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Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete

Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe

and Asia, respectively. The infection affects multiple organ systems, including the skin,

joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous

manifestation of Lyme disease, occurring in 10–15% of infected individuals. During the

course of the infection, bacteria migrate through the host tissues altering the coagulation

and fibrinolysis pathways and the immune response, reaching the central nervous

system (CNS) within 2 weeks after the bite of an infected tick. The early treatment

with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless,

persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has

been observed that the antibiotic resistance and the reoccurrence of Lyme disease are

associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both

in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions.

Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia

spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of

biofilm aggregates in the development of the different manifestations of Lyme disease

including LNB.

Keywords: Borrelia, lyme, neuroborreliosis, biofilm, skin, erythema migrans

INTRODUCTION

Lyme borreliosis (LB) is the most prevalent vector-borne disease (1) caused by the spirochete
Borrelia burgdorferi. This Gram-negative bacterium is an obligate pathogen, transmitted to
different hosts by ticks in the genus Ixodes. LB is frequently reported in North America, Europe, in
different parts of Asia, including Mongolia and China as well as in Australia and in Africa (2–4).

LB affects multiple organ systems, including the skin, eyes, joints, muscles, cardiac, and nervous
system, presenting, at different stages, with a variety of clinical manifestations (5). Incubation varies
from 3 to 32 days, after which a characteristic skin rash, known as erythema migrans, appears in
association with fever, headache, malaise, and myalgias (stage 1) (6). After several weeks to months,
in 8–15% of patients can be reported the presence of neurologic and cardiac abnormalities (stage 2).
Within few weeks, in untreated patients or in case of delayed antibiotic treatment, the infection can
disseminate leading to systemic inflammation (7, 8). In the last phase of LB (stage 3), patients may
experience chronic monoarticular or oligoarticular arthritis, involving large joints, particularly the
knee (9–11).
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The most severe manifestations of LB, is Lyme
neuroborreliosis (LNB), reported in 10–15% of individuals
with localized erythema migrans (12, 13). The activation of the
inflammatory response in LNB contributes to the pathogenesis of
a broad spectrum of neurologic disorders. Different geographical
distribution of B. burgdorferi species correlates with specific
manifestation of LNB, which is more frequent in Europe than
in the North America (6). The most common symptoms
of LNB in Europe are painful meningoradiculitis known as
Bannwarth syndrome and facial nerve palsy (14). Symptoms
involving the central nervous system (CNS) are less common
and their exact incidence is not known. B. burgdorferi infection
of the CNS cause mainly encephalitis, segmental myelitis,
cranial neuritis, radiculoneuritis, vasculitis, and intracranial
hypertension (13, 15, 16). The clinical manifestation of the
LNB may include ataxia, paraparesis, sphincter dysfunction,
Parkinson-like symptoms, confusion and cognitive impairment
(17, 18). Ischemic stroke is the most frequent cerebrovascular
manifestation of LNB presenting in 76% of cases, followed by
transient ischemic attack (11%) (19).

LNB is, inmany cases, responsive to appropriate antimicrobial
therapy and the clinical improvement sustained by the antibiotic
treatment provide further evidence for the direct contribution
of B. burgdorferi in disease pathogenesis. However, the chronic
persistence, the frequent reoccurrence of LNB and the ability of
B. burgdorferi to tolerate multiple cycles of antibiotic treatment
is strongly suggestive for the formation of biofilm or biofilm-
like protective structure (20–23). Indeed, different studies have
shown that B. burgdorferi can switch from amotile to a stationary
status, in which the cells are embedded within a biofilm matrix
(22). B. burgdorferi biofilms have been observed both in vitro and
in human infected skin tissues (22, 23). These structures express
differentmucopolysaccharides, particularly alginate, extracellular
DNA and calcium, which are all typical markers of biofilm (22).
The presence of biofilm may explain the low rate of Borrelia
detection in the blood of infected patients as well as the ability
of the spirochetes to evade the host immune system and resist the
antibiotic therapy (21, 24–27).

This review investigates the differences in the epidemiology
and clinical manifestations of LNB with particular emphasis on
the pathogenetic role of B. burgdorferi biofilm in tissue adhesion,
colonization and survival.

MATERIALS AND METHODS

The present review focuses on a systematic review of the literature
to identify all published articles of LNB using online databases
(PubMed, Web of Science, and Google Scholar). The reference
list was updated in September 2018. There were no language
restrictions; The search terms were “Borrelia,” “B. burgdorferi,”
“Borrelia biofilm,” “Lyme disease,” “neuroborreliosis,” “LNB,”
“borreliosis.” We reviewed titles, abstracts, case reports, and
full articles to assess their relationship with the research
criteria. References reported in each article were also reviewed
to identify additional study not found by initial search
terms.

Epidemiology of Borrelia burgdorferi
Infection
LB is increasing worldwide with ∼300,000 new cases annually in
the United States and 85,000 cases in Europe each year (28–30).
Incidence of human LB in endemic areas of the United States
ranges from 10 to 100 per 100,000 population with a peak of
134 per 100,000, reported in Connecticut in 2002 (4, 31, 32). The
number of documented LB cases and the geographic distribution
has expanded during the last two decades, from the Northeastern
and North Central United States (4). LB is widespread also in
Europe and the incidence for LB ranges from 20 to 80 per 100,000
in the Czech Republic, Germany, Latvia, theNetherlands, Poland,
Switzerland, and Sweden, peaking to more than 100 per 100,000
in Austria, Estonia, Lithuania, and Slovenia (4, 29, 33, 34).
Incidence of LB decreases southward, in Spain, France, Italy, and
Greece with approximately 1 case per 100,000 (4, 29).

B. burgdorferi sensu stricto, B. garinii, and B. afzelii, are
primarily responsible for human LB in different geographical
regions presenting specific symptoms (34–38).

The genomes of Borrelia species consist of a set of circular and
linear plasmids and a linear chromosome of∼900 kb ending with
DNA sequences regulated by breakage and reunion reactions
(39, 40). Different isolates show a variable number of plasmids
depending on the species and affected by frequent reorganization
(41–47). B. burgdorferi B31 strain harbors 10 circulars and 12
linear plasmids while B. afzelii B023 and B. garinii CIP 103362
have 6 linear and 2 circular plasmids and 4 linear and 1 circular
plasmids in Fraser et al. (41), Casjens et al. (42), and Bontemps-
Gallo et al. (47).

Most of the essential genes involved in metabolism or
regulation are located in the linear chromosome while only
a subset of genes encoding proteins required for growth and
specific virulence factors are located on plasmids (41, 48–50).

B. burgdorferi sensu stricto is the predominant causative
agent of LB, Lyme arthritis, and also LNB in the United States
(51). Nevertheless, consistent differences in the ability to
induce LB exist between B. burgdorferi sensu stricto subtypes
suggesting that, neurotropism is an ability present only in a
restricted subtype of Borrelia (52, 53). Different genotypes
of B. burgdorferi sensu stricto diverge ecologically and
epidemiologically, suggesting that genotype classification is
relevant to understanding the basic biology of the spirochete
(54–56). Studies conducted in endemic areas of the United States
revealed that patients with disseminated infection were more
likely infected by the RST1 strains of B. burgdorferi than with
RST3 strains (57, 58). Moreover, dissemination of B. burgdorferi
to blood or cerebrospinal fluid (CSF) was mostly related to ospC
genotypes A, B, I, or K (58–62).

The distribution and relative frequency of infection by
the different genospecies of Borrelia sensu latu vary across
European regions. B. burgdorferi sensu lato comprises 20
different genospecies and this diversity correlates with the large
variability in the clinical manifestations observed in LB (4,
13, 63). In the northern and eastern Europe B. afzelii is the
most prevalent species, whereas in Western European countries
B. garinii is the most common pathogen (4, 29). B. afzelii,
B. garini, and the recently identified species B. bavariensis
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are major cause of LB and LNB in Europe (52, 64–68). The
heterogeneity among B. burgdorferi sensu lato genospecies is
linked to different geographical areas, which, in turn, correlates
with the different clinical expression of human LB (69). For
instance, B. afzelii induces prevalently skin infections, whereas
B. garinii is in most cases neurotropic (5, 69). Other species,
such as B. lusitaniae or B. valaisiana, have only occasionally
been associated with human disease (70–72). In endemic areas of
Europe was proposed that the variety of symptoms observed in
children and adults with LNB correlated with the B. burgdorferi
sensu lato genotype (73–75). Individuals with erythema migrans
caused by B. afzelii and B. garinii showed distinct epidemiological
and clinical characteristics. Indeed, erythema migrans caused
by B. garinii were located prevalently on the trunk and less
often on extremities, had shorter incubation and faster evolution,
leading to frequent systemic symptoms, abnormal liver function
test results than individuals with erythema migrans caused by
B. afzelii (76, 77).

The genetic diversity observed in B. burgdorferi, at both inter-
and intra-species level, is probably the reason for the multiple
epidemiological and clinical presentation of these bacteria in
humans (62, 78–80). Amajor role inmaintaining the intraspecific
genetic diversity of B. burgdorferi is the adaptation to multiple
vertebrate hosts, which act as ecological niches for different
genotypes (81, 82). Consequently, variations in the vertebrate
host fitness may result in changes in the abundance of the more
pathogenic species (83–85).

