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A Unified Framework for De-Duplication and
Population Size Estimation

Andrea Tancredi∗, Rebecca Steorts†, and Brunero Liseo‡

Abstract. Data de-duplication is the process of detecting records in one or more
datasets which refer to the same entity. In this paper we tackle the de-duplication
process via a latent entity model, where the observed data are perturbed versions
of a set of key variables drawn from a finite population of N different entities.
The main novelty of our approach is to consider the population size N as an
unknown model parameter. As a result, a salient feature of the proposed method
is the capability of the model to account for the de-duplication uncertainty in
the population size estimation. As by-products of our approach we illustrate the
relationships between de-duplication problems and capture-recapture models and
we obtain a more adequate prior distribution on the linkage structure. Moreover we
propose a novel simulation algorithm for the posterior distribution of the matching
configuration based on the marginalization of the key variables at population level.
We apply our method to two synthetic data sets comprising German names. In
addition we illustrate a real data application, where we match records from two
lists which report information about people killed in the recent Syrian conflict.

Keywords: cluster analysis, entity resolution, partition models, record linkage.

1 Introduction

De-duplication (record linkage or entity resolution) is the process of merging together
potentially noisy lists, data sets, or databases, often in the absence of a unique identifier,
both to remove duplicated information and to increase the informative content of each
single file. In fact, from a statistical perspective, performing de-duplication is paramount
for obtaining a more reliable or a larger reference data set. Indeed, on one hand, the
identification of duplications of the same entity would allow to increase the quality of
the information associated to it. On the other hand, merging different files, once the
common entities have been correctly detected, leads to a new, larger and richer data set.
This new data may be suitable to perform accurate model-based statistical analyses via
the additional information which could not be extracted from a single data set, because
the original data may not comprise some of the model variables.

When unique identifiers are known exactly, the linkage process can be accomplished
without errors. In this case, there are no specific consequences on the statistical proce-
dures undertaken in the aforementioned situations. However, in practice, unique iden-
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tifiers are rarely available and the researcher must deal with the uncertainty related
to the linking step. The problem of how to account for the matching uncertainty has
then caused an active line of recent research among the statistical, the machine learn-
ing, and the computer science communities. In fact, in practical applications of record
linkage procedures, the concrete possibility to make wrong matching decisions should
be accounted for, especially when the result of the linking step, namely the fused data
set, will be used for further statistical analyses, such as regression, capture-recapture
methods or small area estimation: see for example Tancredi and Liseo (2011, 2015),
Briscolini et al. (2018), and Sadinle (2018).

The classical record linkage approach with two data sets was formalized by Jaro
(1989), following the seminal paper by Fellegi and Sunter (1969). This standard method
is based on the comparison vectors — data vectors obtained by comparing the common
fields, also known as key variables, for each pair of records. Since the distribution of
the comparison vectors depends on the unknown match or non-match status of the
record pairs, a mixture model fitted to the entire collection of comparison vectors can
be used to classify all the pairs in two or more sets concerning their matching status
(Belin and Rubin, 1995; Larsen and Rubin, 2001). Recently, Sadinle and Fienberg (2013)
extended the Fellegi-Sunter approach to allow situations with three or more files, while
also preserving transitive closures.

To our knowledge, Fortini et al. (2001) proposed the first Bayesian approach to
record linkage, where the likelihood function provided by the set of multiple comparison
vectors was used to estimate the matching configuration through the use of Markov
Chain Monte Carlo (MCMC) methods. This approach, together with Larsen (2005)
and Sadinle (2017), can be interpreted as a Bayesian version of the classical Fellegi-
Sunter record linkage approach. Note that these papers do not assume the presence of
“within file” duplications. That is, it is only possible to match a record in a file to a
single record of another file and vice versa. A clear advantage of the Bayesian approach
is that one can naturally account for this constraint by simply selecting appropriate
prior distributions on the matching status to incorporate this assumption.

