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Chapter 1

Introduction

Electric field can be delivered to a charged particle through a particle accelerator. The

beam inside the accelerators gains its energy from either constant electric field or a har-

monic time-varying electric field. The first one was electrostatic accelerator in which

particle acquires an energy equal to the product of its electric charge times the potential

drop, and led to a unit of energy called the electron volt (eV). The maximum energy

obtainable was the limitation of this accelerator because the maximum energy is obtained

from the product of the charge times the potential difference, and from practical point

of view this potential difference is limited by electric breakdown. The later is called RF

accelerators and the limitation can be bypassed by localizing a harmonic time-varying

electric field to the beam, technically speaking to the bunches. When the field has the

correct polarity these bunches will be arrived to take maximum energy of the field and

the restriction of energy gain will be removed and the bunches are accelerated into the

structures where the electromagnetic cavity resonators excite a particular electromag-

netic mode through a high-frequency external power source. For a stable and sustained

energy gain the beam must maintain synchronism and phase properly with the fields.

The latter requirement has led to the name resonance accelerators, which includes the

linac, cyclotron, and synchrotron distinguishing from their orbit in an RF accelerator ,

the straight line, spiral and circle, respectively. The first formal proposal and experimen-

tal test of an RF linac was made by Rolf Wideroe in 1928, but linear accelerators that

were useful for nuclear and elementary particle research did not appear until after the

development of microwave technology in World War II when high frequency power gener-

ators, developed for radar application, became available. Then modern linacs were born
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by proposing an accelerator based on a linear array of drift tubes enclosed in a high-Q

cylindrical cavity by Luis Alvarez .

The present thesis work contained to the design and measurements of the RF High gra-

dient structures. Generally speaking the design of an accelerating structure is a complex

task, and it is not possible to have a procedure that fits in all related applications. Con-

ventionally, the starting point to design a structure is from the specification stating the

desired performance of the cavity. Then, some constraints will appear which limit the

possibilities of implementation. The next issue to consider at the higher order mode fre-

quencies is the side effects the cavity will have and there also are some parameters which

must be chosen to optimize the overall design.

In chapter 2 of this thesis in order to properly understand and be able to choose between

a standing-wave or a traveling-wave structure, we briefly introduce the main parameters

usually used to characterize Linacs and we will explain why the periodic accelerating

structure are used in particle accelerators by the statement has been brought by Floquet to

the literature. As the dispersion relation of a structure contains the detailed information

needed to determine its suitability for particle acceleration, such as phase and group

velocities as a function of frequency, we have decided to dedicate chapter 3 to have a

comparison between analytical and numerical methods to estimate group velocity. The

concept of group velocity is fundamental in high accelerating periodic structures. It

can be obtained from resonant-frequency change due to the cavity perturbation. In the

framework of the Compact Light XLS project, we are studying a TW band accelerating

structure operating at frequency f=23.988 GHz or f=35.982 GHz in order to linearize

longitudinal space phase. Numerical electromagnetic simulations were carried out by

using the numerical code HFSS in the frequency domain. In chapter 4 we calculated

analytically the shunt impedance, quality factor (Geometric factor) and R/Q independent

of the frequency for TM modes for a single cylindrical “pill-box” cavity as these modes in

a chain of cylindrical “pill-box” cavities provide accurate model for the accelerating fields

in more realistic accelerating structures and the properties of a single cylindrical resonator

were simple to treat analytically, and it was as a starting point for accelerating structures.

In chapter 5 and 6 the design and measurements of the RF High gradient structure have

been done. As the achievement of ultra high accelerating gradients is mandatory in order

to fabricate compact accelerators at 11.424 GHz for scientific and industrial applications,
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an extensive experimental and theoretical program to determine a reliable ultra high

gradient operation of the future linear accelerators is under way in many laboratories. In

particular, systematic studies on the 11.424 GHz frequency accelerator structures, R &

D on new materials and the associated microwave technology are in progress to achieve

accelerating gradients well above 120 MeV/m. To determine the maximum sustainable

gradients in normal conducting RF powered particle beam accelerators operating at X-

band with extremely low probability of RF breakdown, an electroformed SW structures

has been fabricated and characterized by SLAC and INFN with collaboration of other

institutes around the world at 11.424 GHz, coated with Au-Ni and with different surface

roughness. We designed a gold plate RF High gradient structure operating at the X-

band coated with Au-Ni . Bench measurements have been performed in the Department

of SBAI of the University of Rome “La Sapienza”. The Slater Method for the SW cavity

has been employed in order to quantify the electric field inside the structure.This method

is a resonant method that only allows to measure the amplitude of the field. A perturbing

object (1 mm in length and 1 mm in diameter) is attached to an horizontal fish lens that

lays on the same direction as the axis of the structure. By using a step-by-step motor, it is

possible to pull the wire through the structure and measure the perturbations caused by

the small bead. The measurement setup is referred to as “bead-pull”. The frequency shift

in the structure has been measured. All the data, obtained by using a VNA, are stored in a

PC via a GPIB. Comparing the results with the results exposed from HFSS we report the

features that have been quantified, showing good agreement. In chapter 7 we introduced

two theoretical approaches for reflection coefficient calculation in a pill-box cavity. The

first one in the chapter has been accomplished by circuit theory and the later by modified

Bethe’s theory. A method to find the overall Q of a resonant circuit is used for a cavity

coupled to an external transmission line or waveguide usually contains the RF generator

and Q calculation led to the shunt impedance calculation and considering a wave that is

emitted from the generator into the guide, the reflection coefficient produced by the cavity

load impedance has been calculated. The results was a good agreement comparing with

the numerical results. The other analytical approach is based on a theory which states

that the aperture is equivalent to an electric or/and magnetic dipole moments. These

dipole moments are respectively proportional to the normal electric and magnetic field

of the incident wave. The theory originally stated by Bethe, developed by Collin and
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modified by S. De Santis, A. Mostacci and L. Palumbo for small hole compared to the

wavelength. We applied the theory for TM01 mode cavities coupled by a small hole with

a thickness size comparable to the wavelength. The amplitudes of forward and backward

waves due to polarizabilites have been determined and we found equations for reflection

and transmission coefficients. At the end it should be mentioned that for the future

work we are studying on the emittance growth of electron beams due to the cylindrical

asymmetry of an rf gun.
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Chapter 2

General Description of Periodic

Structures

2.1 Linear RF structures

A linear particle accelerator is a device in which the charge particles accelerate on a linear

path through an array of the cavities (cells) . These kind of devices are called RF liner

accelerators or often shortened to Linac and usually operate in a frequency range of 100

MHz up to several GHz. At lower energies they can be used as an injectors to synchrotrons

while at high energies are used as colliders. The main advantages of linear accelerators

can be summarized as follows:

• An efficient transverse focusing can be achieved by reaching high energy;

• There is no crucial limiting factor such as electric breakdown in linear accelerator

as in electrostatic accelerators, where we have got the maximum energy beam of the

order of MeV;

• In comparison with circular machines there is an easier procedure for the beam

injection and extraction;

• capability of delivering high energy and focused beams;

• As the geometric dimensions are proportional to the electromagnetic field wave-

length, increasing the frequency means decreasing the size of accelerating devices.

Therefore, high frequency devices have small dimensions.
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Figure 2.1: Iris-loaded structure

2.2 General Principles of RF Linear Accelerators

Electromagnetic power generated by a klystron or a magnetron usually feeds an RF ac-

celerating structure. The metallic waveguide brings the RF power to the Linac by a

complicated system such as circulators in which reflected power can be avoided to go

backwards and harm the source. In general there are two types of accelerating structures:

1-Traveling-wave (TW) structures

In these RF waveguide accelerators the electromagnetic field travels with a phase velocity

of the injected beam and the beam is synchronized with the traveling wave following

linear energy gain along the structure. The reason an iris or metallic disk is used along

the waveguide axis is because any electromagnetic field pattern would always have a phase

velocity greater than the speed of light, and it would never be locked to any particle beam

and this velocity needs to be smaller than the speed of light. In order to avoid this issue,

it is necessary to load the TW structure with the irises, usually with a certain period

L. The electromagnetic field is need to be damped at the end of the Linac in a matched

impedance load. Figure (2.1) shows such a disc-loaded structure.

2.Standing-wave (SW) structures

This structure is constructed from some cavities which are aligned longitudinally and

coupled together either electrically or magnetically. The structure is not open and it is

closed because it needs to be built up a resonant stationary wave inside it. This resonant

RF power is trapped inside the Linac and there is no need to be damped unlike the case

of TW Linacs and theoretically all injection power can be used to accelerate the beam.
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2.3 Characteristic parameters of a Linac

In this section to understand and distinguish a difference between a standing-wave and a

traveling-wave structure we introduce the main parameters usually used to characterize

Linacs ([1], [2], [3], [33]). These parameters are used to represent accelerating devices by

means of electric circuits [4].

1. Average electric field: E0, average electric field on axis in the direction of the beam

propagation at a given time when E(t) is max. How much field is available for acceleration.

E0 =
1

L

ˆ L

0

E(0, 0, z)dz. (2.1)

2. Shunt impedance: Z, ratio of the average electric field squared (E2
0) to the power (P)

per unit length (L) dissipated on the walls surface, as shown in Eq.2.2. How well the RF

power is concentrated in the useful region.

Z = E2
0 .

L

P
or Z = E2

0 .
dL

dP
. (2.2)

3. Quality factor: Q, ratio of the stored energy (U) to the power lost on the wall (P) in

one RF cycle.

Q =
2π.f

P
. U. (2.3)

4. Transit time factor: T, ratio of the energy gained in the time varying RF field to

that in a DC field. Measure of the reduction in energy gain caused by the sinusoidal time

variation of the field in the gap.

T =
|
´ +L/2

−L/2 Ez(z) . e−j(
ωz
βc

)dz|´ +L/2

−L/2 |Ez(z)|dz
. (2.4)

Transit time factor describes the reduction of the voltage that a real particle experiences

relative to a fictitious particle with infinite speed. It is instructive again to look at the

simple pillbox cavity with the z - independent Ez , where the expression for TTF simply

becomes:
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Figure 2.2: The transit time factor of a pillbox cavity as a function of its length `

TTFpillbox =
|sin(χ01`

2a
)|

χ01`
2a

. (2.5)

Eq. (2.5) can be plotted as we shown in Fig. (2.2). Note that TT = 1 for very small

gaps, and decreases for larger gaps. It reaches zero when the transit time of the charged

particle is an entire RF period, i.e., when ` = βλ.

5. Effective shunt impedance: ZT 2, while the shunt impedance measures if the structure

design is optimized, the effective shunt impedance measures if the structure is optimized

and adapted to the velocity of the particle to be accelerated.

ZTT = (E0T )2 .
L

P
. (2.6)

The peak surface electric field and magnetic field are important constraints in cavity

design. In normal conducting cavities, too large peak surface electric field can result in

electric breakdown. The Kilpatrick criterion is often used as the basis for the peak surface

electric field limit in normal conducting cavities.

In superconducting cavities high electric field causes field emission, which produces elec-

trons in the cavity volume that absorb RF energy and create additional power loss. The

surface magnetic fields correspond to surface currents that produce resistive heating.

6. Frequency: Operating frequency as working point of an accelerating structure when

designing a linac is one of the main parameters to be chosen.To make it possible to choose
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this parameter we have to know the variation of the cavity parameters with the frequency.

As an example, the shunt impedance for the unit length, ZSH/m is proportional to square

root of frequency, which means higher frequency lead to the higher shunt impedance

and it provides higher efficiency in beam acceleration. It should also be noted that the

probability of RF breakdowns as a consequence of the intense superficial electric field

changes inversely with the frequency and it means, the probability of RF breakdowns

diminishes with increasing frequency. This is explained by the Kilpatrick experimental

relationship:

f(MHz) = 1.64E2
k Exp(−

8.5

Ek
), (2.7)

where Ek(MV/m) is called the Kilpatrick field and f(MHz) is the frequency of the field.

The equation above establishes an upper limit for the superficial field (Ek) at a given

frequency. Beyond the Kilpatrick field value, the chance of breakdowns at that frequency

starts to rapidly raise, resulting in damages of the material the Linac is made out of.

There is another parameter for the Linac RF design which is called Kilpatrick factor and

it is defined as the ratio of the superficial electric field Es, that the structure can actually

support, to the value of the Kilpatrick field for the same frequency. Usually, this ratio is

less than 2 although in some cases is possible to reach higher values.

7. Group velocity νg and filling time factor tF

νg =
P

U
, (2.8)

tF =

ˆ L

0

dz

νg(z)
, (2.9)

where P and U are the power flux through the structure with length L and the stored

energy per unit length, respectively. For not having the small efficiency of acceleration it

would be convenient to have small values of the group velocity, usually in the order of 0.01c

and 0.02c. Also, the same reason for the filling time factor keeping it within reasonable

values. The equation above for filling time represents the time the electromagnetic energy

needs to fill the whole structure, is only used for traveling-wave accelerators. In the case

of standing-wave Linacs, where the electromagnetic energy builds up in time with a zero

group velocity, the parameter tF is defined as
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tF ∝
Q

U
. (2.10)

2.4 Dispersion Curve

The difference between traveling-wave and standing-wave particle accelerators is not cru-

cial from a theoretical point of view . Superposition of two traveling waves in opposite

direction constructs a standing wave. The construction interference between forward

waves and reflected waves from the iris allows the wave propagation along the axis in an

iris loaded structure, see Fig.(2.1). It follows that it is possible to enclose the structure

between two metallic plates placed at symmetry plane locations so that the stationary

field pattern, at a given time, is the exact representation of the traveling one [33]. In this

configuration, electromagnetic parameters of the TW structure, such as phase or group

velocity of the desired accelerating mode and the shunt impedance per unit length can

be measured by using the equivalent stationary instantaneous mode of n resonant cavi-

ties coupled together. It should be noted that for the standing and traveling waves the

definition of phase advance of the electromagnetic field is different. In a TW Linac, the

phase-shift is determined by the phase increase, or decrease, of the field traveling from

the center of a cell to the subsequent one, while for a SW structure, it refers to the field

configuration, since the phase difference is either 0 or π. Figure (2.3) shows the dispersion

curve for n-coupled cavities, with n = 3.

2.5 Comparison of “effective shunt impedance” be-

tween TW and SW structures

Figure (2.4) [5] illustrates the behavior of the shunt impedance per unit length as a

function of different phase shift between each cell. To each phase-shift corresponds a

different accelerating mode.

As it is evident, the value of the effective shunt impedance for TW structures is almost

twice that for SW accelerators except for the π mode in which case the two values match.

Another important parameter is the pulse length from the generator that feeds an accel-

erating structure. In a TW structure, the excited electromagnetic field needs a time tF ,
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Figure 2.3: Dispersion curve of a 3 cell cavities

the filling time factor defined as L/Vg (Vg= group velocity, L=length of the Linac) while

in a SW structure the field distribution “builds up” in a longer time due to subsequent

reflections. It follows that, since the beam is usually injected into the Linac after the

filling time, all the power used for the transient is not used to accelerate it, that means it

is lost. Then, it is reasonable that for “long pulse” operation the unused power is small

compared to the total RF power, so that the choice of the type of structure only depends

on the kind of particle to be accelerated or the desired phase-shift. On the other hand,

in “short pulse” operation the lost transient power is a large amount of the total one, so

a TW structure, with a small filling time, is preferred to an SW one.

2.6 Scaling structure design

One should ask what is the most important parameters to choose to design a linac,

the response is operating frequency. With the knowledge of the variation of the cavity

parameters with the frequency we can choose a frequency in which the linac should be

operate. As it has shown in Table (2.1), scaling the cavity dimension b (cavity radius)

with frequency all other parameters vary proportional or inversely or in some case has a

non linear dependence and vary faster than the frequency.
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Figure 2.4: Diagram of the effective shunt impedance per unit length as a function of the

phase shift, for both TW and SW structures.

Parameters Frequency scaling

Cavity dimension(b) f−1

Quality factor(Q0) f−1/2

Geometric factor(G) f 0

Stored Energy (U) f−2

Shunt Impedance (R) f 1/2

R over Q (R/Q) f 1

RF surface resistance (Rs) f 1/2

RF power loss in 1 meter [MW] f−1/2

Table 2.1: Scaling Frequency
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2.7 Periodic accelerating Structures

The main reasons which the periodic accelerating structure are used are because: the wave

must have an electric field component along the direction of particle motion and this con-

dition can be satisfied by a transverse magnetic wave propagating in a uniform waveguide.

The particle and the wave must have the same velocity to maintain synchronism and the

uniform waveguide can not satisfy this condition because the phase velocity is larger than

the speed of light. To solve this problem a periodic structure is used because the reflections

from the periodic loading elements reduce the phase velocity compared with the uniform

guide. A periodic structure has the property that its modes are composed of a Fourier

sum of waves, some of which are suitable for synchronous-particle acceleration. Also be-

side a periodic waveguide there is another periodic structure is named coupled-cavity, a

periodic array of coupled resonant cavities, in which the iris is located between every two

cavities. In other word, an array of pillbox cavities are coupled through the irises. There

is an analytic description for the dispersion curve and cavity coupling constant based on

some theorems, for example, Bethe’s theory of coupling of cavities through apertures, the

Slater perturbation theorem, and the Floquet theorem. Floquet theorem [Appendix B]

stated that in a given mode of an infinite periodic structure, the fields at two different

cross sections that are separated by one period differ only by a constant factor, which

in general is a complex number and it means that when a structure of infinite length is

displaced along its axis by one period, it can not be distinguished from original self. For a

mode with eigenfrequency ω (there are intervals of ω called stopbands where the constant

is real with magnitude less than 1. For the stopband regions the modes are evanescent.

On the other hand, for a passband region in which waves will propagate, within which in

the loss-free case the complex constant ejβ0d). Based on Floquet theorem the field for a

passbands can be written as follows [4]:

Ē(r̄, z + d) = e−jβdĒ(r̄, z), (2.11)

because Ed(r, z) is periodic, it can be expanded in a Fourier series as

Ed(r, z) = Σ+∞
n=−∞an(r) e

−j2πnz
d , (2.12)

where Ed(r, z) is a periodic function with the same period d as the structure and βd is
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Figure 2.5: Dispersion curve (Brillouin diagram) for uniform waveguide.

called phase advance per period. Making Fourier expansion for most common accelerating

TM010 mode. The radial solution is found by satisfying the wave equation requiring

E(r, z, t) = Ed(r, z) ej(ωt−k0z) as the following,

a′′n(r) +
a′n(r)

r
−K2

nan(r) = 0, (2.13)

for K2
n > 0, the solution is,

Ez = Σ+∞
−∞EnJ0(Knr) e

iωt−knt, (2.14)

where

kn = k0 + 2πn
d

,

and

K2
n = (ω

c
)2 − (k0 + 2πn

d
)2.

Each term in Eq. (2.14) is called space harmonics and as we have n term we could say

that there are n space harmonics, each of which is denoted by the index n. We refer to

the principle wave as the one with n = 0. The space harmonics have the same frequency

but different wavenumbers, and each has a constant amplitude En independent of z.The

propagation constant is

βn = β0 +
2πn

d
=
ω

vp
+

2πn

d
. (2.15)

As the uniform waveguide has a dispersion relation, shown in Fig. (2.5) given by
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Figure 2.6: Wave number kλ versus frequency ω for various modes λ. ωλ is the cutoff

frequency [6].

ω2 = (kλc)
2 + (k0c)

2, (2.16)

where kλ is the cutoff wavenumber for the modes, related to the cutoff angular frequency

by ωc = Kc. For frequencies less than the cutoff frequency, kλ is imaginary and such

modes cannot propagate (cutoff modes). The behavior of the axial wave number as a

function of frequency is shown in Fig. (2.6) . As we observe at any given frequency only

a finite number of modes can propagate. It is often convenient to choose the dimensions

of the guide so that at the operating frequency only the lowest mode can occur.

Then the phase velocity is expressed as

νp =
ω

k0

=
c√

1− (kλc
ω

)2

> c. (2.17)

It should be noted that according to the equation above the phase velocity becomes infinite

exactly at cutoff.

When K2
n > 0, the other nonzero components of the TM01 solution are

Er(r, z, t) = j Σ+∞
−∞En

kn
Kn

J1(Knr) e
iωt−knt, (2.18)

Bθ(r, z, t) = j Σ+∞
−∞En

ω

Knc2
J1(Knr) e

iωt−knt, (2.19)
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when K2
n < 0, the Bessel functions J0 and J1 are replaced with modified Bessel functions

I0 and I1. By making an assumption that the synchronous space harmonic waves only act

on the beam, we can obtain the integrated effect on a beam particle which is synchronous

with one of the space-harmonic waves. The effects of the non synchronous are ignored

because we assumed its average and it is not other than zero.

For the pillbox cavity, there are two types of modes, transverse-electric (TEmnp) and

transverse-magnetic (TMmnp) which are resonant modes of the pillbox and there are

infinite number of them. Periodic shape or almost periodic arrays of coupled accelerator

cavities are two common types of accelerator cavities in which their characteristics are

more interested. There exists a family of normal modes for coupled oscillators, each mode

behaving like an independent harmonic oscillator with its own characteristic resonant

frequency. Generally speaking, any normal mode can be excited when there will be a

right frequency with a suitable driving force with a phase difference from one individual

oscillator participating in the motion to the next oscillator. Each of the individual cavity

modes of an array of coupled cavities generates its own family of normal modes and lies

within a definite frequency band called a passband, which is centered near the resonant

frequency of the uncoupled cavity mode. Each passband includes all the normal modes

associated with a single cavity mode, such as the familiar TM010 mode of the pillbox

cavity. Each normal-mode can be described in terms of a characteristic wave that can

propagate through the cavity array with a characteristic frequency, and a characteristic

wavelength or wavenumber. For a finite length array there are a finite number of modes,

equal to the number of coupled oscillators. Fig. (2.7) shows the dispersion curve of the

lowest passband of an infinite periodic corresponding to the TM010. There are an infinite

number of waves at any frequency within a passband that each of them corresponding to

a different space harmonic with the following description as we described before:

• the space harmonic with the number n = 0 are the waves propagating in the +z

direction correspond to the range from 0 < kz < π/d, where d is the spatial period.

• n = 1 correspond to the range from 2π/d < kz < 3π/d.

• n = 2 correspond to the range from 2π/d < kz < 3π/d and so on.

• for the nth space harmonic all the information is presented if the plot is restricted

to the range 0 < kz < π/d. The reason is because the curve has a symmetry.
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Figure 2.7: Dispersion curve of the lowest passband of an infinite periodic structure.

For a periodic structure, the dispersion curves express the frequency as a periodic function

of wavenumber kz. Each cycle or zone in kz space represents the behavior of ω versus kz

for the nth space harmonic. At any given frequency, each space-harmonic component of

a normal mode has a unique phase velocity, corresponding to the slope of the line from

the origin to that point on the dispersion curve. All space-harmonic components have the

same group velocity, corresponding to the same tangent on the dispersion curve [4].
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Chapter 3

A Comparison of Analytical and

Numerical methods to estimate

Group Velocity

The concept of group velocity is fundamental in high accelerating periodic structures. It

can be obtained from resonant-frequency change due to the cavity perturbation. In the

framework of the Compact Light XLS project, we are studying an accelerating structure

operating at frequency f=23.988 GHz or f=35.982 GHz in order to linearize longitudinal

space phase. In this chapter of the thesis we compare analytical and numerical solutions

of the group velocity. Numerical electromagnetic simulations were carried out by using

the numerical code HFSS in the frequency domain.

The use of high accelerating periodic structure is required to compensate the non-linearity

distortions due to the RF curvature during acceleration and compensation [10]. The

design of an X-band accelerating section for linearizing the longitudinal phase space in

the Frascati Linac Coherent Light Source (SPARC: Sorgente Pulsata Auto-amplificata

di Radiazione Coerente) (Fig. (3.1)) has been accomplished. The structure, operating

on the standing wave mode, was a 9 cells structure fed by a central coupler and it has

been designed to obtain a 42 MV/m accelerating gradient [11]. We present an analytical

and numerical studying of the group velocity on the traveling wave K-band accelerating

structure in the framework of the XLS project. The structure will be operated at frequency

f=23.988 GHz or f=35.982 GHz in order to linearize longitudinal phase space.
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The concept of group velocity have been brought to the literature by Rayleigh [12] for

the transverse sound waves propagating in thin elastic rods and the energy propagation

under dispersive partial differential equations has been described by this quantity [13,14].

The group velocity of a wave is the velocity of the envelope of the wave packet. The wave

packet can be considered to be a Gaussian wave packet with a carrier wave of wavenumber,

k0,

g(x) = e−
1
2 (
x−x0
σx

)2 ejk0x, (3.1)

where k0 is the carrier wavenumber. The Fourier transform of this wave packet is

g̃(k) =
σx

2
√
π
e−

σ2x
2 (k−k0)2 ejx0(k−k0), (3.2)

the time evolution of this equation is the wave packet at any time which is constructed

by the superposition principle,

A(x, t) =

ˆ ∞
−∞

g̃(k)ej(kx−ω(k)t)dk, (3.3)

where g̃(k) is the Fourier transform of the wave packet at time t = 0. Linearizing the

angular frequency which is accomplished by Taylor series approximation , ω(k) ≈ ωo +

(k − k0)dω
dk

and substituting into A(x, t) one can obtain:

A(x, t) = ei(k0x−ω0)

ˆ ∞
−∞

g̃(k)ej(k−k0)(x− dω
dk
t)dk. (3.4)

The physical interpretation of this equation has become one of the most important concept

in physics and engineering. The first term describes a wave propagating with the velocity

of ω0/k0 and the second term a wave packet which propagates with dω
dk

.The previous is

called phase velocity and is used for non-dispersive media and the later has known as

group velocity which is not other than the envelope of the wave packet travels with this

velocity while propagating through space.

