavity
is

Vtot(∆t) = Vrf,1 sin(ωrf,1∆t+ π + φ
(n)
noise) + rVrf,1 sin(2ωrf,1∆t+ φ1,2)

− Vrf,1 sin(φs)− Vind(∆t). (5.8)

However, as the next Section will explain, the baseline for the after-upgrade scenario
is the injection of the RF phase noise through the phase-loop. In this case φnoise
is not directly added to the RF phase as in Eq.(5.8) but, applying the phase-loop
filter, it is converted to RF frequency noise which is added to ωrf,1.

5.3 Effects of Phase and Radial Loops

The operational scenario for controlled emittance blow-up during the future acceler-
ation cycle is that the noise will be introduced into the beam phase loop (similarly
to what is done in the SPS and LHC [112, 115]), rather than being injected directly
into the main harmonic cavity. In this scenario the two following potential issues
should be taken into account. First, the noise will be counteracted by phase loop.
Additionally, the noise signal can be sampled only every 10 µs, which corresponds
to the interval between two consecutive phase loop triggers in present LLRF sys-
tem [116]. However we expect that this second limitation should not affect the phase
noise performance, since the sampling frequency of 100 kHz should be well above
the range of synchrotron frequencies concerned during blow-up (for example fs0 is
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below 1.7 kHz after C450 assuming acceleration in a single RF system with constant
Vrf,1 = 16 kV).

The main application of the phase loop is to damp the rigid-bunch dipole
oscillations. This is usually done measuring at turn n the difference ∆φ between the
phases of the beam and RF cavity signals and changing accordingly the RF frequency
ωrf by ∆ωpl at turn n+ 1. This passage from RF phase to frequency is performed
since phase measurements could contain unwanted high-frequency components that
are filtered when phase loop is applied (see next Subsection).

This RF frequency shift due to phase-loop operation leads to a change of the
bunch orbit-radius R from the design machine radius R0, see Eq.(2.86). The aim of
the radial loop is to maintain the orbit at the design one in the long run, reducing
|∆R| = |R−R0|. This is done giving a second contribution ∆ωrl to ωrf. Thus, for
each turn, ∆ωrf = ∆ωpl + ∆ωrl, where the two contributions have usually opposite
signs and |ωpl| > |ωrl|.

If the phase noise is introduced in the phase loop, then its contribution is summed
to ∆φ. The usually flat band-limited noise spectrum Φl will then have a notch close
to fs0,ind that can slow down the diffusion of the core. A compensation for this
effect can be adopted changing the shape of the noise spectral density, as it is done
in the SPS [113], where a triangular Snoise centered in fs0,ind is adopted. Similarly,
an exponentially growing Snoise in the band [fdown, fup] has been generally chosen
in the present Chapter to generate RF phase noise for PSB applications (see for
example Fig.5.2).

5.3.1 Modeling Phase and Radial Loops in BLonD

In order to obtain correct results for the effect of phase noise, it was necessary to
model the phase and radial loops in BLonD, starting from the PSB RF synoptics.

In the PSB LLRF, ∆φ is obtained through the measured In-Phase I and Quadra-
ture Q components [117] of the h = 1 RF-cavity and beam signals [116]. The details
are shown below.

The beam Bs and cavity Cs signals are first properly delayed and rotated to
take into account respectively their nonidentical path group-delays and the distinct
positions of the longitudinal pick-up and the main-harmonic cavity in the ring [116].
Then the signals are filtered to obtain only the Fourier component with frequency
ωrf,1. That way the obtained sinusoidal functions can be decomposed into their
correspondent I and Q components

Bs(t) = IB cos(ωrf,1t) +QB sin(ωrf,1t)
Cs(t) = IC cos(ωrf,1t) +QC sin(ωrf,1t). (5.9)

In the so-called phasor diagram (I,Q), the signals can be expressed as vectors
Bs = (IB, QB) and Cs = (IC, QC). Approximating ∆φ with its sine and using the
relation linking the cross-product of two vectors with the phase difference between
them, the following expression provides ∆φ in the PSB LLRF

∆φ ≈ sin(∆φ) = Bs × Cs
|Bs||Cs|

= IBQC − ICQB√
(I2

B +Q2
B)(I2

C +Q2
C)

(5.10)
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The approximation in Eq.(5.10) is done assuming that ∆φ is relatively small, and the
purpose is avoiding using the inverse sinusoidal function which can be time-expensive
in operation.

Similarly to what implemented in the LLRF, in simulations only the Fourier
component with ωrf,1 is extracted from the bunch profile λ through convolution [21],
therefore∫ trf

0
cos(ωrf,1(t− τ)− φrf)λ(τ)dτ =

∫ trf

0
cos(ωrf,1τ + φrf)λ(τ)dτ cos(ωrf,1t)

+
∫ trf

0
sin(ωrf,1τ + φrf)λ(τ)dτ sin(ωrf,1t). (5.11)

The desired ∆φ is then obtained as

∆φ = arctan
(∫ trf

0 sin(ωrf,1τ + φrf)λ(τ)dτ∫ trf
0 cos(ωrf,1τ + φrf)λ(τ)dτ

)
. (5.12)

Both in operation and simulations, the RF phase noise is added to ∆φ, which then
becomes the actual input for the phase loop.

The phase loop in the PSB is characterized by a CIC (Cascaded Integrator-Comb)
filter [116] able to remove undesired high frequency components from the ∆φ samples.
Applying the inverse Z-transform [118] onto the phase-loop transfer function

Htr(z) = gpl
Bpl

0 +Bpl
1 z
−1

1−Apl
1 z
−1

, (5.13)

where z is a complex number, the equation for the RF frequency correction at turn
n+ 1 can be obtained as

∆f (n+1)
pl = Apl

1 ∆f (n)
pl + gpl

(
Bpl

0 ∆φ(n) +Bpl
1 ∆φ(n−1)

)
. (5.14)

Here the constants Apl
1 ≈ 0.998, Bpl

0 ≈ 0.999 and Bpl
1 = −0.999 are determined by

phase-loop stability reasons. The local gain gpl is a positive parameter which value
has to be adjusted case by case.

When the phase loop correction is applied at turn n+ 1, the bunch undergoes a
radial displacement according to the relation

∆R(n+1)

R0
= ∆f (n+1)

rf

f
(n+1)
rf,0

γ2
0,(n+1)

γ2
tr − γ2

0,(n+1)
, (5.15)

Notice that in the LLRF the radial displacement is measured in millimeters using
the transverse pickups, while Eq.(5.15) is used in simulations since no transverse
dynamics is included in BLonD.

The radial displacement in Eq.(5.15) is the input for the radial loop at turn
n + 1. The displacement is filtered with a PI (Proportional-Integrator) corrector
which contributes to the phase-loop stability [116]. The radial-loop correction to the
RF frequency at turn n+ 2 can then be expressed as

∆f (n+2)
rl = kp∆R(n+1) + ki

n+1∑
i=1

∆R(i), (5.16)
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where kp and ki are the proportional and integral gains. Adding the gain Kr we
obtain

∆f (n+2)
rl = ∆f (n+1)

rl +Kr
{
kp
[
∆R(n+1) −∆R(n)

]
+ ki∆R(n+1)

}
. (5.17)

Therefore, rearranging the terms and adding another filter coefficient Arl
1 , the radial-

loop correction at turn n+ 2 can then be expressed as

∆f (n+2)
rl = Arl

1 ∆f (n+1)
rl + grl

[
Brl

0 ∆R(n+1) +Brl
1 ∆R(n)

]
. (5.18)

Here the constants Arl
1 ≈ 0.999, Brl

0 ≈ 3.000 and Brl
1 = 0 are determined by loop

stability reasons. The local gain grl, similarly to gpl, is a positive number and has to
be decided depending on the particular machine and beam settings.

Finally, combining together the phase and radial loop corrections turn by turn,
the RF frequency at turn n+ 2 will be

f
(n+2)
rf = f

(n+2)
rf,0 + ∆f (n+2)

rf = f
(n+2)
rf,0 −Gpl∆f (n+2)

pl −Grl∆f (n+2)
rl , (5.19)

where the global gains Gpl and Grl are positive constants.
As observed before, the phase and radial loops cannot act every turn, but only

every 10 µs. In order to simplify the notation, in this Subsection it has been assumed
that the revolution turns n+ 1 and n+ 2 occur respectively at loop trigger-times
t0 + 10 µs and t0 + 20 µs, where t0 is a generic trigger-time corresponding to turn
n. In addition, the RF frequency corrections between two consecutive trigger times
t0 and t1 are the same as the ones applied at t0. Finally, the value for ∆φ used at
trigger time t1 is calculated as the average of the values for ∆φ determined between
t0 and t1.

5.4 RF Phase Noise in Simulations for Future LHC-
type Beams

The effect of band-limited phase noise on emittance blow-up during future accelera-
tion ramp for nominal LHC beams was simulated using the BLonD code. The aim
was to increase the emittance from 1.4 eVs (at injection energy of 160 MeV) to 3 eVs
(at extraction energy of 2 GeV).

The full PSB impedance model was included in simulations. The Finemet®

resistive impedance was reduced by the LLRF wake-cancellation feedback acting on
the first eight harmonics of the revolution frequency.

First, simulations in a single RF system with constant RF voltage were performed,
and afterwards a more realistic cycle has been used (Cycle II described in Section
4.7).

5.4.1 Single RF with Constant Voltage

Phase and Radial Loops not Included

The simulations were carried out using either Vrf,1 = 8 kV or Vrf,1 = 16 kV. The
initial distribution at C275 was a rectangle whose parameters correspond to the
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optimal case of unmodulated injection studied in [82]. At C290 (after filamentation)
the emittance was roughly 1.1 eVs and 1.3 eVs using respectively Vrf,1 = 8 kV and
Vrf,1 = 16 kV. Figure 5.3 shows that, using Vrf,1 = 8 kV, there is no margin in the
available bucket area to perform a smooth blow-up without losses. On the contrary,
using Vrf,1 = 16 kV and injecting RF phase noise directly into the main harmonic
cavity between C450 and C600, it was possible to increase the emittance up to
values between 2.8 eVs and 3 eVs at C775 with negligible losses (<0.01%), see Fig.5.3.
Phase and radial loops were not included in simulations.

Figure 5.3. Simulated longitudinal emittance εl and bucket area Ab as a function of the
cycle time (C275–C775) for after-upgrade nominal-LHC beams (Nb = 3.42 · 1012 ppb) in
the PSB. Simulations are done in a single RF system including collective effects but not
phase and radial loops. No controlled emittance blow-up is applied when Vrf,1 = 8 kV.
On the contrary, when Vrf,1 = 16 kV, RF phase noise is injected directly into the h = 1
cavity between 450 ms and 600 ms (vertical lines): as a result, the emittance increases
in a controlled way from 1.3 eVs to 2.8 eVs.

The noise was generated at regular intervals to follow the changes of the syn-
chrotron and revolution frequencies during the blow-up time-interval C450–C600: fs0
decreases from 1.7 kHz to 0.9 kHz while frev,0 increases from 1.4 MHz to 1.65 MHz.
In general, since frev,0 and fs0 vary significantly along the PSB cycle, ideally the noise
should be often regenerated to follow these changes. However, if the regeneration is
performed too often, then the resolution in frequency domain becomes unacceptably
low, since Snoise will cover a band different from the desired one. A good compromise
was found regenerating the RF phase noise program every 10000 turns (≈ 7 ms).

The spectral density Snoise was chosen to be flat in the band [0.8 fs0, fs0]. Indeed,
for the examined intensity (nominal-LHC beams, Nb = 3.42 · 1012 ppb), choosing
fup = fs0 allows to affect fully the bunch core, since fs0 ≈ 1.05fs0,ind during C450–
C600 due to space-charge synchrotron frequency shift. The value fdown = 0.8fs0
was chosen examining the synchrotron frequency distribution with intensity effects
in the interval C450–C600 aiming at an emittance increase from 1.3 eVs to 3 eVs
(see the principle in Fig.5.1). Finally, the amplitude of Snoise at 450 ms, rescaled



5.4 RF Phase Noise in Simulations for Future LHC-type Beams 103

with frev,0 during the blow-up time-interval to have the same noise strength φrms
noise,

was gradually increased to a value leading to the required emittance at 600 ms (the
optimum value was Snoise = 10−7rad2/Hz at 450 ms, see Fig.5.2).

Phase and Radial Loops Included

Including phase and radial loops in simulations and injecting the noise into the
phase loop, it was possible to rise the emittance from 1.4 eVs to 3 eVs. In order to
counteract the phase loop action, the amplitude of Snoise in fs0,ind had to be increased
by four orders of magnitude with respect to the value used for the case without
loops discussed above (Fig.5.2 shows the adopted exponential spectral-density at
C450). The emittance evolution was similar to the one shown in Fig.5.3. The phase
and radial loop gains were chosen in such a way that ∆ωpl and ∆ωrl had a stable
evolution during the blow-up time-interval before converging to zero afterwards,
implying that dipole oscillations are correctly damped after C600 (see Fig.5.4).

Figure 5.4. Phase-loop frequency correction ∆ωpl (blue, left axis) and radial-loop frequency
correction ∆ωrl (green, right axis) as a function of the cycle time. Phase noise is injected
into the phase loop only between 450 ms and 600 ms (red line). Phase and radial
loops are always active. The figure refers to a simulation in a single RF system with
Vrf,1 = 16 kV including collective effects for after-upgrade LHC-nominal beams, where
the RF phase noise increases the bunch emittance in a controlled way from 1.4 eVs to
3 eVs.

As discussed above, the injection of RF phase noise into the phase loop suggests
the use of non-flat noise spectral densities. Therefore, an exponential Snoise was
adopted. Figure 5.5 shows the bunching factor (blue) from C450 to C700. For
comparison, the same simulation was repeated using flat noise spectral densities
with and without inclusion of phase and radial loops (the amplitudes for Snoise were
selected in order to obtain 3 eVs at flat top). Figure 5.5 shows the bunching factor
evolutions also for these two additional configurations. Due to stronger bunch-core
diffusion, an exponential Snoise gives a higher bunching factor at C700 than the one
obtained using a flat spectral density, implying larger reductions in longitudinal
space charge effect and transverse space charge tune spread. Similarly, if Snoise is
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flat, the configuration where phase and radial loops are neglected leads to a larger
Bf at C700, since there is no counteracting effect coming from the loops which would
slow down the bunch-core diffusion.