Tancredi and Liseo (2011) recently proposed a Bayesian record linkage method that
is well suited for categorical data. The authors deviate from the Fellegi-Sunter approach
in two major ways — they do not work with comparison data and allow for record linkage
uncertainty to be accounted for in population size estimation. To handle the former,
they explicitly model the fully observed records through a particular measurement error
model, inspired by the so called “hit-and-miss” strategy proposed by Copas and Hilton
(1990). The latter is naturally handled through the joint estimation of the record linkage
model and the capture–recapture model used for population size estimation. In the same
spirit, Liseo and Tancredi (2011) have introduced a record linkage model for continuous
data based on a multivariate normal model with measurement error. The de-duplication
problem for a single list framework has been tackled from a Bayesian perspective in
Sadinle (2014) by using the information provided by the comparison data. Steorts et al.
(2014, 2016) were the first to perform simultaneous record linkage and de-duplication
on multiple files through the use of the fully observed records, creating a scalable record
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linkage algorithm. Steorts (2015) extended this work further to the case of string and
categorical data, where arbitrary distance metrics between strings have been considered.

In this paper we extend both the work of Tancredi and Liseo (2011) and Steorts
et al. (2016). We develop a unified framework for population size estimation by using
multiple files that require both linkage and de-duplication. In fact the former paper
considered only the case of two files without duplication inside each of the single lists
while the latter assumed a generating population with a fixed and known size.

The rest of the paper proceeds as follows. Section 2 introduces the basic framework
of our generalized Bayesian record linkage and de-duplication model and specifies the
measurement error model for the key variables, namely the hit and miss model. Section 3
illustrates how the task of estimating a population size can be rephrased in terms of
the partition associated with the observed records. Moreover, we provide new insights
about the prior modeling of the matching configuration in a de-duplication problem and
show some connections between our prior partition modeling and capture-recapture
models with non homogeneous capture probabilities and duplication rates. Section 4
shows how to simplify the model by integrating out the unknown population values.
Section 5 discusses the computational aspects of our proposed model. In particular,
in comparison with respect to Steorts et al. (2016), we propose a novel simulation
algorithm for the posterior distribution based exactly on the marginalization of the
records values at the population level. Section 6 illustrates the results of our unified
model for de-duplication and population size estimation applied to the synthetic data
sets RLdata500 and RLdata10000 from the RecordLinkage package in R, presenting an
intensive sensitivity analysis with respect to all model hyperparameters. In Section 7
we fit the model to a real data set reporting the names of victims of the recent Syrian
conflict. Finally, Section 8 provides a brief discussion of our work.

2 The key variables model

We first introduce the methodological framework of the record linkage process. Assume L
lists F1, F2 . . . , FL, whose records respectively relate to statistical units (e.g. individuals,
firms, etc.) of partially overlapping samples. The records in the lists consist of several
categorical variables which may contain corruptions, noise, and errors. Moreover we do
not handle missing fields across lists, and assume that all lists have p fields in common,
representing the key variables. For example, in lists regarding individuals, the common
fields, might be surname, name, age, sex. Denoting the j-th record of file Fi as (i, j),
the main goal of a standard record linkage procedure is to identify all pairs of records,
say (i1, j1) and (i2, j2), with i1 �= i2, that actually refer to the same unit, by using
the key variables of the observed records of L lists. An additional difficulty in record
linkage arises when some records in the same file, say (i, j1), . . . , (i, jn), refer to a single
entity—known as duplicate detection.

Assume that the L sets of records have been collected from a given population
with N entities, that is, ŨN = {ũ1, ũ2, . . . , ũN} where N < ∞ and that the lists are
independent, that is population entities occur independently across the lists in the same
framework as Steorts et al. (2016). Assign to each member of the population the label
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j′ resulting from its position in the ordered list ŨN . Hence j′ = 1, . . . , N . We assume
that N is unknown; thus knowing the labels of the entities observed in the data sets
would produce strong information about N if only because N should be greater of the
maximum label. However these labels cannot be observed and neither estimated via the
information provided by the L list of records. In fact, we anticipate that the data can
be informative only on how many distinct population entities have been observed at
the sample level and which sample records gather around each one of them. The former
information will be used to estimate N , the latter to perform the matching process.

Let ṽj′ = (ṽj′1, . . . , ṽj′p) be the vector of the p categorical key variables for the
population individual j′. Denote by ṽ = (ṽ1, . . . , ṽN ) the entire set of population records.
Assume the set of population records ṽ is generated independently, for j′ = 1, . . . , N ,
from a vector of independent categorical variables Ṽ = (Ṽ1, . . . , Ṽ�, . . . , Ṽp) such that

Ṽ� ∈ V� = {v� 1, . . . , v�M�
} and that given the probability vector θ� = (θ�v�1 , . . . , θ�v�M�

),
p(v� s|θ�) = θ� v� s

, s = 1, . . . ,M�, where M� is the number of categorical values for the
�th field. Note that here and later, to simplify notations we let the arguments define the
density and mass functions. Hence, the model for the population records can be written
as

p(ṽ|θ,N) =

N∏
j′=1

p∏
�=1

p(ṽj′�|θ�) =
N∏

j′=1

p∏
�=1

θ�ṽj′� (2.1)

where θ = (θ1, . . . , θ�, . . . , θp).