Host Invasion Strategies of Borrelia
burgdorferi
Colonization, dissemination and invasion of the tick vector
and mammalian host by B. burgdorferi requires a complex
temporal and spatial regulation of borrelial genes to adapt to
environmental challenges. Transition of B. burgdorferi from
the tick midgut to the hemolymph during a blood meal is an
important step for bacterial diffusion through the salivary glands
to a mammalian host (86). Borrelia possesses a sophisticated
mechanism of gene regulation based on the two-component
pathways HK1/Rrp1 and Rrp2-RpoN-RpoS, which regulate
metabolism, antigenic variation, chemotaxis, and adhesion in a
tissue- and temporal-specific manner in both the tick vector and
mammalian host (48, 87). During the blood uptake B. burgdorferi
expresses the outer surface proteins (Osp) A and B. These
proteins mediate the adherence to the tick’s gut by the binding
to the tick receptor of OspA (TROSPA), thus facilitating the
subsequent transmission into the mammalian host (88–90).
Infection of the mammalian host requires the migration of
the spirochetes from the midgut to the salivary glands of the
tick. After the blood uptake into the midgut of the tick, the
production of OspA and OspB decrease while ospC is expressed
in conjunction with many other genes controlled by the RpoN,
RpoS, and Rrp2 system (90–96).

OspC is required to establish the early phase of B. burgdorferi
infection in mammalian host and to promote evasion from the
innate immune defenses (96–98). Different studies revealed that
the OspC mutant strains are unable to establish infection in

mice, suggesting a protective role of this protein against host
innate defenses (96, 99–104). Nevertheless, to escape from the
host immune system, the expression of ospC decreases within
2–3 weeks after infection in response to anti-OspC antibodies in
mice (105, 106). In addition to OspC, B. burgdorferi hides other
important immunogenic surface proteins (107). In particular,
OspA, which stimulates neutrophils and a strong inflammatory
response mediated by interleukin (IL)-1β, tumor necrosis factor
(TNF)-α, and IL-6, is highly expressed in the tick gut but it
is rapidly downregulated in the host (108–112). OspA-positive
strains of B. burgdorferi penetrate the host, but are unable to
establish an infection (113). Similarly, Borrelia strains isolated
frommice 4 days after infection, were found to be OspA negative
suggesting that this protein is not expressed in the early phase of
the host infection (114, 115).

The expression of different proteins, including OspC, ErpP,
ErpA, ErpC, and enolase is required to readily immobilize
host plasminogen on spirochetal surface, facilitating efficient
dissemination (116–118). Plasminogen is a glycoprotein
produced by the liver and abundant in the plasma and in
certain tissues (119). Conversion of plasminogen to active
plasmin is promoted by proteolytic activation induced by either
tissue-type plasminogen activator (tPA) and/or urokinase-type
plasminogen activator urokinase (uPA). Plasmin is responsible
for intravascular fibrinolysis and contributes to numerous
physiological and pathological processes, including tissue
remodeling, cell migration, thrombolysis, wound healing, and
cancer progression (120, 121). Invasive forms of B. burgdorferi
are known to expresses multiple plasminogen-binding surface
proteins that likely assist pathogen dissemination through host
tissues (120, 122). Enolase is an integral enzyme of the glycolysis
and gluconeogenesis pathways, and a multifunctional protein
found in both prokaryote and eukaryotes (123). In eukaryotic
cells, surface enolase acts as a plasminogen receptor in certain
tumor cells (123, 124). Similarly, this enzyme is also localized
on the cell surface of different microorganisms including
B. burgdorferi (118, 125–127). The surface-localized enolase
acts as a plasminogen receptor contributing to spirochetal
survival in feeding ticks (118). Although dispensable for
infection, plasminogen is required for dissemination in ticks,
and its absence is associated with a decreased spirochetemia
in plasminogen-deficient mice (128). Surface-associated
plasmin on B. burgdorferi degrade fibronectin, which is an
important component of the ECM, laminin and vitronectin
(129, 130). B. burgdorferi also induces the release of host matrix
metalloproteases 9 (MMP-9) and MMP-1, and plasmin-coated
B. burgdorferi activates pro-MMP-9, leading to degradation of
basement membranes (131).

B. burgdorferi exhibits a specific affinity for the CNS as
demonstrated by the presence of spirochetes in the human CSF
within 14–18 days after the tick bite (18, 132, 133). From the
initial site of entry in the skin the spirochetes can reach the CNS
either through the bloodstream or, alternatively, by the peripheral
nerves (114).

Hematogenous dissemination from the tick bite on the skin
to the CNS is a key pathogenetic event in LNB (114). However,
it has been proposed that, at least for B. garinii which is mostly
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responsible for LNB in Europe, spirochetes can pass along the
peripheral nerves (114). To penetrate the brain, spirochetes
must first cross the blood-brain barrier reaching the brain
microvascular endothelium and astrocytes (134). This barrier is
composed by the brain microvascular endothelial cells (BMEC),
astrocytes, basement membrane, pericytes, and neurons. The
BMEC are firmly held together by tight junctions, presenting
with a reduced transcytotic vesicles and an absence of fenestrae.
All of these elements contribute to reduce the transport of
solutes defending the brain from most pathogens or toxic agents
(135, 136). Invasion of the blood-brain barrier by B. burgdorferi
is still a matter of debate. Some studies suggest that Borrelia
uses a paracellular route of translocation (134, 137), although
other evidences suggest a possible transcellular passage of the
spirochetes (138). Neurotropic B. burgdorferi strains showed the
activation of the host plasminogen system, MMPs, and calcium
signaling pathway to facilitate an efficient translocation through
the blood-brain barrier (120, 134, 139). Compelling evidence
suggest that spirochetes can adhere to murine neural and glial cell
lines, primary neural cells, and primary rat brain cultures (140).
In addition, in vitro studies show that B. burgdorferi can promote
an intracellular invasion of human fibroblast, umbilical vein
endothelial, synovial, neuronal, and glial cells without affecting
the cell viability. This suggests that spirochetal cellular invasion
may provide a mechanism for immune evasion and disease
pathogenesis (140–142).

Lyme Neuroborreliosis
A common clinical and pathological manifestations of LNB in
Europe is painful lymphocytic meningoradiculitis also known
as Bannwarth syndrome, frequently accompanied by CSF signs
of inflammation (13, 14, 143). The early manifestation of LNB
generally appears within 2–18 weeks after infection (13, 143).
The clinical description of painful meningoradiculitis was first
reported in 1922, but the etiology remained unknown till the
isolation of spirochetes by Burgdorfer in 1982 and the isolation
in 1984 of spirochetes from the CSF of a patient with Bannwarth
syndrome (144–146).

In addition to Bannwarth syndrome, other important
neurological symptoms of the early stages of LNB
include meningitis, meningeal perivascular, and vasculitic
lymphoplasmocytic infiltrates, neuritis, and in rare acute LNB
cases encephalitis and myelitis (143, 147). CNS vasculitis are
rare in LNB, affecting mainly the large/medium-sized vessels and
are associated with ischemia and stroke (19, 148). However, in
European patients with LNB the mortality rate is comparable to
that of the general population. Nevertheless, LNB is associated
with increased risk of hematological and non-melanoma skin
cancers (149).

Treatment with conventional intravenous antibiotic therapy,
leads, in most cases, to a gradual improvement of the symptoms
after several weeks or months, accompanied frequently by
a normalization of CSF findings (150, 151). However, <2%
of patients treated for LNB experience late neurological
manifestations that persist months or years after B. burgdorferi
infection (14, 143). The clinical symptoms of late LNB
include several neurological and psychiatric symptoms such

as meningoradiculitis, encephalomyelitis, chronic meningitis,
and cerebral vasculitis (152–154). The presence of depressive
states was described in 26–66% of patients with late LNB
together with psychosis, schizophrenia, hallucinations, paranoia,
anorexia nervosa, obsessive-compulsive disorder, and dementia
(155–163). A frequent manifestation appearing in the late stage
of LNB is the chronic vascular damage, clinically characterized by
recurrent stroke or transient ischemic attacks (153, 154). Other
distinctive findings in patients with late LNB are inflammatory
CSF changes (CSF pleocytosis and elevated total protein content)
and the presence of specific B. burgdorferi intrathecal antibody
(150, 151).

The clinical outcome of antibiotic treatment of either early
or late manifestations of LNB may include progression to a
chronic form characterized by nonspecific and persistent fatigue,
arthralgia, myalgia, musculoskeletal, and cognitive symptoms.
This condition, frequently defined as posttreatment Lyme disease
syndrome (PTLDS), can be intermittent or persistent, lasting
for at least six or more months after completion of antibiotic
treatment (143, 164).

Specific diagnostic criteria for PTLDS proposed by the
Infectious Disease Society of America relies on the objective
proof of previous LB, the presence of subjective symptoms
that compromise function in daily life, and the absence of
clinical evidences for another underlying illness (7). However,
those criteria have rarely used in clinical studies, contributing
to confusion and controversy about the clinical significance of
PTLDS syndrome (7). The frequency of PTLDS among patients
with LB varies largely, ranging from 0 to 50%, depending
upon differences in study design and enrollment criteria (165,
166). A long-term follow-up study of patients with early
presentation of erythema migrans and treated with antibiotics at
the time of diagnosis showed an excellent rate of remission, with
only 4% of patients remaining symptomatic during follow-up
evaluation (167). Conversely, other trials reported rates of PTLDS
ranging from approximatively 10–20% (168). Nevertheless, in
the community medical practice, where prompt LB diagnosis
and treatment are not common, PTLDS rates may reach 50%
(169, 170). Notably, xenodiagnoses demonstrated the presence of
B. burgdorferi DNA in a patient with PTLDS, despite repeated
cycles of antibiotic treatments (171). B. burgdorferi DNA was
detected in mice after prolonged (up to 12 months) treatment
with antibiotics despite the persistence of non-cultivable bacteria.
Moreover, the study revealed B. burgdorferi DNA and the
presence of RNA transcripts of multiple spirochetal genes in
host tissues (172). These findings suggest that B. burgdorferi
persist within the host indicating that the immune system and
antimicrobial treatment may not be effective at eradicating
B. burgdorferi. This may contribute to antibiotic-refractory
arthritis, as observed in a murine model in which spirochetal
antigens, but not infectious spirochetes, were recovered near
cartilage for extended periods after LB therapy (173).