Figure 5.5. Bunching factor (blue) as a function of the cycle time using in simulation
the same parameters and conditions described in the caption of Fig.5.4. Changing the
shape of the noise spectral density from exponential to flat the red dots are obtained.
Neglecting the phase and radial loops while using a flat spectral density, the black dots
are obtained. Phase noise injection ends at 600 ms (green line). The emittance at 700 ms
is εl = 3 eVs for the three shown configurations.

5.4.2 A Possible Realistic Cycle

Using the more realistic voltage programs described in Fig.(4.31), and as already
mentioned in Subsection 4.7.1, it was possible to increase the emittance of LHC-type
beams from 1.4 eVs to the requested 3 eVs injecting RF phase noise through the phase
loop in the time interval C550–C650 without observing any instability. Figure 5.6
shows the bunch distribution in the longitudinal phase space at C616 (εl = 1.9 eVs)
and C757 (εl = 3.0 eVs), respectively during and after phase noise injection.

As was done for the simulations in a single RF system presented above (see
for example Fig.5.4), phase and radial loops were applied also after C650 in order
to quickly damp the residual dipole oscillations coming from the RF phase noise
injection, see Fig.5.7.

The simulation results obtained in this Section for the nominal-LHC beams in
the after-upgrade scenario suggest that RF phase noise could be successfully injected
into the phase loop of the h = 1 RF system if a proper choice of the numerous
concerned parameters is done. As expected, these promising results also show as
a by-product that the limited phase-loop sampling-rate of 10 µs should not be an
issue.
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Figure 5.6. Bunch distribution at cycle time C616 (left) and C757 (right), respectively
during and after RF phase noise injection, for nominal-LHC beams in the after-upgrade
scenario using the voltage programs in Fig.(4.31). Phase noise is injected through
the phase loop during C550–C650. Collective effects are included. The yellow and
black curves correspond respectively to the particle trajectories determined by the Foot
Tangent Method and τ5 conventions for bunch-length calculation. The emittances are
εl = 1.9 eVs (left) and εl = 3.0 eVs (right).

Figure 5.7. Average bunch position as a function of the cycle time, from 650 ms (end of
RF phase noise injection) to 775 ms (flat top). Phase and radial loops are either on
(green) or off (blue). The parameters and conditions of these simulations are described
in the caption of Fig.(5.6).

5.5 Beam Measurements in Current Situation

After the new method was shown to work in simulations, numerous measurements
have been performed in 2017 to verify if RF phase noise injection into the phase loop
at h = 1 could substitute (or even complement) the high-harmonic phase modulation
for different machine and beam parameters. In this Section we report the results of
those measurements. For all the cases the noise was injected through the phase loop
and not directly into the cavity. Notice that with the direct injection of the noise
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into the h = 1 RF system, the phase and radial loop gains can be set to zero to
avoid counteracting the phase noise. However all the measurements showed that the
phase loop is essential in the PSB to damp dipole oscillations caused for example
by noise in the magnetic and RF frequency programs. For this reason direct phase
noise injection into the main harmonic RF system would not provide any advantage.

5.5.1 LHC25ns Beams

The LHC25ns beam is the present operational and also expected future beam for
proton physics in the LHC [119]. The generation of LHC-batches with a 25 ns
bunch-spacing is done in the PS using a multiple splitting technique [120]. The
intensity per bunch is Nb ≈ 1.65 · 1012 ppb at PSB extraction, the emittances at
injection and extraction are respectively 1.0 eVs and 1.3 eVs. Controlled longitudinal
emittance blow-up is achieved using the high-frequency modulation generated by
the C16 cavity, phase and radial loops are active all along the acceleration cycle.
The ramp is done in a double RF system with Vrf,1 = 8 kV and Vrf,2 = 6 kV with
relative phase in bunch lengthening mode until cycle-time C700, then the h = 2
RF voltage is dropped to zero so that the bunch length at extraction (180 ns) is
compatible with the specifics required by the PS [121].

The application of phase-noise blow-up to the LHC25ns beam was the first to be
examined due to its importance for present and future operation. All the currently
operational beam parameters were kept, except that the C16 RF system was disabled.
Two emittance values at extraction were targeted, 1.40 eVs (close to the present one)
and 2.75 eVs (close to the value of 3 eVs required after upgrade).

Figures 5.8 and 5.9 show that it was possible to reach the targeted emittances at
PSB flat-top (cycle-time C798) with correct choice of parameters for phase noise,
radial and phase loops. Notice that, given a certain emittance and as a general beam
quality criterion used in the PSB operation, bunches which have a bi-dimensional
phase-space distribution closer to a uniform one are more desired, due to the fact
that their bunching factor and rms bunch-length are larger, leading to reduced
longitudinal and transverse space charge effects. As an example, the distributions
shown in Figs.5.8 and 5.9 are quite satisfactory.

Generation of RF Phase Noise for LHC25ns Beams

The phase noise was generated numerically as described in the Sections above, before
being used into the LLRF system during measurements, adjusting slightly the rms
amplitude φrms

noise for each of the four rings. Taking as an example the emittance
blow-up up to 1.40 eVs (the case of 2.75 eVs is conceptually the same), the phase
noise program in the time interval C500–C600 was regenerated every 10 ms to follow
the revolution and synchrotron frequency changes along the acceleration cycle.

Figure 5.10 shows the calculated synchrotron frequency distribution at C500
and C600 with the corresponding frequency bands used both in simulations and
measurements. Since in this particular case the desired blow-up was small (from
1 eVs to 1.4 eVs) fdown was just 90% of the synchrotron frequency of the two lobe
centers.

The value for fup was chosen to match fs0 of the left-lobe synchronous phase
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Figure 5.8. Reproduced phase space of measured LHC25ns bunches (Nb ≈ 1.65 · 1012 ppb)
using tomography at extraction energy (Ekin = 1.4 GeV) for the four PSB rings.
Controlled longitudinal emittance blow-up is obtained through injection of RF phase
noise into the phase loop of the C02 cavity. Phase noise is injected in the time interval
500 ms–600 ms, with the C04 RF system used in bunch lengthening mode (Vrf,1 = 8 kV,
Vrf,2 = 6 kV). As needed, the emittances are εl ≈ 1.4 eVs.

(higher than the right one because of acceleration). In this way the noise bands
covered completely the two bunch cores with some safety margin to account for
possible imprecise estimations of the synchrotron frequency shift due to longitudinal
space charge effects.

Notice that the two discontinuities of the emittance curve (blue) in Fig.5.10 are
due to the inner separatrix confining the two internal lobes in phase space, see for
example Fig.5.11): the emittance increases by a factor of two in correspondence
of these two discontinuities since the trajectory just outside the inner separatrix
includes both lobes.

It was possible to reproduce in simulations what was obtained in measurements.
More specifically, performing a simulation including collective effects, using the same
noise program as employed in measurements and adding phase and radial loops
with the same gains used in operation (Gpl = 0.2, Grl = 3, gpl = 3000 s−1 rad−1,
grl = 2.2 s−1 m−1), it was possible to obtain an emittance of 1.4 eVs at extraction
energy. This result, in addition to prove the success of RF phase noise blow-up,
confirms that simulation results are reliable.
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Figure 5.9. Phase space of measured LHC25ns bunches at PSB flat top, see parameters
and conditions in the caption of Fig.5.8. As needed, the emittances are εl ≈ 2.75 eVs.

Figure 5.10. Synchrotron frequency distribution in simulation with and without intensity
effects (green and red respectively) as a function of the particle position ∆t ∈ [0, T0] at
cycle-times C500 (left) and C600 (right). The emittance εl (blue) as a function of ∆t is
also shown, taking into account collective effects. The vertical black and yellow lines
mark the bunch lengths of a 1 eVs bunch using two different conventions (the horizontal
lines mark the corresponding emittance values). Figure 5.11 shows the corresponding
distributions in phase space.

5.5.2 ISOLDE Beams

The ISOLDE beam, already introduced in Section 4.7, usually consists of relatively
high intensity. Currently Nb ≈ 8·1012 ppb and εl = 1.8 eVs at extraction energy [119].
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Figure 5.11. Simulated bunch distributions at C500 (left) and C600 (right) matched inside
the RF bucket with intensity effects (εl = 1.0 eVs). These bunches correspond to the
ones mentioned in the caption of Fig.5.10.

The beam quality at extraction is not as important as for the LHC25ns beams.
The acceleration cycle until time C700 is done in a double RF system with

Vrf,1 = 8 kV and Vrf,2 = 8 kV with relative phase set in bunch lengthening mode
in order to maximize the longitudinal acceptance. After time C700, the C04 RF
voltage is slowly ramped down to 2 kV. Phase and radial loops are active all along
the acceleration cycle.

The same noise program as used for the LHC25ns beams was applied for this
beam adjusting only the noise rms amplitude in order to reach εl = 1.8 eVs at
extraction energy. Note that, due to the higher bunch intensity, the synchrotron
frequencies at the centers of the two lobes in phase space are approximately 100 Hz
lower than the ones relative to the LHC25ns case, and therefore the adopted noise
program was not optimal. However, knowing that the blow-up settings of the C16
RF system for ISOLDE beams are very different from the ones for LHC25ns beams
and as a consequence not-negligible time is usually needed for setting up, the goal of
the measurements was to prove that the same RF phase noise program can be used
for two quite different beams obtaining results comparable to the ones had with the
C16 cavity.

Indeed, Fig.5.12 shows that at extraction energy the beam qualities using the
C16 RF system and the RF phase noise are comparable.

5.5.3 SFTPRO–MTE Beams

The SFTPRO–MTE beam is directed to the SPS for fixed-target physics experi-
ments [119, 122]. The acronym MTE stands for Multi-Turn Extraction, which is a
resonant extraction mechanism used in the PS when dealing with this particular
type of beam [123].

The SFTPRO–MTE beam, which has Nb ≈ 5 · 1012 ppb and εl ≈ 1.0 eVs at
injection energy, needs εl ≈ 2.6 eVs at cycle time C700. A bunch splitting after C700
produces at extraction energy two bunches having each Nb ≈ 2.5 · 1012 ppb and
εl ≈ 1.3 eVs. The acceleration cycle is performed in a double RF system until time
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Figure 5.12. Reproduced phase space of measured ISOLDE bunches (Nb ≈ 8 · 1012 ppb)
using tomography at extraction energy (Ekin = 1.4 GeV). Controlled longitudinal
emittance blow-up is obtained either using the C16 cavity (left) or injecting RF phase
noise into the phase loop of the C02 cavity (right). Phase noise is injected in the time
interval 500 ms–600 ms, with the C04 RF system used in bunch lengthening mode
(Vrf,1 = 8 kV, Vrf,2 = 8 kV). As needed, the emittances are εl ≈ 1.8 eVs.

C700 using Vrf,1 = 8 kV and Vrf,2 = 8 kV with relative phase set in bunch-lengthening
mode. From 700 ms to 800 ms, RF manipulations are performed to split the bunch.
The C16 RF system acts for 200 ms in the interval 500 ms–700 ms in order to
increase the emittance from 1 eVs to 2.6 eVs. Phase and radial loops are active all
along the acceleration cycle.

Injecting RF phase noise during only 110 ms (from 550 ms to 660 ms) after
a proper analysis of the synchrotron frequency distributions along the cycle as it
was done for the LHC25ns beams, it was possible to obtain at extraction energy
bunches of much better quality as compared to the ones had with the C16 cavity,
see Fig.5.13.

5.5.4 BCMS Beams

The BCMS (Batch Compression, Merging and Splitting) has been the main opera-
tional beam for most of the year 2018 and will possibly be the next production beam
for proton physics in the LHC after LIU upgrade, replacing the present LHC25ns
beam [124, 119].

The BCMS beam (Nb ≈ 0.85 · 1012 ppb) is currently accelerated in a single RF
system with Vrf,1 = 8 kV. No controlled emittance blow-up is required (εl ≈ 0.9 eVs
along the ramp), however the C16 cavity is still active to affect only the bunch core
reducing the line density amplitude and increasing the rms emittance. Phase and
radial loops are active all along the acceleration cycle.

Knowing by experience from the previously examined types of beam the effec-
tiveness of injecting RF phase noise in a double RF system with relative phase
in bunch-lengthening mode, the C04 RF system with Vrf,2 = 6 kV was added in
measurements during the time interval 500 ms–600 ms. The noise was applied just
for 20 ms, contrary to the 50 ms required by using the C16 cavity.

Figure 5.14 shows that the phase noise method can provide a bunch with better
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Figure 5.13. Phase space of measured SFTPRO–MTE bunches (Nb ≈ 5 · 1012 ppb,
εl ≈ 2.6 eVs before time C700) reproduced using tomography at extraction energy
(Ekin = 1.4 GeV). RF manipulations between time C700 and flat top split the bunch
into two bunches (left and right) having each Nb ≈ 2.5 · 1012 ppb and εl ≈ 1.3 eVs.
Controlled longitudinal emittance blow-up is obtained either using the C16 cavity for
200 ms (top) or injecting RF phase noise into the phase loop of the C02 cavity for 110 ms
(bottom). Phase noise is injected with the C04 RF system used in bunch lengthening
mode (Vrf,1 = 8 kV, Vrf,2 = 8 kV).

quality with respect to the result obtained using the C16 cavity: even if εl = 0.85 eVs
and εl = 0.843 eVs using the C16 RF system and phase noise respectively, the rms
emittance is higher injecting phase noise.

5.5.5 LHCINDIV Beams

The most difficult beam to prove that phase noise injection can replace the C16
high-harmonic modulation was the LHCINDIV type. This beam, due to its wide
range in relatively-low bunch intensity and emittance values, is required in the
commissioning filling patterns for the LHC and is also used for beam-physics studies
in the PS and SPS [125, 119].