The maximum sustainable gradient in an accelerating structure depends on the rf power

flow through the structure [60]. The constraints due to rf breakdown in vacuum strongly

influence the design of high gradient accelerating structures. For the gradient versus BDR

(breakdown rate) and pulse length the equation below can be used [61],
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Figure 3.1: Schematic layout of the photo-injector of SPARC phase II.

En
a . t

5
p

BDR
= const, (3.5)

where Ea denotes the accelerating gradient and tp is pulse length. The author of the

article has mentioned that the choice of n=30 for the power exponent is based on the

analysis of the available experimental data only, and no assumption is made about the

underlying physical mechanism.

Yariv and Yeh has been demonstrated that in the homogeneous lossless media, the group

velocity is equivalent to the energy velocity [62] and L. Brillouin has shown that for the

material dispersion with the sufficiently small loss also this result can be applied [63],

νg = νE (3.6)

where the group velocity as a definition is the derivative of angular frequency respect to

wave number k, νg = ∇kω and the energy velocity is defined,

νE =
< S >

< U >
(3.7)

where S is denoted for the time-averaged Poynting vector and U is the time averaged

energy density. Keeping constant the input power we have,

νg . < U >=< S >= const. (3.8)

This means increasing the group velocity, stored energy decreases and decreasing the group

velocity, stored energy increases. The accelerating gradient is defined as E0T (Ea = E0T )

where the value E0 is an average axial electric field over the cell length and T denotes for

transit time factor. Recalling hat the stored energy per meter for the TM010 mode of an

unperturbed pillbox cavity is,
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U =
πε0
2

b2 E2
0 J

2
1 (χ01). (3.9)

where ε0 is vacuum permittivity and J1(χ01) is the Bessel function of the first kind, b is

the cavity radius and l denotes for cavity length. Replacing Ea = E0T into the equation

above and with some manipulation we have,

Ea =
T

bJ1(χ01)

√
2U

πε0
. (3.10)

Substituting equation above into the Eq. (3.5) we can obtain BDR,

( T
bJ1(χ01)

√
2U
πε0

)n . t5p

BDR
= const, (3.11)

finally substituting the Eq. (3.8) into the equation above, considering T=1 for TW section

and some manipulation we have a group velocity dependence for breakdown rate (BDR),

BDR = (
C

bJ1(χ01)

√
2S

πε0νg
)n . t5p, (3.12)

where

C: constant,

S: Poynting vector,

b: cavity radius,

`: cavity length,

J1(χ01): Bessel function of the first kind,

νg: group velocity,

ε0: vacuum permittivity,

tp: pulse length.

or in terms of the input power we can write,

BDR = (
C

bJ1(χ01)

√
2Pin
πε0νg

)n . t5p (3.13)

The energy W stored in the entire section at the end of the filling time can be expressed

as [64],

W = Pin
Q

ω
(1− e−2τ ) (3.14)
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where for a constant-impedance section where the attenuation is uniform we have,

τ =
ω`

2νgQ
= α` (3.15)

replacing Q = ωW/Pdis into the Eq. (3.14) where Pdis is the power dissipated along the

structure we have,

Pdis = Pin(1− e−2τ ) (3.16)

The attenuation factor τ of a constant impedance or constant gradient TW section is

defined,

Pout
Pin

= e−2τ . (3.17)

Power dissipated along the structure can also be obtained from Pdis = Pin − Pout and

considering equation above which we will have the same expression as Eq. (3.16).

So breakdown rate with considering the stored energy for the entire section can be written,

BDR = (
C

bJ1(χ01)

√
2Pdis

πε0νg(1− e−2τ )
)n . t5p (3.18)

where we have used the Eq. (3.16) which is valid when we consider whole structure.

As the normalized peak power per unit length is

Pnorm =
Pin/`

dP/dz
=

1

1− e−2τ
(3.19)

Then we have,

BDR = (
C

bJ1(χ01)

√
2PdisPnorm
πε0νg

)n . t5p (3.20)

The other explanation for the importance of group velocity νg is because at TW structure

it relates with filling time factor tF , the time the electromagnetic energy needs to fill the

whole structure and it is given as,

tF =

ˆ L

0

dz

νg(z)
. (3.21)

For not having the small efficiency of acceleration it would be convenient to have small

values of the group velocity, usually in the order of 0.01c and 0.02c. Also, the same reason

for the filling time factor keeping it within reasonable values.
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The electromagnetic waves in a periodic structures as an array of coupled cavities with

a central hole in each end wall propagate with the group velocity because there is no

monochromatic waves in nature in which the wave travels with the phase velocity. There

is an analytical description for the dispersion curve based on Bethe’s theory of coupling

cavities through apertures, the Slater perturbation theorem, and the Floquet theorem [4].

The cavities will be perturbed by the irises as they act like electric-dipole moment and the

interaction energy of the dipoles will change the stored energy. The procedure of shape

perturbation is as follows:

Maxwell’s curl equations can be written for the two cases as

∇× Ē0 = −jω0µH̄0, (3.22)

∇× H̄0 = jω0εĒ0, (3.23)

∇× Ē = −jωµH̄, (3.24)

∇× H̄ = jωεĒ, (3.25)

where Ē0 , H̄0 and Ē , H̄ are the fields of the original cavity and perturbed cavity,

respectively. ω0 is the resonant frequency of the original cavity and ω is the resonant

frequency of the perturbed cavity.

Now multiply the conjugate of Eq. (6.12) by H̄ and multiply Eq. (6.15) by Ē∗0

H̄ . ∇× Ē∗0 = jω0µH̄0 . H̄
∗
0 , (3.26)

Ē∗0 . ∇× H̄ = jωεĒ∗0 . Ē, (3.27)

subtracting these two equations and using the vector identity we have,

∇ . (Ē∗0 × H̄) = jω0µH̄ . H̄∗0 − jωεĒ∗0 . Ē. (3.28)

Similarly, by multiply the conjugate of Eq. (3.23) by Ē and multiply Eq. (3.24) by H̄∗0

and subtracting the equations and using the vector identity we have,
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∇ . (Ē × H̄∗0 ) = −jωµH̄∗0 . H̄ + jω0εĒ
∗
0 . Ē. (3.29)

Now adding Eq.(3.28) and Eq.(3.29) ,integrate over the volume V,

ˆ
V

∇ . (Ē∗0 × H̄ + Ē × H̄∗0 )dν = −j(ω − ω0)

ˆ
V

(εĒ . Ē∗0 + µH̄ . H̄∗0 )dν, (3.30)

using the divergence theorem we obtain,

ˆ
V

∇ . (Ē∗0 × H̄ + Ē × H̄∗0 )dν =

˛
S

(Ē∗0 × H̄ + Ē × H̄∗0 ) . ds̄ =

˛
S

Ē × H̄∗0 . ds̄,

=

˛
S0

Ē × H̄∗0 . ds̄−
˛

∆S

Ē × H̄∗0 . ds̄ = −
˛

∆S

Ē × H̄∗0 . ds̄, (3.31)

where n̂× Ē = 0 on S and n̂× Ē0 = 0 on S0. Using this results we have,

ω − ω0 =
−j
¸

∆S
Ē∗0 × H̄ . ds̄´

V0
(εĒ . Ē∗0 + µH̄ . H̄∗0 )dν

, (3.32)

as we don’t have the value of Ē and H̄, this equation won’t be a useful equation to relate

the resonant frequency to the shape perturbations. But, by making an assumption that

∆S is small, we can approximate the perturbed fields Ē, H̄ by the original fields Ē0, H̄0

,and ω in the denominator by ω0, to give the fractional change in resonant frequency as

ω − ω0

ω
≈
−
´

∆V
(µ|H̄0|2 − ε|Ē0|2)dν´

V0
(ε|Ē0|2 + µ|H̄0|2)dν

=
∆Um − δUe
Um + Ue

, (3.33)

where Um and Ue are the stored magnetic energy and electric energy, respectively and

∆Um and ∆Ue are their changes due to the shape perturbation. According to the equation

above increasing or decreasing the volume of the cavity causes increase or decrease of the

resonant frequency.

3.1 Perturbation from irises

There is a theoretical model which states that the aperture is equivalent to an electric

or/and magnetic dipole moments [8]. These dipole moments are respectively proportional

to the normal electric and tangential magnetic field of the incident wave. The assumption

we are going to use is that the hole is small compared with the wavelength. There is no
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magnetic dipole moment for an array of identical TM010-mode cavities with iris-loaded

and electric-dipole moment is equal P = −2a3ε0E0/3 , where “a” is the aperture radius,

and E0 is the unperturbed electric field. This electric dipole moment causes a perturbation

and the result of this perturbation is the shift of the resonant frequency according to Eq.

(3.33) due to the interaction energy of the dipoles which change the stored energy of the

cavities. The difference between the energy before and after the creation of the iris is [4],

∆Ue = −a3ε0E
2
0(1− e−αhcosψ)/6, (3.34)

where α ≈ 2.405/a is the attenuation per unit length of the field for the TM01 waveguide

mode through a hole in a wall of thickness h, and ψ is the phase advance per cavity of the

traveling wave. Substituting ω0 = 2.405c/b where b is the cavity radius, ∆Ue and stored

energy for TM010 mode into the Eq. (3.33) , and some manipulation we have,

ω = ω0[1 +G(1− cos(ψ)e−αh)], (3.35)

where G = 2a3

3πJ2
1 (2.405)b2`

. ψ = kz` is the phase advance per cavity and b, ` are the cavity

radius and axial length of the cavity, respectively. Considering the definition of group

velocity we have,

vg =
dω

dkz
=

2(2.405)c

3πJ2
1 (2.405)

(
a

b
)3sin(ψ)e−αh, (3.36)

where we can replace λ = 2.61b in case of TM010 and obtain,

νg
c

=
4(2.61)2

3J2
1 (2.405)

(
a

λ
)3sin(ψ)e−αh. (3.37)

Replacing α ≈ 2.405
a

into the above equations and writing the Taylor series of the expo-

nential function and considering h = 0.08λ for a practical periodic accelerating structure,

and substituting into the Eq.s (3.36) and (3.37), they can be written as,

νg
c

=
4(2.61)2

3J2
1 (2.405)

sin(ψ)[(
a

λ
)3 − 0.19(

a

λ
)2 + 0.0185(

a

λ
)− 0.0012 + 0.000057(

λ

a
)]. (3.38)
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Figure 3.2: TW cavity shape for the 2π/3 mode. b, a, h and l are cavity radius, iris

aperture radius, iris thickness and 1/3 of the cell length, respectively.

νg
c

=
2(2.405)

3πJ2
1 (2.405)

sin(ψ)[(
a

b
)3 − 0.496(

a

b
)2 + 0.126(

a

b
)− 0.0213 + 0.0026(

b

a
)]. (3.39)

where the equations above are group velocity as a function of a/λ and a/b, respectively.

3.2 Simulation results

In this section we obtain the group velocity by “HFSS code” in ANSYS [15]. HFSS (High

Frequency Structures Simulator) is a user-friendly software package, initially released

by ANSOFT that allows to evaluate the 3D electromagnetic field distribution inside a

structure. In order to do this, it solves the Maxwell’s equations in the frequency domain.

The numerical method employed is the FEM (Finite Element Method). HFSS divides the

3D model into a relatively large number of small domains, that represent the mesh. The

RF power is fed to the periodic structure flowing along the structure while electromagnetic

mode excited with 120◦ phase advance per cell is similar to the TM010 in a circular
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Figure 3.3: Electric field magnitude for the TM010 mode of the high accelerating periodic

structure. As we expected minimum value of the field is near the outer surface of the cavity.

waveguide. By applying proper boundary conditions it’s not necessary to simulate all

structure because the code HFSS allows to simulate periodic structures by only using one

period, as shown in Fig.(3.2).

The condition “Master/Slave” enables to impose a phase shift, 120◦ for the multi-cell

structures, between two faces of the single cell. Then, a simulation with the eigenmode

solver finds the frequency at which the electromagnetic field satisfies the phase shift de-

sired. Exploiting the symmetry in the field, only a fraction of the full cell is used for

simulations and a condition of perfect magnetic boundary, called “perfect H”, is applied.

Electric and Magnetic field magnitudes have plotted in Fig.s (3.3) and (3.4) for the TM010

mode of the high accelerating periodic structure. As we can observe minimum value of

the electric field and maximum value of the magnetic field are near the outer surface of

the cavity as they were expected for the TM010 mode.

After finding the frequency shift per phase shift we put it in the following equation to

calculate the group velocity,

νg
c

=
2πh

c
tg α, (3.40)
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Figure 3.4: Magnetic field magnitude for the TM010 mode of the high accelerating periodic

structure. As it can be observed maximum value of the field is near the outer surface of

the cavity.

where

tg α =
df

dφ
. (3.41)

From Eq. (3.40) it is possible to plot dispersion curve obtaining the frequency mode as a

function of the phase advance of the TW structure. The iris radius, iris thickness, cavity

radius are 2 mm, 1mm, 5.15 mm and 1.333 mm, 0.667, 3.43 mm for 23.988 GHz and

35.982 GHz respectively. The results have plotted in Figs. (3.5.a) and (3.5.b) and also

have shown in the following tables.

a[mm] b νg [23.988 GHz] a
b

[Hfss] a[mm] b νg [35.982 GHz] a
b

[Hfss]

1.0000 4.8616 0.0027c 0.206 0.6667 3.2398 0.0027c 0.206

1.5000 4.9764 0.0120 c 0.301 1.0000 3.3161 0.0120 c 0.301

2.0000 5.1530 0.0365 c 0.388 1.3333 3.4345 0.0365 c 0.388

2.5000 5.3854 0.0727 c 0.464 1.6667 3.5899 0.0727 c 0.464

3.0000 5.6637 0.1190 c 0.530 2.0000 3.7759 0.1190 c 0.530

(a) (b)
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Iris radius[mm] νg [23.988 GHz] a
λ

[Hfss] Iris radius[mm] νg [35.982 GHz] a
λ

[Hfss]

1.0000 0.0027c 0.080 0.6667 0.0027c 0.080

1.5000 0.0120 c 0.120 1.0000 0.0120 c 0.120

2.0000 0.0365 c 0.160 1.3333 0.0365 c 0.160

2.5000 0.0727 c 0.20 1.6667 0.0727 c 0.200

3.0000 0.1190 c 0.240 2.0000 0.1190 c 0.240

(c) (d)

Table 3.1: Simulation results of the Group Velocity for high accelerating periodic structure.

(a) Group velocity as a function of a/b at frequency 23.988 GHz . a and b are iris radius and

cavity radius, respectively. (b) Group velocity as a function of a/b at frequency 35.982 GHz.

(c) Group velocity as function of a/λ at frequency 23.988 GHz. (d) Group velocity as a function

of a/λ at frequency 35.982 GHz.

Deg Rad [F=23.988GHz] Frequency[35.882GHz]

0 0.0000 23249148601 34881627818

30 0.5236 23316457686 34971979664

60 1.0472 23498798208 35244918474

90 1.5708 23745362614 35613864890

120 2.0944 23988849524 35980658987

150 2.6180 24163140378 36249545345

180 3.1416 24233428460 36349213280

Table 3.2: Simulation results of the frequency mode as a function of the phase advance of the

TW structure . The iris radius, cavity radius, νg/c are 2 mm, 5.15 mm, 0.0365 and 1.333 mm,

3.43 mm, 0.0365 for 23.988 GHz and 35.982 GHz respectively.
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(a)

(b)

Figure 3.5: Frequency mode as a function of the phase advance of the TW structure for (a)

23.988 GHz, the iris radius, iris thickness, cavity radius, are 2 mm, 1mm and 5.1530 mm,

respectively. (b) 35.982 GHz, the iris radius, iris thickness, cavity radius are 1.3333 mm, 0.6667

and 3.4345 mm, respectively.
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Figure 3.6: Cavity radius as a function of the iris radius at 23.988 GHz and 35.982 GHz

Figure 3.7: Group velocity (vg/c) as a function of the iris radius at 23.988 GHz and 35.982

GHz
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νg/c ∆(a/b)[νg/c = f(a/b)] ∆(a/λ)[νg/c = f(a/λ)]

0.0027 0.014 (6.8 %) 0.005 (6.3 %)

0.0120 0.017 (5.6 %) 0.008 (6.7 %)

0.0365 0.020 (5.2 %) 0.004 (2.5 %)

0.0727 0.025 (5.4 %) 0.013 (6.5 %)

0.1190 0.030 (5.6 %) 0.027 (11.2 %)

Table 3.3: Table of Errors for a/b and a/λ as a function of Group Velocity. a, b, λ are iris radius,

cavity radius and RF wavelength, respectively. The percentage of errors between analytical and

numerical results for a/b as a function of νg/c is almost constant (5%) but we have a variation

of percentage of errors for a/λ as function of νg/c.The biggest error relates to the biggest iris

radius (Group Velocity) and it would be 11.2 %.

3.3 Comparison Between HFSS Simulation and An-

alytical Results

In this work we obtained the group velocity for different value of iris radius. Related

cavity radius for different group velocity have shown in Fig. (3.6). As we could expected

by increasing the iris radius, cavity radii should be increased. The reason is as the iris

radius is changing, the resonant frequency will be changed and we should increase the

cavity radius to put the cavity in a resonant mode.

In Fig (3.7) we plotted the variation of group velocity respect to the iris radius. As

we observe the group velocity has been increased with a steep slope for higher frequency

and this is coincident with Eq. (3.37). In other words, keeping the same iris radius and

varying the frequency, group velocity is bigger for the higher frequency. As an example,

group velocities for the cavities with the iris radius a=2 mm operating at 23.988 GHz and

35.982 GHz are 0.0365 c and 0.119 c, respectively. In order to have a relation in which the

group velocity be independent from the frequency operation we plotted Eq.s (3.38) and

(3.39). Fig.s (3.8) , (3.9) are a/λ and a/b as function of the vg/c. vg denotes for group

velocity and c is speed of light. Increasing group velocity, a/λ and a/b increase, both

analytically and numerically. As we can see in Table (3.3) and Figs. (3.10), (3.11), the

percentage of errors between analytical and numerical results for a/b as function of νg/c

is almost constant (5% of the simulation results). The reason is because by increasing
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Figure 3.8: a/λ as a function of the group velocity vg/c. Comparison between the HFSS

and Analytical estimations. a is iris radius and λ will be RF wavelength.

the iris radius we should increase cavity radius and a/b increase simultaneously with a

constant ratio as the group velocity increases. On the other hand we have a variation

of percentage of errors for a/λ as function of νg/c because we should fix RF wavelength

constant. Considering a constant value for λ and increasing the cavity radius, a/λ should

be increased with different ratio because numerically this ratio increases with a higher

value respect to the analytical value.

As an additional information, if we are going to explain these errors quantitatively not

percentage of the errors, we can say that for small group velocities errors between HFSS

and analytical are small compare with large group velocities. It should be noted that

according to Fig (3.7) small group velocities relate with small iris radii. Increasing the

iris radii, the errors between analytical and HFSS are increasing. One physical reason is

that because in EQ. (3.38) we use an electric polarization coefficient for electric moment

which is α = −2/3a3. This is the coefficient polarization obtained by Bethe [8]. As Bethe

has obtained the coefficient for small holes compare to the wavelength, he mentioned in his

article that it is possible to extend to the holes comparable in size with the wavelength
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Figure 3.9: a/b as a function of the group velocity vg/c. Comparison between the HFSS

and Analytical estimations. a and b are iris radius and cavity radius, respectively.

Figure 3.10: Error between analytical and numerical solutions for a/λ as a function of Group

Velocity. a is iris radius and λ is RF wavelength. The biggest error relates to the biggest iris

radius (Group Velocity) and it would be 11.2 %
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Figure 3.11: Error between analytical and numerical solutions for a/b as a function of

Group Velocity. The error increases by increasing the iris radii or relative group velocity

but the percentage of errors remain constant. a, b are iris and cavity radius, respec-

tively.The percentage of errors between analytical and numerical results for a/b as a

function of νg/c is almost constant (5%).

considering the E0, normal electric field, contain factors of the type eikr in which the

variation in the Green’s function must be considered and he said that the correction

for the holes comparable to the wavelength will be of relative order (ka)2 rather than

ka where k is the wavenumber and r is the aperture radius. Eggimann [16] solved the

problem of diffraction of arbitrary electromagnetic field by a circular perfectly conducting

disk using a series representation in powers of k = 2π/λ and he obtained an expression

for electric and magnetic moments using the results of generalized Babinet’s principle

[17] and considering that the disk problem and the aperture problem are equivalent if

some consideration would be taken, the final results were the following expressions for the

induced electric dipole moment:

Pz =
4

3
a3ε0(E0

z −
1

10
(ka)2[3E0

z +
1

k2

∂2E0
z l

∂z2
] + j

4

9π
(ka)3E0

z ) (3.42)

in which taking first and second term of the equation we have a term that is proportional

to (ka)2 as Bethe was mentioned about the hole size comparable with the wavelength.
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Considering the electric moment according to Eggimann, but taking two terms instead

of the whole equation we have: Pz = 4
3
a3ε0E

0
z (1 − 3

10
(ka)2). The change in the stored

energy in this case would be less than that obtained from electric-dipole moment based

on Bethe’s theory. The consequence of the minor energy change due to the irises will be

the less perturbations, and the less perturbations lead to the less shift frequency from the

resonant frequency and as this means the less frequency slope respect to the phase shift

which is nothing other than minor group velocity and it yields a better agreement with

numerical solutions.
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Chapter 4

TM Modes for Standing Waves in

Pill-box Cavity

The design of an RF linac is a complex task and more generally consists in two step.

Cavity design is the first step in which the knowledge about the field pattern inside the

cavity lead to the minimizing ohmic losses of the cavity. The second step is beam dynamics

in which synchronicity keeps good beam quality into the whole structure. Normally the

design starts from determining the desired performance of the cavity and the constraints

which limit the possibilities of implementation. The next issue which is important to be

considered would be the side effects the cavity will have due to the impedance it presents

to the beam at the spurious higher order mode frequencies. Finally optimizing the overall

design and the main parameters such as shape dimensions of the cavity should be chosen.

In this chapter we calculate analytically the shunt impedance, quality factor (Geometric

factor) and R/Q independent of the frequency for TM modes for a single cylindrical “pill-

box” cavity as these modes in a chain of cylindrical “pill-box” cavities provide accurate

model for the accelerating fields in more realistic accelerating structures and the properties

of a single cylindrical resonator were simple to treat analytically, and it was as a starting

point for accelerating structures.

4.1 From waveguide to cavity resonator

All modern accelerators use powerful radio frequency systems to produce the requisite

strong electric fields, with frequencies ranging from a few MHz to several GHz. The
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longitudinal electric field is necessary to accelerate ( increase the energy) of charged

particles. In such systems waveguides are preferred as resonators and to conduct the

beam, since they have low losses and can deliver very high power.

Maxwell’s equations predict the propagation of electromagnetic energy away from time-

varying sources (current and charge) in the form of waves. Consider a linear, homogeneous,

isotropic media in a source-free region. We start with the source-free, instantaneous

Maxwell’s equations written in terms of E and H only,

∇ . E = 0, (4.1)

∇ . B = 0, (4.2)

∇× E +
∂B

∂t
= 0, (4.3)

∇× B − 1

c2

∂E

∂t
= 0. (4.4)

Applying the curl operator (∇×) to the third equation we have,

∇×∇× E +∇× ∂B

∂t
= 0. (4.5)

The time derivative of the Eq. (4.4) yields,

∇× ∂B

∂t
=

1

c2

∂2E

∂t2
, (4.6)

substituting the equation above inside the Eq. (4.5) using the vector identity ∇×∇×A =

∇ . ∇ . A−∇2A, the Laplace equation results:

∇2E − 1

c2

∂2E

∂t2
= 0, (4.7)

which is nothing other than a general wave equation for the propagation of an electro-

magnetic wave in a waveguide. The complete solution of the equation above can be found

in appendix A.
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4.1.1 Rectangular Waveguide

There is a homogeneous plane wave solution at a fixed frequency for the Eq. (4.7) as it

can be written,

E = E0ycos(ωt− k.r), (4.8)

where the following notes can be summarized:

• the vector k: is the wave number in free space (k = ω/c), in the direction of the

propagation of the wave,

• the wave propagate in the xz-plane in a direction α,

• the wavelength along the z -axis is bigger than the free space wavelength as λ/cosα >

λ,

• linear polarization of the electric field has been chosen in the y-direction,

• The phase velocity in the z -direction is c√
1−(ωc

ω
)2
> c, where ωc is related to the

cut-off frequency.

• k . r = ω
c
(zcosα + xsinα) where α is an angle of plane wave propagating direction

respect to the horizontal z-axis.

Since the electric field is polarized in the y-axis, perfectly conducting planes can be inserted

in the y-axis perpendicular to this polarization without perturbing the field distribution.