According to the guidelines of the European Federation
of Neurological Sciences and the Infectious Diseases Society
of America, treatment with beta-lactams antibiotics, like
ceftriaxone, penicillin, or cefotaxime, or oral doxycycline
for 14–21 days is recommended for the treatment of LNB
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(7, 25, 174). Intravenous administration of ceftriaxone is often
recommended for the treatment of Lyme meningitis. Oral
treatment with doxycycline demonstrated to be as effective as
ceftriaxone for Lyme meningitis in adults in Europe, although
not recommended as first-line therapy in the United States
(175). Nevertheless, four NIH-sponsored trials aimed at assessing
the administration of antibiotic treatment in patients with
persistent unexplained symptoms despite previous antimicrobial
treatment of LB indicated that the new treatment cycle
provides little if any clinical benefit (176). A randomized,
double-blinded, placebo-controlled trial conducted in Europe,
in patients with persistent symptoms attributed to Lyme
disease showed that longer-term antibiotic treatment did
not have a better outcome as compared with shorter-term
treatment (177).

Biofilm Production and Antimicrobial
Tolerance in Borrelia burgdorferi
B. burgdorferi can switch from motile cellular forms into several
defensive morphological forms such as round bodies, stationary
phase, persister cells, and biofilm (23, 24, 178–182). Transition
between differentmorphologies represents an adaptation strategy
to survive in unfavorable environmental conditions, including
pH variations, nutrient starvation, host immune system attacks,
or the presence of antimicrobial agents (21, 23, 24, 172, 179,
181).

Notably, within the biofilm, bacteria are physically joined
together producing a matrix, characterized by the presence
of an extracellular polymeric substance (EPS) composed by
polysaccharides, proteins, and extracellular DNA (183). Bacterial
biofilms are intrinsically more resistant to environmental
agents and antimicrobials than the corresponding planktonic
counterpart and this can lead to chronic and recurrent infections
(184–186). In vitro and in vivo studies revealed that both
B. burgdorferi sensu stricto and sensu lato (B. afzelii and
B. garinii) aggregates, but not free-floating spirochetes, present
typical markers found in the EPS of other pathogenic bacteria
such as sulfated mucins, non-sulfated mucins (mainly alginate),
extracellular DNA and calcium (22, 23, 187). B. burgdorferi
biofilm is also characterized by the presence of a distinctive
architecture with channel-like elements that in mature biofilm
are required for oxygen and nutrient diffusion and waste
removal (22, 23, 187). Biofilm formation by B. burgdorferi
follows the same evolution described for other bacteria. Initially,
individual spirochetes adhere to biotic or abiotic surfaces forming
microcolonies, coated by the EPS. From this point, Borrelia
aggregates expand undergoing changes in the growth rate, gene
expression and structural rearrangements in the EPS components
(22, 23). The rapid rearrangements occurring within the biofilm
matrix, culminate in a complex three-dimensional structure
with common traits observed among Borrelia genera (Figure 1)
(23, 189). The existence of biofilm-like structures was further
found in human skin biopsies obtained from patients with
borrelial lymphocytoma, a common manifestation of LB in
Europe, revealing the presence of Borrelia-positive aggregates
characterized by mucopolysaccharides, especially alginate (22).

Other reports demonstrated that Borrelia DNA is deposited
in the Alzheimer brain showing structural similarities between
spirochetal aggregates and the profiles of amyloid plaques in
patients with Alzheimer disease (188, 190). Nevertheless, the
specific contribution of biofilm to borrelial persistent infections
remain unclear. Besides, additional in vivo studies showed the
presence of Borrelia aggregates in the midguts of naturally-
infected nymphs during their blood meal (191). These results
strongly suggest that biofilm may contribute to the spirochetal
successful transmission to the mammalian host and to the
ensuing disease manifestations (191).

Biofilm production in Borrelia requires the modulation of a
complex array of signaling processes which allows spirochetes
to communicate with the surrounding environment. The
RpoN–RpoS alternative sigma factor and the LuxS quorum-
sensing pathways, which are involved in several cellular functions
in response to environmental stresses (pH and temperature
variations, high osmolarity, oxidative stress, high cell density,
nutrient starvation, host infection), participate in biofilm
production in B. burgdorferi (22, 192). The RpoN–RpoS pathway,
also known as the σ54-σS cascade, regulates adaptive changes in
B. burgdorferi during the transition between the tick vector and
mammalian host (91, 95). The RpoN–RpoS pathway relies on the
activity of RpoN (σ54), which controls the transcription of RpoS
(σS) through the binding to a canonical −24/−12 RpoN-type
promoter sequence (95, 193). The activation of the σ54-σS

cascade, in turn, is modulated by a bacterial enhancer-binding
protein (bEBP)/σ54-dependent activator (Rrp2) in concert with
BosR (91, 95, 193–198). After the activation, RpoS acts as a global
gene regulator controlling the expression of over 100 different
genes involved in stress responses, host infection and survival,
including biofilm formation (87, 95, 182).

Mutant strains of B. burgdorferi lacking RpoN, RpoS,
presented a less compact biofilm with loose and dispersed small
aggregates compared to wild-type strains (182). Notably,
all mutants expressed Borrelia biofilm markers such as
alginate, extracellular DNA, and calcium, although they showed
significantly higher sensitivity to low MIC dose of doxycyline
(0.1µg/ml) than the wild-type strain (182). In addition, the
quorum sensing (QS) molecules LuxS also contributes to
B. burgdorferi biofilm. The QS signaling system is a cell-to-cell
communication mechanism, shared by different bacteria, which
is based on the release of small molecules called autoinducers
(AI) in environment (199). LuxS pathways regulate biofilm
formation in various ways according to bacterial species and
environmental conditions (183). Specifically, luxS mutant
strains of Streptococcus gordonii and Porphyromonas gingivalis,
which are two important components of dental plaque, are
unable to produce a mixed-species biofilm (200). Besides, in
Helicobacter pylori the presence of luxS mutation leads to a
more efficient biofilm formation than the wild type whereas a
luxS mutant of Streptococcus mutans shows an altered biofilm
structure (183, 201–203). B. burgdorferi significantly increases
transcription of luxS during transition from ticks to mammalian
hosts where it is involved in the regulation of several genes
such as vlsE, erpA, and ipLA7 (204–207). luxS mutant strains in
stationary cultures of B. burgdorferi showed a higher tendency
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FIGURE 1 | (A) Confocal microscopy images of B. burgdorferi B31 strain (American Type Tissue Collection 35210) biofilms. Upper panel show the X-Y planes (top

view), while the lower panel show the Z section (side view). The sample was stained with BacLight Live/Dead (Invitrogen Life Technologies, Carlsbad, CA, USA) (188).

Representative images of biofilms developed on polystyrene pegs following 72 h incubation at 37◦C. Spirochetes were grown in a µ-Slide 8-well system (ibidi,

Germany) and cultured in BSK-H medium containing 6% rabbit serum (Sigma-Aldrich). (B) Schematic representation of a B. burgdorferi biofilm. The biofilm matrix

produced by spirochetes (green) provides shelter from host defenses, and reduces the diffusion of antibiotics. Persister forms of B. burgdorferi (in blue), exhibit

multidrug tolerance and are likely responsible for the recalcitrance of chronic LB. The illustration is adapted from Mind the Graph (https://mindthegraph.com) under the

Creative Commons License.

to form smaller and looser aggregates and a greater sensitivity to
antibiotics than the wild-type counterpart (182).

Although antibiotic treatment resolves most of clinical
manifestations of LB, persistent forms occur in ∼10% of
patients after treatment for erythema migrans disease (208,
209). The long-term persistence of symptoms and failure of
the antibiotic therapy are reminiscent of chronic biofilm-
associated infections. Biofilm aggregates display an enhanced
tolerance to various antibiotics, which, conversely, are effective
against the planktonic spirochetes and round body forms of
B. burgdorferi (210). In particular, doxycycline and amoxicillin
were found to effectively kill the motile spirochete forms
in vitro, but failed to completely remove B. burgdorferi in
biofilms (20, 21, 24, 26, 210–214). High throughput screens
of B. burgdorferi identified several promising Food and Drug
Administration (FDA)-approved drugs that have excellent anti-
persister activity (24, 181, 213, 215). Among them, daptomycin,
which is a lipopeptide targeting bacterial cell membranes,
clofazimine, carbomycin, sulfa drugs such as sulfamethoxazole,
and certain cephalosporins such as cefoperazone, showed higher
activity against B. burgdorferi persister cells resulting more
effective than doxycycline or amoxicillin (213). Although the
combination of these drugs was found to be active against
B. burgdorferi persisters, they showed poor activity when used
individually (24). Daptomycin was found to be the most active
antibiotic when combined with doxycycline plus either beta-
lactams like cefoperazone or carbenicillin or alternatively with
clofazimine (212). Daptomycin in combination with doxycycline
and cefoperazone was found to be able to completely eradicate
B. burgdorferi persisters, revealing a durable killing activity that
was not achieved by any other drug combinations (212). These

results where further supported by prospective randomized
clinical studies which failed to demonstrate significant beneficial
effect of additional prolonged therapy with doxycycline,
amoxicillin or ceftriaxone inmonotherapy, in patients with Lyme
encephalopathy and post-treatment symptoms of Lyme disease
(176, 215).