The RF cavities which are used during the acceleration cycle are the C02 and
C16. The C16 RF system is used not for controlled emittance blow-up but for
longitudinal shaving, which regulates the bunch intensity from Nb ≈ 2 · 1010 ppb to
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Figure 5.14. Reproduced phase space of measured BCMS bunches using tomography
at extraction energy (Ekin = 1.4 GeV). The intensity and emittance at flat top are
respectively Nb ≈ 0.85 · 1012 ppb and εl ≈ 0.9 eVs. No controlled longitudinal emittance
blow-up is performed along the ramp, only rms-emittance increase is needed either using
the C16 cavity (left) or injecting RF phase noise into the phase loop of the C02 cavity
(right). Phase noise is injected adding the C04 RF system in bunch lengthening mode
(Vrf,1 = 8 kV, Vrf,2 = 6 kV).

Nb ≈ 12 · 1010 ppb. More precisely, in the interval 300 ms–400 ms, the h = 1 RF
voltage is such that the zero-amplitude synchrotron frequency is constant during
acceleration. This allows a proper action of the high-frequency modulation generated
by the C16 cavity during this same time interval: since the bucket is full, increasing
properly the voltage of the C16 cavity allows to push particles close to the separatrix
outside of the bucket.

After the end of the longitudinal shaving at 400 ms when the needed intensity is
reached, the C02 RF voltage is dropped during the next 20 ms to decrease the bucket
area and obtain the desired emittance which will be preserved up to extraction
energy (usually εl ≈ 0.3 eVs). Finally the voltage of the main RF system is increased
up to 8 KV and then is kept constant until flat top, see Fig.5.15 (left). Phase loop
is active all along the acceleration cycle, radial loop is unemployed.

Figure 5.15. Operational (left) and proposed (right) RF voltage programs for LHCINDIV
beams. For the proposed ones, the C16 cavity is disabled and RF phase noise is injected
into the phase loop of the C02 cavity adding the C04 RF system in bunch-lengthening
mode. Both the C16 RF system and phase noise are used for longitudinal shaving and
not for controlled emittance blow-up.



5.6 Conclusions 113

Following the same reasoning adopted for all the previous examined beams, the
C16 RF system was disabled in favor of the phase noise which was injected into the
phase loop of the C02 cavity while keeping the C04 RF system in bunch-lengthening
mode. Voltages Vrf,1 and Vrf,2 were set respectively to 4 kV and 3 kV to keep the
same voltage ratio as for Vrf,1 = 8 kV and Vrf,2 = 6 kV which proved to be effective
during blow-up for the other beams, see Fig.5.15 (right).

Figure 5.16 shows examples of LHCINDIV beams at extraction energy, where
εl ≈ 0.3 eVs and Nb ≈ 1.0 · 1011 ppb, using either the C16 cavity or the phase noise
for longitudinal shaving: it can be seen that the beam qualities are similar.

Figure 5.16. Reproduced phase space of measured LHCINDIV bunches using tomography
at extraction energy (Ekin = 1.4 GeV). The bunch intensity and emittance at flat top are
respectively Nb ≈ 1.0 · 1011 ppb and εl ≈ 0.3 eVs. These last two values are respectively
obtained through longitudinal shaving in 300 ms–400 ms and decrease of the h = 1
RF voltage in 400 ms–420 ms. The longitudinal shaving is obtained either using the
C16 cavity (left) or injecting RF phase noise into the phase loop of the C02 cavity
(right). Phase noise is injected adding the C04 RF system in bunch-lengthening mode
(Vrf,1 = 4 kV, Vrf,2 = 3 kV). No controlled longitudinal emittance blow-up is performed
along the ramp.

Finally, after having obtained an emittance εl = 0.3 eVs through a proper decrease
of the h = 1 RF voltage in 400 ms–420 ms, it was possible to extract different bunch
intensities, or equivalently to obtain during shaving distinct amounts of particle
losses, through a proper variation of the noise rms-amplitude in 320 ms–330 ms.
Afterwards, the phase noise was kept active with constant rms-amplitude in 330 ms–
380 ms only to diffuse the particles in the bunch-core and increasing, as a result, the
rms emittance. Figure 5.17 shows the outcome of this phase-noise program design:
the beam quality at extraction energy is remarkable, independently of the needed
intensity.

5.6 Conclusions

Controlled longitudinal emittance blow-up for nominal-LHC beams in the PSB will
be necessary after LIU-upgrade for proper reduction of transverse space charge effects
at PS injection. This Chapter focused on an alternative to the present operational
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Figure 5.17. Reproduced phase space of measured LHCINDIV bunches using tomography
at extraction energy (Ekin = 1.4 GeV). The emittance εl ≈ 0.3 eVs is determined by
a proper decrease of the h = 1 RF voltage in 400 ms–420 ms. The different shown
intensities are obtained performing longitudinal shaving through injection of RF phase
noise into the h = 1 phase-loop in 320 ms–380 ms. Phase noise is injected adding the
C04 RF system in bunch lengthening mode (Vrf,1 = 4 kV, Vrf,2 = 3 kV).

method of RF high-frequency modulation for emittance blow-up: the injection of
band-limited RF phase noise into the main harmonic RF system.

After having presented the main advantages of this suggested method which
was never tried in the PSB, the principle behind phase noise has been explained,
together with the procedure for its numerical generation. Since it is expected that
phase noise will be injected into the phase loop of the main harmonic RF system, an
accurate model of the PSB Low Level RF phase and radial loops has been created
and then implemented into the BLonD code. Benefiting also of what presented in
the previous Chapter, it was possible to perform realistic simulations of the PSB
longitudinal beam dynamics from injection to extraction energies including collective
effects, RF manipulations and LLRF feedbacks.

The simulation results for future nominal-LHC beams showed that bunch excita-
tion with phase noise can provide the required significant controlled longitudinal
emittance blow-up in a fast-cycling machine with strong space charge like the PSB.
For an optimized set of parameters it was possible to increase the bunch emittance
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from 1.4 eVs to 3 eVs applying the RF phase noise only for 100 ms and using a possible
realistic acceleration cycle. Since phase noise was applied without performing at the
meantime any bunch shaping using the h = 2 RF system, phase-loop slowed down
the diffusion process for particles located in the bunch-core and having synchrotron
frequencies close to the zero-amplitude one. Therefore it was emphasized the im-
portance of using non-flat noise spectral densities to compensate for this undesired
effect which increases the peak line density and therefore space charge effects.

Finally numerous measurements of present operational PSB beams have been
performed in order to test RF phase noise in the current scenario and predict its
reliability for the future. The main result concerns the nominal-LHC beams: it has
been possible to increase their longitudinal emittance from 1 eVs to 3 eVs in just
100 ms, suggesting that a similar result could be attained in the future. Moreover,
four additional types of PSB beam, with very different features from each other,
have been examined in order to prove that phase noise will be able to completely
replace, or at least complement, the currently-used RF high-frequency modulation.
It was found that RF phase noise, when applied during acceleration in a double RF
system with relative phase set in bunch-lengthening mode, is able to successfully
cover all the scenarios presently available in operation.
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Chapter 6

SPS Ions: Slip-stacking

6.1 Introduction

The HL-LHC Project at CERN aims at doubling the peak luminosity of the Pb-ion
beam after upgrade (2019-2021) [3]. To fulfill this requirement, the baseline of the
LIU Project includes the decrease of the bunch spacing in the SPS from 100 ns to
50 ns through momentum slip-stacking (MSS) [3]. This technique, already used in
operation in Fermilab [126], allows two batches with slightly different momenta to
slip relative to each other before being stacked one on top of the other. An RF
voltage high enough to recapture the stacked bunches allows to double the bunch
intensity at the end of the process. A variant of MSS is considered in the SPS: the
two batches are not stacked on top of each other, but interleaved (see Fig.6.1). This
provides the desired bunch spacing reduction while the bunch intensity remains
unchanged.

Momentum slip-stacking in the SPS is potentially feasible thanks to the planned
upgrade of the 200 MHz traveling-wave cavities (TWC) [19]. These will be divided
into two groups and the RF frequency of each group will be tuned to one batch.
Since independent LLRF controls for the two groups will be available only in 2021,
macro-particle simulations in the longitudinal plane are the only means to verify
the MSS feasibility (alternative scenarios for bunch spacing decrease are being also
considered [127]).

Preliminary simulations performed in 2014 showed promising results [128], how-
ever collective effects were not included and bunch parameter variations along the
batches were not taken into account. In the present work a more elaborated study is
presented. Beam measurements have provided realistic beam parameters which were
used as initial conditions in simulations. Collective effects were included, using the
latest longitudinal impedance model. Momentum and RF programs were designed to
be used during and after MSS. Effort was spent to develop algorithms able to speed
up the settings of the large number of parameters involved during MSS optimization.
The CERN macro-particle simulation code BLonD [12] has been used for the studies.
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Figure 6.1. Example of planned MSS procedure in the SPS. The two batches, starting
from Phase I, move in longitudinal phase space relative to each other. The black line
marks ∆E = E − E0 = 0, where E0 is the design energy. In Phase II the distance in
momentum ∆pb between the batches increases, while the opposite happens in Phase III.
Recapture is done in Phase IV. The reference frame is synchronized with the design
revolution period T0.

6.2 Slip-stacking Principle

Momentum slip-stacking is usually performed at constant magnetic field B0. The
design momentum p0 is then defined by the magnetic-rigidity formula introduced in
Chapter 2

B0R0 = p0/q. (6.1)

Keeping the magnetic field constant and using linear approximation, the following
relations hold (see Chapter 2)

∆ωrf
ωrf,0

= −η0
∆p
p0

= −η0γ
2
tr

∆R
R0

. (6.2)

The design ωrf,0 = hfrf,0 (with h the harmonic number) can be derived from p0, as
well as the design γ0. All the variables in Eq.(6.2) represent changes with respect
to the corresponding design quantities. In a reference frame synchronized with the
design revolution period T0 (see the definition for ∆t in Chapter 2) a variation ∆ωrf
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implies a change in the RF phase according to

∆φrf = 2πh∆ωrf
ωrf,0

, (6.3)

see Eq.(2.87).
Taking as an example the case in Fig.6.1 (η0 > 0), the head batch will gain

momentum when the RF frequency of the corresponding RF system is decreased.
According to Eqs.(6.2) and (6.3) the batch will be displaced radially outwards while
slipping to the right in phase. An analogous but opposite reasoning applies to the
second batch.

The group of RF cavities which is not synchronized with the batch perturbs its
motion. The severity of the perturbation is linked to the distance between batches
in time and momentum. Indeed, the RF perturbation affects the batches only when
their time-distance is smaller than the cavity filling time, which is approximately
1 µs (200 buckets) due to the relatively low quality-factor of the fundamental mode
of the 200 MHz TWCs. For larger time-distances the different RF cavities can be
safely switched on and off according to bunch passage time in order to completely
avoid the RF perturbation (see Subsection 6.3.3).

The distance between batches in momentum also affects the severity of the RF
perturbation, which in this case can be described by the slip-stacking parameter [129]

α
.= ∆frf,b

fs0
= 2∆Eb

Hb
, (6.4)

where ∆frf,b and ∆Eb are respectively the differences in RF frequency and total
energy between the two batches, fs0 is the zero amplitude synchrotron frequency
of the unperturbed bucket and Hb is half of the bucket height. When α = 4,
the separatrices of the buckets associated with the two independent RF systems
are tangent to each other. This value has been proven to be a lower limit for
dynamic stability of the system [129]. If α� 4, the perturbation averages within
a synchrotron period and its effect is less damaging. However a large α at the
end of MSS implies a higher RF voltage needed for recapture which leads to a
larger emittance blow-up after filamentation. Phase IV in Fig.6.1 shows a beam
configuration with α = 4.

6.3 Momentum Slip-stacking in the SPS

As mentioned in Chapter 1, the LHC Pb82+ ion beams in the SPS are currently
accelerated from 17 ZaGeV/c (γ = 7) to 450 ZaGeV/c (γ = 191). Three different
optics, called Q20, Q22 and Q26, are available in the SPS, depending on the working
point adopted. In all cases, the beam energy crosses the transition energy during
the first part of the ramp (γQ20

tr = 18, γQ22
tr = 20, γQ26

tr = 23 [130]). The Q20 optics
is currently used in operation. The accelerating RF system is the 200 MHz TWC
(h = 4620). For proton beams, a forth harmonic RF system (800 MHz) is used in
addition to the main one to enhance Landau damping [131, 23, 132]. However, this
system is not used presently in operation with ion beams.
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6.3.1 MSS Energy and SPS Momentum Program

The first choice to be made is the energy at which slip-stacking should be performed.
At injection energy, poor lifetime due to the presence of relatively strong space
charge, Intra-Beam Scattering (IBS) and RF noise prevent us from applying MSS
there. On the other hand at flat top all particles lost during the RF manipulations
would be transferred to the LHC. For these reasons an intermediate energy plateau
has been chosen (300 ZaGeV/c) which is quite far from the transition energy and
provides a higher stability threshold as compared to the top energy.

Beam measurements in 2015 of one batch of 24 bunches accelerated in the SPS
show that the beam is stable at 300 ZaGeV/c [80], see Fig.6.2 which describes bunch
length and position of the most unstable bunch in the batch. The bunch length
τFWHM,G, which determines the longitudinal emittance εFWHM,G, is calculated using
the full-width-half-maximum bunch length rescaled to 4σt of a Gaussian profile
(convention used in the SPS). However, as we will see, the bunch profiles obtained
after MSS are not Gaussian but they have two peaks with heights that can be
different from each other while strongly varying from turn to turn. For this reason
the bunch length and emittance in the present paper will be determined by the
portion of the line density containing 95% of the particles.

Figure 6.2. Beam measurements, along the operational SPS ion cycle (Q20 optics), for
the fourth bunch in a batch of 24 ion bunches: full-width half-maximum bunch length
rescaled to a Gaussian profile (left) and bunch position (right). The red curves correspond
to the maximum amplitude of the bunch length and phase. The green vertical line
marks the energy 300 ZaGeV/c. The transition crossing occurs at about 41 s cycle time.
Other measurements in Ref.[80] show that the third and fourth bunches in the batch
are the most unstable, since they remain at flat-bottom for relatively long time without
being stabilized by the LLRF phase-loop which is synchronized only with the first two
bunches. Courtesy of A. Lasheen, CERN, 2015.