Figure (4.1) shows the superposition of two homogeneous plane waves with equal ampli-

tudes and propagating at angles α and −α creating a rectangular waveguide with the

amplitude [18],

Ey = 2cos(
ω

c
sinαx)cos(ωt− ω

c
cosαz) = 2cos(k⊥x)cos(ωt− k⊥z). (4.9)

This mode has no field dependence on y-axis and it has just x- dependence on field. This

special case is called TE10 mode, where TE refers to transverse electric. It should be noted

that there is no electric field component on the z axis. In the index of TE10, 1 refers to

the x axis and 0 to y axis. The cutoff frequency of an electromagnetic waveguide is the

lowest frequency for which a mode will propagate in it. Likewise, the cutoff wavelength
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Figure 4.1: The superposition of two homogeneous plane waves forms a waveguide mode a) plane

wave propagating at an angle α with respect to the horizontal z-axis b) plane wave propagating

at an angle −α with respect to the horizontal z -axis c) a waveguide mode has been constructed

from two homogenous plan wave by the superposition principle [18].

is defined as the maximum wavelength that will propagate into the waveguide. The cut-

off wavelength can be found with the characteristic equation of the Helmholtz equation

(Appendix A) , which is derived from the electromagnetic wave equation ((Eq. (4.7)))

by setting the longitudinal wave number equal to zero and solving for the wavelength.

Thus, any exciting frequency of the corresponding wavelength lower than the cutoff fre-

quency will attenuate, rather than propagate. Therefore, the cut-off wavelength for the

rectangular waveguides would be:

λc =
2√

(m
a

)2 + (n
b
)2
, (4.10)

where m and n are integers and define the various mode in excited waveguide. Practical

application have modes with m, n between 0 and 2. Table (4.1) summarizes the results

for wave propagation in rectangular waveguide [19].

4.1.2 Cylindrical Waveguides

It is possible to construct the modes in round waveguides by the superposition of homo-

geneous plane waves, the same we have performed in the case of rectangular waveguides.

Transforming Eq. (4.9) to the cylindrical coordinates, one obtain an expression for the

resulting field Ey for the circular TM01 mode as [32],
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Quantity TEmn Mode TMmn Mode

k ω
√
µε ω

√
µε

kc
√

(mπ
a

)2 + (nπ
b

)2
√

(mπ
a

)2 + (nπ
b

)2

β
√
k2 − k2

c

√
k2 − k2

c

λc
2π
kc

2π
kc

λg
2π
β

2π
β

νp
ω
β

ω
β

νg
dω
dβ

dω
dβ

αd
k2tanδ

2β
k2tanδ

2β

Ez 0 Bmnsin
mπx
a

sinnπy
b
e−jβz

Hz Amncos
mπx
a

cosnπy
b
e−jβz 0

Ex
jωµnπ
k2cb

Amncos
mπx
a

sinnπy
b
e−jβz −jβmπ

k2ca
Bmncos

mπx
a

sinnπy
b
e−jβz

Ey
−jωµmπ
k2ca

Amnsin
mπx
a

cosnπy
b
e−jβz −jβnπ

k2cb
Bmnsin

mπx
a

cosnπy
b
e−jβz

Hx
jωmπ
k2ca

Amnsin
mπx
a

cosnπy
b
e−jβz −jωεnπ

k2cb
Bmnsin

mπx
a

cosnπy
b
e−jβz

Hy
jωnπ
k2cb

Amncos
mπx
a

sinnπy
b
e−jβz −jωεmπ

k2ca
Bmncos

mπx
a

sinnπy
b
e−jβz

Z ZTE = kη
β

ZTM = βη
k

Table 4.1: Summary of Results for Rectangular Waveguide
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Figure 4.2: Superposition of the homogeneous plane waves can be constructed a Bessel

function J0(kρ) in which the metallic walls may be inserted where J0(kρ) = 0 (black lines)

and it means at these points the electric field is always zero [32].

Ey =
1

2π

ˆ 2π

0

cos(kρ(cos(α− θ))) + d(α− θ) = J0(kρ),

which is the integral representation of the Bessel function J0 as it shows in Fig. (4.2).

As we observe in the figure, the superposition of the homogeneous plane waves construct

a Bessel function J0(kρ) in which the metallic walls may be inserted where J0(kρ) = 0

and it means at these points the electric field is always zero so that without perturbing

this field distribution we construct a circular waveguide at these points. It should be

noted that as this field is a radial standing-wave pattern, at these radii we have perfectly

conducting boundary conditions.

The cutoff frequencies of TM and TE modes in a round waveguide of radius ”b” are given

respectively as,

ωc
c

=
χm,n
b
, (4.11)

ωc
c

=
χ′m,n
b
, (4.12)
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Quantity TEnm Mode TMnm Mode

k ω
√
µε ω

√
µε

kc
p′nm
a

p′nm
a

β
√
k2 − k2

c

√
k2 − k2

c

λc
2π
kc

2π
kc

λg
2π
β

2π
β

νp
ω
β

ω
β

νg
dω
dβ

dω
dβ

αd
k2tanδ

2β
k2tanδ

2β

Ez 0 (Asinnφ+Bcosnφ) Jn(kcρ) e−jβz

Hz (Asinnφ+Bcosnφ) Jn(kcρ) e−jβz 0

Eρ
−jωµn
k2cρ

(Asinnφ−Bcosnφ) Jn(kcρ) e−jβz −jβ
kc

(Asinnφ+Bcosnφ) J ′n(kcρ) e−jβz

Eφ
jωµ
kc

(Asinnφ+Bcosnφ) Jn(kcρ) e−jβz −jβn
k2cρ

(Asinnφ−Bcosnφ) J ′n(kcρ) e−jβz

Hρ
−jβ
kc

(Asinnφ+Bcosnφ) Jn(kcρ) e−jβz −jωεn
k2cρ

(Asinnφ−Bcosnφ) J ′n(kcρ) e−jβz

Hφ
−jβn
k2cρ

(Asinnφ−Bcosnφ) Jn(kcρ) e−jβz −jωε
kc

(Asinnφ+Bcosnφ) J ′n(kcρ) e−jβz

Z ZTE = kη
β

ZTM = βη
k

Table 4.2: Summary of Results for Circular Waveguide [19].

where χm,n denotes the nth zero of the Bessel function Jm and χ′m,n is the derivative of

the Bessel function. The lowest TM mode is the TM01 mode with χ01 ≈ 2.405. On the

other side the lowest TE mode for a circular waveguide is TE11 with χ′11 ≈ 1.84. Table

(4.2) summarizes the results for wave propagation in circular waveguide.

In the Fig. (4.3) we show the transverse electric and magnetic field distributions of

different modes in the rectangular and round waveguides and the general equations for

these field distributions will be written in the following sections.

4.1.3 Standing waves in the pillbox cavity

A general solution of wave equation is given,

U(r, t) = Aei(ωt+k.r) +Bei(ωt−k.r), (4.13)
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Figure 4.3: Transverse electric and magnetic field distributions of different modes in the

rectangular and round waveguides

two waves moving in opposite directions with arbitrary amplitudes A and B. The su-

perposition of a forward and backwards traveling wave has static amplitude 2Acos(kr)

(standing wave) when A = B as,

U(r, t) = Aeiωt(eik.r + e−ik.r) = 2Acos(k.r)eiωt. (4.14)

The amplitude of the superposition of both waves is zero if: kr = (n + 1
2
)π, where

n=±1,±2,± 3, ..., . Introduction of metal walls at this positions will not change the

configuration of the field. If the entrance and exit of a waveguide is closed by two per-

pendicular conducting sheets apart a distance “`”, then a stable standing wave is formed

if the following condition is satisfied:

` = q
λz
2
, (4.15)

with q = 0, 1, 2, ....

Only certain well defined wavelengths λr (Resonant wavelengths) are present in the cavity:

1

λ2
=

1

λ2
c

+
1

λ2
z

, (4.16)

where λc is the cut-off wavelength. Putting ` = q λz
2

into the equation above we get,
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1

λ2
=

1

λ2
r

=
1

λ2
c

+
1

4
(
q

`
)2. (4.17)

Near to the resonance wavelength, λr, the quality factor ,“Q”, of the resonance cavity

is high and losses are low. These advantages are used in accelerators to generate high

accelerating voltages.

The cut-off wavelength for the rectangular waveguides as resonant cavities is λc = 2√
(m
a

)2+(n
b

)2
,

therefore the resonant wavelength would be:

λr =
2√

(m
a

)2 + (n
b
)2 + ( q

`
)2
, (4.18)

or in terms of discrete eigenfrequencies as,

ωm,n,p
c

=

√
(
mπ

a
)2 + (

nπ

b
)2 + (

pπ

`
)2. (4.19)

where m, n, q are integers and define the various mode in the resonant cavity. Practical

application have modes with m, n, q between 0 and 2.

Another type of resonance cavities which are the preferred design for producing accel-

erating voltages are cylindrical resonant cavities. Let’s consider the TM01 mode. The

resonant wavelength can be obtained by inserting the expression of the cut-off wavelength

into the general resonance condition,

λc =
2πb

x1

, (4.20)

where x1 is the first zero of the Bessel function (x1 = 2.40483) and b is the radius of the

cavity:

1

λ2
=

1

λ2
c

+
1

4
(
q

`
)2, (4.21)

1

λ2
= (

x1

2πb
) +

1

4
(
q

`
)2, (4.22)

then the resonance condition for a cylindrical resonant cavity,

λr =
1√

( x1
2πb

) + 1
4
( q
`
)2
, (4.23)

or
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ωm,n,p
c

=

√
(
χm,n
b

)2 + (
pπ

`
)2. (4.24)

with q = 0, 1, 2, ...;x1 = 2.405 is the first zero of the Bessel function. In cylindrical

accelerators the mode with q = 0 (TM010) is used. Then the resonance wavelength is:

λr =
2πb

x1

. (4.25)

It should be noted that for this mode TM010 ,“l” does not affect the resonant wavelength.

The fundamental mode of a pillbox cavity (TM010 mode) is given,

ω0,pillbox

c
≈ 2.405

b
. (4.26)

The fields of the TM010 mode (pillbox) are given by

Ez = E0 J0(kr) cos(ωt), (4.27)

Hφ = −E0

η0

J1(kr) sin(ωt), (4.28)

where m=p=0, n =1. p=0 indicates that there is no axial field dependence and con-

sequently the eigenfrequency is the cutoff frequency of the TM01 mode of the round

waveguide. In the following section we will discuss on the fields of TM modes in a general

way.

4.2 TMmnp

TM modes in a chain of cylindrical “pill-box” cavities provide accurate model for the

accelerating fields in more realistic accelerating structures. The properties of a single

cylindrical resonator are simple to treat analytically, and will be as a starting point for a

discussion of standing-wave accelerating structures. TM solution to the wave equation in

cylindrical coordinates has the form [4], with the sinusoidal time dependence removed:

Ez = Jm(kmnr) cos(mθ) cos(kzz), (4.29)

Er = p J ′m(kmnr) cos(mθ) sin(kzz), (4.30)
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Figure 4.4: The variation of the three indices m,n and p in TMmnp modes

Eθ =
p

r
Jm(kmnr) sin(mθ) sin(kzz), (4.31)

Bz = 0, (4.32)

Br = − i
r
Jm(kmnr) sin(mθ) cos(kzz), (4.33)

Bθ = −i J ′m(kmnr) cos(mθ) cos(kzz), (4.34)

where m, n, p are integers that describe the mode of the solution. The Jm are Bessel

functions of the first kind. J ′m is the derivative of the Bessel function. kz = πp
LCavity

,

ω2

c2
= k2

mn + k2
z and the “i” in the equations for B is

√
−1 and indicates that the E and

B fields are 90◦ offset from each other in RF phase. The integers in the TM Mode are

indicated as,

• “m” is the number of variation of field of the azimuthal variable φ, m = 0, 1, 2, ...
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Figure 4.5: Fields in a pillbox cavity for the TM010 mode

• “n” is the number of nulls in Ez along the radial direction, n = 1, 2, 3, ...

• “p” is the number of nodes of Ez along the z-axis, p = 0, 1, 2, ....

The variation of the three indices have been shown in Figure (4.4).

4.3 TM010

Consider a pill-box cavity with radius b and axial length `. The axial electric and az-

imuthal magnetic field components for the lowest order accelerating mode TM010 mode

are (see Fig.s (4.5) and (4.6)),

Ez = E0 J0(kcr) cos(ωt), (4.35)

Hφ = −E0

η0

J1(kcr) sin(ωt), (4.36)

where η0 = 377 is the impedance of free space and it’s a physical constant relating

the magnitudes of the electric and magnetic fields of electromagnetic radiation traveling

through free space and it has the exact value η0 = 376.73 Ohms, kc is cutoff wavenumber

and it has a definition kc = 2π
λc

= χ01/b and χ01 = 2.405 is the first root of J0.

The stored energy in pill-box cavity is given by:
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Figure 4.6: TM010 Mode

U =
ε0
2

ˆ
V

E2
zdV, (4.37)

where ε0 is vacuum permittivity, sometimes called the electric constant and has a value

of approximately 8.85 × 10−12F/m. Ez is the longitudinal electric field as given in Eq.

(4.35) and the integral should be taken over the volume of the cavity.

U =
ε0
2

ˆ b

0

ˆ 2π

0

ˆ `

0

E2
0J

2
0 (kcr) cos

2φ r dz dφ dr, (4.38)

where φ = ωt and J0(kcr) is the Bessel function of the first kind. integrating over the

internal surface of the cavity we have,

U =
ε0
2
E2

0`π

ˆ b

0

r J2
0 (kcr) dr, (4.39)

=
ε0
4
π ` E2

0 b
2(J2

0 (kcb) + J2
1 (kcb)),

=
ε0
4
π ` E2

0 b
2(J2

0 (χ01) + J2
1 (χ01)),

considering that J2
0 (χ01) ≈ 0 we have,
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U =
πε0
4

b2 ` E2
0 J

2
1 (kcb). (4.40)

or

U =
πε0
4

b2 ` E2
0 J

2
1 (χ01). (4.41)

If dA is the area element on the cavity walls, the average power dissipation per cycle is

P =
Rs

2

ˆ
A

H2
φdA, (4.42)

where Rs is defined as RF surface resistance and is given by

Rs =
1

σδ
, (4.43)

σ is conductivity of the material and δ is define as skin depth. Copper, with a room-

temperature resistivity of ρ = 1/σ = 1.7×10−8 ohm/m, is the most commonly used metal

for accelerator applications. For a good but not perfect conductor, fields and currents are

not exactly zero inside the conductor, but are confined to within a small finite layer at

the surface, called the skin depth. In a real conductor, the electric and magnetic fields,

and the current decay exponentially with distance from the surface of the conductor, a

phenomenon known as the skin effect. The skin depth is given by

δ =

√
2

σµ0ω
. (4.44)

Because of the skin effect, the ac and dc resistances are not equal. Physically, the skin

effect is explained by the fact that RF electric and magnetic fields applied at the surface of

a conductor induce a current, which shields the interior of the conductor from those fields.

Using Eq. (4.43) we find Rs =
√

µ0ω
2σ

, which shows that the ac or RF surface resistance

is proportional to the square root of the frequency. Let’s return to calculate average

power dissipation. “A” is the inner surface of a closed cavity and the dissipation can be

calculated in two parts, one the power dissipated of the cavity walls and the other, the

losses in the end caps of the cavity. The total dissipation is obtained from the summation

of the power losses in both the wall and the end caps.

PL = PLW + PLE, (4.45)
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PLW is power losses in the walls and it can be written after some calculation as PLW =

πRsa`
2

(E0

η0
)2 J2

1 (χ01) where Rs is surface resistance, a and ` are radius and length of the

cavity, respectively. η0 = 377 ohms and χ01 = 2.405 is the first root of J0. PLE is the

losses in the end caps of the cavity and it can be obtained from the procedure below

PLE =
Rs

2

ˆ b

0

ˆ 2π

0

(−E0

η0

J1(kr) sin(ωt))2rdr,

= πRs(
E0

η0

)2

ˆ b

0

rJ2
1 (kr)dr. (4.46)

To calculate the integration of the Eq.(4.46) we use equation below, integrating over the

cavity radius,

ˆ b

0

rJ2
1 (kcr)dr =

b

2
[bJ2

0 (kcb) + bJ1(kcb)−
2

k
J0(kcb) . J1(kcr)], (4.47)

considering that J2
0 (χ01) ≈ 0 and putting the integration result into the Eq. (4.46) we

get,

PLE =
πRsb

2

2
(
E0

η0

)2 J2
1 (kcb) =

πRsb
2

2
(
E0

η0

)2 J2
1 (χ01). (4.48)

Finally we obtained en equation for total power dissipated of the cavity for the funda-

mental mode of the resonance cavity, TM010,

P =
Rs

2

ˆ
A

H2
φ dA =

πbRsE
2
0

2η2
0

(b+ `)J2
1 (χ01). (4.49)

Quality factor:

Quality factor , Q, is the ratio of the stored energy (U) to the power lost on the wall (P)

in one RF cycle. It is one of the main cavity parameters and it is given by,

Q =
U

P/2πf
= ω

U

P
, (4.50)

substituting stored energy and power dissipated from Eq.s (4.41) and (4.49) to the equa-

tion above we have,

Q =
πfε0η

2
0

Rs

b`

b+ `
, (4.51)
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where the η0 is impedance in free space and is equal to η2
0 = µ0

ε0
, putting this equation

into the Eq.(4.51) we have,

Q =
πcµ0

λRs

b`

b+ `
, (4.52)

λ denotes the wavelength of the TM010 and it can be written as,

λTMnmp =
2√

(p
`
)2 + (χnm

πb
)2

=
2√

(χ01

πb
)2

= 2.61b, (4.53)

considering the relation cµ0 = 1√
ε0µ0

µ0 =
√

µ0
ε0

= η0 = 377 and λTM010 = 2.61b for pill-box

cavity and putting into the Eq.(4.52) we get,

Q =
1

Rs

453

1 + b
`

. (4.54)

The equation above has been plotted as we shows in figure (4.7). Horizontal axis is unitless

parameter and it is the ratio of cavity length to the cavity radius, b/`. Figure shows the

quality factor versus b/` (radius/gap) for a pill-box in the resonance frequency 11.424

GHz. As we observe the quality factor decreases as the ratio (b/`) increases with a scale

of f−
1
2 . Another quantity is used practically only for cavities and its called geometric

factor and it is independent of the losses in the cavity walls and only depends on the

geometry of the cavity. Geometric factor versus b/` (radius/gap) for a pill-box has shown

in the figure (4.8), it is independent of the losses and the frequencies of the cavity and

only depends on the geometry of the cavity,

G = QRs =
453

1 + b
`

. (4.55)

Shunt Impedance upon Quality factor(R/Q):

R/Q should be considered as a fundamental quantity (even if its notation suggests a

derived quantity); it is independent of the cavity losses and depends only on the cavity

geometry as it will be demonstrated later. It is given as R
Q

= V 2

ωU
. To calculate the R/Q

we need to obtain the voltage of acceleration,

Vacc =

ˆ +`/2

−`/2
E0 . e

jkz dz =
E0`sin(π`

λ
)

(π`
λ

)
, (4.56)

where E0 is the average longitudinal electric field of the cavity. Substituting the Eq.

(4.56) into the equation R
Q

= V 2

ωU
we get,

52



Figure 4.7: Figure (5.8). Quality factor versus b/` (radius/gap) for a pill-box for the resonance

frequency 11.424 GHz. As it can be seen the quality factor decreases as the ratio (b/`) increases

with a scale of f−
1
2 .

Figure 4.8: Geometric factor versus b/` (radius/gap) for a pill-box, it is independent of the

losses and the frequencies of the cavity and only depends on the geometry of the cavity.
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Figure 4.9: R/Q(Ohm) Vs. b/` (radius/gap) in a pill-box

R

Q
=

2η0

χ2
01J

2
1 (χ01)

[
sin( π

2.61x
)

( π
2.61x

)
]2

1

2.61x
, (4.57)

since 2η0
χ2
01J

2
1 (χ01)

≈ 483.75 then,

R

Q
= 483.75[

sin( π
2.61x

)

( π
2.61x

)
]2

1

2.61x
. (4.58)

As it has shown in the figure (4.9), this parameter (R/Q) has a maximum value when b
`

(radius/gap) is 1. In other word when radius of the cavity is equal to the length of the

cavity this figure of merit is maximum.

Another cavity parameter is shunt impedance. It can be obtained multiplying the R/Q

per Q.

R =
K

Rs

[
sin( π

2.61x
)

( π
2.61x

)
]2

453

1 + x

1

2.61x
, (4.59)

where K≈ 484.

Shunt impedance is one of the key parameter for the optimization of the accelerating

voltage when we are dealing with an available power. The maximum the shunt impedance

means the optimum the accelerating voltage. Although shunt impedance is a quantity

that is to be optimized from traditional point of view but it may not be the quantity to

optimize if the beam current is substantial and the voltage has to be excited by the same

beam current in the same impedance [18]. As we shows in Fig. (4.10) at b/` ≈ 1 shunt

impedance is maximum. One maybe interested to know these parameters for one meter,
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Figure 4.10: R(Ohm) Vs. b/` (radius/gap) for f=11.424 GHz in a pill-box

R

Q/L
=
Kf

c
[
sin( π

2.61x
)

( π
2.61x

)
]2. (4.60)

R

L
=
Kf

cRs

[
sin( π

2.61x
)

( π
2.61x

)
]2

453

1 + x
, (4.61)

where K≈ 484.

One of the most important parameters to choose when designing a linac is the operating

frequency. To make this choice, it is important to know how the cavity parameters vary

with the frequency. The accelerator parameters of interest which we have calculated have

a frequency scaling factor as follows,

Q ∝ f−
1
2 . (4.62)

R

Q
∝ f. (4.63)

R ∝ f
1
2 . (4.64)

4.4 TM110

Considering the same cavity as we have seen in the case of the lowest TM mode with

radius b and axial length `. The axial electric and azimuthal and radial magnetic fields
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Figure 4.11: Fields distribution in a pillbox cavity for TM110 Mode

components for the high order accelerating mode (TM110) are (see Fig. (4.11)),

Ez = E0 J1(kcr) sinφ, (4.65)

Hφ = −jE0

η0

J ′1(kcr) sinφ, (4.66)

Hr = j
E0

η0

J ′1(kr)

kcr
cosφ, (4.67)

where Ez is longitudinal electric field, E0 is average axial electric field, J1(kr) is bessel

function of the first kind, φ is the azimuthal angle, Hφ and Hr are the azimuthal and

radial magnetic fields, respectively. η = 377 Ohms, k = 2π
λ

= χ11/b and χ11 = 3.83 is the

first root of J1. The stored energy is given as follows,

U =
πε0
4

b2 ` E2
0 J

2
0 (χ11). (4.68)

The losses in the cylindrical wall for the TM110 mode can be written,

P =
Rs

2

ˆ
A

H2
φdA (4.69)

=
Rs

2

ˆ
A

(−E0

η0

J ′1(kcr) sin(φ))2dA, (4.70)
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where Rs is defined as RF surface resistance and has shown in Eq. (4.43). The total

dissipation as we have mentioned in the section of TM010, is obtained from the summation

of the power losses in both the walls and the end caps. Replacing azimuthal magnetic field,

Hφ from Eq. (4.66), taking the integral over internal cavity walls in cylindrical coordinate

and putting derivative of the first kind of Bessel function, J ′1(χ11) = 1
2
[J0(χ11)−J2(χ11)] =

J0(χ11) into the equation, the power dissipation of the walls can be written as,

PLW =
πRsb`

2
(
E0

η0

)2 J2
0 (χ11). (4.71)

Similarly, for the losses in the end caps we take the integral over end caps, substituing

J ′1(kr) = −J1(kr)
kr

+ J0(kr) and kr = χ11 in the Eq. (4.70) we obtain,

PLE = πRs(
E0

η0

)2

ˆ b

0

[
J2

0 (kcr)

(kcr)2
− 2J0(kcr) J1(kcr)

kcr
+ J2

0 (kcr)] r dr, (4.72)

=
πRsb

2

2
(
E0

η0

)2 J2
0 (χ11).

Total dissipation of TM110 mode is obtained from the summation of the power losses in

both the wall and the end caps such that

PL = PLW + PLE, (4.73)

=
πRs

2
(
E0

η0

)2 J2
1 (χ11)[b2 + bh].