In addition to biofilm formation, the ability of Borrelia
to localize intracellularly in the host has been proposed as a
mechanismwhichmight favor chronic or persistent infection and
may contribute in reducing the efficacy of antibiotics. However,
Borrelia predominantly occupies the extracellular matrix, and the
antibiotics recommended for the treatment of LB are first-line
drugs in several intracellular infections (216, 217). Doxycycline
and azithromycin are commonly used for the treatment of
Mycoplasma, Chlamydia, and Legionella, while ceftriaxone is
effective against Salmonella and Neisseria, and amoxicillin is
used to treat Listeria infections (217, 218). Nevertheless, biofilm
production by extracellular bacteria and intracellular localization
of Borrelia are not mutually exclusive and may both participate
in supporting chronic bacterial persistence in the host.

On the other hand, a polymicrobial infection is a frequent
occurrence in ticks (219, 220). Chronic and persistent forms of
Lyme have been also associated to infections caused by Babesia
spp. and Anaplasma phagocytophilum, Bartonella henselae, or
other minor pathogens (217, 219, 221). This condition may
add a further level of complexity to the clinical and therapeutic
management of LB since it may lead to inappropriate diagnoses
and apparent failure of the antibiotic treatment targeted
exclusively against Borrelia. However, the real clinical relevance
of these coinfections is unclear and requires further, more in
depth evaluation.
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CONCLUDING REMARKS

LNB is the most dangerous manifestation of Lyme disease.
Although the early antimicrobial treatment is effective
in the majority of patients, persistent forms are relatively
common. The mechanisms underlying chronic LNB and other
persistent forms of Lyme are unknown. Patients who have
late manifestations of LB generally show a slower response to
therapy with incomplete resolution. Persistent Borrelia infection
requires prolonged antimicrobial treatment, with limited and
controversial clinical efficacy. Recent evidences suggest that the
antibiotic resistance and the reoccurrence of LB are associated
with biofilm-like aggregates, which allow Borrelia spp. to
resist to adverse environmental conditions. Several promising
FDA-approved drugs have been shown to have excellent anti-
persister activity when used in combination while their use
in monotherapy regimens showed a poor effectiveness. This
notion should be taken into careful consideration for the clinical
management of Lyme Disease in order to prevent long-term
complications.

In preliminary studies by the clinical Biofilm Ring Test R©

(cBRT), we found that Borrelia is able to readily produce biofilm

within 24–48 h. Diagnostic procedures such as the cBRT, which
allow for a rapid biofilm measurement may represent very
useful tools for clinical applications (222, 223), since the rapid
identification of biofilm-producing Borrelia strains, may help
identify forms of LB which are at risk of chronicity (224).
Further, characterization of Borrelia biofilm as well as the ensuing
inflammatory process will likely provide novel insight to better
understand the mechanism(s) concurring to LNB pathogenesis
and may offer new therapeutic targets for intervention.
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72. Derdáková M, Lenčáková D. Association of genetic variability within the
Borrelia burgdorferi sensu lato with the ecology, epidemiology of Lyme
borreliosis in Europe. Ann Agric Environ Med. (2005) 12:165–72.

73. Strle F, RuŽic’-Sabljic’ E, Cimperman J, Lotric-Furlan S, Maraspin V.
Comparison of findings for patients with Borrelia garinii and Borrelia

afzelii isolated from cerebrospinal fluid. Clin Infect Dis. (2006) 43:704–10.
doi: 10.1086/506936

74. Øymar K, Tveitnes D. Clinical characteristics of childhood Lyme
neuroborreliosis in an endemic area of northern Europe. Scand J Infect Dis.

(2009) 41:88–94. doi: 10.1080/00365540802593453
75. Barstad B, Quarsten H, Tveitnes D, Noraas S, Ask IS, Saeed M, et al. Direct

molecular detection and genotyping of Borrelia burgdorferi Sensu Lato in
cerebrospinal fluid of children with lyme neuroborreliosis. J Clin Microbiol.

(2018) 56:e01868–17. doi: 10.1128/JCM.01868-17
76. Carlsson SA, Granlund H, Jansson C, Nyman D, Wahlberg

P. Characteristics of erythema migrans in Borrelia afzelii

and Borrelia garinii infections. Scand J Infect Dis. (2003)
35:31–3.

77. LogarM, Ruzic-Sabljic E,Maraspin V, Lotric-Furlan S, Cimperman J, Jurca T,
et al. Comparison of erythemamigrans caused by Borrelia afzelii and Borrelia
garinii. Infection (2004) 32:15–9. doi: 10.1007/s15010-004-3042-z

78. Dykhuizen DE, Brisson D, Sandigursky S, Wormser GP, Nowakowski J,
Nadelman RB, et al. The propensity of different Borrelia burgdorferi sensu
stricto genotypes to cause disseminated infections in humans. Am J TropMed

Hyg. (2008) 78:806–10.
79. Strle K, Jones KL, Drouin EE, Li X, Steere AC. Borrelia burgdorferi

RST1 (OspC type A) genotype is associated with greater inflammation
and more severe Lyme disease. Am J Pathol. (2011) 178:2726–39.
doi: 10.1016/j.ajpath.2011.02.018

80. Coipan EC, Jahfari S, Fonville M, Oei GA, Spanjaard L, Takumi K, et al.
Imbalanced presence of Borrelia burgdorferi s.l. multilocus sequence types
in clinical manifestations of Lyme borreliosis. Infect Genet Evol. (2016) 42:
66–76. doi: 10.1016/j.meegid.2016.04.019

81. Levene H. Genetic equilibrium when more than one ecological niche is
available. Am Nat. (1953) 87:331–3.

82. Gliddon C, Strobeck C. Necessary and sufficient conditions formultipleniche
polymorphism in haploids. Am Nat. (1975) 109:233–5.

83. Norman R, Bowers RG, BegonM, Hudson PJ. Persistence of tick-borne virus
in the presence of multiple host species: tick reservoirs and parasitemediated
competition. J Theor Biol. (1999) 200:111–8.

84. Schmidt KA, Ostfeld RS. Biodiversity and the dilution effect in
disease ecology. Ecology (2001) 82:609–19. doi: 10.1890/0012-
9658(2001)082[0609:BATDEI]2.0.CO;2

85. States SL, Brinkerhoff RJ, Carpi G, Steeves TK, Folsom-O’Keefe C,
DeVeaux M, et al. Lyme disease risk not amplified in a species-poor

vertebrate community: similar Borrelia burgdorferi tick infection prevalence
and OspC genotype frequencies. Infect Gen Evol. (2014) 27:566–75.
doi: 10.1016/j.meegid.2014.04.014

86. Hyde JA. Borrelia burgdorferi keeps moving and carries on: a review
of borrelial dissemination and invasion. Front Immunol. (2017) 8:114.
doi: 10.3389/fimmu.2017.00114

87. Caimano MJ, Drecktrah D, Kung F, Samuels DS. Interaction of the Lyme
disease spirochete with its tick vector. Cell Microbiol. (2016) 18:919–27.
doi: 10.1111/cmi.12609

88. Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV. Essential role for OspA/B
in the life cycle of the Lyme disease spirochete. J Exp Med. (2004) 199:641–8.
doi: 10.1084/jem.20031960

89. Fikrig E, Pal U, Chen M, Anderson JF, Flavell RA. OspB antibody prevents
Borrelia burgdorferi colonization of Ixodes scapularis. Infect Immun. (2004)
72:1755–9.

90. Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, et al.
TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell (2004)
119:457–68. doi: 10.1016/j.cell.2004.10.027

91. Hubner A, Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV.
Expression of Borrelia burgdorferiOspC and DbpA is controlled by a RpoN-
RpoS regulatory pathway. Proc Natl Acad Sci USA. (2001) 98:12724–9.
doi: 10.1073/pnas.231442498

92. Anguita J, Hedrick MN, Fikrig E. Adaptation of Borrelia burgdorferi in the
tick and the mammalian host. FEMS Microbiol Rev. (2003) 27:493–504.
doi: 10.1016/S0168-6445(03)00036-6

93. Srivastava SY, de Silva AM. Reciprocal expression of ospA and ospC
in single cells of Borrelia burgdorferi. J Bacteriol. (2008) 190:3429–33.
doi: 10.1128/JB.00085-08

94. Shi Y, Dadhwal P, Li X, Liang FT. BosR functions as a repressor of
the ospAB operon in Borrelia burgdorferi. PLoS ONE (2014) 9:e109307.
doi: 10.1371/journal.pone.0109307

95. Ouyang Z, Zhou J, Norgard MV. Synthesis of RpoS is dependent on a
putative enhancer binding protein Rrp2 in Borrelia burgdorferi. PLoS ONE

(2014) 9:e96917. doi: 10.1371/journal.pone.0096917
96. Carrasco SE, Troxell B, Yang Y, Brandt SL, Li H, Sandusky GE, et al.

Outer surface protein OspC is an antiphagocytic factor that protects
Borrelia burgdorferi from phagocytosis by macrophages. Infect Immun.

(2015) 83:4848–60. doi: 10.1128/IAI.01215-15
97. Gilmore RD Jr, Kappel KJ, Dolan MC, Burkot TR, Johnson BJ. Outer surface

protein C (OspC), but not P39, is a protective immunogen against a tick-
transmitted Borrelia burgdorferi challenge: evidence for a conformational
protective epitope in OspC. Infect Immun. (1996) 64:2234–9.

98. Bockenstedt LK, Hodzic E, Feng S, Bourrel KW, de Silva A,Montgomery RR,
et al. Borrelia burgdorferi strain-specific OspC-mediated immunity in mice.
Infect Immun. (1997) 65:4661–7.

99. Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM, et al.
Outer-surface protein C of the Lyme disease spirochete: a protein induced in
ticks for infection of mammals. Proc Natl Acad Sci USA. (2004) 101:3142–7.
doi: 10.1073/pnas.0306845101

100. Tilly K, Krum JG, Bestor A, Jewett MW, Grimm D, Bueschel D,
et al. Borrelia burgdorferi OspC protein required exclusively in a crucial
early stage of mammalian infection. Infect Immun. (2006) 74:3554–64.
doi: 10.1128/IAI.01950-05

101. Xu Q, McShan K, Liang FT. Identification of an ospC operator critical for
immune evasion of Borrelia burgdorferi. Mol Microbiol. (2007) 64:220–31.
doi: 10.1111/j.1365-2958.2007.05636.x

102. Gilbert MA, Morton EA, Bundle SF, Samuels DS. Artificial regulation of
ospC expression in Borrelia burgdorferi. Mol Microbiol. (2007) 63:1259–73.
doi: 10.1111/j.1365-2958.2007.05593.x

103. Tilly K, Bestor A, Jewett MW, Rosa P. Rapid clearance of Lyme disease
spirochetes lacking OspC from skin. Infect Immun. (2007) 75:1517–9.
doi: 10.1128/IAI.01725-06

104. Xu Q, McShan K, Liang FT. Essential protective role attributed to the surface
lipoproteins of Borrelia burgdorferi against innate defences. Mol Microbiol.

(2008) 69:15–29. doi: 10.1111/j.1365-2958.2008.06264.x
105. Liang FT, Jacobs MB, Bowers LC, Philipp MT. An immune evasion

mechanism for spirochetal persistence in Lyme borreliosis. J ExpMed. (2002)
195:415–22. doi: 10.1084/jem.20011870

Frontiers in Neurology | www.frontiersin.org 9 December 2018 | Volume 9 | Article 1048

https://doi.org/10.1016/j.ijmm.2007.05.002
https://doi.org/10.1093/cid/cit317.
https://doi.org/10.1099/ijs.0.052001-0
https://doi.org/10.1016/j.meegid.2011.07.022
https://doi.org/10.1128/JCM.42.3.1316-1318.2004
https://doi.org/10.3201/eid1009.030349
https://doi.org/10.1086/506936
https://doi.org/10.1080/00365540802593453
https://doi.org/10.1128/JCM.01868-17
https://doi.org/10.1007/s15010-004-3042-z
https://doi.org/10.1016/j.ajpath.2011.02.018
https://doi.org/10.1016/j.meegid.2016.04.019
https://doi.org/10.1890/0012-9658(2001)082[0609:BATDEI]2.0.CO;2
https://doi.org/10.1016/j.meegid.2014.04.014
https://doi.org/10.3389/fimmu.2017.00114
https://doi.org/10.1111/cmi.12609
https://doi.org/10.1084/jem.20031960
https://doi.org/10.1016/j.cell.2004.10.027
https://doi.org/10.1073/pnas.231442498
https://doi.org/10.1016/S0168-6445(03)00036-6
https://doi.org/10.1128/JB.00085-08
https://doi.org/10.1371/journal.pone.0109307
https://doi.org/10.1371/journal.pone.0096917
https://doi.org/10.1128/IAI.01215-15
https://doi.org/10.1073/pnas.0306845101
https://doi.org/10.1128/IAI.01950-05
https://doi.org/10.1111/j.1365-2958.2007.05636.x
https://doi.org/10.1111/j.1365-2958.2007.05593.x
https://doi.org/10.1128/IAI.01725-06
https://doi.org/10.1111/j.1365-2958.2008.06264.x
https://doi.org/10.1084/jem.20011870
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Di Domenico et al. Biofilm in Lyme Neuroborreliosis

106. Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M,
et al. Borrelia burgdorferi changes its surface antigenic expression in
response to host immune responses. Infect Immun. (2004) 72:5759–67.
doi: 10.1128/IAI.72.10.5759-5767.2004

107. Norris SJ. Antigenic variation with a twist: the Borrelia story. Mol Microbiol.

(2006) 60:1319–22. doi: 10.1111/j.1365-2958.2006.05204.x
108. Wilske B, Pfister HW. Lyme borreliosis research. Curr Opin Infect Dis. (1995)

8:137–44.
109. Morrison TB, Weis JH, Weis JJ. Borrelia burgdorferi outer surface protein

A (OspA) activates and primes human neutrophils. J Immunol. (1997)
158:4838–45.

110. Häupl T, Landgraf S, Netusil P, Biller N, Capiau C, Desmons P, et al.
Activation of monocytes by three OspA vaccine candidates: lipoprotein
OspA is a potent stimulator of monokines. FEMS Immunol Med Microbiol.

(1997) 19:15–23.
111. Pal U, de Silva AM, Montgomery RR, Fish D, Anguita J, Anderson JF, et al.

Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by
outer surface protein A. J Clin Invest. (2000) 106:561–9. doi: 10.1172/JCI9427

112. Schwan TG, Piesman J. Temporal changes in outer surface proteins A and
C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the
chain of infection in ticks and mice. J Clin Microbiol. (2000) 38:382–8.

113. Ohnishi J, Piesman J, de Silva AM. Antigenic and genetic heterogeneity of
Borrelia burgdorferi populations transmitted by ticks. Proc Natl Acad Sci

USA. (2001) 98:670–5. doi: 10.1073/pnas.98.2.670
114. Rupprecht TA, Koedel U, Fingerle V, Pfister HW. The pathogenesis of

Lyme neuroborreliosis: from infection to inflammation. Mol Med. (2008)
14:205–12. doi: 10.1016/j.ajpath.2015.01.024

115. Cassatt DR, Patel NK, Ulbrandt ND, Hanson MS. DbpA, but not OspA, is
expressed by Borrelia burgdorferi during spirochetemia and is a target for
protective antibodies. Infect Immun. (1998) 66:5379–87.

116. Brissette CA, Verma A, Bowman A, Cooley AE, Stevenson B. The
Borrelia burgdorferi outer-surface protein ErpX binds mammalian laminin.
Microbiology (2009) 155:863–72. doi: 10.1099/mic.0.024604-0

117. Önder Ö, Humphrey PT, McOmber B, Korobova F, Francella N, Greenbaum
DC, et al. OspC is potent plasminogen receptor on surface of Borrelia

burgdorferi. J Biol Chem. (2012) 287:16860–8. doi: 10.1074/jbc.M111.290775
118. Nogueira SV, Smith AA, Qin JH, Pal U. A surface enolase participates

in Borrelia burgdorferi-plasminogen interaction and contributes to
pathogen survival within feeding ticks. Infect Immun. (2012) 80:82–90.
doi: 10.1128/IAI.05671-11

119. Sun H. The interaction between pathogens and the host coagulation system.

Physiology (2006) 21:281–8. doi: 10.1152/physiol.00059.2005
120. Vieira ML, Nascimento AL. Interaction of spirochetes with the host

fibrinolytic system and potential roles in pathogenesis. Crit Rev Microbiol.

(2016) 42:573–87. doi: 10.3109/1040841X.2014.972336
121. Plow EF, Herren T, Redlitz A, Miles LA, Hoover-Plow JL. The cell biology of

the plasminogen system. FASEB J. (1995) 9:939–45.
122. Lagal V, Portnoï D, Faure G, Postic D, Baranton G. Borrelia burgdorferi sensu

stricto invasiveness is correlated with OspC-plasminogen affinity. Microbes

Infect. (2006) 8:645–52. doi: 10.1016/j.micinf.2005.08.017
123. Pancholi V. Multifunctional alpha-enolase: its role in diseases. Cell Mol Life

Sci. (2001) 58:902–20.
124. Pancholi V, Fischetti VA. Alpha-enolase, a novel strong plasmin-(ogen)

binding protein on the surface of pathogenic streptococci. J Biol Chem.

(1998) 273:14503–15.
125. Bercic RL, Slavec B, Lavric M, Narat M, Bidovec A, Dovc P, et al.

Identification of major immunogenic proteins of Mycoplasma synoviae
isolates. Vet Microbiol. (2008) 127:147–54. doi: 10.1016/j.vetmic.2007.
07.020

126. Mundodi V, Kucknoor AS, Alderete JF. Immunogenic and plasminogen-
binding surface-associated alpha-enolase of Trichomonas vaginalis. Infect
Immun. (2008) 76:523–31. doi: 10.1128/IAI.01352-07

127. Pitarch A, Jimenez A, Nombela C, Gil C. Decoding serological
response to Candida cell wall immunome into novel diagnostic,
prognostic, and therapeutic candidates for systemic candidiasis by
proteomic and bioinformatic analyses. Mol Cell Proteom. (2006) 5:79–96.
doi: 10.1074/mcp.M500243-MCP200

128. Coleman JL, Gebbia JA, Piesman J, Degen JL, Bugge TH, Benach JL.
Plasminogen is required for efficient dissemination of B. burgdorferi in ticks
and for enhancement of spirochetemia in mice. Cell (1997) 89:1111–9.

129. Fuchs H, Wallich R, Simon MM, Kramer MD. The outer surface protein A
of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc Natl
Acad Sci USA. (1994) 91:12594–8.

130. Coleman JL, Roemer EJ, Benach JL. Plasmin-coated Borrelia burgdorferi

degrades soluble and insoluble components of the mammalian extracellular
matrix. Infect Immun. (1999) 67:3929–36.