Since only integer multiples of the CERN PSB cycle (1.2 s) can be added to the
currently used SPS momentum program, the length of the plateau was chosen to be
1.2 s. Figure 6.3 shows the momentum program used in simulations. Out of 1.2 s,
0.8 s were used for MSS, while 0.4 s for filamentation after recapture.
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Figure 6.3. Operational (dashed line) and used in simulations (continuous line) momentum
programs (blue) and their derivatives (red). The label TX0 marks the ramp start, TX1
the start of MSS, TX2 the end of MSS, TX3 and TX4 the start and the end of the
second ramp.

6.3.2 Initial Beam Conditions

Currently every batch accelerated in the SPS contains 24 bunches. The filling pattern
at SPS flat-bottom is the following: 12 mini-batches of two bunches injected from
the PS, with a bunch-spacing of 100 ns and a mini-batch spacing of 175 ns. Due to
the significant losses at SPS flat-bottom, there is a remarkable variability of bunch
emittance and intensity along the batch, see for example the beam measurements in
Fig.6.4 showing that emittance and intensity vary respectively by a factor of 2 and
1.5 along the batch at 300 ZaGeV/c [80].

In 2021 operation, the length of the flat-bottom (40 s) will be equal to the current
one. However the filling pattern at SPS flat-bottom will be different: there will
be 12 mini-batches of 4 bunches coming from the PS, with bunch spacing equal
to 100 ns and mini-batch distance of 125 ns or, optimistically, 100 ns (assumed in
simulations) [3]. The first six and the second six mini-batches will form the two
batches of 24 bunches which will have to be slip-stacked. The distance between
these batches has to be established according to the constraints coming from the
slip-stacking programs (see next Subsection).

All the simulations shown in this Chapter start at 300 ZaGeV/c, exactly when
momentum slip-stacking begins. Considering Fig.6.2, we assume that all the 48
bunches are stable and matched to the RF bucket with intensity effects. Since in
operation losses occur continuously along the flat bottom, it is reasonable to suppose
that the bunch profiles have strong tails [80]. Therefore the initial longitudinal
distribution was chosen to be binomial with relatively high µ = 5, see Eq.(2.63).
The beam measurements for 24 bunches in Fig.6.4 are used to extrapolate the values
of intensities and emittances for the future 48 bunches: the two additional values
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Figure 6.4. Measured longitudinal bunch emittance and intensity as a function of the
bunch number in one batch at 300 ZaGeV/c in the operational ion cycle of the SPS.
Bunch number 0 is the head of the beam, bunch number 23 the tail. The error bars on
the measured values are determined by one standard deviation for each side. Courtesy
of A. Lasheen, CERN, 2015.

needed for each mini-batch of two bunches were obtained by averaging the already
two measured values of the mini-batch itself.

6.3.3 Effects of RF Perturbations

In order to limit the perturbation of the second RF system on each batch, the two
independent groups of 200 MHz cavities are switched on only when the corresponding
batch passes by. Figure 6.5 shows cavity voltage measurements for the present
TWCs [133]. The rise and decay times are similar and range from about 1 µs for
the 4-section to 1.2 µs for the 5-section cavities. In view of the results shown in this
Chapter we expect that, after LIU-upgrade, the average time T th

b needed to switch
on and off all the cavities during MSS will be lower than now, since the relatively low
required voltage for MSS can be provided only by four new 3-section cavities [134].

In slip-stacking simulations, the value of T th
b = 1 µs is chosen: the peaks of

the 4-section RF waveform shown in Fig.6.5 are fitted with a polynomial, then the
obtained curve is used in the BLonD code to model the rise and decay laws of the
peak RF voltages V (1)

rf and V
(2)
rf of the two independent RF systems within one

revolution turn, see Fig.6.6. We assumed in simulations that, at each revolution turn,
V

(1)
rf starts with its maximum value, since the high harmonic number of the machine

relative to the amount of buckets occupied during MSS allows sufficient time to
rise V (1)

rf from zero to its maximum value at each revolution turn. An analogous
reasoning is valid for V (2)

rf . From now on, V (1)
rf and V (2)

rf will simply denote, for each
revolution turn, only the maximum values of the correspondent, just discussed, peak
RF voltage functions.

It is essential that α� 4 when the distance between the batches Tb is equal to
T th
b in order to minimize the perturbation effects coming from the other RF system.

We assumed in simulations a relatively large Tb = 2.7 µs at TX1 , giving more priority
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Figure 6.5. Left: measurements of RF voltage during batch passage as a function of time
for the currently used two 4-section (top) and two 5-section (bottom) SPS traveling-wave
cavities. The rise and decay of the RF voltage amplitude are clearly visible. Right:
zoom on the rectangular area in the left image highlighting the times needed for the
two different cavities to reach their correspondent peak voltages. Courtesy of T. Bohl,
CERN, 2018.

Figure 6.6. Example of longitudinal phase space (left axis) in simulation of momentum
slip-stacking in the SPS. Two batches of 24 bunches each are shown in blue. The peak
voltages of the RF systems synchronized with the head and tail batches are presented in
green and yellow respectively (right axis). The rise and decay laws of V (1)

rf and V (2)
rf are

derived from cavity voltage measurements, see Fig.6.5.

to the adiabaticity of the MSS manipulation than to the time minimization needed
for it. Figure 6.7 shows an example of evolution of parameter α during MSS.

6.3.4 RF Voltage Program during MSS

During MSS, we suppose that the RF frequency shift programs of the two 200 MHz
RF subsystems have opposite sign relative to ωrf,0 (ω(1)

rf +ω
(2)
rf = 2ωrf,0) and that the

two RF voltage amplitude programs are equal (V (1)
rf = V

(2)
rf ). At recapture time TX2

we have ω(1)
rf = ω

(2)
rf = ωrf,0 and a common recapture voltage V rc

rf is used. According
to Eq.(6.2) the RF frequency programs determine the momentum programs applied
to the two batches. The voltage program during MSS is computed for constant filling
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Figure 6.7. Example of slip-stacking parameter α (blue) and head-to-head distance between
the two batches (red) as a function of the cycle time during momentum slip-stacking
(from TX1 to TX2 cycle-times). The black line marks the cycle-time 43.28 s, when
Tb = T th

b = 1 µs. At TX1 , the shown parameters are α = 0 and db = 1000 buckets (or
Tb = 2.7 µs), at 43.28 s they are α = 13.8 and db = 660 buckets (the batch length is
460 buckets), at TX2 the parameters are α = 4.5 and db = 10 buckets (bunch spacing at
the end of momentum slip-stacking).

factor of bucket in energy qMSS
e relative to the highest emittance (energy spread)

bunch (see Fig.6.8).

Figure 6.8. Example of momentum and RF voltage amplitude programs for one batch
during MSS (the same case as in Fig.6.7).

The calculation of the momentum program during MSS can be tedious when
parameter scans have to be performed for slip-stacking optimization (see next Section)
since proper adjustments should be done case by case to avoid harmful misalignments
in phase between the two batches before recapture. Therefore automatic procedures
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to obtain alignment between batches (with arbitrary precision) become necessary.
Two iterative algorithms have been developed for this purpose, assuming constant
longitudinal emittance and filling factor in energy during MSS.

The first iterative algorithm takes αgoalTX2
as input and provides pgoalmin. Fixing a

certain longitudinal emittance and bucket filling factor in energy, the choice of pmin
determines Vrf,TX2 and therefore αTX2 . Thus the iterations are done on pmin, until
αTX2 is sufficiently close to αgoalTX2

.
After having obtained pgoalmin , a first estimation p of the desired momentum program

during MSS is obtained concatenating a rising, flat and decaying portions, see as an
example Fig.6.8 (left). From this momentum program p the accumulated RF phase
displacement ∆φrf,tot with respect to the design RF phase can be computed summing
turn by turn the contributions in Eq.(6.3). In general, first-iteration ∆φrf,tot will be
different from the desired ∆φgoalrf,tot which provides batch alignment. Changing only
the value of pmax, we can obtain ∆φrf,tot which is sufficiently close to ∆φgoalrf,tot.

Therefore the second iterative algorithm takes ∆φgoalrf,tot and the first estimation p as
inputs and provides as output a new momentum program which differs from the initial
one just by the value for pmax and provides the desired total RF phase displacement.
The iterations are done on pmax, until the new program gives ∆φrf,tot ≈ ∆φgoalrf,tot.

6.3.5 RF Voltage Program after MSS

The recapture voltage V rc
rf is used during the filamentation process in [TX2 , TX3 ].

Then, the bucket filling factor in energy for the largest emittance bunch is computed
at TX3 . The RF voltage program for the second ramp is calculated for this filling
factor supposing it constant. All along the SPS ion cycle, a maximum RF voltage
of 15 MV is assumed, which is expected to be available after RF-upgrade in the
framework of the LIU Project [134].

At flat top, with a duration of 1 s, two options of beam manipulations prior to the
extraction to the LHC are considered: bunch compression and bunch rotation. During
bunch compression, the RF voltage at TX4 is increased linearly and adiabatically
for 0.5 s (or about 180 synchrotron periods) up to 15 MV and then is kept constant
until extraction. During bunch rotation, the RF voltage at TX4 is applied for 0.8 s,
then it is increased non-adiabatically (few turns) to 15 MV and after a quarter of
synchrotron period the beam is extracted.

6.3.6 SPS Longitudinal Space Charge and Impedance Model

As already mentioned, simulations of momentum slip-stacking were including collec-
tive effects. Figure 6.9 shows the calculated longitudinal space charge impedance
|Zsc|/n for the three SPS optics as a function of the design momentum [80] for time
after LIU (2021), from slip-stacking to extraction energies. The transverse normal-
ized emittance was assumed to be εx,y,n = 1.2 µm [3], while δrms = 1.3 · 10−4 was
selected computing an average of the different fractional rms momentum deviations
of the 48 bunches at the beginning of slip-stacking. These two values were used to
compute the transverse beam size needed for impedance estimation, similarly to
what has been done for the PSB in Chapter 4.
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Figure 6.9. Estimated longitudinal space charge impedance |Zsc|/n for the three SPS
optics as a function of the design momentum after-LIU, from slip-stacking to extraction
energies. The transverse normalized emittance and the relative rms momentum spread
are respectively εx,y,n = 1.2 µm and δrms = 1.3 · 10−4. Courtesy of A. Lasheen, CERN,
2015.

The after-LIU SPS longitudinal impedance model, which contains narrow and
broad-band resonant modes between 50 MHz and 4 GHz, has been studied and
simulated for many years, see for example Refs.[19, 16, 135, 136, 137]. A 26 dB
reduction on main harmonic (with a few MHz bandwidth) of the 200 MHz TWC
impedance through Low Level RF feedbacks is assumed, while the High Order Mode
(HOM) at 630 MHz is damped by dedicated RF couplers. The impedance model
includes contributions from the 800 MHz TWCs, kicker magnets, vacuum flanges,
beam instrumentation devices and resistive wall. Figure 6.10 shows the expected
absolute value of the total SPS longitudinal impedance after SPS upgrade.

6.4 Constraints on Beam Parameters, Optimization
Study and Analysis of Simulation Results

In this Section, unless otherwise specified, simulation results for the currently used
Q20 optics are presented. The results for the other two optics Q22 and Q26 are
shown in the last Subsection.

Given the significant number of parameters to be determined from the start of
slip-stacking until extraction, the first concern was to determine a minimal set of
independent parameters able to provide enough variability in the simulated beam
dynamics and therefore in the obtained simulation results. Table 6.1 describes the
four parameters contained in one of these minimal sets: three of them (qMSS

e , αTX2

and V rc
rf ) refer to the slip-stacking and recapture cycle phases, while the remaining

one defines the type of RF manipulation used at flat top (bunch compression or
rotation). These four parameters have been considered as main inputs for the
performed BLonD simulations.

Two constraints on the beam parameters were taken into account in simulations.
The first refers to the average and maximum bunch lengths at SPS extraction. These
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Figure 6.10. Expected after-LIU SPS longitudinal impedance model (absolute value).
The impedances of the following components are included: 200 MHz TWCs with RF
feedback reduction of 26 dB on main harmonic (with a few MHz bandwidth) and HOM
at 630 MHz damped via RF couplers, 800 MHz TWCs, kicker magnets, vacuum flanges,
beam instrumentation devices and resistive wall. From left to right, the three dashed
lines mark 200 MHz, 630 MHz and 800 MHz. Courtesy of J. Repond, CERN, 2018.

Table 6.1. The four parameters, together with their corresponding options, used in
optimization study aimed at finding the best configurations satisfying the constraints on
losses and bunch length at SPS extraction.

qMSS
e bucket filling factor in energy during MSS from 0.45 to 0.9, step 0.05

αTX2 slip-stacking parameter at TX2 from 3.5 to 8, step 0.5

V rc
rf recapture RF voltage at TX2 from 1 to 9, step 0.5 [MV]

RF manipulation at flat top bunch compression or rotation

numbers should not be larger than 1.65 ns and 1.80 ns respectively [2], otherwise
considerable losses at capture into the 400 MHz LHC RF-buckets are obtained.
Since there is a significant variability in bunch length (and emittance) along the
two SPS batches at 300 ZaGeV/c (see Fig.6.4, left), only the constraint on τmax,
the maximum bunch length at SPS extraction, was considered. However, taking
into account that the standard deviation found in measurements for the length
of the longest bunch is 7% at 300 ZaGeV/c, and assuming that this spread is in
general preserved until flat-top, it was decided that τmax should not be larger than
1.65 ns (instead of 1.80 ns). Note that the maximum bunch-emittance εmax after
filamentation at 300 ZaGeV/c should be lower than 0.32 eVs/Am in order to have
τmax < 1.65 ns.

The second constraint results from the total losses due to the MSS process.
This value as defined by the LIU project should be less than 5% [127]. In the
following simulations the total losses Ltot are defined by the sum of the particles
lost in the SPS hitting the beam-pipe walls (LSPS) and the particles which will
be lost or become satellites in the LHC (LLHC). The quantities τmax and Ltot,
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coming as outputs from a given BLonD simulation after having chosen the four input
parameters just discussed, were considered as the principal quantities defining the
degree of acceptance of the simulation results.