At the sample level we assume that one does not observe the population “true”
values, due to measurement and reporting errors. In fact, each set of observed records,
which is a list of size ni, i = 1, . . . , L, comprises contaminated versions of subsets
of the vectors ṽj′ . Let vij = (vij1, . . . , vijp) denote the observed values for the j-th
record of the i-th file, with i = 1, . . . , L and j = 1, . . . , ni. Moreover, denote with
v = (v11, . . . , v1n1 , . . . , vL1, . . . vLnL

) the entire set of observed records across the L lists.

Let λij ∈ {1, 2, . . .} j = 1, . . . , ni, i = 1, . . . , L be the unknown population labels of
the sample units. This way λ = (λ11, . . . , λ1n1 , . . . , λL1, . . . , λLnL

) denotes the unknown
matching pattern between the observed records v and the population records ṽ, where
λij = j′ indicates that the observed record vij is a version of the population record ṽj′ .
The relation λij1 = λij2 , with j1 �= j2, implies that records j1 and j2 of the i-th list
are co-referent to the same population record. This is an instance of duplicate-detection
within the same list. Instead, when λi1j1 = λi2j2 , with i1 �= i2, one has the usual record
linkage framework with the same individual appearing in two different lists.

Let us now formalize the generative distortion mechanism when the population
records are observed on the L lists. In particular, we assume the hit-and-miss model
proposed by Copas and Hilton (1990) and also adopted in Steorts et al. (2014, 2016) and
Steorts (2015). Let Vij� be the random variable generating vij�. Assume that Vij� ∈ V�,

that is Vij� has the same support of Ṽ�. Moreover, set δ(a, b) = 1 if a = b and δ(a, b) = 0
if a �= b, let αj′ = (αj′1, . . . , αj′�, . . . , αj′p) be the vector with the measurement er-
ror probabilities of the p key variables for the population individual j′ and denote by
α = (α1, . . . , αj′ , . . . , αN ) the entire set of distortion probabilities. We firstly assume
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that
p(vij� | ṽ, λ, α, θ) = (1− αλij�)δ(vij�, ṽλij�) + αλij�θ� vij� ∀i j �. (2.2)

This way, for the � − th key variable, the true population value of the individual j′

generating the record ij is observed with probability 1 − αj′�, while, with probability

αj′�, we observe a different value drawn from the random variable Ṽ� generating the
population values.

Finally, assuming the conditional independence among all the sample records and all
the key variables given their respective unobserved population counterparts, one obtains

p(v | ṽ, λ, α, θ) =
L∏

i=1

ni∏
j=1

p∏
�=1

p(vijl | ṽ, λ, α, θ). (2.3)

The model summarized by equations (2.1), (2.2) and (2.3) can be viewed as a part of
a hierarchical model where N unobserved population records ṽj′ , drawn from a super-
population model parametrized by the probability vectors θ�, generate the observed
records vij with the vectors αj′ acting as record distortion parameters. The key variables
probabilities θ� and the distortion probabilities αj′ are unknown quantities. For the
probability vectors θ� we assume independent Dirichlet priors for � = 1, . . . , p. An
exchangeable prior will be assumed for the distortion probabilities αj′� for j

′ = 1, . . . , N .
In particular the logit transformation of αj′�, that is βj′l = log (αj′l/(1− αj′l)) will
be Normal with mean β0l and variance s2, for j′ = 1, . . . , N and β0l will be Normal
with mean m0 and variance s20. Note also that distortion probabilities for different key
variables will be assumed independent.