131. Gebbia JA, Coleman JL, Benach JL. Borrelia spirochetes upregulate release
and activation of matrix metalloproteinase gelatinase B (MMP-9) and
collagenase 1 (MMP-1) in human cells. Infect Immun. (2001) 69:456–62.
doi: 10.1128/IAI.69.1.456-462.2001

132. Allal J, Thomas P, Mazzonelli J. Borrelia isolated from cerebrospinal fluid in
a French case of Lyme disease. Ann Rheum Dis. (1986) 45:789–90.

133. Luft BJ, Steinman CR, Neimark HC, Muralidhar B, Rush T, Finkel MF,
et al. Invasion of the central nervous system by Borrelia burgdorferi in acute
disseminated infection. JAMA (1992) 267:1364–7.

134. Grab DJ, Perides G, Dumler JS, Kim KJ, Park J, Kim YV, et al.
Borrelia burgdorferi, host-derived proteases, and the blood-brain
barrier. Infect Immun. (2005) 73:1014–22. doi: 10.1128/IAI.73.2.1014-10
22.2005

135. Biegel D, Spencer DD, Pachter JS. Isolation and culture of human brain
microvessel endothelial cells for the study of blood-brain barrier properties
in vitro. Brain Res. (1995) 692:183–9.

136. Coureuil M, Lécuyer H, Bourdoulous S, Nassif X. A journey into the brain:
insight into how bacterial pathogens cross blood-brain barriers. Nat Rev
Microbiol. (2017) 15:149–59. doi: 10.1038/nrmicro.2016.178

137. Szczepanski A, Furie MB, Benach JL, Lane BP, Fleit HB. Interaction between
Borrelia burgdorferi and endothelium in vitro. J Clin Invest. (1990) 85:1637–
47. doi: 10.1172/JCI114615

138. Comstock LE, Thomas DD. Penetration of endothelial cell monolayers by
Borrelia burgdorferi. Infect Immun. (1989) 57:1626–8.

139. Grab DJ, Nyarko E, Nikolskaia OV, Kim YV, Dumler JS. Human
brain microvascular endothelial cell traversal by Borrelia burgdorferi

requires calcium signaling. Clin Microbiol Infect. (2009) 15:422–6.
doi: 10.1111/j.1469-0691.2009.02869.x

140. Livengood JA, Gilmore J. Invasion of human neuronal and glial cells by an
infectious strain of Borrelia burgdorferi. Microbes Infect. (2006) 8:2832–40.
doi: 10.1016/j.micinf.2006.08.014

141. Ma Y, Sturrock A, Weis JJ. Intracellular localization of Borrelia burgdorferi

within human endothelial cells. Infect Immun. (1991) 59:671–8.
142. Girschick HJ, Huppertz HI, Russmann H, Krenn V, Karch H. Intracellular

persistence of Borrelia burgdorferi in human synovial cells. Rheumatol Int.

(1996) 16:125–32. doi: 10.1007/BF01409985
143. Koedel U, Pfister HW. Lyme neuroborreliosis. Curr Opin Infect Dis. (2017)

30:101–7. doi: 10.1097/QCO.0000000000000332
144. Garin C, Bujadoux C. Paralysie par les tiques. J Med Lyon (1922) 71:765–7.
145. Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP.

Lyme disease: a tick-borne spirochetosis? Science (1982) 216:1317–9.
146. Pfister HW, Einhaupl K, Preac-Mursic V, Wilske B, Schierz G. The

spirochetal etiology of lymphocytic meningoradiculitis of Bannwarth
(Bannwarth’s syndrome). J Neurol. (1984) 231:141–4.

147. Miklossy J. Chronic or late lyme neuroborreliosis: analysis of evidence
compared to chronic or late neurosyphilis. Open Neurol J. (2012) 6:146–57.
doi: 10.2174/1874205X01206010146

148. Alba MA, Espígol-Frigolé G, Prieto-González S, Tavera-Bahillo I, García-
Martínez A, Butjosa M, et al. Central nervous system vasculitis: still
more questions than answers. Curr Neuropharmacol. (2011) 9:437–48.
doi: 10.2174/157015911796557920

149. Obel N, Dessau RB, Krogfelt KA, Bodilsen J, Andersen NS, Møller JK, et al.
Long term survival, health, social functioning, and education in patients with
European Lyme neuroborreliosis: nationwide population based cohort study.
BMJ (2018) 361:k1998. doi: 10.1136/bmj.k1998

150. Kruger H, Heim E, Schuknecht B, Scholz S. Acute and chronic
neuroborreliosis with and without CNS involvement: a clinical, MRI, and
HLA study of 27 cases. J Neurol. (1991) 238:271–80.

Frontiers in Neurology | www.frontiersin.org 10 December 2018 | Volume 9 | Article 1048

https://doi.org/10.1128/IAI.72.10.5759-5767.2004
https://doi.org/10.1111/j.1365-2958.2006.05204.x
https://doi.org/10.1172/JCI9427
https://doi.org/10.1073/pnas.98.2.670
https://doi.org/10.1016/j.ajpath.2015.01.024
https://doi.org/10.1099/mic.0.024604-0
https://doi.org/10.1074/jbc.M111.290775
https://doi.org/10.1128/IAI.05671-11
https://doi.org/10.1152/physiol.00059.2005
https://doi.org/10.3109/1040841X.2014.972336
https://doi.org/10.1016/j.micinf.2005.08.017
https://doi.org/10.1016/j.vetmic.2007.07.020
https://doi.org/10.1128/IAI.01352-07
https://doi.org/10.1074/mcp.M500243-MCP200
https://doi.org/10.1128/IAI.69.1.456-462.2001
https://doi.org/10.1128/IAI.73.2.1014-1022.2005
https://doi.org/10.1038/nrmicro.2016.178
https://doi.org/10.1172/JCI114615
https://doi.org/10.1111/j.1469-0691.2009.02869.x
https://doi.org/10.1016/j.micinf.2006.08.014
https://doi.org/10.1007/BF01409985
https://doi.org/10.1097/QCO.0000000000000332
https://doi.org/10.2174/1874205X01206010146
https://doi.org/10.2174/157015911796557920
https://doi.org/10.1136/bmj.k1998
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Di Domenico et al. Biofilm in Lyme Neuroborreliosis

151. Hansen K, Lebech AM. The clinical and epidemiological profile of Lyme
neuroborreliosis in Denmark 1985–1990. A prospective study of 187 patients
with Borrelia burgdorferi specific intrathecal antibody production. Brain
(1992) 115:399–423.

152. Kruger H, Reuss K, Pulz M, Rohrbach E, Pflughaupt KW, Martin R, et al.
Meningoradiculitis and encephalomyelitis due to Borrelia burgdorferi: a
follow-up study of 72 patients over 27 years. J Neurol. (1989) 236:322–8.

153. Back T, Grunig S, Winter Y, Bodechtel U, Guthke K, Khati D, et al.
Neuroborreliosis-associated cerebral vasculitis: long-term outcome
and health-related quality of life. J Neurol. (2013) 260:1569–75.
doi: 10.1007/s00415-013-6831-4

154. Pearson S. On the radar: Lyme neuroborreliosis, an infectious cause of
cerebral vasculitis. QJM (2015) 108:755. doi: 10.1093/qjmed/hcv043

155. Reik L Jr, Burgdorfer W, Donaldson JO. Neurologic abnormalities in Lyme
disease without erythema chronicum migrans. Am J Med. (1986) 81:73–8.

156. Dupuis MJ. Multiple neurologic manifestations of Borrelia burgdorferi

infection. Rev Neurol. (1988) 144:765–75.
157. Roelcke U, Barnett W, Wilder-Smith E, Sigmund D, Hacke W. Untreated

neuroborreliosis: Bannwarth’s syndrome evolving into acute schizophrenia-
like psychosis. A case report. J Neurol. (1992) 239:129–31.

158. van den Bergen HA, Smith JP, van der Zwan A. Lyme psychosis. Ned Tijdschr
Geneeskd (1993) 137:2098–100.

159. Stricker RB, Winger EE. Musical hallucinations in patients
with Lyme disease. South Med J. (2003) 96:711–5.
doi: 10.1097/01.SMJ.0000053458.21691.2E

160. Almeida OP, Lautenschlager NT. Dementia associated with infectious
diseases. Int Psychogeriatr. (2005) 17:S65–77.

161. Hassett AL, Radvanski DC, Buyske S, Savage SV, Gara M, Escobar JI, et al.
Role of psychiatric comorbidity in chronic Lyme disease. Arthritis Rheum.

(2008) 59:1742–9. doi: 10.1002/art.24314
162. Cameron D. Severity of Lyme disease with persistent symptoms. Insights

from a double-blind placebo-controlled clinical trial. Minerva Med. (2008)
99:489–496.

163. Miklossy J. Historic evidence to support a causal relationship between
spirochetal infections and Alzheimer’s disease. Front Aging Neurosci. (2015)
7:46. doi: 10.3389/fnagi.2015.00046

164. Aucott JN. Posttreatment Lyme disease syndrome. Infect Dis Clin North Am.

(2015) 29:309–23. doi: 10.1016/j.idc.2015.02.012
165. Steere AC, Hutchinson GJ, Rahn DW, Sigal LH, Craft JE, DeSanna ET, et al.

Treatment of the early manifestations of Lyme disease. Ann Intern Med.

(1983) 99:22–26.
166. Cerar D, Cerar T, Ruzic-Sabljic E, Wormser GP, Strle F. Subjective symptoms

after treatment of early Lyme disease. Am J Med. (2010) 123:79–86.
doi: 10.1016/j.amjmed.2009.05.011

167. Nowakowski J, Nadelman RB, Sell R, McKenna D, Cavaliere LF, Holmgren D
et al. Long-term follow-up of patients with culture-confirmed Lyme disease.
Am J Med. (2003) 115:91–6. doi: 10.1016/S0002-9343(03)00308-5

168. Marques A. Chronic lyme disease: a review. Infect Dis Clin North Am. (2008)
22:341–60. doi: 10.1016/j.idc.2007.12.011

169. Asch ES, Bujak DI, Weiss M, Peterson MG, Weinstein A. Lyme disease: an
infectious and postinfectious syndrome. J Rheumatol. (1994) 21:454–61.