Figure 6.11 shows an example of particle losses in the SPS due to MSS manipu-
lation. The main parameters qMSS

e = 0.9, αTX2 = 3.8 and V rc
rf = 7 MV have been

chosen to show an extreme case leading to high amount of particle losses (note in
particular that the value of αTX2 is below 4). The current one-sided horizontal
aperture limitation in the SPS, coming from the defocusing quadrupoles, is around
20 mm [138]. This value has been used in simulations to identify, through Eq.(6.2),
the energy threshold for particles which are close to hit the beam-pipe walls (Fig.6.11,
left). Notice that LLHC contains all the particles in the SPS recaptured into the
satellite RF buckets after slip-stacking, in addition to the particles at SPS extraction
which are outside the LHC bucket at 450 ZaGeV/c (an RF voltage of 8 MV at LHC
injection energy was assumed in simulations).

Figure 6.11. Example of definition of losses in the SPS (LSPS) and particles which will
be lost or become satellites in the LHC (LLHC), due to momentum slip-stacking in the
SPS. The main simulation parameters are qMSS

e = 0.9, αTX2 = 3.8, V rc
rf = 7 MV with

bunch compression at SPS flat-top, see Table 6.1. Left: longitudinal phase space at
cycle time 44.2 s, after momentum slip-stacking and filamentation, soon after the start
of the second ramp at 44.1 s (see Fig.6.3). The batch, together with inter-bunch satellite
particles recaptured by the RF buckets after slip-stacking, is contained in the middle-top
rectangular square, other significant portions of satellite particles are on its left and right.
Due to acceleration, the energy deviations of the uncaptured particles increase with time.
The energy threshold corresponding to the current one-sided SPS horizontal aperture
limitation of 20 mm is marked with a red line. Right: zoom onto the last bunch of the
batch at SPS extraction. The SPS separatrix with Vrf = 15 MV is in green, the LHC
separatrices with Vrf = 8 MV and Vrf = 12 MV are in black and red respectively. The
satellite particles on the left and right of the bunch, together with the bunch particles
outside of the LHC bucket, contribute to LLHC.

The simulated dynamics, starting from momentum slip-stacking and ending at
SPS extraction, is relatively complex, due to the many RF manipulations involved,
significant variability of beam parameters along the batches and collective effects.
Because of this complexity, in order to avoid the risk of choosing sub-optimal
parameter combinations and to be certain that all the possibilities have been
examined, scans were performed to find the optimal parameter combinations (see
Table 6.1 for the chosen ranges of values). The following criterion for optimality was
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adopted: for a given type of RF manipulation at flat top, a combination A of the
main parameters qMSS

e , αTX2 and V rc
rf is optimal if there exists no other combination

B for which LAtot > LBtot and τAmax > τBmax.

6.4.1 Q20 Optics: Bunch Compression

The simulation results for bunch compression are shown in Fig.6.12, together with
the optimal solutions. From Fig.6.12 one can see that the real limitation is on τmax
(or εmax) rather than on Ltot. In other words the losses can be considerably reduced
by increasing for example αTX2 and V rc

rf while decreasing qMSS
e , implying a value

for τmax close to 2.05 ns (Fig.6.12, left). However it is more difficult to reduce the
emittance after filamentation without having considerable losses, mostly because
αTX2 cannot be smaller than 4 (see Section 6.2). Essentially no combination is
acceptable, so bunch compression at flat top cannot be adopted in the Q20 optics.

Figure 6.12. Left: simulation results in the Ltot–τmax plane for the Q20 optics with bunch
compression at flat top. The area where the constraints are satisfied is in green. The
color bar indicates the percentage of the total number of parameter combinations from
Table 6.1 which provides a given Ltot and τmax. Right: optimal solutions extracted from
the left image.

6.4.2 Q20 Optics: Bunch Rotation

Results for the bunch rotation option on flat top are shown in Fig.6.13 (left). It
can be seen that the average of the different values for τmax, obtained varying the
parameter combinations described in Table 6.1, is reduced from 2.05 ns (as shown
in Fig.6.12) to 1.65 ns. As a consequence, numerous parameter combinations satisfy
the constraints. Considering the optimal solutions in Fig.6.13 (right), we can identify
the “balanced” one as the middle-point of the curve-fit of the optimal solutions
which are contained in the area where the constraints are satisfied.

Giving priority to total losses reduction while keeping some safety margin for the
maximum bunch length (τmax = 1.55 ns), the blue dot shown in Fig.6.13 (right) marks
the proposed solution, associated with αTX2 = 4.5, qMSS

e = 0.65 and V rc
rf = 8 MV.

The relatively low qMSS
e and a value for αTX2 slightly higher than the stability limit

allow to have low losses Ltot = 0.43%, LLHC = 0.13% and LSPS = 0.30%.
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Concerning the proposed solution, the maximum radial displacement for the
centroid of a generic bunch during MSS was 5.67 mm (Eq.(6.2) was used to convert
the MSS RF-frequency program to radial displacement). The maximal standard
deviations of the beam transverse distributions along the SPS ring at 300 ZaGeV/c
were computed using Eq.(A.31) and assuming zero vertical dispersion. Since σx,max =
1.44 mm and σy,max = 1.01 mm, even assuming a horizontal bunch size of 6σx,max
(99.7% of the distribution), the maximum radial displacement for the particles
contained in one bunch during MSS was only 10 mm, half the current horizontal
aperture limitation of 20 mm.

The maximum difference between the RF frequency of one batch during MSS
and the design RF frequency was only 1 kHz for the proposed solution, three orders
of magnitude lower than the 200 MHz TWC bandwidth. As for the peak RF voltage,
the maximum value during MSS was only 1.54 MV (for one RF subsystem) and
during acceleration to flat top it reached 14.6 MV, still inside the limitations (see
also Figs.6.7 and 6.8 which refer to this proposed optimal solution).

Figure 6.13. Left: simulation results in the Ltot–τmax plane for the Q20 optics with bunch
rotation at flat top. The area where the constraints are satisfied is in green. The
color bar indicates the percentage of the total number of parameter combinations from
Table 6.1 which provides a given Ltot and τmax. Right: optimal solutions extracted from
the left image, the magenta and blue dots mark the balanced and proposed solutions
respectively.

Figures 6.14 and 6.15 summarize all the significant parameters associated with
the optimal solutions shown in Fig.6.13 (right). The green lines mark the quantities
related to the proposed solution. Qualitatively we can see that, as τmax increases,
αTX2 remains constant, qMSS

e , Ltot, LLHC and LSPS decrease while V rc
rf and εmax

increase. In the following, the behaviors of these seven parameters with respect to
τmax is explained.

As we would expect, all the optimal solutions have αTX2 ≈ 4, since 4 is the lowest
limit for stability. Notice that significantly larger values would make the solutions not
optimal anymore, due to the unnecessary space between the two batches at recapture
time which would lead to higher recapture voltages and therefore larger emittances
and bunch lengths after beam filamentation. Since all the optimal solutions with
qMSS
e ≥ 0.65 have their highest emittance bunches almost filling the bucket during
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Figure 6.14. Scanning parameters αTX2 , qMSS
e and V rc

rf as a function of τmax for the
optimal solutions shown in Fig.6.13. The green line marks the proposed combination of
scanning parameters leading to τmax = 1.55 ns and Ltot = 0.43% (see also Fig.6.15).

Figure 6.15. Total losses Ltot, LHC satellites and losses LLHC, maximum emittance along
the SPS batch at extraction εmax as a function of τmax for the optimal solutions in
Fig.6.13. The green line marks the quantities associated to the proposed combination of
scanning parameters (see Fig.6.14).

MSS, αTX2 = 4.5 gives some safety margin to soften the impact of the chaotic
motion close to ∆E = 0.

In order to explain the behavior of the other parameters in Figs.6.14 and 6.15,
let us take two general optimal solutions A and B with τAmax < τBmax. It follows
immediately that εAmax < εBmax.

As observed before, higher recapture voltages applied to the unmatched bunches
at recapture time lead to larger extracted emittances, since the filamenting bunches
tend to cover the increased bucket area. Therefore V rc,A

rf < V rc,B
rf .

At recapture time, a higher recapture voltage for the optimal solution implies a
larger ∆Eb, see Fig.6.16. The reason is that the recapture bucket tends to contain
the unmatched bunch without leaving any significant margin close to the separatrix:
if margin is left then a larger emittance after filamentation is obtained and the
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solution would not be optimal anymore. Therefore ∆EAb < ∆EBb .

Figure 6.16. Zoom onto the last bunch at recapture time for two different optimal
combinations of scanning parameters shown in Fig.6.14. The separatrices in red refer to
the recapture buckets.

Since αTX2 is constant along the optimal solutions, it follows that HA
b < HB

b .
The half bucket-height scales with Vrf of the unperturbed bucket of one of the two
RF systems as Hb ∝ V

1/2
rf , therefore V A

rf < V B
rf . The peak energy spread ∆̂E of the

bunch inside the unperturbed bucket scales as ∆̂E ∝ V 1/4
rf . Therefore qMSS

e ∝ V −1/4
rf

and qMSS,A
e > qMSS,B

e .
A higher qMSS

e implies larger losses in the SPS due to particles escaping the RF
bucket during the MSS manipulation, therefore LASPS > LBSPS. A higher qMSS

e leads
also to more satellite particles, since the bunch is closer to the ∆E = 0 axis, where
the chaotic motion is more significant. Therefore LALHC > LBLHC and LAtot > LBtot.

Finally, in order to evaluate the impact of collective effects on the parameters Ltot
and τmax, all the performed simulations were repeated neglecting intensity effects and
the optimal solutions are shown in Fig.6.17. No significant difference can be noticed
after comparison with Figs.6.12 and 6.13. In addition, if intensity effects are not
included, the parameter combinations leading to the optimal solutions are similar to
the ones shown in Fig.6.14. Therefore collective effects do not significantly affect the
optimal RF manipulations performed along the acceleration cycle. Most importantly,
they do not increase the total beam losses and the maximum bunch-length obtained
at extraction energy.

6.4.3 Simulation Results for the Q22 and Q26 Optics

The MSS in two other optics, Q22 and Q26, was also analyzed. Because of the lower
slip factor, a slightly higher pmax during MSS was needed (keeping constant the
time duration). The radial displacement was still inside the aperture limitations and
the process was adiabatic. Fixing all the other parameters (as the RF voltage and
emittance), a lower slip factor implies a lower filling factor in energy, qMSS

e ∝ η1/4
0 .

This helps in reducing LSPS and LLHC, especially in the bunch compression case
for the Q20 optics where, as observed above, the real limitation comes from τmax
rather than Ltot. Therefore, in the Q22 and Q26 optics, one can exploit the gained
margin for losses bringing the two batches closer to each other and obtaining,
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Figure 6.17. Optimal combinations in the Ltot–τmax plane for the Q20 optics without
considering intensity effects. The area where the constraints are satisfied is in green.
Left: bunch compression at flat top. Right: bunch rotation at flat top.

as a consequence, lower emittance and τmax. Examining Fig.6.12 for the bunch
compression case with the Q20 optics and noticing that some optimal solutions are
already on the border of the area where the constraints are satisfied, the expected
improvement in results by using the Q22 and Q26 optics should lead to several
optimal solutions with Ltot and τmax significantly lower than the corresponding
constraint-thresholds.

Figures 6.18 and 6.19 show the simulation results for the Q22 and Q26 optics
with bunch compression performed at flat top. As expected, several optimal solutions
satisfy the constraints, with the Q26 optics providing the best results. Therefore
bunch compression could be adopted if the Q22 and Q26 optics are chosen, however
the higher transverse space charge effect for these two optics should also be taken
into account in deciding which optics to use for slip-stacking.

As observed in the Q20 optics case, bunch rotation provides in general more
acceptable solutions than bunch compression, since τmax is considerably reduced
with no significant change in Ltot. However bunch rotation could lead to potential
issues coming from the transfer of “S-shaped” bunches to the LHC [139]. Therefore
the use of this RF manipulation is discouraged if valid alternatives are available, as
it is the case for the Q22 and Q26 optics.

Table 6.2 summarizes for each optics the suggested RF manipulation at flat-top
and the values of Ltot and τmax for the balanced optimal solution.

6.5 Loss of Landau Damping During MSS

It has been shown in the previous Section that for optimal solutions collective effects
do not influence the total losses and maximum bunch length at SPS extraction.
However, they can cause loss of Landau damping (LLD) for the shortest bunches, as
it will be explained below. In what follows, the example of the proposed optimal
solution for the Q20 optics is considered (Fig.6.13, right), however the obtained
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Figure 6.18. Left: simulation results in the Ltot–τmax plane for the Q22 optics with bunch
compression at flat top. The area where the constraints are satisfied is in green. The
color bar indicates the percentage of the total number of parameter combinations from
Table 6.1 which provides a given Ltot and τmax. Right: optimal solutions extracted from
the left image, the magenta dot marks the balanced solution.

Figure 6.19. Left: simulation results in the Ltot–τmax plane for the Q26 optics with bunch
compression at flat top. The area where the constraints are satisfied is in green. The
color bar indicates the percentage of the total number of parameter combinations from
Table 6.1 which provides a given Ltot and τmax. Right: optimal solutions extracted from
the left image, the magenta dot marks the balanced solution.

Table 6.2. Summary of the simulation results for the three SPS optics. The second column
indicates the suggested RF manipulation to be performed at flat-top. The third column
shows the values of Ltot and τmax for the balanced optimal solution.

SPS Optics RF manipulation at flat top Parameters for the balanced solution

Q20 bunch rotation Ltot = 1.8%, τmax = 1.33 ns

Q22 bunch compression Ltot = 3.8%, τmax = 1.58 ns

Q26 bunch compression Ltot = 2.6%, τmax = 1.52 ns



6.5 Loss of Landau Damping During MSS 135

results have more general applications.
At recapture time TX2 , the bunch is strongly unmatched, being displaced in

energy relatively to the bucket center due to non-zero value of the slip-stacking
parameter αTX2 , see for example Fig.6.16.

During filamentation a hollow bunch is formed and this bunch shape is preserved
up to flat top. While without intensity effects the hollow bunch has a radially
symmetric distribution in phase space (Fig.6.20, left), a very dense island appears
when intensity effects are taken into account (Fig.6.21, left). This island rotates
in longitudinal phase space producing significant dipole oscillations of the bunch
centroid, degrading the beam quality. As was found in the optimization study
presented in the previous Section, Figs.6.20 and 6.21 show that collective effects
do not influence the bunch length τl and emittance εl. Moreover, Fig.6.21 proves
that the bunch-length convention τFWHM,G, currently used in the SPS, can lead
to meaningless values for bunch length and emittance when intensity effects are
included in slip-stacking simulations.