3 The prior for the records partition and the population
size

The interpretation and the prior specification of the labeling variables λ is more chal-
lenging with respect to all other model variables and parameters. One interpretation
of λ is that its values are drawn from a known and specific sampling design, which
generates the labels allowing for duplications within each list. Consider the simplest
situation, where L independent simple random samples are drawn with replacement
from a population of size N < ∞. It follows that

p(λ|N) =

L∏
i=1

ni∏
j=1

p(λij |N) =

(
1

N

)n

(3.1)

where n =
∑L

i=1 ni. Therefore, with fixed N , one has a uniform prior over the set of all
possible configurations of the λ values. This is exactly the prior used in Steorts et al.
(2016) and we will call this distribution the uniform prior on the label space. Note that
a similar scheme was considered also by Tancredi and Liseo (2011) in the context of two-
file record linkage without duplication. There, their matching matrix prior distribution



6 Deduplication and Population Size Estimation

was based on the assumption that the lists were two simple random samples without
replacement.

We now investigate an alternative aspect of the uniform prior distribution of λ
given N . Let Z = Z(λ) denote the partition of the n records determined by λ. For
example assuming N = 3, L = 1, n1 = n = 3 and λ = (1, 2, 2) we have the par-
tition Z = 1|23 indicating that the second and third sample units share the same
population label which is different from the one of the first sample unit. Note that,
in this case, λ may assume 27 different vectors, all with equal probability, producing
the five different partitions of the n = 3 records, namely {123, 1|23, 13|2, 12|3, 1|2|3}.
Moreover the partition 1|23 can be obtained when λ is one of the following vectors
(1, 2, 2), (1, 3, 3), (2, 1, 1), (2, 3, 3), (3, 1, 1), (3, 2, 2). Thus the probability of the partition
1|23 given N = 3 is 6/27. When N = 4, λ may assume 64 different vectors and it is
simple to verify the probability of the partition 1|23 is now 12/64. Thus the distribution
on the sample labels λ given N induces a distribution on the partition space which
depends on N . This means that the simple knowledge of the partition of the sample
records is able to produce information on the population size N . Furthermore, matches
and duplicates are completely specified given the knowledge of Z. Thus estimating the
partition will permit at the same time to produce inference on N and to estimate the
linkage structure of the data at hand.

In the following we will indicate with P the set containing all the possible partitions
of the n observed records and with z ∈ Z a single block of the partition Z. Moreover, let
uz(λ) be the label identifying the block z on the vector λ and U = U(λ) = {uz(λ), z ∈
Z} be the set of the block labels ordered accordingly to the sequence z ∈ Z. Hence
λ = (3, 5, 1, 5) and λ = (5, 3, 1, 3) produce the same partition Z = 1|24|3 but different
label vectors U = (3, 5, 1) and U = (5, 3, 1). Note that (Z,U) and λ are in one to one
correspondence, thus p(Z,U |N) = p(λ|N).

We now obtain the prior distribution on the partition space P , for a given N , result-
ing from the uniform prior on the label space. Let k = k(Z) be the observed number
of blocks of the partition Z. The number of elements λ producing the partition Z is
Nk = N !/(N − k)!. In fact we have

(
N
k

)
ways to select the unordered labels for the

blocks of Z and for each of them k! ordered labellings U . Thus

p(Z|N) =
∑

λ:Z(λ)=Z

p(λ|N) =
∑
U |Z

(
1

N

)n

=

(
1

N

)n

Nk, ∀Z ∈ P . (3.2)

Moreover

p(U |Z,N) =
1

Nk
.

Note also that Nn =
∑n

k=0 NkS(n, k), where S(n, k) is the Stirling number of the second
kind, that is the number of possible partitions of the n records into k non empty sets,
so we have

p(Z|N) =
Nk∑n

r=0 NrS(n, r)
, ∀Z ∈ P . (3.3)
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Following Pitman (2006), equation (3.3) defines a special case of Gibbs partitions. More-
over, the distribution of the random number of blocks K is given by

p(k|N) =
Nk S(n, k)

Nn
k = 1, . . . , n.

The mean and the variance of K are easily obtained as

E(K|N) = N (1− (1− 1/N)n) (3.4)

and
Var(K|N) = N

[
(N − 1)(1− 2/N)n −N(1− 1/N)2n + (1− 1/N)n

]
(see Appendix A in Supplementary Material, Tancredi, Steorts, and Liseo, 2019). For
fixed N , as the number of records n → ∞, the distribution of K|N concentrates on
N , since E(K|N) tends to N and the variance vanishes. Also observe that, for a fixed
number of records n and large values of N , the distribution of the distinct entities
K|N concentrates on n. That is, the prior probability of observing links or duplicates
approaches 0 in the limit, as intuition suggests.