Having stored energy and power dissipated from previous equations, the quality factor

can be written,

Q =
πcµ0

λRs

b`

b+ `
. (4.74)

To simplify the Eq.(4.74) we begin to write the relation between the wavelength and the

size of the cavity,

λTMnmp =
2√

(p
`
)2 + (χnm

πb
)2
, (4.75)

For the TM110 we have,
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λTM110 =
2√

(χ11

πb
)2
, (4.76)

λTM110 = 1.64b, (4.77)

considering this relation cµ0 = 1√
ε0µ0

µ0 =
√

mu0
ε0

= µ0 = 377 and λ = 1.64b for pill-box

cavity and putting into the Eq.(4.74) for quality factor we obtain,

Q =
πη0

1.64bRs

b`

b+ `
, (4.78)

=
722

Rs

`

b+ `
,

and at the end replacing x = b/` into the equation,

Q =
1

Rs

722

1 + b
`

. (4.79)

The geometric factor which is independent of the losses in the cavity and just depend on

the geometry of the cavity can be written,

G = QRs =
722

1 + b
`

. (4.80)

We perform the same procedure for TM110 that has been accomplished to calculate the

shunt Impedance upon quality factor(R/Q) and shunt impedance (R) for the lowest mode

TM010 and we obtain ,

R

Q
= K [

sin( π
1.64x

)

( π
1.64x

)
]2

1

1.64x
, (4.81)

R = K [
sin( π

1.64x
)

( π
1.64x

)
]2

722

1 + x

1

1.64x
, (4.82)

where K = 2η0
χ2
01J

2
1 (χ01)

≈ 317. As it shows in figure (4.12), (R/Q) has a maximum value

at b/`=1.5 for the TM110 mode and maximum value for shunt impedance is at a value a

little less than 1.5 as we can observe in figure (4.13).
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Figure 4.12: R/Q (Ohm) Vs. b/` (radius/gap) in a pill-box

Figure 4.13: R(Ohm) Vs. b/` (radius/gap) for f=11.424 GHz in a pill-box
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4.5 TM011

Considering the same pillbox cavity as we have calculated the characteristic parameters for

TM010 and TM110 but this time we would be interested to calculated those parameters for

another high order mode (TM011). The axial and radial electric and azimuthal magnetic

fields components for this mode are,

Ez = E0 J0(
χ01ρ

b
) cos(ωt), (4.83)

Eρ =
λ

2`
E0 J1(

χ01ρ

b
) sin(ωt), (4.84)

Hφ = −jE0

η0

J1(
χ01ρ

b
) cos(ωt), (4.85)

where η0 = 377 ohms, k = 2π
λ

= χ01/b and χ01 = 2.405 is the first root of J0. The stored

energy and power dissipation are the same as TM010 because the longitudinal electric and

azimuthal magnetic fields for TM010 and TM011 are the same and they can be written,

U =
πε0
4

` E2
0 J

2
1 (χ01). (4.86)

P =
Rs

2

ˆ
A

H2
φdA =

πbRsE
2
0

2η2
0

(b+ `) J2
1 (χ01). (4.87)

The quality factor is the ratio of the stored energy (U) to the power lost on the wall (P)

in one RF cycle and it would be,

Q =
πfε0η

2
0

Rs

b`

b+ `
, (4.88)

substitution of η2
0 = µ0

ε0
into the Eq.(4.88),

Q =
πcµ0

λRs

b`

b+ `
, (4.89)

as we know the relation between λ, b and ` for TM011 mode is λ = 2√
( 1
`
)2+(

χ01
πb

)2
where a

and ` are radius and length of the cavity respectively. Putting in the Eq.(4.89) we get,

Q =
188.5π

Rs

√
1 + (

χ01

πb
)2

1

1 + x
, (4.90)
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where x is the ratio of cavity radius to the length of the cavity (x = b
`
) and by multipli-

cation of Rs with quality factor, Geometry factor is obtained, which depends only in size

of the cavity, G = QRs = 188.5π
√

1 + (χ01

πb
)2 1

1+x
. To calculate the R/Q for this mode

we need to obtain the voltage of acceleration,

Vacc = E0J0(
χ01ρ

b
)
2π`cos(k`

2
)

π2 − k2`2
. (4.91)

We can simplify π2 − k2`2 by substitution of k and ` with the Eq.(4.92) and Eq.(4.93):

k =
2π

λ
, (4.92)

` =
λ

2

√
1 + (

χ01

πb
)2. (4.93)

To obtain the Eq.(4.93) for the length of the cavity we performed the following procedure,

starting from the relation between wavelength and the size of the cavity for TM011,

λ =
2√

1
`2

+ (χ01

πb
)2
, (4.94)

with some simplification and substituting x = b/` into the equation we have,

`2 =
λ2

4
[1 + (

χ01

πx
)2], (4.95)

and finally we have obtained the formula for the length of the cavity: ` = λ
2

√
1 + (χ01

πx
)2.

We return to our calculation to obtain the voltage of acceleration,

Vacc = |E0J0(
χ01ρ

b
)
2π`cos(k`

2
)

π2 − k2`2
|. (4.96)

Just to remind the process it should be noted that we are trying to simplify π2 − k2`2 by

substitution of k and L from Eqs.(4.92) and (4.93) in the equation,

π2 − k2`2 = −(
χ01

x
)2. (4.97)

By substituting the Eq.(4.97) into the Eq.(4.96) for voltage of accelerating we can simplify

as:

Vacc = |E0J0(
χ01ρ

b
)
2π`cos(k`

2
)

−(χ01

x
)2
|. (4.98)
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Figure 4.14: R/Q (Ohm) Vs. b/` (radius/gap) in a pill-box

And now we are able to calculate R/Q and R as follows,

R

Q
=

7.52π

c ε J2
1 (χ01)

x3

χ4
01

cos2(
√

(π
2
)2 + (χ01

2x
)2)√

π2x2 + χ2
01

. (4.99)

R =
7.52

c ε J2
1 (χ01)

x2

χ4
01

188.5π

Rs

x

1 + x
cos2(

√
(
π

2
)2 + (

χ01

2x
)2). (4.100)

As we can observe in Fig.s (4.14) and (4.15), (R/Q) and shunt impedance have their

maximum value at b/`=0.5 for the TM011 mode.

We can divide the length of the cavity in the formula for R/Q and obtain the shunt

impedance over quality factor per meter,

R

Q/L
=

15π2f

c2 ε J2
1 (χ01)

x4

χ4
01

cos2(
√

(π
2
)2 + (χ01

2x
)2)

π2x2 + χ2
01

. (4.101)

4.6 Summary

We have obtained the general expressions of the Quality factor, Shunt impedance upon

quality factor for TMmnl as follows,

Q(m,n, p, b, `) =

√
cµσ

2

√
b χmn

p + b
`

p = 0, (4.102)
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Figure 4.15: R(Ohm) Vs. b/` (radius/gap) for f=11.424 GHz in a pill-box

Q(m,n, p, b, `) =

√
cµσ

2

4√
χ2
mn + (πp

b

`
)2

√
b

p + 2b
`

p > 0,

(4.103)

R/Q(m,n, p, x = b/`) =
8

(2mm!)2

1

πεc

x χ
2(m−1)
mn

(
√
χmn + (πpx)2)2m+1

×[
sin(

√
(πp)2+(χmnx )2−πp

2 )

Jm+1(χmn)
]2 × 1 p = 0 and 2 p > 0

2 m = 0 and 1 m > 0
, (4.104)

where m, n, p are integers that describe the mode of the solution. The Jm are Bessel

functions of the first kind. TM Modes are described by three indices, m, n, p ,

m is the number of variation of field of the azimuthal variable φ: m = 0, 1, 2, ...,

n is the number of nulls in Ez along the radial direction n = 1, 2, 3, ...,

p is the number of nodes of Ez along the z-axis. p = 0, 1, 2, ....
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Chapter 5

RF Design and Optimization of

standing-wave three cell cavities

structure

5.1 RF Design

The necessity of the new devices with highest accelerating gradients in order to fabricate

compact accelerators at X-band for scientific and industrial applications requires a high

advance technology. To determine a reliable ultra high gradient accelerators an extensive

experimental and theoretical program are required and many laboratories are working on

this issue as they will be the future linear accelerators. In particular, systematic studies

on new materials and associated microwave technology for X-band accelerator structures

are in progress to achieve accelerating gradients well above 120 MeV/m.

In this framework, we designed and optimized a new accelerating structures working at

11.424 GHz. The structure is a standing wave linear structures with three cells and two

circular waveguides located at the beginning and the end of the structure. It has designed

in a manner that field gradient at the central cell be twice in order to maximize the RF

(radio- frequency) performance and consequently the effective shunt impedance at that

cell. Since the breakdown phenomenon is a challenging open problem, we decided to

optimize the structure as it shows in Fig. (5.1) to solve the breakdown problem. Indeed,

in order to improve the accelerating gradient or generally speaking the higher power

performance of X-band structures we must use materials with a high tolerance to surface
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Figure 5.1: Top: standard design for cell-to-cell brazing manufacturing; bottom: high

radius fillet are manufactured as for open structures. The optimized cavity has been

proposed by SLAC (V. Dolgachev)

fatigue because of avoiding the damage due to the pulsed heating effects, e.g., materials

with a higher fusion point, and to avoid the fabrication of soft metal devices as occurs

using conventional brazing techniques [22, 23, 25, 26, 27].

In order to characterize a normal conducting high accelerating structure with maximum

gradients operating at X-band with extremely low probability of RF breakdown, an elec-

troformed SW structures has been fabricated and characterized by SLAC and INFN with

collaboration of other institute around the world at 11.424 GHz, coated with Au-Ni and

with different surface roughness [11].

In this chapter we first introduce the procedure of designing RF High gradient structure

and then we will optimize the structure to improve characteristics of the model. The

numerical code employed for electromagnetic simulations is HFSS [15] (High Frequency

Structures Simulator). The geometric 3D model of the structure is given in Fig. (5.2).

All geometric parameters needed for the RF design are also shown. HFSS is a software

package, initially released by ANSOFT that allows to evaluate the 3D electromagnetic

field distribution inside a structure. In order to do this, it solves the Maxwell equations

in the frequency domain. The numerical method employed is the FEM (Finite Element

Method). HFSS divides the 3D model into a relatively large number of small domains,

that represent the mesh. The RF power is fed to the periodic structure flowing along

the structure while electromagnetic mode excited with 180◦ phase advance per cell is

similar to the TM010 in a circular waveguide. By applying proper boundary conditions
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it’s not necessary to simulate all structure because the code HFSS allows to simulate

periodic structures by only using some percentage of the structure. Then, a simulation

with the eigenmode solver finds the frequency at which the electromagnetic field satisfies

the phase shift desired. Exploiting the symmetry in the field, only a fraction of the full

cell is used for simulations and a condition of perfect magnetic boundary, called “perfect

H”, is applied. Electric and Magnetic field magnitudes have plotted in Fig.s (5.13) and

(5.15) for the TM010 mode of the high accelerating periodic structure. As we can observe

minimum value of the electric field and maximum value of the magnetic field are near the

outer surface of the cavity as it should have been for the TM010 mode. This SW High

gradient structure is a multi-cell standing-wave structure. The device is contain three

cells fed by a circular waveguide. As the central cell has a gradient twice higher than

the adjacent ones, it is used to match the RF power from the input circular waveguide.

The mode excited to design and test the structure is the π-mode. With this layout,

breakdowns occur predominantly in the central cell with the highest gradient cell while

the two side cells show surface conditions less perturbed due to lower RF power absorbed

per breakdowns [22, 23].

Usually, all cells have the same radius in the first place but when we are going to design

the structure in order to get two times longitudinal electric field at its maximum value in

the second (center) cell we should change the radius of the cells in a small amount and

finally the radius of the cells have a small different in one another. It has been possible

to exploit the symmetry of the structure so that, for simulation purposes, only some

percentage of the full device is considered. By doing so, computational time turned out

to be faster than the full geometry case. The material chosen for the surfaces of structure

is normal-conductivity and a boundary condition of “perfect H” is imposed.

5.2 Design Procedure

High accelerating periodic structure design analytically is a difficult task and it requires

field solver codes like HFSS that via this code we are able to solve numerically Maxwell’s

equations for the specified boundary conditions. The procedure for optimization of the

structure depends on the constrains of the problem. For example for maximizing the

effective shunt impedance of a single cavity (Reff = R×T 2, R is shunt impedance and T

66



Figure 5.2: The 3D model of a three cell cavities connected to the two circular waveguides

located at the beginning and the end of the structure. Two ports have been introduced in the

model.

is transit-time factor) transit-time factor should be increased by reducing the gap and for

this reason cavity shape may have a nose cone. If the gap is too small then the voltage gain

becomes small. With this example we were going to demonstrate that for an optimization

of a structure a plan is needed for designers and this plan follows some rules. The design

of the high accelerating structure in our case mainly follows three steps:

• choice of geometric dimensions in order to set the cavity resonant frequency at

fπ = 11.424 GHz, in the π-mode operation,

• achievement of a field flatness condition, that is two times of the field amplitude in

the second cell,

• achievement a good reflection coefficient (S11) for the structure.

The algorithm used for the achievement of the specifications listed above employs a linear

system of partial differential equations, solved iteratively as follows:

∂f

∂b1

∆b1 +
∂f

∂b2

∆b2 +
∂f

∂b3

∆b3 +
∂f

∂a
∆a = ∆f, (5.1)

∂ff1

∂b1

∆b1 +
∂ff1

∂b2

∆b2 +
∂ff1

∂b3

∆b3 +
∂ff1

∂a
∆a = ∆ff1, (5.2)
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∂ff2

∂b1

∆b1 +
∂ff2

∂b2

∆b2 +
∂ff2

∂b3

∆b3 +
∂ff2

∂a
∆a = ∆ff2, (5.3)

∂Γ

∂b1

∆b1 +
∂Γ

∂b2

∆b2 +
∂Γ

∂b3

∆b3 +
∂Γ

∂a
∆a = ∆Γ, (5.4)

where the differential terms represent the sensitivity of the resonant frequency (f), field

flatness (ff1,ff2) and reflection coefficient (Γ) with respect to the cell radii b1, b2 , b3

and iris radius “a” . These radii are considered the only geometric variables in order to

speed the solution of the system, thus they are the unknown parameters of the system.

The ∆f , ∆ff1, ∆ff2, and ∆Γ are the differences between the values obtained at each

iteration and the required ones:

∆f = fiteration − foptimum, (5.5)

∆ff1 = ff1iteration − ff1optimum, (5.6)

∆ff2 = ff2iteration − ff2optimum, (5.7)

∆Γ = Γiteration − Γoptimum, (5.8)

where we assume foptimum = 11.424GHz, ff1optimum = ff2optimum = 2, and 20log10Γoptimum =

−45dB.

The linear partial differential equations above are the instrument that we can employ to

achieve fast optimized and required objective with the help of HFSS. For example if our

goal is to find a desired field flatness at a certain frequency we can use three equation of

that system as follows,


∂f
∂b1

∂f
∂b2

∂f
∂b3

∂ff1
∂b1

∂ff1
∂b2

∂ff1
∂b3

∂ff2
∂b1

∂ff2
∂b2

∂ff2
∂b3




∆b1

∆b2

∆b3

 =


∆f

∆ff1

∆ff2

 (5.9)

It should be noticed that we removed the effect of aperture radius on field flatness because

as we will show later this effect is small and it can be negligible while it has a strong

contribution when we are going to achieve a minimum reflection coefficient.
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First matrix in the linear partial differential equations is called sensitivity matrix that we

recall it from the equation above as,


∂f
∂b1

∂f
∂b2

∂f
∂b3

∂ff1
∂b1

∂ff1
∂b2

∂ff1
∂b3

∂ff2
∂b1

∂ff2
∂b2

∂ff2
∂b3

 (5.10)

By the sensitivity matrix or mathematically speaking the Jacobian matrix we are able to

find an interval in which we choose three optimized parameter for the cell radii (b1, b2,

b3) after few iterations. The procedure to find an optimized cell and iris radii will be

brought later.

As an example we are going to find how much the cavity radii should be changed to

get an optimized frequency and field flatness when we are in a condition that for b1 =

10.634, b2 = 10.551, b3 = 10.927 with the corresponding frequencies 11.4257, 11.4284

and 11.4261, respectively. Field flatness also are ff1 = 0.5028, 0.3897, 0.4530 and ff2 =

0.5266, 0.5280, 0.5746 , respectively for b1, b2 and b3. Substituting the preceding results

we can find the sensitivity matrix. Replacing all these values into the Eq. (5.9) and with

the help of Jacobian matrix and running some simulation we obtain the following results:

b1 = 10.633 mm, b2 = 10.550mm and b1 = 10.926. The resonant frequency is at 11.424

GHz and the phase shift between the cells assures the build-up of the π mode.

For a pill-box or periodic structures with array of pill-boxes operating at a given resonant

frequency, frequency varies inversely with the cavity radius. As it has shown in Fig.(5.3)

the resonant frequency vary inversely with the cell radii.

The peak surface electric field and magnetic field are two important constraints for the

cavity designers. In normal-conducting cavities, a typical ratio of peak surface electric field

Es to average axial field E0 is 6, otherwise the value more than that can result in electric

breakdown [4]. To avoid the electric breakdown we choose three cells. The central cell

has a gradient twice higher than the adjacent ones. With this layout, breakdowns occur

predominantly in the central cell with the highest gradient cell while the two side cells

show surface conditions less perturbed due to lower RF power absorbed. The quantity

normalized field flatness, that we’ll refer to as “ff” further on, can be defined as ff =

Em
EM
× 100% , where Em and EM are the minimum and maximum value of the amplitude

of the axial electric field. We will define two field flatness, one is the ratio between the

amplitude of the axial electric fields of central cell to the first cell which we denoted
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Figure 5.3: Frequency mode as function of the cell radii of the SW structure for 11.424 GHz.

Green, red and blue points are the frequency mode of the first, second and third cells, respec-

tively.

as “ff1” and the other field flatness would be “ff2” which is nothing other than the

ratio between amplitude of the central field to the field of the third cell. To achieve

ff1 = ff2 = 2 for our purpose we have to change the radius of the cells in a small amount

and finally the radius of the cells have a small different in one another. The variation

of field flatness with the cell radii has shown in Fig. (5.4). As it can be observed, ff1

and ff2 have a small fluctuation by changing the radius of the first cell. In some points

we do not have a variation in field flatness. It should be noticed that reducing a field

flatness in a cell radius for example when the first cell has a radius equal 10.638 mm, the

corresponding field flatness is increasing to fix the axial electric field constant at a certain

iris (aperture) radius.

After achieving the highest gradient cell at the central cell with the ratio two times respect

to the other cells as it could be seen in Fig (5.5), it is time to decrease the reflection

coefficient at the entrance of the cells in the waveguide to raise the amplitude of the

axial electric fields inside the cells. The aperture radius is usually a key parameter to

satisfy the beam dynamics requirement for high transmission coefficient. Changing the

iris radius coupled between the waveguide and first cell is a convenient key and only way to
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(a)

(b)

(c)

Figure 5.4: Field flatness as function of the cell radii of the SW structure for 11.424 GHz. (a),

(b) and (c) are the field flatness as function of the first, second and third cell radius , respectively.

Red and blue points are ff1 and ff2, respectively.
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Figure 5.5: Amplitude of the axial electric field Ez [V/m] at the resonance frequency fπ =

11.4228 GHz

achieve a minimum reflection coefficient (Γ) or on the other word a maximum transmission

coefficient (T ). In practice, the most commonly quoted parameter for reflection coefficient

is s11. S11 represents how much power is reflected from the waveguide, and hence is known

as the reflection coefficient . It is common to express ratios in physics and engineering in

decibels which calculates as 10 times the logarithm (base 10) of some base power ratio.

The same thing can be done for s11 but as s11 is the ratio of voltages, so power is based

on the square of the voltage and converting a voltage ratio to decibels we can write

s11 = 20 log10Γ. If s11=0 dB, then all the power is reflected from the waveguide nothing

is passed to the cell cavities. If s11=-10 dB, this implies that almost 0.3 of the incident

waves will be reflected. s11=-40 dB means 0.01 of the waves are reflected and majority of

the waves will be delivered to the cavities.

Fig. (5.6) implies that at the frequency 11.4247 GHz, where s11 ≈-30 dB we have the

minimum reflection from the iris coupled between the waveguide and the first cell and

consequently the transmission from that aperture would be at its maximum value at

that frequency. The accelerator bandwidth can also be determined from the figure. The

bandwidth can be obtained either from s11 or s21 in the case of under coupling where
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Figure 5.6: Amplitude of Reflection coefficient, s11 as a function of the frequency simulated

by HFSS.

coupling coefficient (β) is less than 1. In the case of over coupling it is measured from

s21. In our case we can measure it with both of them. If the bandwidth is defined as the

frequency range where s11 is to be less than -3 dB, then the bandwidth would be roughly

3 MHz, with 11.4263 GHz the high end and 10.4233 GHz the low end of the frequency

band. Fig (5.7) shows the same result as we discussed for s11 but we have maximum

transmission coefficient at the frequency operation, 11.4247 GHz.

Fig (5.8) shows the phase shift of the on-axis electric field inside the SW section. As we

can observe the phase shift between each cells is π. Fig (5.9) shows the dependence of s11

to the aperture radius. As it can be observed from the figure increasing the iris radius, the

reflection coefficient decrease until to the certain radius which has the minimum reflection

from the waveguide and maximum transmission to the structure. On the other hand after

that point by increasing the iris radius, reflection coefficient will be increased and we

are in a condition of low transmission. This point is called critical coupling and the

structure for the iris radius less than that point is under coupling condition and for the

iris radius bigger than that point is over coupling. For our convenient of interpretation
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Figure 5.7: Amplitude of Transmission coefficient, s21 as a function of the frequency

Figure 5.8: Phase of the on-axis electric field inside the SW section.
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Figure 5.9: Reflection coefficient as a function of iris radius.

of the matching problem we can use Smith chart. The Smith chart as we can observe in

Fig. (5.10) is a polar plot of complex reflection coefficient. A Smith chart is developed

by examining the load where the impedance must be matched. Instead of considering the

impedance we express its reflection coefficient which is more useful when we dealing with

RF frequencies. As we can observe from the Fig. (5.10) our structure at the Γ ≈ −30

will be at the critical coupling.

5.2.1 Choice of iris thickness and radius

The irises with a radius “a” are the holes through which the TM01 , of an equivalent

circular waveguide, propagates. After taking into account characteristic results on the

SW structure like minimum reflection coefficient from the waveguide and desired field

flatness at the desired frequency which is nothing other than the resonant frequency we

chose:

• Iris radius= 4.18 mm

• Iris thickness= 2.6 mm
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Figure 5.10: Smith chart
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5.2.2 Geometric dimensions of the input waveguide

An X-band standard rectangular waveguide is used to fed the RF power into the structure

through the coupler cell. The geometric dimensions are:

• a= 10.16 mm

• b= 22.86 mm

All of the other dimensions are given in the following sections, since derived from opti-

mization methods achieved by using numerical codes like HFSS.

5.3 Tuning of the structure

• Frequency Tuning

• Field-Faltness Tuning

• S11 Tuning

A very small antenna (SMA antenna) is used as a probe inside the structure and is posi-

tioned in the cathode plate in a location such that it is able to excite the electromagnetic

field inside the cavity but, at the same time, not to alter the field distribution.

In the simulations carried out with HFSS with the “driven solution” solver, two ports

have been defined, as shown in Fig. (5.2). Once the RF power from the input waveguide

excites the field inside the structure, the easiest way to know the frequency is measuring

the reflection coefficient between port 1 and port 2. This coefficient is known as the s11 as

we have mentioned before and it is provided by HFSS, after performing a frequency sweep

around the solution frequency. The reflection coefficient s11 is plotted in Fig. (5.6). The

three peaks refer to the 0-mode with frequency f1, π
2
-mode with frequency f2 and π-mode

with frequency f3 representing the three resonant modes inside the three-cell cavities. It

is evident then that f3 is the frequency which the full structure needs to be tuned at. In

the next subsection, a method for achieving the frequency change is explained.
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5.4 Adjustment of the structure cells radii

By changing the dimensions of the cell radius we can change the resonant frequency of the

structure. All other dimensions can remain unmodified. Fig (5.3) shows the variation of

the cell radii versus the frequency. The frequency decreases by increasing the cell radius

and this would be an easy way to tune the frequency of interest. In our case the fre-

quency of π mode should be tuned and as it has mentioned before f3 is the corresponding

frequency for this mode.

5.5 Adjustment of the coupling iris

In order to enhance the amplitude of the field inside the SW section or in the other word

to minimize the reflection coefficient from the waveguide, the radius “a” of the coupling

iris can be changed. It should be noted that increasing and decreasing the iris radius

has a small effect on frequency shift and it will be a way when we need to minimize the

reflection coefficient and simultaneously maintaining almost constant the frequency of the

structure. The optimal iris radius in which the transmission of energy from waveguide to

the cells is maximum is “a = 4.18 mm”. The optimization results are the following:

• R1 = 10.639 mm

• R2 = 10.556 mm

• R3 = 11.932 mm

5.6 Final tuning of the structures

The value of the frequency f3, obtained in the last section, is slightly higher than project

specification in which f3 it’s better to be 11.424 GHz, at which the reflection coefficient

s11 has to reach its minimum value. As discussed in previous sections, the s11 already

shows low values around the project frequency. Thus, we proceed to tune the frequency

by adjusting the SW radii. Using the value R2 = 10.558 mm, we obtain a resonance at

f3 = 11.4245 GHz, that satisfies the specifications. Nevertheless, a change non negligible

is observed in the reflection coefficient. It follows that it is not possible to achieve the

78



desired value for the resonance frequency and minimum of reflection coefficient at the

same time by modifying only the SW section dimensions.

Fig. (5.11) shows the electric and magnetic field distribution along the structure. The

electric field has its maximum value on the propagation direction near the z axis in the

central cell where the field gradient is twice respect to other cells. (b) Magnetic field

distribution along the structure. The magnetic field has its maximum value near the

surface of the central cell and has its minimum value near the propagation axis.

Fig. (5.12) shows 2D design has been performed using SUPERFISH code. As we can

observe electric field has its maximum value on axis. The characteristics results from

SUPERFISH code have shown in Table (5.1).

5.7 Optimization of standing-wave three cell cavities

structure

RF cavities designers or generally speaking accelerator structure designers when dealing

with high frequency operating structures, they are always looking for a way to minimize

breakdown probability to avoid damages due to the electrical breakdown or microcracks

due to rf pulsed heating. So this phenomena (electrical breakdown) depends on many

parameters. Materials used for the structure, geometry and surface processing technique

are some of the parameters that affect on the breakdown and expanding our knowledge

about these parameters help us to predict breakdown behavior of practical structures.

As for the open structure discussed in the previous section, following the international

trend, physicists and engineering are attempting to improve the performance of X-band

accelerating structures in terms of manufacturing approaches alternative to brazing such

as electroforming, or electron beam welding (EBW) [24, 28, 52, 55, 56, 57, 58]. INFN with

the collaboration of SLAC have designed and fabricated a three cells standing wave copper

structure operating at 11.424 GHz sealed with the EBW approach and they also manu-

factured an accelerating sections using the Tungsten Inert Gas (TIG) brazing technique

which was an innovative technological process [52, 55]. we continued the studies of open-

like three cells standing wave structures . In order to operate in a high gradient field this

structure has been optimized. Figure (5.13) shows the electric field of an open-like 3-cells

cavities. Proposed layouts between two sections for an open X-band three-cells structure
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(a)

(b)

Figure 5.11: Electric and Magnetic field distribution. (a) Electric field distribution along

the structure. The electric field is at its maximum value on the propagation direction

near the z axis in the central cell where the field gradient is twice respect to other cells.