Figure 6.20. Simulation of momentum slip-stacking with parameters from the proposed
solution in Fig.6.13 (right) without intensity effects. Left: phase space of the first bunch
at the beginning of flat top. The black continuous and dashed lines correspond to stable
particle-trajectories which determine respectively εl = 0.27 eVs/Am and εFWHM,G =
0.58 eVs/Am, see Section 6.3 for the definitions. Right: bunch profile corresponding
to the distribution shown on the left figure. The black continuous and dashed lines
determine respectively τl = 2.16 ns and τFWHM,G = 3.43 ns. The RF voltage curve is in
red.

The bunch dipole oscillations produced by the rotating island remain up to flat
top, see Fig.6.22 (bottom), where, in order to easily compare the dipole oscillations
for the first, middle and last bunches in the batch, mλ in Eq.(2.49) is redefined as
the average position of the line density λ centered around t = 0.

One can see that, relative to the bucket length of 5 ns, the peak-to-peak amplitude
of the dipole oscillations with intensity effects is 12% for the shortest (first) bunch
and 2% for the longest (last) one. Ignoring intensity effects (Fig.6.22, top), the
dipole oscillations become negligible, only 0.1% for all the bunches. Figure 6.22
indicates also that the shortest and longest bunches experience LLD around TX2
and TX3 respectively.

The threshold of LLD can be estimated analytically using Eq.(3.8) in Chapter 3,
where we assumed F = 1 and ImZ/n = 3 Ω [80]. Figure 6.23 shows the threshold
curves for the cases with Vrf = 1.54 MV and Vrf = 8 MV, which are respectively
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Figure 6.21. Simulation for the same conditions as shown in Fig.6.20 but with intensity
effects. The emittance and bunch length are determined by the black continuous lines:
εl = 0.27 eVs/Am (left) and τl = 2.16 ns (right). The RF and induced voltage curves are
in red and green respectively. Due to the rotating island in longitudinal phase space, the
bunch-length convention (black dashed line) of the full-width-half-maximum rescaled to
4σt of a Gaussian profile leads to meaningless values for bunch length and emittance.

Figure 6.22. Simulations for the proposed solution in Fig.6.13. Dipole oscillations as a
function of the cycle time for the first (blue), middle (green) and last (red) bunches
without (top) and with (bottom) intensity effects between TX2 and TX4 (left) and after
TX4 (right).

the maximum RF voltage during MSS and the recapture voltage for the proposed
solution with the Q20 optics. One can see that the shortest bunch loses Landau
damping during MSS and at recapture, while the longest bunch does not experience
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LLD until recapture time. These analytical calculations are in good agreement with
the results coming from simulations.

Figure 6.23. Analytical LLD thresholds in the bunch emittance–intensity plane for
Vrf = 1.54 MV (left) and Vrf = 8 MV (right), which are respectively the maximum
voltage during MSS and the recapture voltage for the proposed solution in Fig.6.13.
The values for the shortest (εl = 0.054 eVs/Am, Nb = 1.384 · 1010 ppb) and longest
(εl = 0.122 eVs/Am, Nb = 2.067 · 1010 ppb) bunches are marked by circles.

6.5.1 Use of the 800 MHz RF System to Cure LLD

A possible method, applied in different accelerators to increase the LLD threshold,
consists in using a higher harmonic RF system in addition to the main one. This
increases the synchrotron frequency spread of the particles inside the bunch and
therefore makes more effective the damping of coherent motion.

In the SPS there is a fourth harmonic RF system (800 MHz) installed and used
in nominal operation for proton beams to increase the longitudinal stability. The
800 MHz RF system is used only in bunch shortening mode with 10%–20% peak
voltage with respect to the main RF system. The alternative bunch lengthening
mode cannot be used since the instability threshold is significantly reduced in this
case [131, 23, 132].

Although the 800 MHz RF system is not currently used for ion beams, this will
be possible after LLRF upgrade (2021) and one can consider it for increase of the
LLD threshold. In the simulations presented below the proposed solution for the
Q20 optics was used, for which the 200 MHz RF voltage at flat top is V 200

rf = 5.5 MV.
However, as already mentioned above, the results shown are more general.

We first applied the 800 MHz voltage V 800
rf at flat top, from TX4 to the start time

of the bunch rotation manipulation. The voltage V 800
rf was increased adiabatically

(during 20 synchrotron periods) from zero to the desired value (in the interval
0.5 MV–3.5 MV), and then it was kept constant. Figure 6.24 shows examples of
simulation results for the bunch lengthening (top) and shortening (bottom) modes
for different values of V 800

rf .
The 800 MHz RF system used in bunch shortening mode starts to significantly

reduce the dipole oscillations of the shortest bunch only when V 800
rf = 3.5 MV, while

lower values do not provide any substantial damping (to be compared with the
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Figure 6.24. Dipole oscillations at 450 ZaGeV/c as a function of the cycle time from TX4
to the start time of the bunch rotation manipulation. The 200 MHz RF system has
constant V 200

rf = 5.5 MV. The RF voltage of the 800 MHz RF cavity is increased linearly
from zero to the desired V 800

rf in the time interval from TX4 to 45.75 s and then kept
constant. The 800 MHz RF system is used in different configurations: bunch lengthening
(top) and shortening (bottom) modes, with V 800

rf = 2 MV (left), V 800
rf = 3 MV (middle)

and V 800
rf = 3.5 MV (right). The blue, green and red curves refer respectively to the

first, middle and last bunches.

proton case where in operation V 800
rf is only 10%–20% of V 200

rf ). Bunch lengthening
mode gives better results than bunch shortening for V 800

rf < 3.5 MV, however the
damping is still not sufficient and, in addition, relatively high 800 MHz voltages
are needed. Due to Landau damping, the dipole oscillations of the middle and last
bunches in the batch are already relatively small at the beginning of flat top (see
also Fig.6.25) and therefore, in these cases, the 800 MHz RF system does not play
an important role.

Figure 6.25. Phase-space distributions of the first (left), center (middle) and last (right)
bunches at the beginning of flat-top, V 200

rf = 5.5 MV and V 800
rf = 2 MV in bunch

shortening mode (case shown in Fig.6.24, bottom-left). The black continuous lines mark
the stable particle-trajectories which determine the emittance εl = 0.27 eVs/Am for the
first bunch, εl = 0.36 eVs/Am for the middle bunch and εl = 0.41 eVs/Am for the last
bunch in the batch. The black dashed lines mark the stable particle-trajectories which
define the emittances εFWHM,G for the corresponding bunches. The value for εFWHM,G
is meaningless when there is a rotating island in phase space (left, see also Fig.6.21).
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Using the bunch-shortening and lengthening modes was not sufficient to stabilize
the shortest bunch in the batch at flat top. Varying also the phase ∆φ800 between
the two RF systems did not improve the situation, see, for example, Fig.6.26 for
V 800
rf = 3.5 MV. There, ∆S is defined as the peak-to-peak amplitude of the dipole

oscillations of the shortest bunch just before bunch-rotation at flat top starts.
One can see that the bunch shortening mode gives the best outcome, however this
configuration is highly unstable, since small variations in ∆φ800 provide large changes
in ∆S. Additionally, as seen above, V 800

rf should be larger than 3 MV, otherwise the
damping is negligible. Figure 6.26 shows also that the bunch lengthening mode is
the second optimal solution, which is stable with respect to ∆φ800 but, as observed
above, V 800

rf should be at least equal to 3 MV in order to obtain only a mediocre
damping.

Note that, when the 800 MHz RF voltage is applied to bunches which are not
hollow, the bunch shortening and lengthening modes are respectively stable and
unstable with respect to ∆φ800 [131]. Figure 6.26 shows the opposite, however this
discrepancy should not surprise: the results presented in Ref.[131], which determine
if a certain operating mode of the 800 MHz RF system is stable or not with respect to
∆φ800, assume that the particle distribution is not hollow. In case of hollow bunches,
dedicated studies have to be done, since the values of the synchrotron-oscillation
amplitudes for the different particles are more localized and are relatively far from
zero, see for example Fig.6.27.

Figure 6.26. Peak-to-peak amplitude ∆S of the dipole oscillations of the shortest bunch as
a function of the relative phase ∆φ800 between the 200 MHz and 800 MHz RF systems,
just before bunch-rotation at flat top starts (V 200

rf = 5.5 MV, V 800
rf = 3.5 MV). The

green and magenta lines mark respectively the relative phases corresponding to the
bunch lengthening and shortening modes.

One can explain the LLD for the shortest bunch considering Fig.6.27, where the
synchrotron frequency distribution at 450 ZaGeV/c as a function of the emittance
is shown for different configurations of the 800 MHz RF system. Focusing on the
stable particle-trajectories crossing the center and borders of the rotating island
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of the shortest bunch (Fig.6.28, left), one can see that the spread in frequency
is relatively small (∆fs < 25 Hz) if the 200 MHz RF system is used alone or if
the 800 MHz cavity is added with V 800

rf = 0.5 MV (Fig.6.27, left). Increasing the
800 MHz voltage to V 800

rf = 2 MV does not help (Fig.6.27, right), since the spread
is not significantly higher than before (∆fs < 40 Hz) and, most importantly, the
synchrotron frequencies of the particles are close to or even cross the flat portion of
fs, both in bunch shortening and lengthening modes.

Figure 6.27. Synchrotron frequency distribution at 450 ZaGeV/c as a function of emittance
using different configurations of the 800 MHz RF system. Left: single RF with V 200

rf =
5.5 MV (black), double RF with V 200

rf = 5.5 MV and V 800
rf = 0.5 MV in bunch shortening

(blue) and lengthening (red) modes. Right: the same configurations shown on the left,
except that V 800

rf = 2 MV. The dashed and continuous magenta vertical lines mark the
stable particle-trajectories crossing respectively the center and borders of the rotating
island, see Fig.6.28 (left).

Figure 6.28. Left: phase-space distribution of the first bunch at the beginning of flat
top with V 200

rf = 5.5 MV. The dashed and continuous magenta lines mark the stable
particle-trajectories crossing respectively the center and borders of the rotating island.
In increasing order, the emittances are εl = 0.15 eVs/Am, εl = 0.20 eVs/Am and
εl = 0.26 eVs/Am. Right: phase-space distribution of the first bunch at recapture
time with V 200

rf = 8 MV. The dashed and continuous magenta lines mark the stable
particle-trajectories crossing respectively the center and borders of the displaced-bunch
core. In increasing order, the emittances are εl = 0.09 eVs/Am, εl = 0.18 eVs/Am and
εl = 0.32 eVs/Am.

This analysis suggests that the hole in the phase-space distribution in Fig.6.25
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(left) prevents to exploit the significant energy spread available at relatively low
particle amplitudes when the 800 MHz RF system is used. Notice that the holes
related to the middle and last bunches (Fig.6.25, center and right) have smaller
areas relative to the first bunch. This is mostly due to the fact that, at recapture
time, given a certain ∆Eb, larger emittance bunches are closer to the ∆E = 0 axis.

The 800 MHz RF voltage was also applied after MSS at 300 ZaGeV/c, just
at the moment of recapture TX2. The goal was to increase the nonlinearities of
the bunch before the hollow distribution was formed. In addition, since the LLD
threshold is higher at lower energies, the 800 MHz RF system could potentially
be more effective there. Notice that, from recapture time until flat-top, the dipole
oscillation amplitude does not change (Fig.6.22) since, as already observed above,
no instabilities arise after slip-stacking, LLD being the only intensity-effects related
phenomenon. Therefore, applying the 800 MHz RF voltage at 300 ZaGeV/c after that
the hollow bunch is formed, instead of at flat top, does not provide any advantage
in terms of amplitude of dipole oscillations to be damped.

Figure 6.29 shows the simulation results at 300 ZaGeV/c for the bunch lengthening
and shortening modes using a V 800

rf which is 5%, 10% and 20% of V 200
rf . While dipole

oscillations are significantly enhanced using BLM, remarkable results are obtained
in BSM for V 800

rf = 0.8 MV: dipole oscillations for the shortest bunch are completely
damped and become comparable to the ones relative to the other bunches. Note
that negative results are obtained using higher voltages for V 800

rf .

Figure 6.29. Dipole oscillations at 300 ZaGeV/c as a function of the cycle time from
TX2 to TX3. A constant 800 MHz RF voltage is applied in bunch lengthening (top)
and shortening (bottom) modes, with V 800

rf = 0.4 MV (left), V 800
rf = 0.8 MV (middle),

V 800
rf = 1.6 MV (right) and always V 200

rf = 8 MV. The blue, green and red curves refer
respectively to the first, middle and last bunches.

All these results match the ones derived from applying the 800 MHz RF system
in proton operation [131, 23, 132]: there it has been studied and experimentally
tested that BLM does not give satisfying results, while BSM provides the desired
cure for LLD only when the applied 800 MHz RF voltage is relatively low.
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Following the same reasoning used to explain the proton beam dynamics in
a double RF system [132], Fig.6.30 shows the synchrotron frequency distribution
at 300 ZaGeV/c as a function of the emittance for different configurations of the
800 MHz RF system. Similarly to what already done for the rotating island at the
beginning of flat top (Fig.6.28, left), we focus on the stable particle-trajectories
crossing the center and borders of the shortest-bunch core at recapture time (Fig.6.28,
right).

One can see that, when V 800
rf is 10% of V 200

rf and BSM is used (Fig.6.30, left),
the spread in frequency is maximum with ∆fs ≈ 60 Hz, which is roughly three
times higher than the corresponding value found above for the island at flat top
(Fig.6.27, left). In addition, there are no points of fs with zero derivative when BSM
is adopted, therefore damping of dipole oscillations can be expected in this case
(Fig.6.29, middle-bottom). On the contrary, when BLM is used with V 800

rf = 0.8 MV,
the frequencies of the particles cover entirely the flat portion of fs, with a spread
even lower than the one obtained using only the 200 MHz RF system. This leads to
considerable dipole oscillations (Fig.6.29, middle-top), significantly larger than the
ones obtained by using only the single RF system (Fig.6.22, bottom-left).