170. Aucott J, Morrison C, Munoz B, Rowe PC, Schwarzwalder A, West SK.
Diagnostic challenges of early Lyme disease: lessons from a community case
series. BMC Infect Dis. (2009) 9:79. doi: 10.1186/1471-2334-9-79

171. Marques A, Telford SR III, Turk SP, Chung E, Williams C, Dardick K,
et al. Xenodiagnosis to detect Borrelia burgdorferi infection: a first-in-human
study. Clin Infect Dis. (2014) 58:937–45. doi: 10.1093/cid/cit939

172. Hodzic E, Imai D, Feng S, Barthold SW. Resurgence of persisting non-
cultivable Borrelia burgdorferi following antibiotic treatment in mice. PLoS
ONE (2014) 9:e86907. doi: 10.1371/journal.pone.0086907

173. Bockenstedt LK, Gonzalez DG, Haberman AM, Belperron AA. Spirochete
antigens persist near cartilage after murine Lyme borreliosis therapy. J Clin
Invest. (2012) 122:2652–60. doi: 10.1172/JCI58813

174. Mygland A, Ljostad U, Fingerle V, Rupprecht T, Schmutzhard E, Steiner I,
European Federation of Neurological S. EFNS guidelines on the diagnosis
and management of European Lyme neuroborreliosis. Eur J Neurol Off

J Eur Fed Neurol Soc. (2010) 17:e11–4. doi: 10.1111/j.1468-1331.2009.
02862.x

175. Shapiro ED. Borrelia burgdorferi (Lyme disease). Pediatr Rev. (2014) 35:500–
9. doi: 10.1542/pir.35-12-500

176. Klempner MS, Baker PJ, Shapiro ED, Marques A, Dattwyler RJ, Halperin JJ,
et al. Treatment trials for post-Lyme disease symptoms revisited. Am J Med.

(2013) 126:665–9. doi: 10.1016/j.amjmed.2013.02.014
177. Berende A, ter Hofstede HJ, Vos FJ, van Middendorp H, Vogelaar

ML, Tromp M, et al. Randomized trial of longer-term therapy for
symptoms attributed to Lyme disease. N Engl J Med. (2016) 374:1209–20.
doi: 10.1056/NEJMoa1505425

178. Kersten A, Poitschek C, Rauch S, Aberer E. Effects of penicillin, ceftriaxone,
and doxycycline on morphology of Borrelia burgdorferi. Antimicrob Agents

Chemother. (1995) 39:1127–33.
179. Miklossy J, Kasas S, Zurn AD, McCall S, Yu S, McGeer PL. Persisting

atypical and cystic forms of Borrelia burgdorferi and local inflammation
in Lyme neuroborreliosis. J Neuroinflammation (2008) 5:1–18.
doi: 10.1186/1742-2094-5-40

180. Brorson Ø, Brorson S-H, Scythes J, MacAllister J, Wier A, Margulis L.
Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs)
by the antibiotic tigecycline. Proc Natl Acad Sci USA. (2009) 106:18656–61.
doi: 10.1073/pnas.0908236106

181. Feng J, Shi W, Zhang S, Zhang Y. Persister mechanisms in Borrelia

burgdorferi: implications for improved intervention. Emerg Microbes Infect.

(2015) 4:e51. doi: 10.1038/emi.2015.51
182. Sapi E, Theophilus PA, Pham TV, Burugu D, Luecke DF. Effect of

RpoN, RpoS and LuxS pathways on the biofilm formation and antibiotic
sensitivity of Borrelia Burgdorferi. Eur JMicrobiol Immunol. (2016) 6:272–86.
doi: 10.1556/1886.2016.00026

183. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting
microbial biofilms: current and prospective therapeutic strategies. Nat Rev
Microbiol. (2017) 15:740–55. doi: 10.1038/nrmicro.2017.99

184. Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections.
Cell Microbiol. (2009) 11:1034–43. doi: 10.1111/j.1462-5822.2009.0
1323.x

185. Di Domenico EG, Toma L, Provot C, Ascenzioni F, Sperduti I, Prignano G,
et al. Development of an in vitroAssay, Based on the BioFilmRing Test R©, for
rapid profiling of biofilm-growing bacteria. Front Microbiol. (2016) 7:1429.
doi: 10.3389/fmicb.2016.01429

186. Di Domenico EG, Farulla I, Prignano G, Gallo MT, Vespaziani M, Cavallo
I, et al. Biofilm is a major virulence determinant in bacterial colonization of
chronic skin ulcers independently from the multidrug resistant phenotype.
Int J Mol Sci. (2017) 18:E1077. doi: 10.3390/ijms18051077

187. Timmaraju VA, Theophilus PA, Balasubramanian K, Shakih S, Luecke DF,
Sapi E. Biofilm formation by Borrelia burgdorferi sensu lato. FEMSMicrobiol

Lett. (2015) 362:fnv120. doi: 10.1093/femsle/fnv120
188. Allen HB. Alzheimer’s Disease: assessing the role of spirochetes, biofilms,

the immune system, and amyloid-β with regard to potential treatment
and prevention. J Alzheimers Dis. (2016) 53:1271–6. doi: 10.3233/JAD-
160388

189. Donlan RM, Costerton WJ. Biofilms: survival mechanisms of clinically
relevantmicroorganisms. ClinMicrobiol Rev. (2002) 15:167–93. doi: 10.1128/
CMR.15.2.167-193.2002

190. MacDonald AB. Plaques of Alzheimer’s disease originate from cysts of
Borrelia burgdorferi, the Lyme disease spirochete. Med Hypotheses (2006)
67:592–600. doi: 10.1016/j.mehy.2006.02.035

191. Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH,
Balic A, et al. Live imaging reveals a biphasic mode of dissemination
of Borrelia burgdorferi within ticks. J Clin Invest. (2009) 119:3652–65.
doi: 10.1172/JCI39401

192. Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and
their roles in bacterial virulence. Microbiol Mol Biol Rev. (2005) 69:527–43.
doi: 10.1128/MMBR.69.4.527-543.2005

193. Caimano M, Iyer R, Eggers C, Gonzalez C, Morton E, Gilbert
M, et al. Analysis of the RpoS regulon in Borrelia burgdorferi in
response to mammalian host signals provides insight into RpoS
function during the enzootic cycle. Mol Microbiol. (2007) 65:1193–217.
doi: 10.1111/j.1365-2958.2007.05860.x

194. Yang XF, Alani SM, Norgard MV. The response regulator Rrp2 is essential
for the expression of major membrane lipoproteins in Borrelia burgdorferi.

Frontiers in Neurology | www.frontiersin.org 11 December 2018 | Volume 9 | Article 1048

https://doi.org/10.1007/s00415-013-6831-4
https://doi.org/10.1093/qjmed/hcv043
https://doi.org/10.1097/01.SMJ.0000053458.21691.2E
https://doi.org/10.1002/art.24314
https://doi.org/10.3389/fnagi.2015.00046
https://doi.org/10.1016/j.idc.2015.02.012
https://doi.org/10.1016/j.amjmed.2009.05.011
https://doi.org/10.1016/S0002-9343(03)00308-5
https://doi.org/10.1016/j.idc.2007.12.011
https://doi.org/10.1186/1471-2334-9-79
https://doi.org/10.1093/cid/cit939
https://doi.org/10.1371/journal.pone.0086907
https://doi.org/10.1172/JCI58813
https://doi.org/10.1111/j.1468-1331.2009.02862.x
https://doi.org/10.1542/pir.35-12-500
https://doi.org/10.1016/j.amjmed.2013.02.014
https://doi.org/10.1056/NEJMoa1505425
https://doi.org/10.1186/1742-2094-5-40
https://doi.org/10.1073/pnas.0908236106
https://doi.org/10.1038/emi.2015.51
https://doi.org/10.1556/1886.2016.00026
https://doi.org/10.1038/nrmicro.2017.99
https://doi.org/10.1111/j.1462-5822.2009.01323.x
https://doi.org/10.3389/fmicb.2016.01429
https://doi.org/10.3390/ijms18051077
https://doi.org/10.1093/femsle/fnv120
https://doi.org/10.3233/JAD-160388
https://doi.org/10.1128/CMR.15.2.167-193.2002
https://doi.org/10.1016/j.mehy.2006.02.035
https://doi.org/10.1172/JCI39401
https://doi.org/10.1128/MMBR.69.4.527-543.2005
https://doi.org/10.1111/j.1365-2958.2007.05860.x
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Di Domenico et al. Biofilm in Lyme Neuroborreliosis

Proc Natl Acad Sci USA. (2003) 100:11001–6. doi: 10.1073/pnas.18343
15100

195. Fisher MA, Grimm D, Henion AK, Elias AF, Stewart PE, Rosa PA, et al.
Borrelia burgdorferi sigma54 is required for mammalian infection and vector
transmission but not for tick colonization. Proc Natl Acad Sci USA. (2005)
102:5162–7. doi: 10.1073/pnas.0408536102

196. Boardman BK, HeM, Ouyang Z, XuH, Pang X, Yang XF. Essential role of the
response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect
Immun. (2008) 76:3844–53. doi: 10.1128/IAI.00467-08

197. Yin Y, Yang Y, Xiang X, Wang Q, Yang ZN, Blevins J, et al. Insight into
the Dual functions of bacterial enhancer-binding protein Rrp2 of Borrelia
burgdorferi. J Bacteriol. (2016) 198:1543–52. doi: 10.1128/JB.01010-15