(b) Magnetic field distribution along the structure. The Magnetic field is maximum near

the outer surface of the central cell and has its minimum value near the propagation axis.
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Figure 5.12: 2D design has been performed using SUPERFISH code.

Figure 5.13: Comparison of the layouts between two sections for an open X-band three-cells

structure cavity designed for X-band breakdown tests and for electroforming manufacturing.

Top: standard design for cell-to-cell brazing manufacturing; bottom: high radius fillet are man-

ufactured as for open structures. The optimized cavity has been proposed by SLAC (V. Dol-

gachev)
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Frequency 11.424 GHz

Field Normalization (norm=1)[MV/m] 100

Normalization factor for E0 = 141.5MV/m 2357

Cavity Length [mm] 13.13

Number of cells 1

Beam hole radius a [mm] 3.75

Iris Thickness h [mm] 2.6

Transit time factor T 0.707

Q-value [x1000] 9553

Stored Energy [mJ] 225.13

Shunt Impedance [MOhm/m] 170

Z*T*T[MOhm/m] 85

Shunt Impedance/Q [Ohm] 266

Esurf−peak [MV/m] at Z, R=0.0292, 0.3806)[MV/m] 217

Hsurf−peak [MA/m] at Z, R=0.13, 0.8442)[MA/m] 0.332

Kilpatrick factor 2.49

Ratio of peak fields Bmax/Emax[mT/(MV/m)] 1.9171

Peak to average ratio Emax/E0 1.5389

Surface resistance[mohm] 27.8

Power dissipation [kW] 1691

Table 5.1: The characteristics results from SUPERFISH code
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Figure 5.14: Modified pointing vector distribution

cavity designed for X-band breakdown tests and for electroforming manufacturing. The

rounding between the cell and flat surface have been specifically studied to reduce the

surface maximum magnetic field and, by consequence, the pulse heating in this critical

region. As showed in Figure (5.1) the radius of the optimized rounding is equal to 0.5

mm. Moreover, the transverse dimension of the cavity has been optimized to reduce the

maximum electric and magnetic field. Fig.s (5.14) and (5.15) show the modified pointing

vector distribution and magnetic field distribution. For a ratio of 0.875 between the x

dimension and the y dimension the high gradient figures of merit have been minimized.

The electric maximum surface field obtained is 190 MV/m, the magnetic maximum field

0.3 MA/m and the modified Poynting vector 2.11 MW/mm2 . In Fig. (5.13) we show a

three cells X-band standing wave structure designed for breakdown study at high power.

This structure has a rounded profile in order to increase the quality factor Q. In table (5.2)

we compare two designs for electroforming manufacturing. This approach has also been

used to design a three cells W-band device at SLAC. In Table (5.2) it can be observed

that in the case of rounded cavities (Design 2), the structure has the higher unloaded

quality factor and higher effective shunt impedance comparing with Design 1. It should

be informed that the rounded solution has also been studied while scaling for the 110 Ghz

to solve the breakdown phenomena [42].

The following results have obtained,
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Figure 5.15: Magnetic field distribution

π mode RF parameters Design 1 Design 2

Structure Length [mm] 79.3 79.3

Frequency [GHz] 11.4234 11.4234

Pin [MW] 10 10

RF pulse length [ns] 400 400

Unloaded quality factor (Q0) 9359 9950

β coupling 1.0129 1.0145

Stored Energy [J] 1.076 1.098

2 ∗Rsh ∗ T 2 [MOhm/m] 83.3 92.88

Transit time factor 0.62 0.65

Epeak−on−axis [MV/m] 380 380

Esurf−peak [MV/m] 427 422

Hsurf−peak [MA/m] 0.63 0.64

Pulse Heating [◦C]1 108 111

Scmax. [W/µm2]2 12.7 12.5

Table 5.2: Comparison of two design results for electroforming manufacturing.
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• the effective shunt impedance is larger for high radius fillet than standard design.

• there is a small difference for transit time factor between two cases.

• β coupling is higher in the case of high radius fillet design.

• standard design has less stored energy respect to the high radius fillet design.

1 RF Pulsed Heating: A metal can be heated from the magnetic field on its surface

due to high power pulsed RF and this causes microcracks and surface roughening when

the thermal stresses induced passing from the elastic limit repeatedly. The repetition or

cyclic causes fatigue which is called cyclic fatigue. To avoid the creation of microcrack and

surface roughening we should limit the maximum magnetic field on the surface and this

limitation lead us to a maximum achievable accelerating gradient in a normal conducting

accelerator structure and this procedure can be quantified by RF Pulsed Heating process.

Finally, it should be noted that RF pulsed heating causes a temperature gradient on the

metal due to surface magnetic field. The peak surface magnetic field is nearly [41],

∆T =
|H|||2

√
t

σδ
√
πρCεk

, (5.11)

where

t: pulse length

σ: electrical conductivity

δ: skin depth

ρ: density

Cε: specific heat

k: thermal conductivity,

as ∆T should be below the upper limit of 60◦ to avoid the breakdown phenomena and

cyclic fatigue due to the periodic thermal stress induced which are larger than the elastic

limit, we should decrease the input power or RF pulse length. It should be noted that to

obtain an acceptable pulsed heating we have to decrease at least 50% of the pulse length

from 400 ns to 200 ns or 25% of the surface magnetic field on the metal from 0.64 MA/m

to 0.48 MA/m.
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2 Modified Poynting vector estimated on the whole structure. Modified Poynting vector

is a new local field quantity which gives high gradient performance limit of accelerating

structures in the presence of vacuum rf breakdown and is given [59],

Sc = Re{S̄}+ gc . Im{S̄}, (5.12)

where Re{S̄} is the real part and describes active power flow and Im{S̄} describes reactive

power flow and is nothing other than the imaginary part of the Poynting vector. gc is the

weighting factor and it’s equal to 1/6.
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Chapter 6

Cavity Perturbation Theories,

Techniques and Measurements

In practical applications small changes of the cavity’s shape is a technique to modify

the cavity resonator by changing the resonant frequency. The other technique which is

similar to changing of the shape of the cavity is inserting of small pieces of dielectric or

metallic materials. Introducing a small dielectric sample into the cavity will impose a shift

in resonant frequency and by measuring this resonant frequency shift we can determine

dielectric constant of the material.

Perturbation method is an approximation method which is used to calculate the effect

of such a perturbations on the cavity performances which assumes that the actual fields

of a cavity with a small shape or material perturbation is almost equal to those of the

unperturbed cavity. Thus, this technique is similar in concept to the perturbational

method for treating loss in good conductors, where one assumption we are going to use

is that there is not a significant difference between the fields of a component with good

conductors and one with perfect conductors. In this section we will derive expressions

for the approximate change in resonant frequency when a cavity is perturbed by small

changes in the material filling the cavity, or by small changes in its shape.

6.1 Material Perturbations

In cavity material perturbation method, a perturbation will impose by changing the per-

mittivity or permeability of the material filling the cavity. By writing the Maxwell’s curl
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Figure 6.1: A resonant cavity perturbed by a change in the permittivity or permeability

of the material in the cavity. (a) Original cavity. (b) Perturbed cavity

equations before and after the forcing perturbation and some manipulations we will obtain

an equation for the resonant frequency shift relating to the field Ē0 , H̄0 which are the

fields of the original cavity. One assumption is that the actual fields of a cavity imposing

a material perturbation are not greatly different from those of the unperturbed cavity, Ē

, H̄. The procedure is as follows,

Maxwell’s curl equations can be written as

∇× Ē0 = −jω0µH̄0, (6.1)

∇× H̄0 = jω0εĒ0, (6.2)

where Ē0 , H̄0 and ω0 are the fields and the resonant frequency of the original cavity. By

small changing in permittivity and permeability of the material inside the cavity they can

be written as

∇× Ē = −jω(µ+ ∆µ)H̄, (6.3)

∇× H̄ = jω(ε+ ∆ε)Ē, (6.4)

where ω is the resonant frequency of the perturbed cavity and Ē , H̄ are the fields of the

perturbed cavity.

Now multiply the conjugate of Eq. (6.1) by H̄ and multiply Eq. (6.4) by Ē∗0 and sub-

tracting these equations using the vector identity we have,

∇ . (Ē∗0 × H̄) = jω0µH̄ . H̄∗0 − jω(ε+ ∆ε)Ē∗0 . Ē. (6.5)
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Similarly, the same procedure in the case of Eq.s (6.2) and (6.3) we have,

∇ . (Ē × H̄∗0 ) = −jω(µ+ ∆µ)H̄∗0 . H̄ + jω0εĒ
∗
0 . Ē, (6.6)

now adding Eq. (6.5) and Eq. (6.6), integrate over the volume ,

ˆ
V0

∇ . (Ē∗0×H̄+Ē×H̄∗0 )dν = j

ˆ
V0

{[ω0ε−ω(ε+∆ε)]Ē∗0 . Ē+[ω0µ−ω(µ+∆µ)]H̄∗0 . H̄}dν,

(6.7)

using the divergence theorem we obtain,

ˆ
V0

∇ . (Ē∗0 × H̄ + Ē × H̄∗0 )dν =

˛
S0

(Ē∗0 × H̄ + Ē × H̄∗0 ) . ds̄ = 0, (6.8)

where the surface integral is zero because n̂× Ē = 0 on S0, then we have,

j

ˆ
V0

{[ω0ε− ω(ε+ ∆ε)]Ē∗0 . Ē + [ω0µ− ω(µ+ ∆µ)]H̄∗0 . H̄}dν = 0, (6.9)

rewriting the equation above gives,

ω − ω0

ω
=
−
´
V0

(∆εĒ . Ē∗0 + ∆µH̄ . H̄∗0 )dν´
V0

(εĒ . Ē∗0 + µH̄ . H̄∗0 )dν
, (6.10)

The assumption we are going to use for the equation above is that ∆ε and ∆µ are small

because in general we do not know Ē and H̄ but instead we have Ē0, H̄0. By this assump-

tion we can approximate the perturbed fields and ω with original field of unperturbed

field and resonant frequency. Then the equation above can be written as,

ω − ω0

ω
≈
−
´
V0

(∆ε|Ē0|2 + ∆µ|H̄0|2)dν´
V0

(ε|Ē0|2 + µ|H̄0|2)dν
. (6.11)

From the equation above we can find that decreasing ε or µ will increase resonant fre-

quency. As permittivity describes the amount of charge needed to generate one unit of

electric flux in a particular medium and a charge in the material with low permittiv-

ity has more electric flux than the material with high permittivity and more flux means

less stored electric energy. So, the increase in resonant frequency can be related to the

decrease in stored energy of the perturbed cavity. Likewise permeability is a degree of
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Figure 6.2: A resonant cavity perturbed by a change in shape.(a) Original cavity. (b)

Perturbed cavity.

magnetization that a material obtains in response to an applied magnetic field and it can

be related to the stored magnetic energy.

6.2 Shape Perturbations

In cavity shape perturbation theory, a perturbation will impose by changing the size of

a cavity or inserting a tuning screw. The same assumption we have considered for the

material perturbations, should be assumed in the case of shape perturbation. Maxwell’s

curl equations can be written for the two cases as

∇× Ē0 = −jω0µH̄0, (6.12)

∇× H̄0 = jω0εĒ0, (6.13)

∇× Ē = −jωµH̄, (6.14)

∇× H̄ = jωεĒ, (6.15)

where Ē0 , H̄0 and Ē , H̄ are the fields of the original cavity and perturbed cavity,

respectively. ω0 is the resonant frequency of the original cavity and ω is the resonant

frequency of the perturbed cavity.

Now multiply the conjugate of Eq. (6.12) by H̄ and multiply Eq. (6.15) by Ē∗0

H̄ . ∇× Ē∗0 = jω0µH̄ . H̄∗0 , (6.16)
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Ē∗0 . ∇× H̄ = jωεĒ∗0 . Ē, (6.17)

Subtracting these two equations and using the vector identity we have,

∇ . (Ē∗0 × H̄) = jω0µH̄ . H̄∗0 − jωεĒ∗0 . Ē, (6.18)

similarly, by multiply the conjugate of Eq. (6.13) by Ē and multiply Eq. (6.14) by H̄∗0

and subtracting the equations and using the vector identity we have,

∇ . (Ē × H̄∗0 ) = −jωµH̄∗0 . H̄ + jω0εĒ
∗
0 . Ē0, (6.19)

now adding Eq. (6.18) and Eq. (6.19) ,integrate over the volume V,

ˆ
V

∇ . (Ē∗0 × H̄ + Ē × H̄∗0 )dν = −j(ω − ω0)

ˆ
V

(εĒ . Ē∗0 + µH̄ . H̄∗0 )dν, (6.20)

using the divergence theorem we obtain,

ˆ
V

∇ . (Ē∗0 × H̄ + Ē × H̄∗0 )dν =

˛
S

(Ē∗0 × H̄ + Ē × H̄∗0 ) . ds̄ =

˛
S

Ē × H̄∗0 . ds̄, (6.21)

=

˛
S0

Ē × H̄∗0 . ds̄−
˛

∆S

Ē × H̄∗0 . ds̄ = −
˛

∆S

Ē × H̄∗0 . ds̄, (6.22)

where n̂× Ē = 0 on S and n̂× Ē0 = 0 on S0. Using this results we have,

ω − ω0 =
−j
¸

∆S
Ē∗0 × H̄ . ds̄´

V0
(εĒ . Ē∗0 + µH̄ . H̄∗0 )dν

, (6.23)

as we don’t have the value of Ē and H̄, this equation won’t be a useful equation to relate

the resonant frequency to the shape perturbations. But, by making an assumption that

∆S is small, we can approximate the perturbed fields Ē, H̄ by the original fields Ē0, H̄0

,and ω in the denominator by ω0, to give the fractional change in resonant frequency as

ω − ω0

ω
≈
−
´

∆V
(µ|H̄0|2 − ε|Ē0|2)dν´

V0
(ε|Ē0|2 + µ|H̄0|2)dν

=
∆Um − δUe
Um + Ue

, (6.24)

where Um and Ue are the stored magnetic energy and electric energy, respectively and

∆Um and ∆Ue are their changes due to the shape perturbation. According to the equation

above increasing or decreasing the volume of the cavity causes increase or decrease of the
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resonant frequency. The procedure for material and shape perturbation has been brought

in this thesis from the author of the book with Ref. [19].

6.3 Theoretical aspects-Cavity Perturbation

By introducing a small sample of dielectric material into a resonant cavity, the resonant

frequency of the cavity is changed as well as the quality factor Q of the cavity. These effects

on the parameters are usually quantified and in the other word the quality factor and shift

in resonant frequency can be found in the measurement of the dielectric properties of the

sample. The shift in resonance frequency is considered to be mainly correlated to the

dielectric constant while the change in the Q factor is associated to the dielectric loss.

6.4 Quality factor and cavity resonator

Kraszewski and Nelson in 1992 experimentally have shown that when an object is in-

troduced in the cavity, the resonance frequency will decrease and the Q factor will be

lowered, causing a broader, flatter resonance curve [29]. In the other word, the sharpness

of the peak in the resonance curve can be quantified by the quality factor. Figure (6.3)

shows an example of the resonant curve with and without a perturbing dielectric object

in the cavity. The Q-factor of the resonator is generally defined as:

Q =
ωrUmax
P

, (6.25)

where ωr is the resonant frequency and Umax is energy received by the resonator and

P denotes the power loss converted by the resonator. With cavity resonators, one can

achieve a very high unloaded Q, with normal conducting materials up to many times

104. As we have shown in Table (2.1) the quality factor of the cavity resonator decreases

proportionally with f−1/2. This means that higher frequency has lower quality factor.

The introduction of the dielectric in the resonator increases its resonant wavelength. The

measurement is made by placing a sample completely through the centre of a waveguide

that has been made into a cavity. The cavity is placed with central holes on either side.

These irises give the cavity a very narrow frequency range for the transmission of the

energy. Changes in the center frequency and width of this transmission characteristic,
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Figure 6.3: Example of a resonant curve with the perturbing dielectric object (2) and

without the object (1) [29].

when a sample is inserted, provide information to calculate the dielectric constant and

loss factor of the sample.

6.5 Measurements on the prototype

As it has mentioned before, an electroformed SW structure in normal conducting RF pow-

ered particle beam accelerator fabricated and characterized by SLAC and INFN to work

at 11.424 GHz with maximum sustainable gradients with extremely low probability of RF

breakdown, coated with Au-Ni and with different surface roughness [11]. This structure

has been manufactured by Media Lario Technologies s.r.l. (Italy) and Comeb s.r.l (Italy)

. The device is made due to a non-uniform gold coating in the high magnetic areas or to a

diffusion of Ni inside the gold plating. Improving the quality of the gold coating, this type

of structures should exhibit better performances than Cu-based structures. This mecha-

nism has been experimentally observed looking at the autopsy of the Au-Ni electroformed

structure manufactured in Frascati. In Fig. (6.4) [11] are compared photographs showing

the cells of this Au-Ni electroformed structure whose RF test parameters are summarized

in Table (6.1) [11].Three ports are included: the two waveguides for input/output of the

RF power through the SW part, and an SMA antenna located at the cathode plate for

tuning of the SW section.

Fig (6.5) shows the prototype of the High gradient accelerating structure has been ma-

93



Figure 6.4: Images showing the damage of the iris of the three cells of the Au-Ni electro-

formed structure for RF high-power tests . The damage is consistent with the field levels

[11].

chined at INFN-LNF. Measurements set up have been performed in the Department of

SBAI of the University of Rome “La Sapienza”. A sketch of the measurement setup is

given in Fig. (6.6). By using a step-by-step motor, it is possible to pull the wire through

the structure and measure the perturbations caused by the small bead. The measurement

setup is referred to as “bead-pull”. As explained above, we measure frequency shifts in the

SW. The data obtained are stored in a PC via a GPIB (Generated Purpose Interface Bus).

Nevertheless, it is possible to measure the field through the SW structure by applying

Steele method which usually is used to measure a TW structure, because a standing-wave

cavity can be thought as a traveling-wave linac with a cell-to-cell phase shift equal to π.

Comparing the results with the results exposed from HFSS we report the features that

have been quantified, showing good agreement.

Fiq. (6.7) shows an experimental measurement setup for field profile measurements. A

perturbing object (1 mm in length and 1 mm in diameter) is attached to an horizontal fish

lens that lays on the same direction as the axis of the structure. The bead-pull technique

that we have used is based on the Slater theorem and is widely discussed elsewhere [30].

The small perturbing object inside the cavity induces a frequency shift that is related to

the variation of the electric and magnetic energy stored in the cavity in the point where

the object is located according to the formula:
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Mode π π/2 0

F (GHz)measured 11.4200 11.3241 11.27088

F (GHz)calculated 11.42388 11.33004 11.27766

Q0 5130 6467 5981

Q0,calculated 9178 9388 9110

Qloaded 3077 1874 1938

Qextmeasured 7315 2351 2867

βmeasured 0.726 2.75 2.08

Table 6.1: RF parameters of an Au-Ni electroformed structure at room temperature excited at

the π-mode. The calculated parameters refer to a similar structure made in copper.

Figure 6.5: The prototype of the High gradient accelerating structure has been machined

at INFN-LNF.
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Figure 6.6: The sketch of the measurement setup

ω − ω0

ω0

=
1

4U

ˆ
∆V

(µ0|
−→
H |2 − ε0|

−→
E |2)dV. (6.26)

Considering the accelerating mode and the small transverse dimensions of the perturbing

object (of the order of 0.1 mm) it is possible to find the longitudinal electric field on axis

by the formula:

ωp − ω0

ω0

= −ε0 ke∆e
E2
z

4U
=

1

2QL

tg(φ(f0)), (6.27)

where ke is the form factor of the object, ∆V is the perturbing object volume, U the total

energy stored in the cavity, QL is the loaded quality factor of the resonance and φ(f0) is

the phase of the transmission coefficient between two ports coupled with the field in the

cavity. The latest expression have been written because it is more convenient to measure

the phase shift due to the resonant frequency instead of ∆ω [31]. Moreover, for φ(f0)

reasonably small (e.g. smaller than 30◦ ), tg(φ) is approximately equal to φ and this has

some practical advantages.

A careful optimization of the measurement setup has been accomplished in order to mini-

mize the systematic errors and to better understand the uncertainty of the measurements.

The most important reasons of induced errors in the measurements were as they have been

mentioned in other measurement set up [11].
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Figure 6.7: The measurement setup for Longitudinal Electric Field
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(a)

(b)

(c)

Figure 6.8: The results of the low level RF tests of the Au-Ni electroformed structure excited

at the π-mode: (a) the 0-mode, on-axis field profile; (b) the π/2 mode, on-axis field profile and

(c) the π mode, on-axis field profile.
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• An unwanted perturbation during the frequency measurement due to the effect of

wire nylon. To minimize this error we used a small wire.

• Another unwanted perturbation in the frequency measurement is the effect of the

drops of glue used to fix the perturbing object. It gave a perturbation in the

frequency measurement which is of the order of 10% of the total frequency variation

[11]. Different measurements should be done to take into account this effect on the

frequency variation.

In order to quantify the electric field inside the structure, two different methods have

been employed. The Slater Method for the SW cavity and the Steele method for the TW

section. The former is a resonant method that only allows to measure the amplitude of

the field, the latter is a non-resonant method and it allows to calculate both amplitude

and phase of the field.

Equation (6.27) shows the relationship between the amplitude |E| and the frequency shift

∆ω and equation (6.28) relates the vector E with the reflection coefficient S11.

|E|2 = −(
4U0

ε0kslater
)
∆ω

ω0

= −(
4U0

ε0kslater
)
∆Φ13

2QL

, (6.28)

E2 =
2Pin(S11p − S11u)

jωksteele
=

2Pin∆S11

jωksteele
, (6.29)

where S11p and S11u are perturbed and unperturbed reflection coefficient, respectively and

∆S11 is the difference between them which is equal to |∆S11|ejΦ∆S11 .

Fiq. (6.9) shows an experimental measurement setup for the reflection coefficient and Fig.

(6.10) shows S11 as a function of the frequency for the modes 0, π/2 and π. It should

be noted that there is another mode as we can observe from Fig. (6.10), the first mode

on the left, which is the dipole mode generated by mode launcher. This mode has not

been cancelled and we will work analytically and numerically to compensate this mode

in the future work. Typically it would be measured using a Vector Network Analyzer

(VNA), which can plot s11. The figure implies that at the frequency 11.4115 GHz, where

s11 ≈-11dB we have the minimum reflection from the iris coupled between the waveguide

and the first cell and consequently the transmission from that aperture would be its

maximum value at that frequency. The accelerator bandwidth can also be determined
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Figure 6.9: The measurement setup for s11
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Figure 6.10: S11 as a function of the frequency

from the figure. If the bandwidth is defined as the frequency range where S11 is to be

less than -3 dB, then the bandwidth would be roughly 0.0035 GHz, with 11.4168 GHz

the high end and 10.4133 GHz the low end of the frequency band. In order to compare

these results with the requirements exposed in chapter (5), we report the features that

have been quantified, showing good agreement. Finally, we compare the experimental

results from measurements and simulations carried out with HFSS. Figures (6.11) and

(6.12) show these comparisons for the electric field amplitudes and reflection coefficient

(S11) and it is concluded by saying that good agreement is achieved.
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Figure 6.11: Comparison of the experimental results from measurements and simulations carried

out with HFSS for reflection coefficient, S11 of the modes 0, π/2 and π, from left to right,

respectively.

Figure 6.12: Comparison of the experimental results from measurements and simulations carried

out with HFSS for electric field amplitudes of the mode π.
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Chapter 7

Theoretical Approach for Reflection

Coefficient Calculation OF Coupling

Between Cylindrical Waveguide and

Cavity

7.1 Reflection Coefficient Calculation by Circuit The-

ory

Resonators are the basic element of most microwave circuit and their performance strongly

dependent to the quality factor. The unloaded quality factor of a cavity resonator, which

signifies the sharpness in the frequency response of a resonator, is formally defined as,

Q0 =
ωU

P
, (7.1)

or

Q0 =
f0

∆f
, (7.2)

where U is average stored energy and P denotes the power dissipation. ∆f refers to the frequency

difference where the magnitude of reflection coefficient has the maximum value at -3 dB and the

f0 is the resonance frequency at the center of ∆f . It is known as “unloaded Q” because it is

not connected to an external circuit. On the other hand when the resonant cavity is connected
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Figure 7.1: A resonant circuit loaded by an external circuit

to an external circuit, as it shows in Fig. (7.1), the Q factor is called “external Q” and denoted

by Qext. The quality factor of the overall circuit is obtained as,

1

QL
=

1

Q0
+

1

Qext
. (7.3)

This method to find the overall Q of a resonant circuit can be used in general to any form of

resonator, may it be a waveguide resonator, a strip resonator or a lumped element resonator [4,

35, 36, 37, 38, 39]. Fig.s (7.2) shows a configuration consists of a cavity coupled to an external

transmission line or waveguide usually contains the RF generator. A microwave cavity in the

vicinity of resonance can be accurately represented by an RLC circuit. The external guide

is assumed to be terminated with a matched load resistance Z0 as shown in the figure. The

generator is shown in the circuit on the left and the cavity coupled to the external circuit is

located on the right. Equivalent circuit with all components reflected into the external circuit

containing the generator is shown in Fig. (7.3). The equivalent parameters are as follows,

R =
R0

n2
, L =

L0

n2
, C =

C0

n2
. (7.4)

The resonator power dissipated, the power dissipation in the external circuits and the summation

of these two power dissipation which is nothing other than the total power dissipated can be

written as,

Pc =
n2V 2

2R
, (7.5)

Pext =
V 2

2Z0
, (7.6)

P = Pc + Pext. (7.7)
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The stored energy is U = n2CV 2

2 . Using the above equations we can obtain the unloaded, loaded

and external quality factors as follows,

Q0 =
ω0U

Pc
= ω0RC, (7.8)

Qext =
ω0U

P
= ω0n

2Z0C, (7.9)

QL =
Q0

1 + β
. (7.10)

It is convenient to express the circuit model results in terms of the waveguide-to-cavity coupling

parameter β, instead of the transformer turns ratio n.