Increasing the voltage of the 800 MHz RF system to 1.6 MV worsens the situation
(Fig.6.30, right). The synchrotron frequency distribution for the BLM case has the
same shape as above, therefore large dipole oscillations are again obtained (Fig.6.29,
top-right). On the contrary, the shape of fs for the BSM case changes significantly:
even if the spread in frequency increases to ∆fs ≈ 90 Hz, the higher amplitude
particles have the same synchrotron frequency which corresponds to the flat portion
of fs. This explains the less effective damping observed in Fig.6.29 (bottom-right)
for the shortest bunch. This plot also shows that even worse results are obtained for
the middle and last bunches which, having larger emittances, cover even more the
flat portion of fs.

Figure 6.30. Synchrotron frequency distribution at 300 ZaGeV/c as a function of emittance
using different configurations of the 800 MHz RF system. Left: single RF with V 200

rf =
8 MV (black), double RF with V 200

rf = 8 MV and V 800
rf = 0.8 MV in bunch shortening

(blue) and lengthening (red) modes. Right: the same configurations shown on the
left, except that V 800

rf = 1.6 MV. The dashed and continuous magenta vertical lines
mark the stable particle-trajectories crossing respectively the center and borders of the
displaced-bunch core, see Fig.6.28 (right).

Finally, the successful RF configuration found at recapture time (V 200
rf = 8 MV,
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V 800
rf = 0.8 MV, BSM) was applied at 300 ZaGeV/c after bunch filamentation

and formation of the hollow structure, see Fig.6.31. Comparing also with the
corresponding single RF case (Fig.6.22, bottom), one can see that the use of the
800 MHz RF system does not lead to any effect. This could have been expected
since, similarly to what was observed above at flat top (Fig.6.27, left), the rotating
island of the shortest bunch is dense and covers only a small range of amplitudes in
phase space, leading to a minimal frequency spread.

Figure 6.31. Left: voltage programs for the 200 MHz and 800 MHz RF systems (BSM mode)
as a function of the cycle time from TX2 to TX3 at 300 ZaGeV/c. Right: corresponding
dipole oscillations for the first (blue), middle (green) and last (red) bunches. The
800 MHz voltage increases linearly from 0 MV to 0.8 MV during the time interval
marked by the two vertical black lines.

The simulation results presented in this Section have shown that the only way
to properly cure LLD for the shortest bunches in the batch is to apply the 800 MHz
RF voltage in bunch shortening mode and exactly at recapture time, before the
hollow-bunch structure is formed.

6.6 Conclusions
Momentum slip-stacking of LHC-ion beams in the SPS in framework LIU is funda-
mental to fulfill the requirements imposed by the High Luminosity LHC Project:
halving the bunch spacing in the SPS will allow to increase the peak luminosity in
the LHC by a factor of two.

Numerous parameters had to be decided in order to perform a successful slip-
stacking. Therefore, after having taken into account the two main constraints
dictated by the LIU Project on beam losses and bunch length at extraction energy,
the first problem was to determine a minimum set of parameters and conditions
able to uniquely characterize a simulation while providing enough flexibility and
variety in the simulated beam dynamics. Due to the complexity of the involved
RF manipulations and the stringent LIU constraints, a careful optimization study
has been performed in order to determine the most desirable beam and machine
parameters for the three SPS optics Q20, Q22 and Q26.

Simulations were performed including a reliable SPS impedance model and a
careful estimation of the longitudinal space charge. Results indicated that slip-
stacking can be applied under certain conditions, providing at extraction the beam
parameters required by the LIU project. In particular, it has been emphasized that
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bunch compression at flat top, while suitable for the Q22 and Q26 optics, cannot
be used for the Q20 optics. In this last case bunch rotation at flat top has to be
adopted.

Simulation results also showed that collective effects do not affect the particle
losses and maximum bunch-length along the batch at extraction energy. However,
intensity effects led to loss of Landau damping for the shortest bunches in the formed
batch, severely degrading their quality. More precisely, after recapture time, bunches
become hollow and, whenever there is LLD, a relatively small and dense rotating
island, which never filaments, is formed in phase space. Analytical calculations
confirmed the LLD observed in simulations.

Finally, several studies were done to verify if the 800 MHz RF system could cure
LLD. It was shown in simulations that the 800 MHz RF voltage could not help if
applied on hollow bunches, either at slip-stacking energy or at flat-top, independently
of the relative phase between the main and second RF systems. On the contrary,
the 800 MHz cavity could cure LLD if its voltage was applied in bunch-shortening
mode exactly at recapture time before hollow bunches were formed. Qualitative
explanations have been given to illustrate the reasons why the 800 MHz RF system
has proved to be or not successful in all the examined cases.
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Summary and Conclusions

Macro-particle simulations of beam dynamics in accelerators are often used to
study numerous cases of interests where analytical studies cannot provide complete
understandings. In the more restricted domain of longitudinal beam dynamics the
CERN BLonD code for macro-particle simulation is nowadays one of the packages
openly available and able to satisfy almost all the accelerator physicists needs. In
this thesis, BLonD has been used to study the longitudinal beam dynamics of PSB
proton and SPS ion beams in the framework of the CERN LIU Project (post-2021
scenario).

One of the achievements of this thesis has been the validation, through bench-
marks and theoretical studies, of the BLonD code [35, 15, 16]. The BLonD project
started in 2014 and personal contributions to general improvement and consolida-
tion of the code features (e.g. collective effects, feedbacks) have been presented.
Benchmarks with the accelerator simulation code PyORBIT were performed in
view of space charge studies at PSB injection for the after-upgrade scenario [82];
good agreements were found also comparing the simulation results with analytical
formulas. After a review of the currently available longitudinal beam dynamics
codes to study beam instabilities in synchrotrons [29], the present work compared
through benchmarks two different approaches for induced voltage calculation [60],
namely the ones used in the BLonD and MuSiC codes. Two critical and relatively
common types of wakefield were analyzed: the first was generated by a broad-band
resonator impedance with a resonant frequency much higher than the Gaussian
bunch spectrum cut-off frequency; the second was generated by a narrow-band
resonator with resonant frequency much lower than the spectrum cut-off frequency.
For the first case just benchmarks between the two codes were performed, since the
initial bunch mismatch due to high induced voltage created significant filamentation,
losses and later equilibrium in phase space, making the problem difficult to study
analytically. Instead for the second case, where the single bunch induced voltage
propagate over many turns, simulations were compared with the analytical formula
giving the rising time of the Robinson instability. After a careful choice of the
simulation parameters, consistency of the MuSiC and BLonD codes was obtained.
In addition some computational time considerations were given suggesting which
approach to use for a given case. As a by-product of this study, the MuSiC algorithm
was included in BLonD to speed-up the benchmarks, allowing the BLonD users to
apply both approaches to the same problem depending on their needs.

The second main achievement has been the novel study of the longitudinal beam
dynamics in the CERN PSB for after-upgrade time, to evaluate the possible presence
of longitudinal beam instabilities [2, 74]. Indeed, the beam performance will be



146 Summary and Conclusions

more demanding than in the current situation: the proton injection from the new
Linac4 and the change of the magnet power supplies will increase the injection and
extraction energies as well as the acceleration rate, the required beam intensities
will be significantly higher than now, and the requested longitudinal emittance to be
extracted to CERN PS for nominal-LHC beams will be 3 eVs starting at injection
from a 1.4 eVs bunch (currently it increases from 1 eVs to 1.3 eVs). In addition the
currently used three narrow-band ferrite RF systems will be replaced by broad-band
Finemet® cavities in all four Booster rings. In a future scenario, where many beam
parameters will change, and where the momentum program and some impedance
contributions (of RF systems and other ring components) will be different, it is vital
to predict possible instabilities, which may lead to particle losses and deterioration
of beam quality during the acceleration ramp and at extraction.

The BLonD code was used to perform PSB beam simulations for the situation
after LIU upgrade [52, 75]. Several features needed for low-energy and h = 1 rings
were added in BLonD (periodicity, multi-turn wake, relativistic beta less than one).
Particular attention has been given to careful estimation of the longitudinal space
charge in PSB, very important contribution for all low-energy machines. The value
for space charge impedance at injection was carefully estimated dividing the PSB
ring into sections and considering, for each of them, the beam pipe cross section
and beam transverse size to evaluate the space charge contribution in that part of
the ring [83]. An updated longitudinal impedance model has been used, and effort
was dedicated to include in simulations the reduction of RF system beam loading
through cavity feedbacks at specific revolution harmonics. Low Level RF feedbacks,
as phase and radial loops, have been also included in simulations, since they are
fundamental for stable acceleration of LHC and high-intensity type beams in PSB.

Controlled longitudinal emittance blow-up, currently achieved using a dedicated
high-harmonic RF system, has been studied in simulations for future scenario
using an alternative method, applying band-limited phase noise in the main RF
system [109]. This method, never considered for fast-cycling PSB but already used
operationally in CERN SPS and LHC, allows also to flatten the bunch profile
reducing transverse space charge in PSB and likely to reduce complexity of beam
operation. It was possible in simulations to blow up by needed factor three the
emittance of nominal LHC-type beams in just 100 ms in a single RF system, using
an optimal set of configuration parameters for noise. Beam measurements confirmed
that noise injection via phase loop in h = 1 RF system is able to blow up the beam
emittance up to 2.8 eVs in a double RF operation in the bunch lengthening mode,
giving confidence for future predictions.

Microwave-like instabilities for high intensity beams in PSB leading to uncon-
trolled longitudinal emittance blow-up were observed in simulations, and it was
proposed that a possible countermeasure could be the increase of the number of
revolution harmonics at which the Finemet® impedance is reduced through LLRF
feedbacks. Finally comparison of beam measurements and BLonD simulations for
the current situation, together with studies for the after-LIU scenario, contributed
to the decision to replace in PSB all the ferrite RF systems by Finemet® ones during
upgrade [79, 78, 63].

The last contribution of this thesis has been the investigation of the momentum
slip-stacking for SPS ion beams, supposed to become operational only after upgrade
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in 2021 [140]. The slip-stacking consists in using two RF systems with slightly
different rf frequencies between them to interleave two batches in the longitudinal
phase space, halving the bunch spacing and allowing to double the peak luminosity
in the LHC. Preliminary results were obtained at CERN some years ago [128], but
the simulations were done without intensity effects and with average measured beam
parameters. In this thesis simulations with a full updated SPS impedance model and
detailed (bunch-by-bunch) beam parameters derived from measurements have been
performed. Because of the numerous parameters involved and the constraints on the
total losses and bunch lengths at SPS extraction, several iterative algorithms were
conceived to perform optimization studies. Using them it was possible to suggest the
best solutions for the three different SPS optics. Results show that slip-stacking can
be applied if specific conditions are fulfilled, providing at extraction energy the beam
parameters requested by the LIU Project. Loss of Landau damping for shortest
bunches in the batch was observed in simulations and also confirmed by analytical
estimations. A possible cure using the 800 MHz RF system in bunch shortening
mode was tested successfully in simulations, and the additional voltage has to be
applied at recapture time after slip-stacking to obtain stable ion beams.
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Appendix A

Some Elements of Transverse
Beam Dynamics

In this Appendix we present some principles of transverse beam dynamics in a
synchrotron. Contents are taken from Refs.[17, 141, 142, 53, 143].

A.1 Hill’s Equation

Let us consider a generic particle circulating in a synchrotron. Its betatron coor-
dinates x and y are functions of the independent variable s in the Frenet-Serret
coordinate system, see Fig.2.2.

The radial centrifugal acceleration of a generic particle with an horizontal dis-
placement x relative to the reference trajectory with radius R0 is

ar = d2R

dt2
−R

(
dθ

dt

)2
= d2R

dt2
−Rω2 = d2R

dt2
− v2

R
R = R0 + x, (A.1)

where θ is the angular displacement from a given axis, ω the angular speed of the
particle and v is the cross-radial velocity. Equating the Lorentz and the radial
centrifugal force we obtain

m

[
d2(R0 + x)

dt2
− v2

R0 + x

]
= qBv, (A.2)

where m is the mass of the particle, q its charge. Developing for small x

m
d2x

dt2
− mv2

R0

(
1− x

R0

)
= qBv. (A.3)

The bending magnetic field given by the dipoles is constant and equal to B0, while
the focusing magnetic field have components Bx = gy and By = gx. The constant g
is called gradient of the quadrupole while k = qg/p is the focusing strength, where p
is the particle momentum. Therefore, in linear approximation,

d2x

dt2
− v2

R0

(
1− x

R0

)
= qvB0

m
+ gqv

m
x. (A.4)
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Changing variable from t to s we have

dx

dt
= dx

ds

ds

dt
= x′v (A.5)

and
d2x

dt2
= d

ds

(
ds

dt

dx

ds

ds

dt

)
= d

ds
(x′v2) = x′′v2. (A.6)

Substituting and dividing by v2 it follows

x′′ − 1
R0

(
1− x

R0

)
= qB0

mv
+ gq

mv
x. (A.7)

Using the relation p = mv and the magnetic rigidity formula B0R0 = −p/e (note
that B0 < 0) we obtain

x′′ +
( 1
R2

0
− k

)
x = 0, (A.8)

and, repeating a similar reasoning for the vertical plane, we find

y′′ + ky = 0. (A.9)

Combining Eqs.(A.8) and (A.9), one obtains

X ′′(s) +KX(s) = 0, (A.10)

where X = x, K = 1/R2
0 − k or X = y, K = k. However these equations are not

really correct, since the bending and focusing forces depend on s. It can pe proven
that instead X(s) is solution of the so-called Hill’s equation

X ′′(s) +K(s)X(s) = 0, (A.11)

where the restoring force K(s) is a periodic function with period L, called the lattice
period. Only for simplicity of notation, in this Section we consider the solution of
Eq.(A.11) in the horizontal plane (the same reasoning applies to the vertical plane).
This solution can be written as

x(s) =
√
εxβx(s) cos[ψx(s) + φx], (A.12)

where βx is called horizontal beta function, has period L and takes into account the
focusing properties of the lattice. The constant quantities εx and φx depends on the
initial conditions associated with Eq.(A.12). It can be proven (Floquet’s theorem)
that

ψx(s) =
∫ s

0

dz

βx(z) . (A.13)

The function ψ(s) is called phase advance of the oscillation between the points 0 and
s of the lattice. The phase advance for one revolution turn determines the so-called
betatron tune Qx

Qx = 1
2π

∮
ds

βx(s) , (A.14)

which is the number of horizontal oscillations per revolution turn.
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A.2 Twiss Parameters and Transverse Emittance
It can be proven that the particle trajectory in the phase space X −X ′ follows an
ellipse with equation

εX = γX(s)X(s)2 + 2αX(s)X(s)X ′(s) + βX(s)X ′(s)2, (A.15)

where
αX(s) = −1

2β
′
X(s), γX(s) = 1 + αX(s)2

βX(s) (A.16)

and βX(s) are the so-called Twiss parameters determining the shape and orientation
of the ellipse. The maximum amplitude is given by Xmax =

√
εXβX and the

corresponding angle is X̂ ′ = −αX
√
εX/βX , while the maximum angle is X ′max =√

εXγX with the corresponding amplitude −αX
√
εX/γX . Therefore large values of

βX correspond to larger particle displacements from the design orbit and to smaller
divergences. The quantity εX is a constant of motion called Courant-Snyder invariant
and the area AX of the ellipse is given by AX = πεX .