198. Ouyang Z, Zhou J. The putative Walker A and Walker B motifs of Rrp2
are required for the growth of Borrelia burgdorferi. Mol Microbiol. (2017)
103:86–98. doi: 10.1111/mmi.13545

199. Favre-Bonté S, Chamot E, Köhler T, Romand JA, VanDelden C. Auto inducer
production and quorum-sensing dependent phenotypes of Pseudomonas
aeruginosa vary according to isolation site during colonization of incubated
patients. J Sci BMCMicrobiol. (2010) 8:623e33. doi: 10.1186/1471-2180-7-33

200. McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ.
LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls
carbohydrate metabolism and biofilm formation with Porphyromonas
gingivalis. J Bacteriol. (2003) 185:274–84. doi: 10.1128/JB.185.1.274-284.2003

201. Merritt J, Qi F, Goodman SD, Anderson MH, Shi W. Mutation of luxS
affects biofilm formation in Streptococcus mutans. Infect Immun. (2003)
71:1972–1979. doi: 10.1128/IAI.71.4.1972-1979.2003

202. Cole SP, Harwood J, Lee R, She R, Guiney DG. Characterization of
monospecies biofilm formation by Helicobacter pylori. J Bacteriol. (2004)
186:3124–32. doi: 10.1128/JB.186.10.3124-3132.2004

203. Wen ZT, Nguyen AH, Bitoun JP, Abranches J, Baker HV, Burne
RA. Transcriptome analysis of LuxS-deficient Streptococcus
mutans grown in biofilms. Mol Oral Microbiol. (2011) 26:2–18.
doi: 10.1111/j.2041-1014.2010.00581.x

204. Narasimhan S, Santiago F, Koski RA, Brei B, Anderson JF, Fish
D, et al. Examination of the Borrelia burgdorferi transcriptome in
Ixodes scapularis during feeding. J Bacteriol. (2002) 184:3122–5.
doi: 10.1128/JB.184.11.3122-3125.2002

205. Stevenson B, Babb K. LuxS-mediated quorum sensing in Borrelia

burgdorferi, the Lyme disease spirochete. Infect Immun. (2002) 70:4099–105.
doi: 10.1128/IAI.70.8.4099-4105.2002

206. Babb K, von Lackum K, Wattier RL, Riley SP, Stevenson B. Synthesis
of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J
Bacteriol. (2005) 187:3079–87. doi: 10.1128/JB.187.9.3079-3087.2005

207. Arnold WK, Savage CR, Antonicello AD, Stevenson B. Apparent role
for Borrelia burgdorferi LuxS during mammalian infection. Infect Immun.

(2015) 83:1347–53. doi: 10.1128/IAI.00032-15
208. Steere AC, Malawista SE, Snydman DR, Shope RE, Andiman WA, Ross MR,

et al. Lyme arthritis: an epidemic of oligoarticular arthritis in children and
adults in three Connecticut communities. Arthritis Rheum. (1997) 20:7–17.

209. Rudenko N, Golovchenko M, Vancova M, Clark K, Grubhoffer L, Oliver JH
Jr. Isolation of live Borrelia burgdorferi sensu lato spirochaetes from patients
with undefined disorders and symptoms not typical for Lyme borreliosis.
Clin Microbiol Infect. (2016) 22:267.e9–15. doi: 10.1016/j.cmi.2015.
11.009

210. Barthold SW, Hodzic E, Imai DM, Feng S, Yang S, Luft BJ. Ineffectiveness
of tigecycline against persistent Borrelia burgdorferi. Antimicrob Agents

Chemother. (2010) 54:643–51. doi: 10.1128/AAC.00788-09
211. Feng J, Weitner M, Shi W, Zhang S, Zhang Y. Eradication of biofilm-

like microcolony structures of Borrelia burgdorferi by daunomycin and

daptomycin but not mitomycin C in combination with doxycycline and
cefuroxime. Front Microbiol. (2016) 7:62. doi: 10.3389/fmicb.2016.00062

212. Feng J, Auwaerter PG, Zhang Y. Drug combinations against Borrelia

burgdorferi persisters in vitro: eradication achieved by using daptomycin,
cefoperazone and doxycycline. PLoS ONE (2015) 10:e0117207.
doi: 10.1371/journal.pone.0117207

213. Caskey JR, Embers ME. Persister development by Borrelia burgdorferi

populations in vitro. Antimicrob Agents Chemother. (2015) 59:6288–95.
doi: 10.1128/AAC.00883-15

214. Feng J, Zhang S, Shi W, Zhang Y. Activity of sulfa drugs and their
combinations against stationary phase B. burgdorferi in vitro. Antibiotics

(2017) 6:E10. doi: 10.3390/antibiotics6010010
215. Fallon BA, Keilp JG, Corbera KM, Petkova E, Britton CB, Dwyer E,

et al. A randomized, placebo-controlled trial of repeated IV antibiotic
therapy for Lyme encephalopathy. Neurology (2008) 70:992–1003.
doi: 10.1212/01.WNL.0000284604.61160.2d

216. Cabello FC, Godfrey HP, Newman SA. Hidden in plain sight: Borrelia
burgdorferi and the extracellular matrix. Trends Microbiol. (2007) 15:350–4.
doi: 10.1016/j.tim.2007.06.003

217. Lantos PM. Chronic lyme disease. Infect Dis Clin N Am. (2015) 325–40.
doi: 10.1016/j.idc.2015.02.006

218. Lantos PM, Auwaerter PG, Wormser GP. A systematic review of Borrelia
burgdorferi morphologic variants does not support a role in chronic Lyme
disease. Clin Infect Dis. (2014) 58:663–71. doi: 10.1093/cid/cit810

219. Stricker RB, Gaito A, Harris NS, et al. Coinfection in patients with
Lyme disease: how big a risk? Clin Infect Dis. (2003) 37:1277–8.
doi: 10.1086/378893

220. Tokarz R, Jain K, Bennett A, Briese T, W. Ian Lipkin. Assessment of
polymicrobial infections in ticks in New York State. Vector Borne Zoo Dis.

(2010) 10:217–21. doi: 10.1089/vbz.2009.0036
221. Owen DC. Is Lyme disease always poly microbial? – The jigsaw

hypothesis. Med Hypotheses (2006) 67:860–4. doi: 10.1016/j.mehy.2006.
03.046

222. Di Domenico EG, Cavallo I, Bordignon V, Prignano G, Sperduti I, Gurtner A,
et al. Inflammatory cytokines and biofilm production sustain Staphylococcus
aureus outgrowth and persistence: a pivotal interplay in the pathogenesis
of Atopic Dermatitis. Sci Rep. (2018) 8:9573. doi: 10.1038/s41598-018-2
421-1

223. Cavallo I, Di Domenico EG. Rapid profiling of Borrelia burgdorferi biofilm
by the clinical Biofilm Ring Test R©. In: Italian National Congress, Gruppo

italiano per lo studio della Malattia di Lyme. (2018) Milan (Accessed June 9,
2018).

224. Sharma B, Brown AV, Matluck NE, Hu LT, Lewis K. Borrelia

burgdorferi, the causative agent of lyme disease, forms drug-tolerant
persister cells. Antimicrob Agents Chemother (2015) 59:4616–24.
doi: 10.1128/AAC.00864–15

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Di Domenico, Cavallo, Bordignon, D’Agosto, Pontone, Trento,

Gallo, Prignano, Pimpinelli, Toma and Ensoli. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurology | www.frontiersin.org 12 December 2018 | Volume 9 | Article 1048

https://doi.org/10.1073/pnas.1834315100
https://doi.org/10.1073/pnas.0408536102
https://doi.org/10.1128/IAI.00467-08
https://doi.org/10.1128/JB.01010-15
https://doi.org/10.1111/mmi.13545
https://doi.org/10.1186/1471-2180-7-33
https://doi.org/10.1128/JB.185.1.274-284.2003
https://doi.org/10.1128/IAI.71.4.1972-1979.2003
https://doi.org/10.1128/JB.186.10.3124-3132.2004
https://doi.org/10.1111/j.2041-1014.2010.00581.x
https://doi.org/10.1128/JB.184.11.3122-3125.2002
https://doi.org/10.1128/IAI.70.8.4099-4105.2002
https://doi.org/10.1128/JB.187.9.3079-3087.2005
https://doi.org/10.1128/IAI.00032-15
https://doi.org/10.1016/j.cmi.2015.11.009
https://doi.org/10.1128/AAC.00788-09
https://doi.org/10.3389/fmicb.2016.00062
https://doi.org/10.1371/journal.pone.0117207
https://doi.org/10.1128/AAC.00883-15
https://doi.org/10.3390/antibiotics6010010
https://doi.org/10.1212/01.WNL.0000284604.61160.2d
https://doi.org/10.1016/j.tim.2007.06.003
https://doi.org/10.1016/j.idc.2015.02.006
https://doi.org/10.1093/cid/cit810
https://doi.org/10.1086/378893
https://doi.org/10.1089/vbz.2009.0036
https://doi.org/10.1016/j.mehy.2006.03.046
https://doi.org/10.1038/s41598-018-27421-1
https://doi.org/10.1128/AAC.00864--15
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis
	Introduction
	Materials and Methods
	Epidemiology of Borrelia burgdorferi Infection
	Host Invasion Strategies of Borrelia burgdorferi
	Lyme Neuroborreliosis
	Biofilm Production and Antimicrobial Tolerance in Borrelia burgdorferi

	Concluding Remarks
	Author Contributions
	Acknowledgments
	References