β =
Q0

Qext
=

ω0RC

ω0n2Z0C
=

R

n2Z0
, (7.11)

then we have,

n2 =
R

βZ0
. (7.12)

Eq. (7.4) turn out to be,

R =
R0

n2
= βZ0, L =

L0

n2
=
βZ0L

R
, C =

C0

n2
=
RC

βZ0
. (7.13)

Proceeding with the lumped-element model, Q0 can be derived as follows[36]. The driving point

admittance is

Y =
1

R
+ j(ωC − 1

ωL
). (7.14)

The susceptance vanishes at the resonant frequency ω = ω0. Therefore, ω0 must equal 1/
√
LC,

where L and C are the distributed inductance and capacitance of the transmission line.

The voltage across R0 at resonance is V (t) = R0Imcos(ω0t), then the total stored energy in the

electric and magnetic fields is written as,

U(t) = Ue(t) + Um(t) =
C0R

2
0I

2
mcos

2(ω0t)

2
+
L( 1

L

´ t
0 R0Imcos(ω0t)dt)

2

2
=
I2
mR

2
0C0

2
. (7.15)

The total energy loss is equal to the average power delivered to the circuit,

P =

´ T0
0 R0I

2
mcos

2(ω0t)

T0
,
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Figure 7.2: Equivalent circuit of a cavity coupled to an external circuit, which are trans-

former coupled to the cavity resonator.

Figure 7.3: Equivalent circuit with all components reflected into the external circuit

containing the generator where R = R0

n2 , L = L0

n2 , C = C0

n2 .

=
R0I

2
m

2
. (7.16)

Replacing Eq.s (7.15) and (7.16) into the Eq. (7.1) we can get the unloaded quality factor as

follows,

Q0 =
ω0U

P
=
ω0

I2mR
2
0C0

2
R0I2m

2

= ω0R0C0, (7.17)

the loaded quality factor can be written as,

QL = Q0/(1 + β), (7.18)

where β is referred to as the coupling coefficient.

We can express input shunt admittance in terms of the unloaded quality factor as follows:

YC =
1

R
+ j

1

R
(ωRC − R

ωL
), (7.19)

=
1

R
[1 + j(

ωQ0

ω0
− Q0ω0

ω
)],
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=
1

R
[1 + jQ0(

ω

ω0
− ω0

ω
)].

The corresponding shunt impedance can be written as,

ZC =
1

Y
=

R

1 + jQ0( ωω0
− ω0

ω )
. (7.20)

We can simplify ( ωω0
− ω0

ω ) as follows,

δ =
ω

ω0
− ω0

ω
=
ω2 − ω2

0

ωω0
, (7.21)

we can expand the Taylor series of ω2 at a fixed point ω0,

ω2 = ω2
0 + 2ω0(ω − ω0) + (ω − ω0)2, (7.22)

ignoring the term (ω − ω0)2 and putting into the Eq. (7.21) we have,

δ =
ω

ω0
− ω0

ω
=
ω2 − ω2

0

ωω0
=

2ω0(ω − ω0)

ωω0
=

2(ω − ω0)

ω
= 2

∆ω

ω
. (7.23)

On the basis of the preceding equivalent circuit, the input impedance is

ZL = ZW + ZC , (7.24)

where ZW is the shunt impedance of the waveguide which is composed of two components, the

coupling loss, RL and reactance of coupling system, XL. Then the equation for the input shunt

impedance can be written as,

ZL = RL + jXL +
βZ0

1 + jQ0( ωω0
− ω0

ω )
. (7.25)

The coupling reactance and coupling loss related have a small effect of the frequency shift and

they can be ignored because the variation of the unloaded quality factor due to frequency shift

is not insignificant. If we consider a wave that is emitted from the generator into the guide, the

reflection coefficient produced by the cavity load impedance, becomes

Γ =
ZL − Z0

ZL + Z0
, (7.26)

replacing the Eq. (7.25) into the equation above we have,

Γ =

βZ0

1+jQ0( ω
ω0
−ω0
ω

)
− Z0

βZ0

1+jQ0( ω
ω0
−ω0
ω

)
+ Z0

, (7.27)
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Figure 7.4: Comparison between Analytical and numerical of reflection coefficient calculation

in a π mode accelerating structure .

=
βZ0 − Z0(1 + jQ0δ)

βZ0 + Z0(1 + jQ0δ)
,

substituting QL = Q0/(1 +β) into the equation above and canceling out Z0 from the numerator

and the denominator we have,

Γ =
β − 1− jQL(1 + β)δ

β + 1 + jQL(1 + β)δ
, (7.28)

by multiplication of all term at β + 1 the equation above turn to be,

Γ =

β−1
β+1 − jQLδ
1 + jQLδ

, (7.29)

multiplying the numerator and the denominator by the complex conjugate of the denominator

and with some calculation we have,

Γ =

β−1
β+1 − (QLδ)

2

1 + (QLδ)2
− j

QLδ(1 + β−1
β+1)

1 + (QLδ)2
, (7.30)

finally the amplitude of reflection coefficient can be written,

|Γ| =

√
(β−1
β+1)2 + (QLδ)4 + (QLδ)2 + (QLδ)2(β−1

β+1)2

1 + (QLδ)4 + 2(QLδ)2
, (7.31)

ignoring the high order term we get,
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Figure 7.5: Comparison between Analytical and numerical of reflection coefficient calculation

in a π mode accelerating structure .

Γ =

√
(β−1
β+1)2 + (QLδ)2

1 + 2(QLδ)2
, (7.32)

which is similar to the the equation taken from [34],

Γ =

√
(β−1
β+1)2 + (QLδ)2

1 + (QLδ)2
. (7.33)

Fig. (7.4) shows the comparison of analytical and numerical results of reflection coefficient

calculation in a π mode accelerating structure. At β = 1.05 and Q0 = 7904 analytical results

have a good agreement with the numerical results as it has been shown in Fig. (7.5).

7.2 Reflection Coefficient Calculation by Modified Bethe’s

Theory

The concept of reflection coefficient is fundamental in high accelerating periodic structures.

Electromagnetic energy may be coupled from one waveguide into another guide or into a cavity

resonator by a small aperture located at a suitable position in the common wall. There is an

approximate theory which states that the aperture is equivalent to an electric or/and magnetic

dipole moments [8]. These dipole moments are respectively proportional to the normal electric
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and tangential magnetic field of the incident wave. The theory originally stated by Bethe [8],

developed by Collin [1] and modified by S. De Santis, L. Palumbo and A. Mostacci for small hole

compared to the wavelength [7, 9] . The solution procedure was based on one of Schelkunoff’s

field equivalence principle. In his article the aperture is closed by a perfect magnetic wall. The

incident field, which is chosen as the field in the absence of the aperture , will induce a magnetic

current Jm and a magnetic charge ρm on the magnetic wall surface. These sources produce a

scattered field that can be expressed as a field radiated by the dipole moment of the source

distribution. After the field scattered into waveguide has been found the aperture is opened and

a magnetic current −Jm is placed in the aperture. The field radiated by this source into the

waveguide and/or a cavity, together with the specified incident field and the scattered field in

waveguide found earlier, represents the total unique solution to the coupling problem. In our

case at the presence of a dielectric iris coupled between the waveguide and the cavity which

supports by the thin perfectly conducting screen. Babinet’s principle [17] allows us to relate the

diffraction fields of one diffracting screen to those of complementary screen which is the iris in the

current problem. The basic procedure is replacing the problem of diffraction conducting screen

with a certain aperture by diffraction of the disk as a complementary screen. The presence of the

screen gives rise to transmitted and reflected fields will be denoted as scattered fields. We applied

the theory for TM010 mode cavities coupled by a small hole with a thickness size comparable

to the wavelength. The amplitudes of forward and backward waves due to polarizabilites have

been determined and we found equations for reflection and transmission coefficients.

Beth’s diffraction theory states that the hole is equivalent to an electric and a magnetic dipole

whose moments are given by

P (z) = εαe(E0 + EsF − EsB), (7.34)

Mφ(z) = αm(H0 +HsF −HsB), (7.35)

where αe and αm are the polarizabilites of the hole and E0, H0 are the primary fields, EsF , HsF

are the scattered field (radiation field) due to the polarizability of the iris, and EsB, HsB are

the scattered field (radiation field) due to the polarizability of the iris from the field entered to

the cavity, reflected with a phase reversal and propagated back to the iris where it becomes an

incoming wave from the right with a certain amplitude which it can be polorize the iris and due

to this polorization we have another radiation field. We will use these equations later.
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Figure 7.6: Waveguide and cavity section separated by a conducting plate with an iris.

7.2.1 Scattering Matrix

Fig. (7.6) shows a waveguide and resonant cavity separated by a conducting plate with an iris.

We describe the iris by a 2× 2 scattering,

b1
b2

 =

s11 s12

s21 s22

a1

a2

 (7.36)

We assumed that the iris has a left- right symmetry and to be free of energy dissipation and

this property implies a well known reciprocity property that we can mathematically write s11 =

s22 = Γ, and implying energy conservation for the iris and considering the symmetric of the iris

wangler conclude in his book [4] that s21 = s12 = j
√

1− |Γ|2. Then scattering matrix can be

written as,

b1
b2

 =

 Γ j
√

1− |Γ|2

j
√

1− |Γ|2 Γ

a1

a2

 (7.37)

A part of the wave coming from the generator going through the iris into the cavity and other

fraction is incident upon the iris is reflected back into the waveguide. The transmitted wave will

propagate in the cavity and at the end reflected back to the iris while some fraction transmitted

into the waveguide and other fraction again reflected back into the cavity. The input waveguide

will have both incident and outgoing traveling waves. If the generator frequency is varied,

there will exist discrete resonant frequencies at which we will observe the build up of a high-field

standing wave within the cavity region as a result of the constructive interference of the multiply

reflected waves inside the cavity. Finally we have a steady state in which the energy entering
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to the cavity is equal to the summation of the energy lost from ohmic power dissipation in the

cavity walls, and wave energy propagating out of the iris.

Following the buildup of the waves, after N cycles one have found [4],

a2(N) = −je−2α`
√

1− Γ2a1ΣN−1
n=0 x

n = −je−2α`
√

1− Γ2a1[
1− xN

1− x
], (7.38)

b1(N) = a1[Γ + (1− Γ2)e−2α`ΣN−1
n=0 x

n] = a1[Γ + (1− Γ2)e−2α`ΣN−1
n=0 (

1− xN

1− x
)], (7.39)

and

b2(N) = je−2α`
√

1− Γ2a1ΣN
n=0x

n = je−2α`
√

1− Γ2a1(
1− xN

1− x
), (7.40)

where x = −Γe−2α` is a positive number. The steady-state solution corresponds to N → ∞,

and since |x| < 1, xN → 0 and the steady-state solution is

a2(∞) =
−je−2α`

√
1− Γ2a1

1− x
, (7.41)

b1(∞) = a1[Γ +
(1− Γ2)e−2α`

1− x
], (7.42)

and

b2(∞) = j

√
1− Γ2a1

1− x
, (7.43)

considering Eqs. (7.41) and (7.43) we can write,

a2(∞) = −b2(∞)e−2α`. (7.44)

We will use this result for construction of the field into the structure and b2(∞) to be considered

as an amplitude of backward wave.

7.2.2 The Fields into the Structure

The structure we are going to consider is a pillbox cavity coupled by the iris to the waveguide

and the cavity will be excited in a TM010-like standing-wave mode. For this mode, a particle is

acted upon by the nonzero Ez and Hθ fields, and when holes are included in the end walls for

the beam, a nonzero Er component is also present as wangler has mentioned in his famous book

”Principles of RF Linear Accelerators” [4]. Subsequent round-trip passes of the internal wave
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will reinforce each other and produce resonance when φ = 2πn, where n is a positive integer.

The fields at resonance after N cycles can be written as,

En = E0 + EsF − EsB, (7.45)

= AJ0(kcρ)e−jβz +A−01( ¯et01 − ẑez01)ejβnz − jA+
01( ¯et01 + ẑez01) e−(2α`+jβz),

Et = H0 +HsF −HsB, (7.46)

= − A

η01
J ′0(kcρ)e−jβz +A−01(− ¯ht01 + ẑhz01) ejβnz − jA+

01( ¯ht01 + ẑhz01) e−(2α`+jβz),

where,

β: propagation constant,

Z01: wave impedance of the TM010,

α: attenuation constant per unit length,

2φ: round-trip phase shift of the wave,

and

Γ= reflection coefficient,

these sources produce a scattered field that can be expressed as a field radiated by the dipole

moment of the source distribution. After the field scattered into waveguide has been found, the

aperture is opened and a magnetic current −Jm is placed in the aperture. The field radiated by

this source into the waveguide and/or a cavity, together with the specified incident field and the

scattered field in waveguide found earlier, represents the total unique solution to the coupling

problem.

The field radiated from the sources propagate in the negative z direction (Ē− and H̄−) and in

the positive direction (Ē+ and H̄+) and can be written as the superpositions of the waveguide

modes [17, 19],

Ē+ = ΣnA
+
n Ē

+
n = ΣnA

+
n (ēn + ẑezn) e−jβnz, (7.47)

H̄+ = ΣnA
+
n H̄

+
n = ΣnA

+
n (h̄n + ẑhzn) e−jβnz, (7.48)

Ē− = ΣnA
−
n Ē
−
n = ΣnA

−
n (ēn − ẑezn) ejβnz, (7.49)

H̄− = ΣnA
−
n H̄

−
n = ΣnA

−
n (−h̄n + ẑhzn) ejβnz, (7.50)
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where the single index n is used to represent any possible TE or TM modes. For a given current

problem we can determine the amplitude A+
n and A−n Using Lorentz reciprocity theorem which

is as follows,

˛
S

(E1 ×H2 − E2 ×H1).nds =

ˆ
V

(J . E2 −M . H2)dv, (7.51)

where S is a closed surface enclosing the volume V. E1, H1 are the fields of the dominant-mode

standing wave, TM010, have shown in Eqs. (7.47) to (7.50). J̄ is the source related to strength

of electric polarization current (electric moment).

Primary fields for TM01 can be written as ,

E0 = AJ0(kcρ)e−jβz, (7.52)

H0 = − A

η01
J ′0(kcρ)e−jβz, (7.53)

where,

β: propagation constant

η01: wave impedance of the TM010,

The forward scattering fields (EsF and HsF ) propagating in the negative z direction used in Eqs.

(7.46) and (7.47) have been constructed from equation Eqs. (7.49) and (7.50) by considering

that lowest TM mode (TM01) only can propagate into the structure as follows,

EsF = A−01( ¯et01 − ẑez01)ejβz, (7.54)

HsF = A−01(− ¯ht01 + ẑhz01) ejβz, (7.55)

where A−01 is the TM01 mode amplitude of scattered field propagating in negative z direction, et01

, ht01 are transverse electric and magnetic modal functions and finally ez01 , hz01 are longitudinal

electric and magnetic modal functions for TM01.

we recall the summary for circular waveguide in Table (7.1) to calculate the modal field for

TM01 mode.

Transverse and longitudinal modal fields for TM from the table (Table (7.1)) can be written as,

et01 =
−jβ
kc

J ′0(kcρ), (7.56)
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Quantity TEnm Mode TMnm Mode

k ω
√
µε ω

√
µε

kc
p′nm
a

p′nm
a

β
√
k2 − k2

c

√
k2 − k2

c

λc
2π
kc

2π
kc

λg
2π
β

2π
β

νp
ω
β

ω
β

νg
dω
dβ

dω
dβ

αd
k2tanδ

2β
k2tanδ

2β

Ez 0 (Asinnφ+Bcosnφ) Jn(kcρ) e−jβz

Hz (Asinnφ+Bcosnφ) Jn(kcρ) e−jβz 0

Eρ
−jωµn
k2cρ

(Asinnφ−Bcosnφ) Jn(kcρ) e−jβz −jβ
kc

(Asinnφ+Bcosnφ) J ′n(kcρ) e−jβz

Eφ
jωµ
kc

(Asinnφ+Bcosnφ) Jn(kcρ) e−jβz −jβn
k2cρ

(Asinnφ−Bcosnφ) J ′n(kcρ) e−jβz

Hρ
−jβ
kc

(Asinnφ+Bcosnφ) Jn(kcρ) e−jβz −jωεn
k2cρ

(Asinnφ−Bcosnφ) J ′n(kcρ) e−jβz

Hφ
−jβn
k2cρ

(Asinnφ−Bcosnφ) Jn(kcρ) e−jβz −jωε
kc

(Asinnφ+Bcosnφ) J ′n(kcρ) e−jβz

Z ZTE = kη
β

ZTM = βη
k

Table 7.1: Summary of Results for for wave propagation in circular waveguide [19].
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ez01 = J0(kcρ), (7.57)

ht01 =
−jωε
kc

J ′0(kcρ) =
−jβ
η01kc

J ′0(kcρ), (7.58)

hz01 = 0, (7.59)

where kc is cutoff wavenumber, β is the propagation constant, n is the number of nulls in Ez

along the radial direction, J ′n(kcρ) is the derivative of the Bessel function of the first kind and

η01 the impedance of free space and it’s a physical constant relating the magnitudes of the

electric and magnetic fields of electromagnetic radiation traveling through free space. That is,

η0 = |E|/|H|, where |E| is the electric field strength and |H| is the magnetic field strength for

the TM010. It has an exactly defined value η01 = 376.73.

Backward waves are constructed from equation Eqs. (7.47) and (7.48) by considering that only

lowest TM mode (TM01) propagating into the structure as follows,

EsB = A+
01( ¯et01 + ẑez01)e−(2α`+jβz), (7.60)

HsB = A+
01( ¯ht01 + ẑhz01) e−(2α`+jβz), (7.61)

where A+
01 is the TM01 mode amplitude of scattered field propagating in positive z direction, et01

, ht01 are transverse electric and magnetic modal functions and finally ez01 , h01 are longitudinal

electric and magnetic modal functions for TM01.

Then putting all together, electric and magnetic dipole moments can be written,

Pr(z) = εαe(AJ0(kcρ)e−jβz+A−01(
−jβ
kc

J ′0(kcρ)−J0(kcρ))ejβz−jA+
01(
−jβ
kc

J ′0(kcρ)+J0(kcρ))e−(2α`+jβz)),

(7.62)

Mφ(z) = αm(− A

η01
e−jβz +A−01

jβ

η01kc
ejβz − jA+

01

jβ

η01kc
e−(2α`+jβz))J ′0(kcρ), (7.63)

7.2.3 Relation between sources and electric and magnetic po-

larization

We now show that the electric and magnetic polarization currents , are related to electric and

magnetic current sources, J̄ and M̄ . respectively. From Maxwell’s equations we have,
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∇× Ē = −jωµH̄ − M̄, (7.64)

∇× H̄ = jωεĒ + J̄ , (7.65)

where J̄ and M̄ are the electric current and fictitious magnetic current. In a linear medium,

the electric polarization in related to the applied electric field, with some manipulation we can

write,

D̄ = ε0Ē + P̄e = εĒ, (7.66)

B̄ = µ0(H̄ + P̄m) = µH̄, (7.67)

then,

∇× Ē = −jωµ0H̄ − jωµ0P̄m − M̄, (7.68)

∇× H̄ = jωεĒ + jωP̄e + J̄ , (7.69)

thus, since J̄ and M̄ has the same roles in these equations as jωP̄e and jωµ0P̄m, the equivalent

currents can be defined as,

J̄ = jωP̄e, (7.70)

M̄ = jωµ0P̄m, (7.71)

The electric and magnetic current sources, J̄ and M̄ are volume current densities with units

A/m3 and V/m3, respectively. In many cases, however, the actual currents will be in the form

of a current sheet, a line current, or an infinitesimal dipole current. These special types of

current distributions can always be written as volume current densities through the use of delta

functions. The strength of Electric polarization current and Magnetic polarization current in

cartesian coordinates can be found as these equations are applicable in rectangular waveguide,

P̄e = ε0αen̂Enδ(x− x0)δ(y − y0)δ(z − z0), (7.72)

P̄m = −αmH̄tδ(x− x0)δ(y − y0)δ(z − z0), (7.73)
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we are going to find the strength of Electric polarization current and Magnetic polarization

current in cylindrical coordinates because we want to work with circular waveguide and cavity.

For this reason we should transform dirac delta function from cartesian coordinates to cylindrical

coordinates.

δ(x− x0)δ(y − y0)δ(z − z0) =
1

|J |
δ(r − r0)δ(θ − θ0) δ(z − z0), (7.74)

where J is Jacobian matrix .

recall that x = f(r, θ) = rcosθ and x = g(r, θ) = rsinθ,

hence,

fr = cosθ, fθ = −rsinθ, gr = sinθ and gθ = −rcosθ

the Jacobian is

J = |(cosθ)(−rcosθ)− (−rsinθ)(sinθ)| = r, (7.75)

then the transformation would be,

δ(x− x0)δ(y − y0)δ(z − z0) =
1

r
δ(r − r0)δ(θ − θ0) δ(z − z0). (7.76)

Knowing the transformation between two coordinates, the strength of Electric polarization cur-

rent and Magnetic polarization current in cylindrical coordinates can be written as,

P̄e =
1

r
ε0αen̂Enδ(r − r0) δ(θ − θ0) δ(z − z0), (7.77)

P̄m = −1

r
αmH̄tδ(r − r0) δ(θ − θ0) δ(z − z0), (7.78)

where,

P̄e : infinitesimal electric polarization currents,

P̄m : infinitesimal magnetic polarization currents,

ε0 : Electric conductivity,

αe : electric polarizability of the aperture,

αm : magnetic polarizability of the aperture,

The electric and magnetic polarizabilites are constants that depend on the size and shape of the

aperture which we will talk about it in details in the section (7.2.6).
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Figure 7.7: A volume containing two sets of sources, J1 and J2, which each produce fields E1,

H1 and E2, H2, respectively.

7.2.4 Lorentz Reciprocity Theorem

A formal derivation of the Lorentz Reciprocity Theorem begins by considering a volume contain-

ing two sets of sources, J1 and J2, which each produce fields E1, H1 and E2, H2, respectively,

as shown in Figure (7.7). Consider the quantity

∇ . (E1 ×H2 − E2 ×H1), (7.79)

which is expandable using a vector identity as

(∇× E1) . H2 − (∇×H2) . E1 − (∇× E2) . H1 + (∇×H1) . E2. (7.80)

From Maxwell’s equations,

∇× E1 = −jωµH1 − M1, (7.81)

∇×H1 = jωεE1 + J1, (7.82)

∇× E2 = −jωµH2 − M2, (7.83)

∇×H2 = jωεE2 + J2, (7.84)

therefore,

∇ . (E1×H2 − E2×H1) = (∇×E1) . H2 − (∇×H2) . E1 − (∇×E2) . H1 + (∇×H1) . E2 (7.85)
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∇ . (E1 ×H2 − E2 ×H1) = −jωµH1 . H2 −M1 . H2 − jωεE2 . E1 − J2 . E1

+ jωµH2 . H1 +M2 . H1 + jωεE1 . E2 + J1 . E2,

= J1 . E2 − J2 . E1 +M2 . H1 −M1 . H2, (7.86)

let us now integrate the divergence over the volume of interest:

ˆ
V
∇ . (E1 ×H2 − E2 ×H1)dv′ =

ˆ
V

(J1 . E2 − J2 . E1 +M2 . H1 −M1 . H2)dv′, (7.87)

applying the Divergence Theorem or Gauss’s theorem to the left hand side:

ˆ
V
∇ . (E1 ×H2 − E2 ×H1)dv′ =

˛
S

(E1 ×H2 − E2 ×H1)ds′, (7.88)

therefore the two side of the Eqs.(7.87) and (7.88) are equal,

˛
S

(E1 ×H2 − E2 ×H1)ds′ =

ˆ
V

(J1 . E2 − J2 . E1 +M2 . H1 −M1 . H2)dv′, (7.89)

considering an electric current source,

˛
S

(E1 ×H2 − E2 ×H1)ds =

ˆ
V

(J1 . E2 − J2 . E1)dv. (7.90)

7.2.5 Applying Lorentz Reciprocity Theorem to the Current

Problem

We can apply reciprocity theorem considering the volume V being between the cavity walls,

then let Ē1 = Ē± and H̄1 = H̄± when z > z2 for the wave propagating in positive direction and

z < z1 for the wave propagating in negative direction .