If we have an ensemble of particles circulating in a synchrotron, each particle
will have its Courant-Snyder invariant εX and its displacement will always be
|X(s)| ≤

√
εXβX(s), where βX depends on the ring lattice but not on the specific

particle. Since in many cases, for every position s along the ring, the horizontal and
vertical particle densities follow a Gaussian distribution with standard deviation
σX(s), we can refer to a particle having betatron amplitude σX(s) and consider its
εX as a representative of the entire beam. In this sense εX is called 1-rms geometrical
emittance and therefore

σX =
√
εXβX . (A.17)

In practice σX is found through beam measurements and then Eq.(A.17) is used
to find εX . This definition of geometrical emittance implies that 68.2% of all the
particles are included in the area enclosed by the ellipse defined by εX .

If the beam energy is increased then the geometrical emittance εX is not constant
anymore. To show it, we introduce the Liouville theorem which states that the area
enclosed by a stable trajectory pX(X) in the phase-space X − pX does not change
with the dynamics. Therefore ∮

pXdX = const, (A.18)

where pX , conjugate variable of X, is one of the two transverse components of the
total momentum p =

√
p2
x + p2

y + p2
s (ps is the longitudinal component with usually

p ≈ ps). Noting that

X ′ = dX

ds
= dX

dt

dt

ds
= pX

ps
≈ pX

p
, (A.19)

it follows that ∮
pXdX = m0γ0β0c

∮
X ′dX = πm0γ0β0cεX = const (A.20)

where m0 is the rest mass of the particle and β0 and γ0 are the relativistic parameters
of the particle. Therefore εX scales with the inverse of β0γ0 while the so-called
normalized emittance εX,n := β0γ0εX remains constant during acceleration.
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A.3 Dispersive Effects
In the derivation of the Hill’s equation above we supposed that all the particles go
through the central path inside the dipoles following the circular trajectory with
radius R0. However this is not realistic since, if we denote by p0 the desired design
momentum which is defined for each revolution turn, then a particle with momentum
p 6= p0 will go through an arc with radius R = p/(Bq) 6= p0/(Bq) = R0. In fact the
dipole provides an additional contribution xi to the transverse displacement x

xi(s) = Dx(s)∆p
p0
, (A.21)

where the horizontal dispersion function Dx(s) ≥ 0 can be considered as an intrinsic
property of the dipole. Usually the dispersion in the vertical plane is negligible.

Defining δ = ∆p/p0 the following implication holds

BR = p

q
= p0(1 + δ)

q
= BR0(1 + δ) =⇒ R = R0(1 + δ). (A.22)

We start from Eq.(A.2) and we change variable to x′ obtaining

x′′ − 1
R0 + x

= qB

p0(1 + δ) = − 1
R0(1 + δ) + kx

1 + δ
. (A.23)

Expanding in Taylor and neglecting terms proportional to xδ we arrive at

x′′ +
( 1
R2

0
− k

)
x = δ

R0
. (A.24)

The inhomogeneous Hill’s equation is therefore

x′′(s) +K(s)x(s) = δ

R0(s) , (A.25)

with K(s) = 1/R2
0(s) − k(s). The solution of Eq.(A.25) is x(s) = xh(s) + xi(s),

where xh(s) solves the corresponding homogeneous Hill’s equation while xi(s), given
by Eq.(A.21), is a particular solution representing the additional deviation of an
off-momentum particle relative to the design orbit. It can be proven that

x(s) = C(s)x0 + S(s)x′0 +Dx(s)δ, (A.26)

where x0, x′0 are the initial values of xh(s) and x′h(s) at s = 0 and C(s) and S(s)
are two independent solutions of the homogeneous Hill equation, specifically

C(s) =
√
βx(s)
βx(0) [cosψx(s) + αx(0) sinψx(s)], S(s) =

√
βx(s)βx(0) sinψx(s),

(A.27)
while the dispersion function is given by

Dx(s) = S(s)
∫ s

0

C(t)
R0(t)dt− C(s)

∫ s

0

S(t)
R0(t)dt. (A.28)
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A.3.1 Beam Size with Dispersive Effects

Let us fix a certain position s along the ring and consider the different x(s) =
xh(s) + xi(s) for an ensemble of particles. We can assume that phase advance and
betatron amplitude are uncorrelated in Eq.(A.12). In addition we suppose that ψx
is uniformly distributed in [0, 2π]. We have therefore

〈xh〉 = 0, σ2
x,h = 〈x2

h〉 = βx〈εx〉〈cos2(ψx + φx)〉 = βx〈εx〉
2 , (A.29)

where the angular brackets indicate the average and we used the fact that the
integrals of the cosine and squared cosine functions in the interval [0, 2π] are equal
to 0 and π respectively. Assuming that the energy deviation satisfies 〈δ〉 = 0, then
〈x〉 = 0. If no correlation exists between the betatron phase and energy deviation
then

σx =
√
〈x2〉 =

√
〈x2

h〉+ 〈x2
i 〉+ 2〈xh〉〈xi〉 =

√
βx〈εx〉

2 +D2
x〈δ2〉. (A.30)

If in particular xh follows a Gaussian distribution, then we can use the definition of
geometrical emittance in Eq.(A.17) to obtain

σx =
√
βxεx +D2

x〈δ2〉. (A.31)

In addition, if x is Gaussian, then r =
√
βxεx and r2 follow respectively a Rayleigh

and exponential distributions with probability density functions [144]

fr(z) = z

σ2
x,h
e
− z2

2σ2
x,h , fr2(z) = 1

2σ2
x,h
e
− z

2σ2
x,h , z ≥ 0, (A.32)

and, as expected from Eq.(A.29), one finds

βx〈εx〉 = 〈r2〉 = 2σ2
x,h. (A.33)

A.4 Resonances due to Magnet Imperfections
Up to know we have assumed that the design orbit of radius R0 passes through the
center of all the quadrupole magnets and that all the dipoles are perfectly designed.
The closed orbit in this case, defined as the path around which particles perform
betatron oscillations, coincides with the reference orbit.

In reality, however, magnetic field errors can exist, due for example to dipole and
quadrupole length errors, dipole rolls producing horizontal dipole field components,
errors in dipole and quadrupole power supplies, misalignments of the reference orbit
with respect to the dipole and quadrupole centers.

A.4.1 Dipole Field Errors

As an example, let us suppose to have a thin dipole magnet localized at s = s0. Its
field is B = B0 +dB, where dB is the error. The additional force and the consequent
kick-angle a particle experiences in the horizontal plane are given by

dFx = mv2x′′ = mv2dx
′

ds
= evdB =⇒ θ ≈ dx′ = −dBds

B0R0
(A.34)
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where ds is the length of the dipole and dBds is the integrated dipole field error.
The Hill’s equation becomes

x′′(s) +K(s)x(s) = dB

B0R0
, (A.35)

and it can be proven that the new closed orbit is given by

x(s) =
√
βx(s)βx(s0)θ
2 sin(πQx) cos(πQx − |ψx(s)− ψx(s0)|). (A.36)

Notice that the horizontal tune must not be an integer number to avoid resonances.
An analogous reasoning applies to the vertical tune.

A.4.2 Quadrupole Field Gradient Errors

The Hill’s equation with a focusing strength error ∆k is given by

x′′(s) + [K(s) + ∆k(s)]x(s) = 0. (A.37)

One effect of this gradient error concerns the modulation of the betatron amplitude
function (called beta-beating). For every location s along the ring we have

∆βx(s)
βx(s) = − 1

2 sin(2πQx)

s+Cring∫
s

∆k(s1)βx(s1) cos[2πQx + 2(ψx(s)− ψx(s1))]ds1

(A.38)
Note that the horizontal tune should not be an half-integer, and the same holds for
the vertical tune.

A.5 Resonance Diagram and Tune Shift

We have seen in the previous Section that the transverse tunes must not be an
integer or half-integer to avoid resonances. More in general the tunes have to fulfill
the following equations

mQx + nQy 6= p, (A.39)

where m, n and p are integers, p being non-negative, and |m|+ |n| is the order of
the resonance. The strength of the resonance decreases as its order goes higher.

If all the lines in Eq.(A.39) are plotted in the space Qx −Qy, then the so-called
tune or resonance diagram is obtained. The point identified by the chosen tunes,
called also working point, must not cross any of these lines. Unfortunately this
does not guarantee that resonances are avoided since several mechanisms can create
transverse tune shifts inside the beam. Some of these mechanisms are here briefly
recalled.
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A.5.1 Tune Shift due to Quadrupole Gradient Errors

Let ∆kX(s) be the focusing strength errors in the horizontal and vertical planes.
Then the tune shifts are

∆QX = 1
4π

∮
βX(s)∆kX(s)ds (A.40)

A peculiar case of quadrupole gradient error derives from the energy spread of
the particles inside a beam. A particle with momentum p = p0 + ∆p experiences
the focusing strength

k = qg

p0 + ∆p ≈
qg

p0

(
1− ∆p

p0

)
= k0 + ∆k, (A.41)

where k0 is the design focusing strength and ∆k = −k0∆p/p0 is the quadrupole
error. Therefore, using Eq.(A.41) we obtain the following tune shift for the particle

∆QX = − ∆p
4πp0

∮
βX(s)k0,X(s)ds = ξX

∆p
p0
, (A.42)

where ξX , always negative, is called natural chromaticity. Notice that the tune shift
is different for particles having distinct momenta, therefore chromaticity leads to
a tune spread in the resonance diagram. Fixing a certain energy spread inside the
beam, the chromaticity determines the size of the tune spot.

A.5.2 Tune Shift due to Direct Space Charge

Up to now we have assumed that the particles are only influenced by the electric
and magnetic fields produced respectively by the RF cavities and magnets. However,
being the particles charged, Coulomb interactions have also to be considered, since
they induce electromagnetic fields that could lead to beam instability and quality
degradation.

The mechanism of one particle interacting directly with the field induced by the
other particles is called direct space charge, while the image currents and charges
induced by the beam in the vacuum chamber produce wake fields which make the
particles interacting among them indirectly.

When a transverse force FX produced by induced electromagnetic fields is
considered, the perturbed Hill’s equation becomes

X ′′(s) +KX(s)X(s) = FX
mv2 = FX

m0γ0β2
0c

2 . (A.43)

For small amplitudes, and neglecting terms which do not depend on X or 〈X〉,
FX can be expanded in Taylor series obtaining

FX ≈
∂FX
∂X

∣∣∣∣
〈X〉=0

X + ∂FX
∂〈X〉

∣∣∣∣
X=0
〈X〉 (A.44)

Comparing with Eqs.(A.37) and (A.40), the first term in Eq.(A.44) produces a tune
shift which depends on the particle amplitude

∆Qinc
X = − 1

4πm0γ0β2
0c

2

∮
βX(s)∂FX

∂X

∣∣∣∣
〈X〉=0

ds. (A.45)
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This tune shift is called incoherent since it can be computed imposing 〈X〉 = 0, that
is supposing no displacement of the bunch centroid.

On the other hand, the perturbed Hill’s equation for the dynamics of the bunch
centroid 〈X〉 is

〈X〉′′ +KX〈X〉 = FX
m0γ0β2

0c
2 , (A.46)

and this time the tune shift, dealing with the beam center, is called coherent and is
given by

∆Qcoh
X = − 1

4πm0γ0β2
0c

2

∮
βX(s)

(
∂FX
∂X

∣∣∣∣
〈X〉=0

+ ∂FX
∂〈X〉

∣∣∣∣
X=0

)
ds. (A.47)

It can be proven that, when the transverse direct space charge force FX acts on
a transverse bi-Gaussian beam distribution with horizontal and vertical rms beam
sizes given respectively by σx and σy, then, for a given longitudinal coordinate s,
the maximum tune shift is obtained for particles with zero transverse displacement
and is equal to

∆Qsc
X(s) = − rpλ(s)

2πβ2
0γ

3
0

∮
βX(z)

σX(z)[σx(s) + σy(z)]
dz, (A.48)

where rp = e2/(4πε0m0c
2) is the classical particle radius and λ(s) is the longitudinal

line density. Therefore the maximum tune shift in the bunch is obtained where λ
reaches its peak value λ̂. Notice that in general σx 6= σy, see Eqs.(A.17) and (A.31).
However, if we can assume σx = σy (round beam cross section) and a negligible
product of dispersion and energy spread in Eq.(A.31), then the maximum tune shift
for a tri-Gaussian beam distribution with λ̂ = Nb/(

√
2πσs) is

∆Qsc
X ∝ −

NbR0
β2

0γ
3
0σsεX

= − NbR0
β0γ2

0σsεX,n
, (A.49)

where Nb is the number of particles per bunch, σs the longitudinal rms size in meters
and εX,n the normalized transverse emittance.

Equation (A.48) shows that the direct space charge tune shift increases with the
longitudinal line density value. The same applies in the transverse planes, namely
particles with smaller betatron amplitudes experience higher tune shifts. Therefore
transverse direct space charge leads to a tune spread in the resonance diagram, with
the bunch core experiencing the largest tune shift.
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