Suppose Ē2, H̄2 be the nth cavity mode traveling in the positive z direction,

Ē2 = Ē−01 = ( ¯et01 + ẑēz01) e−jβz, (7.91)

H̄2 = H̄−01 = ( ¯ht01 + ẑh̄z01) e−jβz, (7.92)
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where βn is the propagation constant for the mode n in the z direction and ēn, h̄n are electric and

magnetic transverse fields and ēzn, h̄zn are electric and magnetic longitudinal fields propagating

in the z direction. Then Eq. (7.51) turn out to be,

˛
S

[(Ē+ × H̄+
01 − Ē

+
01 × H̄

+)

+ (Ē− × H̄+
01 − Ē

+
01 × H̄

−)]ds =

ˆ
V

(J . E2 −M . H2)dv, (7.93)

substituting Eqs. (7.47) to (7.50) into the equation above and considering that the tangential

electric field and normal magnetic field will be vanish on the waveguide and cavity walls so that

surface integral of the Eqs.(7.93) will be reduced to just integration at z1 and z2 where z1 and

z2 are the cross section of the waveguide or cavity. Then the equation can be written as follows,

A+
01

ˆ
z2

(Ē+ × H̄+
01 − Ē

+
01 × H̄

+) . ds̄

+A−01

ˆ
z1

(Ē− × H̄+
01 − Ē

+
01 × H̄

−) . ds̄ =

ˆ
V

(J . E2 −M . H2)dv, (7.94)

the first integral will be vanish because of the orthogonality of the modes,

A−01

˛
S

(Ē− × H̄+
01 − Ē

+
01 × H̄

−)ds =

ˆ
V

(J . E2 −M . H2)dv, (7.95)

this equation can be written explicitly as,

A−01

ˆ
z1

[(ēt01 − ẑenz)× (h̄t01 + ẑhz01)− (ēn + ẑezn)× (−h̄n + ẑhzn)] .ẑds

=

ˆ
V

(J . E2 −M . H2)dv, (7.96)

we can simplify the equation,

− 2A−01

ˆ
z2

ēt01 × h̄t01 .ẑds =

ˆ
V

(J . E2 −M . H2)dv, (7.97)

then we have,

A−01 =
−1

P01

ˆ
V

[(ēt01 + ẑez01) . J̄ − (h̄t01 + ẑhz01) . M̄ ]e−jβnzdv, (7.98)

where P01 = 2
´
z1
ēt01 × h̄z01 .ẑds is a normalization constant proportional to the power flow

of the TM01 mode which we will calculate in the next section. Substituting J̄ = jωP̄e and

M̄ = jωµ0P̄m into the equation above we have,

A−01 =
−1

P01

ˆ
V

[(ēt01 + ẑez01) . (jωP̄e)− (h̄t01 + ẑhz01) . (jωµ0P̄m)]e−jβnzdv, (7.99)
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where ez(ρ, φ) = (Asinnφ+Bcosnφ)Jn(kcρ) and hn(ρ, φ) = −jωε
kc

(Asinnφ+Bcosnφ)J ′n(kcρ) are

the modal fields for TM01 mode as we shows in Table. (7.1) . Replacing Eqs. (7.77) and (7.78)

and introducing the modal fields into the Eq. (7.99) we have,

A−01 =
−1

P01

ˆ
[(et01 + ẑez01) e−jβnz] . (ẑ

jω

r
ε0αe[AJ0(kcρ)e−jβz +A−01(

−jβ
kc

J ′0(kcρ)−J0(kcρ))ejβz

− jA+
01(
−jβ
kc

J ′0(kcρ) + J0(kcρ))e−(2α`+jβz)]− [( ¯ht01 + ẑhz01) e−jβnz] . (t̂
jω

r
αm[(− A

η01
e−jβz

+A−01

jβ

η01kc
ejβz − jA+

01

jβ

η01kc
e−(2α`+jβz))J ′0(kcρ)])δr δθ δz)rdrdθdz. (7.100)

We know that the integration of the convolution of a function is the quantity of the function at

the point in which the convolution will end.

ˆ
f(x)δ(x− x0)dx = f(x0). (7.101)

Finally considering the electric modal field for TM01 and some simplification the equation turn

out to be,

A−01 =
−1

P01
jωε0αeA

+
−1

P01

ˆ b

0

ˆ 2π

0

ˆ `

0
jωε0αeA

−
01(
−jβ
kc

J ′0(kcr)J0(kcr)− J2
0 (kcr))e

jβzδrδθδzdr dθ dz

+
−1

P01

ˆ b

0

ˆ 2π

0

ˆ `

0
jωε0αe[−jA+

01(
−jβ
kc

J ′0(kcr)J0(kcr) + J2
0 (kcr))e

−2α`−jβz])δrδθδzdr dθ dz.

(7.102)

Normalization constant proportional to the power flow of the nth mode

As we have mentioned earlier Pn is the normalization constant proportional to the power flow

of the nth mode and in a special case P01 is a normalization constant proportional to the power

flow of the TM010 mode and it’s equal to 2
´
z ē01× h̄∗01 .ẑds. TM modal fields as we have shown

in Table (7.1) can be written as,

en(ρ, φ) =
−jβ
kc

(Asinnφ+Bcosnφ)J ′n(kcρ), (7.103)

hn(ρ, φ) =
−jωε
kc

(Asinnφ+Bcosnφ)J ′n(kcρ),

=
−jβ
η01kc

(Asinnφ+Bcosnφ)J ′n(kcρ), (7.104)
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where Kc is cutoff wavenumber, β is the propagation constant, n is the number of nulls in Ez

along the radial direction, J ′n(kcρ) is the derivative of the Bessel function of the first kind and

η01 the impedance of free space and it’s a physical constant relating the magnitudes of the

electric and magnetic fields of electromagnetic radiation traveling through free space. That is,

η0 = |E|/|H|, where |E| is the electric field strength and |H| is the magnetic field strength for

the TM010. It has an exactly defined value η01 = 376.73. For TM010 modal fields we can write,

e01 =
−jβ
kc

J ′0(kcρ), (7.105)

h01 =
−jβ
η01kc

J ′0(kcρ). (7.106)

Finally normalization constant proportional to the power flow of the TM01 mode will be,

P01 = 2

ˆ
z
ē01 × h̄01 .ẑds =

−2πb2

η01
J2

1 (χ01). (7.107)

7.2.6 Calculation of electric and magnetic polarizabilites

There is an electric polarization coefficient for electric moment, P = −2a3ε0E0/3, where α =

−2/3a3. This is the coefficient polarization obtained by Bethe, in his famous article “Theory

of Diffraction by Small Holes”[5]. As we have mentioned in chapter 3, Bethe obtained the

coefficient for small holes compare to the wavelength, he mentioned in his article that it is

possible to extend to the holes comparable in size with the wavelength considering the E0,

normal electric field, contain factors of the type eikr in which the variation in the Green’s

function φ must be considered and he said that the correction for the holes comparable to the

wavelength will be of relative order (ka)2 rather than ka. Eggimann [16] solved the problem of

diffraction of arbitrary electromagnetic field by a circular perfectly conducting disk using a series

representation in powers of k = 2π/λ and he obtained an expression for electric and magnetic

moments using the results of generalized Babinet’s principle [17] and considering that the disk

problem and the aperture problem are equivalent if some consideration would be taken, the

final results were the following expressions for the induced dipole moments: Pz = 4
3a

3ε0(E0
z −

1
10(ka)2[3E0

z + 1
k2

∂2E0
z l

∂z2
] + j 4

9π (ka)3E0
z ), in which taking first and second term of the equation

we have a term that is proportional to (ka)2 as Bethe was said about the hole size comparable

with the wavelength. Considering the electric moment according to Eggimann, but taking two

terms instead of the whole equation we have: Pz = 4
3a

3ε0E
0
z (1− 3

10(ka)2).

For the small irises all the modes of waveguide are below cut-off and their attenuation is expo-

nential with respect to the length of the iris. McDonald [2] has derived an electric polarizability
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in which the attenuation term can be considered and it is as follows,

αe = CE α∗e e
−2.405h/a with CE = 0.83 and α∗e = −2

3
a3, (7.108)

αm = CM α∗m e−1.841h/a with CM = 0.84 and α∗m =
4

3
a3, (7.109)

where h is the iris thickness, CE and CM are the numerical values calculated by McDonald [3].

Gluckstern has derived integral equations for the potential and field distribution within a circular

hole in a plane conducting wall of finite thickness induced by uniform field. then he obtained

variational expressions for the polarizability and susceptibility of the hole, from which one can

obtain the electric and magnetic dipole moments induced on the inside (far field) and outside

(no far field) boundaries of the hole [21]. His results had a good agreement with McDonald’s

results.

7.2.7 Reflection Coefficient

Finally we can calculate the amplitude for forward and backward waves due to dipole moments,

A−01 =
−1

P01
jωε0αeA (7.110)

+
−1

P01

ˆ b

0

ˆ 2π

0

ˆ `

0
jωε0αeA

−
01(
−jβ
kc

J ′0(kcr)J0(kcr)− J2
0 (kcr))e

jβzδrδθδzdr dθ dz

+
−1

P01

ˆ b

0

ˆ 2π

0

ˆ `

0
jωε0αe[−jA+

01(
−jβ
kc

J ′0(kcr)J0(kcr) + J2
0 (kcr))e

−2α`−jβz])δrδθδzdr dθ dz,

where P01 = 2πb2

η01
J2

1 (χ01) is the normalization constant proportional to the power flow of the

TM01 mode and αe is electric polarizability and it can be written as we have obtained before,

αe = CE α∗e e
−2.405h/a with CE = 0.83 and α∗e = −2

3a
3.

We can simplify e−2α`as follows,

e−2α` = e−
2(2.405)`

b = e−
4.81`
b , (7.111)

as ` = λ/2 for π mode accelerating periodic structure,

e−2α` = e−
4.81λ
2b = e−

2.405λ
b , (7.112)

replacing λ = 2.61b in the equation above,

e−2α` = e−2.405(2.61) = 0.001879 ≈ 0.00188. (7.113)
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D =
1

P01
ωε0αe =

αe
2.61b3 J2

1 (χ01)
, (7.114)

as αe = −2
3 a

3, where a is iris radius, we have,

D = −0.964(
a

b
)3. (7.115)

A−01 and A+
01 in the Eq. (7.110) are the amplitudes of the radiation fields due to iris as a dipole.

They can be written as reflection and transmission coefficients.

A−01 = ΓA, (7.116)

A+
01 = (1− Γ)A, (7.117)

Replacing these equations into the equation above we get,

Γ =
−1

P01
jωε0αe(1 + e−2α`) (7.118)

+
−1

P01

ˆ b

0

ˆ 2π

0

ˆ `

0
jωε0αeΓ(

−jβ
kc

J ′0(kcr)J0(kcr)−J2
0 (kcr))e

jβz(1−e−2α`−2jβz) δr δθ δz dr dθ dz,

writing the equation above in a compact way we have,

Γ = Γ0 + D

ˆ
V

Γ f (r)g(z)h(θ)δr δθ δz dV , (7.119)

where

Γ0 = −1
P01

jωε0αe(1 + e−2α`),

D = −β
P01kc

jωε0αe,

f(r) = (J ′0(kcr)J0(kcr)− J2
0 (kcr)),

g(z) = ejβz(1− e−2α`−2jβz),

h(θ) = 1,

and

dV = dr dθ dz.

We have obtained an equation that the solution can be found by “self consistent solution method”

which because of complexity of this method we will solve it in the future work but before to end

this chapter we make some notes about the equation above:
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• to obtain equation above we assumed that the iris is at the center of the cross section of

the cavity. This assumption simplify the equation of infinitesimal electric and magnetic

polarization currents (see Eq.s (7.77) and (7.78) to the equations below,

P̄e =
1

r
ε0αen̂Enδ(r) δ(θ) δ(z), (7.120)

P̄m = −1

r
αmH̄tδ(r) δ(θ) δ(z), (7.121)

these equations allow us make a convolution of the functions at the center and simplify

the equation to obtain Eq. (7.100) from the Eq. (7.99) and then by further assumption

which was nothing other that the consideration of that only we have electric moment for

the TM01 mode at the center for the small iris compared with the wavelength we reach

the Eq. (7.102) and finally with some calculation we obtained the Eq. (7.119).

• as Γ depends on the coordinate parameters we can take out it from the integral by calcu-

lation the Γ at the center of the iris and obtain the equation below,

Γ =
−1
P01

jωε0αe(1 + e−2α`)

1 + jH(0) −βP01kc
ωε0αe(1− e−2α`)

, (7.122)

where H(0) is Heaviside function and

P01 =
−2πb2

η01
J2

1 (χ01), (7.123)

this equation is an analogous of the reflection coefficient obtained by Collin for TE10 using

the circuit theory which for a comparison we will write here [17],

1− 4jαmβ10/ab

1 + jX +W
, (7.124)

Where X = 2αmβ10/ab and

W = − 4αmk
2
0π

2

k2
101abd

3[k2
101 − k0(1 + 1−j

Q )]
(7.125)

• as in the equation is a Heaviside function we can obtain a distribution as we need for s11,

so by a Fourier transformation and then using the transformation below we can have a

distribution (sweep) around the resonant frequency,
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Ĥ(s) =
1

2
(δ(s)− i

π
p.v.

1

s
), (7.126)

where p.v.1s is a distribution that relates the Cauchy principle value of
´∞
−∞

φ(s)
s ds to the

test function φ for the distribution.
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Chapter 8

Simulation codes

In this chapter, the numerical codes used for the various simulations, carried out in this thesis

work, are briefly explained.

8.1 HFSS

HFSS (High Frequency Structures Simulator) is a user-friendly software package, initially re-

leased by ANSOFT [1], Pittsburg, that allows to evaluate the 3D electromagnetic field distri-

bution inside a structure. In order to do this, it solves the Maxwell equations in the frequency

domain, so only linear material can be simulated. The numerical method employed is the FEM

(Finite Element Method). HFSS divides the 3D model into a relatively large number of small

domains, tetrahedra, that represent the mesh. The following features can be obtained from

simulations:

• main RF properties of the electromagnetic field, and also the near and far fields for open

structures;

• propagation constants and impedance at specified ports;

• parameters of the scattering S-matrix;

• eigenvalues, or resonant frequencies, and eigenfunctions for a closed structure.

8.2 SuperFish

SuperFish [3] is the main solver program for calculating Radio-Frequency electromagnetic fields

in either 2-D Cartesian coordinates or axially symmetric cylindrical coordinates. The program
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generates a triangular mesh fitted to the boundaries of the material in the problem geometry. It

is not a very user- friendly code, like HFSS, and the internal part of the structures is simulated

independently from any kind of input source. This means that a coupling condition with outside

inputs, such as RF waveguide, is not achievable. Nevertheless, the fast computational time of

simulations and accuracy of the results make SuperFish a powerful tool for the design of RF

accelerators.
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Chapter 9

Conclusions

In this concluding chapter we summarize the contributions of this thesis and discuss the impor-

tant directions of future work.

9.1 Summary of thesis contributions

The purpose of this thesis was to study on design and measurements of the high gradient acceler-

ating structures. After introducing the main parameters to characterize Linacs we explained the

application of the periodic accelerating structure. Then we studied TW accelerating structure

operating at K-band frequency in order to linearize longitudinal space phase in the framework

of the Compact Light XLS project. We estimated group velocity as a function of frequency

both analytically and numerically. Analytical results have a good agreement with the numerical

results. The main parameters such as shunt impedance, quality factor (Geometric factor) and

R/Q independently from the operating frequency for the TM010, TM110 and TM011 for a single

cylindrical “pill-box” have been determined analytically as they provide accurate model for the

accelerating structures.

In order to characterize a normal conducting high accelerating structure with maximum gra-

dients operating at X-band with extremely low probability of RF breakdown, an electroformed

SW structures has been fabricated and characterized by SLAC and INFN with collaboration of

other institute around the world at 11.424 GHz, coated with Au-Ni. We designed a gold plate

RF high gradient structure operating at the X- band coated with Au-Ni. Bench measurements

have been performed in the Department of SBAI of the University of Rome “La Sapienza”. The

Slater method for the SW cavity has been employed in order to quantify the electric field inside

the structure. Comparing the results with the results exposed from HFSS we report the features

that have been quantified, showing good agreement.
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We continued working on the perturbation effect due to the aperture coupled between a waveg-

uide and a cavity but for our application in SW multi-cell high gradient accelerating structure

we studied on theoretical approach for reflection coefficient calculation in a SW cavity coupled

to a waveguide. One method was based on circuit theory in which we found the overall Q of

a resonant circuit for a cavity coupled to an external waveguide containing the RF generator.

Q calculation led to the determining of the shunt impedance and consequently the reflection

coefficient calculation. Comparison of the results shows a good agreement with the numerical

results carried out by using the numerical code, HFSS. Another method of reflection coefficient

calculation has been accomplished. We applied the modified Bethe’s theory presented by Collin

and developed by De santis, Mostacci and L.Palumbo for TM01 mode cavities coupled by a

small hole with a thickness size comparable to the wavelength. The amplitudes of forward and

backward waves due to polarizabilites have been determined and we found equations for reflec-

tion and transmission coefficients. We demonstrated that our equation for reflection coefficient

calculation is an analogous of the reflection coefficient obtained by Collin for TE10 using the

circuit theory.

9.2 Direction for future work

9.2.1 Self Consistent Solution Method for Reflection Coefficient

Calculation

We recall the equation obtained in chapter 7,

Γ = Γ0 + D

ˆ
V

Γ f (r)g(z)h(θ)δr δθ δz dV , (9.1)

where

Γ0 = −1
P01

jωε0αe(1 + e−2α`),

D = −β
P01kc

jωε0αe,

f(r) = (J ′0(kcr)J0(kcr)− J2
0 (kcr)),

g(z) = ejβz(1− e−2α`−2jβz),

h(θ) = 1,

and

dV = dr dθ dz.
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As we mentioned at the end of chapter 7, we have obtained an equation that the solution can

be found by “self consistent solution method” which because of complexity of this method we

will solve it as a future work.

9.2.2 Emittance growth due to multipole transverse magnetic

modes in an rf gun

Emittance growth of electron beams due to the cylindrical asymmetry of an rf gun have been

studied in many works. The breaking of the cylindrical symmetry occurs by certain ports, such as

laser ports, vacuum ports, and power-coupling ports in different cells of the photocathode rf gun,

and the primary asymmetry usually lies in the cell with the biggest port [43]. Consequently, the

lack of cylindrical symmetry excites multipole field components, such as the dipole, quadrupole,

and octopole, which kick the beam time dependently, leading to the emittance growth[44].

Minimization of the multipole rf field has been investigated and implemented in many works to

produce high-brightness electron beams in the photocathode rf gun [45,46, 47]. Eliminatin of

the multipole rf field is a new demanding of electron beams for the high gradient accelerating

structures and the study to eliminate the multipole field effect on electron beam emittance in an

rf gun is already started in some cases [47]. Mode launcher is a matched devices that couples the

rectangular TE01 mode waveguide to a TM01 mode in a circular waveguide. Generally speaking,

it is used as a converter from rectangular waveguide to circulare waveguide and the application

of the mode launcher are as follows,

• Photoinjectors and Linacs: To avoid a breakdown problem due to holes of coupling be-

tween the rectangular waveguide of rf source and accelerating structure, the mode launcher

is utilized as we show in Fig. (9.1)

It’s been demonstrated experimentally that these holes are one of the main reason for the

malfunctioning of the accelerators, specially for the high power accelerators. Furthermore,

by coupling of accelerating structure in axial mode, it’s possible to avoid multipole com-

ponents of electromagnetic fields which cause damage for the particle accelerator beam.

• High power testing: Putting an internal coating on the surface of mode launcher, it could

be increased the efficiency of the high power rf accelerator because of reducing the risk of

breakdown probability.

• Industrial application: As the figure below, currently high energy industrial linac should be

enclosed from the cone of dense material for the radio protection. Rectangular waveguide
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Figure 9.1: Mode launcher connected to the Linac.

of our supply is connected perpendicularly to the accelerating linac and it should pass

through that cone, making the system less flexible from mechanical point of view. Using

a mode launcher it could be possible to propagate the RF potential to the internal linac

in the axial mode to avoid of touching of radio protection cone.

The mode launcher can be employed for military application, in particularly for all radar

systems, for example, in which it needs the transportation of RF potential into the waveg-

uide, making the system more flexible and linear from mechanical point of view, from

momentum that the potential can be propagate axially.

Because the high brightness rf guns have a strong requirements on output beam properties, rf

gun designers are attempting to eliminate the dipole or quadrupole or in general multipole rf

fields [33, 48]. The authors in Ref. [47] have studied on a theoretical analysis and numerical

simulations of the multipole field effect to the emittance growth ( see Fig (9.2)). INFN in

collaboration with SLAC designed a compact and symmetric mode launcher as shows in Fig.

(9.3) with no multipolars fields. This mode launcher proposed by V. Dolgashev and couples

the rectangular TM10 mode to a TM01 circular mode. A high brilliance beam can be produced

because of the cancelation of dipolar and quadrupolar components by the four symmetrized

arms of the device. The designs have been carried out for S-band and X-band [52,53]. In this

work, we are studying for the analytical model to eliminate the multipole rf field in the case of

four gun models with zero, one, two, and four holes at the cell cavity. An electron beam passing

through a single cell near the axis with the light velocity in a zero, one, two, and four holes at

the cell cavity.

The analytical mode for the effects of these multipoles on emittance growth is based on Panofsky

wenzel theorem [49, 50] by which the transverse momentum imparted to an electron beam by

the rf field in a single cell can be calculated as follows:
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Figure 9.2: Simulation model of the rf gun with (a) one hole, (c) two holes, and (d) four

holes in the full cell part [47].

Figure 9.3: The mode launcher with compensated quadrupole components.
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PL =
e

ω
Re(

ˆ L
2

−L
2

i∇⊥Ezdz), (9.2)

where Ez is the electric field along the longitudinal axis, which can be expressed as the super-

position of all the TMn10 modes [51],

Ez(r, θ, z, t) = ei(ωt+φ0)Σ∞n=0Encos(kz)Jn(kcr)cos[n(θ − θ0)], (9.3)

where,

kc: radial wave number

φ0: rf phase

θ0: polarization angle which will be determined by the position of the holes

k: rf wave number (2π
λ )

θ: azimuthal angle

We have obtained the monopole (TM010), dipole TM110, quadropole TM210 and octopole TM410

modes. The procedure for obtaining the longitudinal electric fields for the monopole and multi-

poles can be found in Appendix C,

E010
z ' ei(ωt+φ0)E0cos(kz)(1−

k2
c

4
(x2 + y2)), (9.4)

E110
z ' ei(ωt+φ0)a1E0cos(kz) y, (9.5)

E210
z ' −ei(ωt+φ0)a2E0cos(kz)(x

2 − y2), (9.6)

E410
z ' ei(ωt+φ0)a4E0cos(kz)(x

4 − 6x2y2 + y4), (9.7)

substituting the equations above into the Panofsky-Wenzel theorem we will calculate the trans-

verse momentum imparted to an electron beam by the rf field in the case of four gun models

with zero, one, two, and four holes at the cell cavity, respectively [Appendix D]. The results are

as follows,

P 010
n,⊥ =

k2
c

2
αL sinφ0 (xx̂+ yŷ), (9.8)

P 110
n,⊥ = −2 a1 α L sinφ0ŷ, (9.9)
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P 210
n,⊥ = 2a2αLsinφ0(xx̂− yŷ), (9.10)

P 410
n,⊥ = −4a2αLsinφ0[(x3 − 3xy2)x̂+ (y3 − 3x2y)ŷ]. (9.11)

The normalized rms emittance growth can be calculated by

εn,x =
√
< (pn,x− < pn,x >)2 >< (x− < x >)2 > − < (pn,x− < pn,x >)(x− < x >) >2,

(9.12)

where the angle brackets mean statistical average. Substituting the previous results into the

equation above we can obtained the normalized rms emittance growth due to the multipole

fields.

For the next step we quantify the minimization of the multipole components though the Fourier

analysis of the fields. The obtainable voltage from the multipole field can be written as follows:

First, generally we write the field as an original continuous signal and we will call it F (jω).

Then we divide the original continuous signal to N samples. Obtaining the discrete form of the

field we are able to perform a Discrete Fourier Transform to obtain a coefficient which in our

case is the multipole voltage. The procedure is as follows,

F (jω) =

ˆ ∞
−∞

f(t) e−jωt dt, (9.13)

where f(t) is the original continuous signal. Let N samples be denoted f[0],f[1],f[2],..,f[k],..f[N-1]

then we have,

F (jω) =

ˆ (N−1)T

0
f(t) e−jωt dt, (9.14)

= f [0] e−j0 + f [1] e−jωt + ...+ f [k] e−jωkT + ...+ F [N − 1] e−jω(N−1)T , (9.15)

= ΣN−1
k=0 f [k] e−jωkT . (9.16)

We evaluate the DFT equation for the fundamental frequency (one cycle per sequence, 1
NTHz,

2π
NTHz rad/sec) and its harmonics.

ω = 0, 2π
NT ,

2π
NT × 2, ..., 2π

NT × n, ...,
2π
NT × (N − 1),

then we get,

F [n] = ΣN−1
k=0 f [k] e−j

2π
N
nk, (9.17)
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= ΣN
k=1 f [k] e−j

2π
N

(n−1)k. (9.18)

It is customary to write the equation above for our case as,

F [j] = Σn
s=1 f [s] e−

2πi
n

(j−1)s, (9.19)

f [s] =
1√
n

Σn
j=1 F [j] e

2πi
n

(j−1)s, (9.20)

as we know the equation for the voltage V− is:

V∓(r, θ) =

ˆ zf

zi

Ez(r, θ, z) e
∓ik0z dz, (9.21)

where θ is the azimuthal angle, k0 is the wavenumber of the input rf power and zi, zf are the

limits of integration on longitudinal axis. Then with the same procedure we have performed in

the procedure above for DFT we can obtained,

M∓,s(r) =
1√
n

Σn
j=1 V∓(r, θj) e

2πi
n

(j−1)s. (9.22)

where n is the number of azimuthal variations of the voltage and s is the index of the modes and

comparing this formula with the equation in ref. [45] we have obtained the Fourier transform

coefficients for a multipole compensation. For the future work we will continue to work on

analytical approach to eliminate multipole rf field to have less emittance growth due to the

multipole transverse magnetic modes and consequently to construct a high brightness rf gun.
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Chapter 10

Appendix

10.1 Appendix-A

Maxwell’s equations predict the propagation of electromagnetic energy away from time-varying

sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

media characterized by (µ, ε, σ) in a source-free region.

We start with the source-free, instantaneous Maxwell’s equations written in terms of E and H

only. Note that conduction current in the source-free region is accounted for in the σE term.

∇× Ē = −µ∂H̄
∂t

, (10.1)

∇× H̄ = σĒ + ε
∂Ē

∂t
, (10.2)

∇ . Ē = 0, (10.3)

∇ . H̄ = 0, (10.4)

taking the curl of Eq.(10.1),

∇×∇× Ē = −µ ∂
∂t

(∇×H), (10.5)

and inserting Eq.(10.2) gives

∇×∇× Ē = −µ ∂
∂t

(σĒ + ε
∂Ē

∂t
),
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= −µσ∂Ē
∂t
− µε∂

2Ē

∂t2
, (10.6)

taking the curl of Eq.(10.2),

∇×∇× H̄ = σ(∇× Ē) + ε
∂

∂t
(∇× Ē), (10.7)

and inserting Eq.(10.1) yields

∇×∇× H̄ = σ(−µ∂H̄
∂t

) + ε
∂

∂t
(−µ∂H̄

∂t
),

= −µσ∂H̄
∂t
− µε∂

2H̄

∂t2
. (10.8)

Using the vector identity for any vector A

∇×∇× Ā = ∇(∇ . Ā)−∇2Ā, (10.9)

in Eq.(10.6) and Eq.(10.8) gives,

∇×∇× Ē = ∇(∇ . Ē)−∇2Ē = −µσ∂Ē
∂t
− µε∂

2Ē

∂t2
, (10.10)

∇×∇× H̄ = ∇(∇ . H̄)−∇2H̄ = −µσ∂H̄
∂t
− µε∂

2H̄

∂t2
, (10.11)

where from Maxwell’s equation we have , ∇ . E = 0 and ∇ . H = 0, then the equations above

turn out to be,

∇2Ē = µσ
∂Ē

∂t
+ µε

∂2Ē

∂t2
, (10.12)

∇2H̄ = µσ
∂H̄

∂t
+ µε

∂2H̄

∂t2
, (10.13)

which are instantaneous vector wave equations known Helmholtz equations.

For time-harmonic fields, the instantaneous (time-domain) vector A is related to the phasor

(frequency-domain) vector As by

A < − > As

∂A
∂t < − > jωAs

∂2A
∂t2

< − > (jω)2As

Using these relationships, the instantaneous vector wave equations are transformed into the

phasor vector wave equations:
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∇2Ē − k2Ē = 0, (10.14)

∇2H̄ − k2H̄ = 0, (10.15)

where k2 = jωµ(σ + jωε) and the complex constant k is defined as the propagation constant.

k = α+ jβ =
√
jωµ(σ + jωε). (10.16)

The Solutions of Wave Equation in Cylindrical Coordinates [40]:

The Helmholtz equation in cylindrical coordinates is

1

ρ

∂

∂ρ
(ρ
∂ψ

∂ρ
) +

1

ρ2

∂ψ

∂2
+
∂2ψ

∂z2
+ k2ψ = 0. (10.17)

By separation of variables, assume ψ = R(ρ)Φ(φ)Z(z). We have

1

ρR(ρ)

d

dρ
(ρ
dR(ρ)

dρ
) +

1

ρ2Φ(φ)

d2Φ

dΦ2
+

1

Z(z)

∂2Z(z)

dz2
+ k2 = 0, (10.18)

the third term is independent of φ and ρ, so it must be constant:

1

Z(z)

∂2Z(z)

dz2
= −k2

z , (10.19)

This leaves,

1

ρR(ρ)

d

dρ
(ρ
dR(ρ)

dρ
) +

1

ρ2Φ(φ)

d2Φ

dΦ2
+ k2 − k2

z = 0. (10.20)

Now define the radial wavenumber as,

k2
ρ = k2 − k2

z , (10.21)

and multiply the resulting equation by ρ2 to find

ρ

R(ρ)

d

dρ
(ρ
dR(ρ)

dρ
) +

1

Φ(φ)

d2Φ

dφ2
+ k2

ρρ
2 = 0, (10.22)

the second term is independent of ρ and z, so we let

1

Φ(φ)

d2Φ

dΦ2
= −n2. (10.23)

This process leaves an ordinary differential equation in ρ alone. then we must have
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ρ
d

dρ
(ρ
dR(ρ)

dρ
) + [k2

ρρ
2 − n2]R(ρ) = 0, (10.24)

d2Φ

dφ2
+ n2Φ(φ) = 0, (10.25)

∂2Z(z)

dz2
+ k2

zZ = 0, (10.26)

∂2Z(z)

dz2
+ k2

zZ = 0, (10.27)

k2
ρ + k2

z = k2, (10.28)

the first of these equations is called Bessel’s Equation; the others are familiar.

The second and third equations are the harmonic equations. We have already seen equations like

those in the z and φ directions; the solutions are trigonometric or exponential. The only novelty

is that φ is periodic or finite; it therefore is always expanded in a series and not an integral. If

there is no limit in the φ direction we find Φ(φ) = Φ(φ+2π) for the periodic boundary condition.

This implies that nεZ if the entire range is included.

The remaining equation to be solved is the radial equation, i.e. Bessel’s Equation.Note that the

problem simplifies considerably if kρ = 0. This case may be considered as a Bessel’s functions

for statics or stationary state. In this case, we have

ρ
d

dρ
(ρ
dR(ρ)

dρ
)− n2R(ρ) = 0, (10.29)

to solve it, let ρ = ex so dρ
dx = ex = ρ.This implies that,

d

dx
=
dρ

dx

d

dρ
= ρ

d

dρ
, (10.30)

then the equation for statics Bessel’s function turn to be,

d2R

dx2
− n2R = 0, (10.31)

the solutions to this are,

R(x) = {A+Blnρ n=0
Aρn+Bρ−n n6=0

, (10.32)

We are generally more interested in the dynamic case in which we must solve the full Bessel

Equation:
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ξ
d

dξ
(ξ
dR

dξ
) + [ξ2 − n2]R = 0, (10.33)

one may be normalize kρ = 1, and rewrite the equation in terms of ρ instead of ξ to solve this

equation, we suppose

R(ξ) = ξαΣ∞m=0cmξ
m, (10.34)

now the derivative of R(ξ) respect to ξ is,

dR

ξ
= Σ∞m=0(α+m)cmξ

α+m−1, (10.35)

thus

ξ
dR

ξ
= Σ∞m=0(α+m)cmξ

α+m, (10.36)

and

d

dξ
(ξ
dR

ξ
) = Σ∞m=0(α+m)2cmξ

α+m−1, (10.37)

finally we construct the first term of the Eq.(10.33) as,

ξ
d

dξ
(ξ
dR

ξ
) = Σ∞m=0(α+m)2cmξ

α+m, (10.38)

now, we can plug in the second term of Eq.(10.33) putting the Eq.(10.34) for the R(ξ),

Σ∞m=0(α+m)2cmξ
α+m + [ξ2 − n2]Σ∞m=0cmξ

α+m = 0, (10.39)

now we have

Σ∞m=0[(α+m)2 − n2]cmξ
α+m + Σ∞m=0cmξ

α+m = 0, (10.40)

we can proceed by forcing the coefficients of each term to vanish. We fixed c0 6= 0 because of

the homogeneity of the equation.

For ξα we have α2 − n2 = 0. Since c0 6= 0 by assumption, then α = ±n. For ξα we have instead

[(α+ 1)2 − n2]c1 = 0, thus c1 = 0. Finally for all other ξα+m:

[(α+ 1)2 − n2]cm + cm−2 = 0, (10.41)

assuming α = n, then,
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cm =
−1

m(m+ 2n)
cm−2, (10.42)

thus, immediately for p ∈ Z we have: c2p+1 = 0.

Given that the odd coefficients vanish, we let m = 2p and let ap = c2p, so we get

ap = c2p =
−1

4p(p+ n)
c2p−2 = ap−1, (10.43)

and

a1 =
−1

4(n+ 1)
a0, (10.44)

a2 =
−1

4(n+ 2)(2)

−1

4(n+ 1)
a0, (10.45)

a3 =
−1

4(n+ 3)(3)

−1

4(n+ 2)(2)

−1

4(n+ 1)
a0, (10.46)

in general it can be written,

ap =
(−1)pn!

4pp!(n+ 1)!
a0, (10.47)

if we choose 2−nn!a0 = 1 and recall,

R(ξ) = ξαΣ∞m=0cmξ
m = Σ∞p=0apξ

2p+n, (10.48)

finally we can define the Bessel function of order n as a solution for our equation R(ξ):

R(ξ) = Jn(ξ) = Σ∞p=0

(−1)p

p!(n + p)!
(
ξ

2
)2p+n, (10.49)

this function is entire; it exists and is differentiable for all ξ, this is only one solution of the

equation. The other solution is not regular at the origin since the coefficient of the second order

derivative vanishes there.Note that the solution looks like the corresponding static ρn solution

at the origin.we have to mention that also fractional orders are possible, but do not arise as

commonly in applications.

Our original equation (normalized) was

ξ
d

dξ
(ξ
du

dξ
) + [ξ2 − n2]u = 0, (10.50)

the other solution, v must be,
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Figure 10.1: Bessel’s Function
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ξ
d

dξ
(ξ
dv

dξ
) + [ξ2 − n2]v = 0, (10.51)

multiply the first equation by v and the second by u, subtract, and divide by ξ:

v
d

dξ
(ξ
du

dξ
)− u d

dξ
(ξ
dv

dξ
) = 0 (10.52)

expanding this out

ξ(u”v − uv”) + u′v − uv′ = 0. (10.53)

or

d

dξ
[ξ(u′v − uv′)] = 0. (10.54)

It therefore stands to reason that ξ(u′v − uv′) = C or (u′v−uv′)
v2

= C2
ξv2

. This of course implies

d
dξ (uv ) = C2

ξv2
. This can be integrated to give,

u

v
= C1 + C2

ˆ
dξ

ξv2
, (10.55)

or

u(ξ) = C1v(ξ) + C2v(ξ)

ˆ
dξ

ξv(ξ)2
, (10.56)

setting C1 = 0 and v(ξ) = Jn(ξ) and expanding the series and integrating gives rise to the

Yn(ξ) = Jn(ξ)

ˆ
dξ

ξJ2
n(ξ)

, (10.57)

which is the Neumann function.This function is also called the ”Bessel function of the second

kind”.It is sometimes denoted by Nn(ξ). This function is not defined for ξ = 0.

The Jn and Yn are both real functions for real arguments.They must therefore represent standing

waves. It should be noted that Hankel functions represent traveling waves which they can

construct taking the real part from Bessel’s function and the immaginary part from Neumann

function.

H(1)
n (x) = Jn(x) + jYn(x), (10.58)

H(1)
n (x) = Jn(x)− jYn(x), (10.59)

these are called Hankel functions of the first and second kind, respectively.
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Figure 10.2: Neumann Function
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Recalling the equation

d2Φ

dφ2
+ n2Φ(φ) = 0, (10.60)

let Φ = erφ be a solution of the equation above, then substitute dΦ
dφ = rerφ and d2Φ

dφ2
= r2erφ into

the equation we get,

r2erφ + n2erφ = 0, (10.61)

erφ(r2 + n2) = 0, (10.62)

since erφ is never zero, the above equation is satisfied (and thereforeerφ is a solution if and only

if r2 +n2 = 0).This polynomial is called the characteristic polynomial of the differential equation

and each and every root, sometimes called a characteristic root, r, and linear superposition of

the. solution made by characteristic roots is also a solution of the differential equation.Therefore,

a general solution is,

Φ = A1e
r1φ +A2e

r2φ, (10.63)

Φ = A1e
jnφ +A2e

−jnφ, (10.64)

Φ = A1(cos(nφ) + jsin(nφ)) +A2(cos(nφ)− jsin(nφ)) = A1cos(nφ) +A2cos(nφ), (10.65)

A1 and A2 can be obtained from the boundary conditions.

so for the φ(φ) we can write,

φ(φ) = A1cos(nφ) +A2cos(nφ), (10.66)

and recalling the last equation,

d2Z(z)

dz2
+ k2

zZ = 0, (10.67)

the same procedure has done for Φ(φ) and the solution can be written as,

Z(z) = B1cos(kzz) +B2cos(kzz). (10.68)

Replacing Eq.s (10.49), (10.66) and (10.68) in equation ψ = R(ρ)Φ(φ)Z(z), we obtained com-

plete solution of wave equation in cylindrical coordinates.
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10.2 Appendix-B

Floquet Theory:

Consider the linear periodic system as follows.

ẋ = A(t)x,A(t+ p) = A(t), p > 0, (10.69)

where A(t) ∈ C(R). Lemma: If C is a n× n matrix with det C 6= 0, then, there exists a n× n

(complex) matrix B such that eB = C.

Proof: For any matrix C, there exists an invertible matrix P, s.t. P ?1CP = J , where J is a

Jordan matrix.

If eB = C,then, eP
−1BP = P−1eBP = P−1CP = J .Therefore, it is suffice to prove the result

when C is in a canonical form.

Suppose that C = diag(C1, C2, ..., Cs), Cj = λjIj +Nj , where Nj is nilpotent, that is,

Since C is invertible for each λ 6= 0.

If we can show that for each Cj , there exists Bj s.t. Cj = eBj → C = eB. Since Cj = λj(Ij+
Nj
λj

),

using the expansion of ln(1 + x) = Σ∞k=1
(−1)k+1

k xk, |x| < 1, we have,

Bj = lnCj = ln{λj(Ij +
Nj

λj
)} = Ijlnλj + ln(Ij +

Nj

λj
),

= Ijlnλj + Σ∞k=1

(−1)k+1

k
(
Nk

λk
). (10.70)

Since N
nj
j = 0, we actually have

Bj = lnCj = Ijlnλj + Σ
nj−1
k=1

(−1)k+1

k
(
Nk

λk
) = Ijlnλj +Mj , j = 1, 2, ..., s, (10.71)

where Mj = Σ
nj−1
k=1

(−1)k+1

k (N
k

λk
). Therefore, we have,

eBj = exp{Ijlnλj +Mj} = exp{ln Cj} = Cj , j = 1, 2, ..., s. (10.72)

Let B = diag(B1, ..., Bs) , where Bj is defined above. We have the desired result given by

eB = diag(eB1 , eB2 , ..., eBs) = diag(C1, C2, ..., Cs) = C. (10.73)

Clearly, B is not unique since eB+2πkiIn = eBe2πkiIn = eBe2πkiIn = eBe2πki = eB for any integer

k.

Floquet Theorem states that if Φ(t) is a fundamental matrix solution of the periodic system

ẋ = A(t)x, then so is Φ(t + p). Moreover, there exists an invertible matrix P(t) with p-period

such that
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Φ(t) = P (t)eBt. (10.74)

Proof of the theory: Let Ψ(t) = Φ(t+ p). Since Φ′(t) = A(t)Φ(t), it follows that

Ψ(t) = Φ′(t+ p) = A(t+ p)Φ(t+ p) = A(t)Ψ(t), (10.75)

Hence, Ψ(t) is also a matrix solution. Since Φ(t) is invertible for all t ∈ R , so is Φ(t+p)⇒ Ψ(t) is

also a fundamental matrix solution. Therefore, there exists an invertible matrix C (for example,

if Φ(t) satisfies Φ(0) = In , then C = Φ(p). Depends on solutions. It is a point of difficulty for

computation) s.t.

Φ(t+ p) = Φ(t)C for all t ∈ R (10.76)

By the results above there exists a matrix B such that eBp = C. For such a matrix B, we take

P (t) := Φ(t)e−Bt, that is, Φ(t) = P (t)eBt. Then

P (t+ p) = Φ(t+ p)e−B(t+p) = Φ(t)Ce−B(t+p) = Φ(t)e−Bt = P (t). (10.77)

Therefore P (t) is invertible for all t ∈ R and p-periodic. This concludes the proof.

10.3 Appendix-C

The main mode is monopole (TM010) mode:

E010
z = ei(ωt+φ0)E0cos(kz)J0(kcr). (10.78)

We can write the definition of the Bessel function,

Jν(x) = (
x

2
)νΣ∞k=0

(−1)k

Γ(k + 1)Γ(ν + k + 1)
(
x

2
)(2k), (10.79)

taking the first two terms we have,

J0(kcr) = 1− k2
c

4
r2, (10.80)

substituting the equation above inside the Eq. (10.78),

E010
z ' ei(ωt+φ0)E0cos(kz)(1−

k2
c

4
r2) (10.81)
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Writing the equation above in the cartessian coordinate,

E010
z ' ei(ωt+φ0)E0cos(kz)(1−

k2
c

4
(x2 + y2)). (10.82)

The equation for the dipole TM110 mode is,

E110
z = ei(ωt+φ0)E1cos(kz)J1(kcr)cos(θ −

π

2
), (10.83)

' ei(ωt+φ0)E1cos(kz)
kcr

2
sinθ, (10.84)

replacing E1 = 2a1E0
kc

into the equation above where a1 is the relative strength of the dipole field

to the monopole field and it can be written as,

a1 =
E1

E0
× kc

2
, (10.85)

then the Eq. (10.83) can be written as,

E110
z ' ei(ωt+φ0)a1E0cos(kz) y. (10.86)

The quadropole TM210 mode is as follows,

E210
z = ei(ωt+φ0)E2cos(kz)J2(kcr)cos[2(θ − π

2
)], (10.87)

= ei(ωt+φ0)E2cos(kz)J2(kcr)(cos
2θ − sin2θ), (10.88)

where,

J2(kcr) ' −
k2
cr

2

8
, (10.89)

E210
z ' −ei(ωt+φ0)E2cos(kz)

k2
cr

2

8
(cos2θ − sin2θ), (10.90)

' −ei(ωt+φ0)a2E0cos(kz)(x
2 − y2), (10.91)

where,

a2 : relative strength of the quadropole field to the monopole field,

a2E0 = k2c
8 E2,
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a2 = E2
E0
× k2c

8 .

Octopole TM410 mode:

E410
z = ei(ωt+φ0)E2cos(kz)J4(kcr)cos[4(θ − π

2
)], (10.92)

' ei(ωt+φ0)E4cos(kz)J4(kcr)[
1

4!
(
kcr

2
)4]cos4θ, (10.93)

where, J4(kcr) ' 1
4(kcr2 )4,

' ei(ωt+φ0)a4E0cos(kz)(x
4 − 6x2y2 + y4), (10.94)

where,

r4cos4θ = r4cos(2θ + 2θ) = r4[cos22θ − sin22θ],

= r4[(cos2θ − sin2θ)2 − (2sinθcosθ)2],

= r4[cos4θ + sin4θ − 6sin2θcos2θ],

= r4cos4θ + r4sin4θ − 6r4sin2θcos2θ,

= x4 − 6x2y2 + y4,

a4E0 = E4 × 1
4! ×

k4c
16 ,

a4 = E4
E0
× k4c

4!×16 ,

a4 : relative strength of the octopole field to the monopole field,

then,

E410
z ' ei(ωt+φ0)a4E0cos(kz)(x

4 − 6x2y2 + y4). (10.95)

10.4 Appendix-D

The normalized transverse monopole kick for an electron beam is,

Pn,⊥ =
mv

mc
, (10.96)

where mv is the transverse momentum imparted to the electron,

P 010
n,⊥ =

1

mc
P 010
⊥ , (10.97)

then the equation can be calculated by the Panofsky-Wenzel theorem for a single electron as,
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P 010
n,⊥ =

1

mc
Re(

e

ω

ˆ L
2

−L
2

i∇⊥E010
z dz), (10.98)

=
1

mc
Re(

e

ω

ˆ L
2

−L
2

[i
∂

∂x
E010
z + i

∂

,
∂yE010

z ]dz) (10.99)

substituting the results from the appendix C we have,

P 010
n,⊥ =

1

mc
Re(

e

ω

ˆ L
2

−L
2

i
∂

∂x
[E0e

iφ(1−k
2
c

4
(x2+y2))]dz)+

1

mc
Re(

e

ω

ˆ L
2

−L
2

i
∂

∂y
[E0e

iφ(1−k
2
c

4
(x2+y2))]dz),

(10.100)

=
1

mc
Re(

e

ω

ˆ L
2

−L
2

[−iE0e
iφk

2
c

2
x]dz) +

1

mc
Re(

e

ω

ˆ L
2

−L
2

[−iE0e
iφk

2
c

2
y]dz), (10.101)

=
1

mc
Re(

e

ω

ˆ L
2

−L
2

[−iE0 (cosφ+ isinφ)
k2
c

2
x]dz) +

1

mc
Re(

e

ω

ˆ L
2

−L
2

[−iE0 (cosφ+ isinφ)
k2
c

2
y]dz),

(10.102)

we only need to consider the real part of integral,

P 010
n,⊥ =

1

mc
Re(

e

ω

ˆ L
2

−L
2

E0 sinφ
k2
c

2
x dz) +

1

mc
Re(

e

ω

ˆ L
2

−L
2

E0 sinφ
k2
c

2
y dz), (10.103)

=
1

mc

e

ω
E0 sinφ

k2
c

2
L x+

1

mc

e

ω
E0 sinφ

k2
c

2
L y, (10.104)

=
1

mc

e

ω
E0 sinφ0

k2
c

2
L (xx̂+ yŷ), (10.105)

with some simplification it can be written as,

P 010
n,⊥ =

1

mc2

e

k
E0 sinφ0

k2
c

2
L (xx̂+ yŷ), (10.106)

where α is the normalized rf field strength

α =
eE0

mc2k
, (10.107)

finally for the normalized transverse monopole kick for a single electron we have,

P 010
n,⊥ =

k2
c

2
αL sinφ0 (xx̂+ yŷ). (10.108)
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The normalized transverse dipole kick for a single electron is:

P 110
n,⊥ =

1

mc
Re(

e

ω

ˆ L
2

−L
2

i∇⊥Ezdz), (10.109)

=
1

mc
Re(

e

ω

ˆ L
2

−L
2

[i
∂

∂x
E110
z ]dz) +

1

mc
Re(

e

ω

ˆ L
2

−L
2

[i
∂

∂y
E110
z ]dz), (10.110)

taking the results for the dipole TM110 mode from the appendix C and substituting inside the

equation above,

P 110
n,⊥ =

1

mc
Re(

e

ω

ˆ L
2

−L
2

[i
∂

∂x
(ei(ωt+φ)a1E0cos(kz) y]dz)+

1

mc
Re(

e

ω

ˆ L
2

−L
2

[i
∂

∂y
(ei(ωt+φ)a1E0cos(kz) y]dz),

(10.111)

taking the real part of integral

= − 1

mc
Re(

e

ω

ˆ L
2

−L
2

a1E0cosφ0dz), (10.112)

= −2
1

mc

e

ω
a1E0sinφ0L, (10.113)

finally the normalized transverse monopole kick for an electron beam can be written

P 110
n,⊥ = −2 a1 α L sinφ0ŷ. (10.114)

The normalized transverse quadrupole kick for a single electron is

P 210
n,⊥ =

1

mc
Re(

e

ω

ˆ L
2

−L
2

i∇⊥E210
z dz), (10.115)

following the same procedure as for the normalized transverse dipole kick for a single electron

that we have obtained for the normalized transverse quadrupole kick we can obtain,

P 210
n,⊥ = 2a2αLsinφ0(xx̂− yŷ). (10.116)

The normalized transverse octopole kick can be written according to the Panofsky-Wenzel the-

orem for a single electron as

P 410
n,⊥ =

1

mc
Re(

e

ω

ˆ L
2

−L
2

i∇⊥E410
z dz), (10.117)
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=
1

mc
Re(

e

ω

ˆ L
2

−L
2

[i
∂

∂x
E410
z ]dz) +

1

mc
Re(

e

ω

ˆ L
2

−L
2

[i
∂

∂y
E410
z ]dz), (10.118)

substituting the results from the appendix C and some simplification it can be written as

P 410
n,⊥ =

1

mc
Re(

e

ω

ˆ L
2

−L
2

[i
∂

∂x
(ei(ωt+φ)a4E0cos(kz)(x

4 − 6x2y2 + y4)]dz)

+
1

mc
Re(

e

ω

ˆ L
2

−L
2

[i
∂

∂y
(ei(ωt+φ)a4E0cos(kz)(x

4 − 6x2y2 + y4)]dz) (10.119)

= +
1

mc

e

ω
a4E0sinφ0

ˆ L
2

−L
2

[i
∂

∂x
(x4 − 6x2y2 + y4) + i

∂

∂y
(x4 − 6x2y2 + y4)]dz, (10.120)

= +
1

mc

e

ω
a4E0sinφ0[4x3 − 12xy2 − 12x2y + 4y3], (10.121)

= +
−4

mc

eλ

2πc
a4E0sinφ0[(x3 − 3xy2)x̂+ (y3 − 3x2y)ŷ], (10.122)

finally for the normalized transverse ocopole kick for a single electron we have,

P 410
n,⊥ = −4a2αLsinφ0[(x3 − 3xy2)x̂+ (y3 − 3x2y)ŷ]. (10.123)
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