To complete the prior modeling of the linkage structure we need to specify the prior
for the population size N . Throughout this paper we assume

p(N) =
1

ζ(g)Ng
N = 1, 2, . . . (3.5)

where ζ(g) =
∑∞

N=1 1/N
g is the Riemann zeta function. Such a prior is proper ∀ g > 1.

Note that the use of heavy-tailed priors p(N) ∝ 1/Ng as non informative distributions
is quite diffuse in population size Bayesian estimation, see for example George and
Robert (1992) or Wang et al. (2007). Straightforward calculations (see Appendix A in
Supplementary Material, Tancredi, Steorts, and Liseo, 2019) show that, under this class
of priors, the marginal prior mean for K is

E(K) =

n∑
s=1

(
n

s

)
(−1)s+1 ζ(s+ g − 1)

ζ(g)
. (3.6)

Notice that, as g → 1 E(K) converges to n which is the upper end point of the support
of K; hence when g approaches to 1 the whole distribution of K concentrates on n.

The left part of Table 1 reports, for different values of g, the mean and the standard
deviation for K when the total number of records is n = 500 as in the first application
that will be illustrated in this paper. Such summaries are obtained by simulating 107

draws from p(N,λ) via the accept reject algorithm for p(N) proposed in Devroye (1986)
§10.6 and by direct simulation of p(λ|N). Note that even for values of g close to 1, the
standard deviation of K is quite high. Thus, such values of g have the important role
to induce a priori a high number of clusters with few observation per cluster, i.e. the
microclustering effect, see for example Zanella et al. (2016) and Johndrow et al. (2018),
without being too much informative. The right part of Table 1 reports the mean and
the standard deviation for K when we use the uniform prior for λ by fixing the values of
N . Note that the assumption of a uniform distribution on the label space conditioned
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g E(K) SD(K) N E(K) SD(K)
2 4 20 250 216 4.5
1.5 30 87 500 316 7.0
1.1 271 224 1000 394 7.4
1.05 375 198 2500 453 6.0
1.02 452 137 5000 476 4.6
1.01 477 98 10000 488 3.4
1.001 498 31 100000 499 1.1

Table 1: Mean and standard deviation of the random variable K with different values
of g and of K|N with different values of N .

on the value of N might not be adequate in real applications of record linkage and
de-duplication even when we are only interested on the linkage structure and we do
not need to make inference on N . In fact the resulting distribution on the number of
distinct entities K will be generally too concentrated as illustrated by the extremely
low standard deviation.

3.1 Estimation for the population size N when the partition Z is
known

When the partition Z of the n records is known and the model generating the partition
is given by (3.2), inference on N can be conducted via the posterior distribution

p(N |Z) ∝ p(Z|N)p(N) ∝ Nk

Nn
p(N)I{N≥k} (3.7)

where I{N≥k} denotes the indicator function of the set N ≥ k. Notice that the distribu-
tion (3.7) is exactly the posterior for N obtained from a T -stage homogeneous capture
recapture model when T = n, we observe k different individuals across the samples and
we condition on one capture in each occasion, see for example Marin and Robert (2014)
§5. Note also that assuming the prior (3.5), the posterior (3.7) is proper ∀g ≥ 0 when
k < n− 1.

It is also interesting to observe that the mode of the posterior for N when g = 0 is
approximated by the moment estimator of N obtained by the expression (3.4). In fact,
by approximating the logarithm of p(Z|N) using the Stirling formula, we have that

log p(Z|N) = N logN − (N − k) log (N − k)− n logN +O(logN)−O(log (N − k))

and the mode of the posterior distribution p(N |Z) when g = 0, i.e. p(N) ∝ c, is
approximately given by the solution of the equation k = N (1 − e−n/N ) which can be
further approximated by solving

k = N(1− (1− 1/N)n) (3.8)

that is the equation providing the expected value of K as a function of N .



A. Tancredi, R. Steorts, and B. Liseo 9

Figure 1: Posterior distributions for N when n = 500, k is known and equal to
430,440,450,460 and p(N) ∝ 1/Ng with g = 0 (dotted line), g = 1 dashed line and
g = 2 solid line.

Figure 1 shows the posterior distributions for N when k = 430, 440, 450, 460 and
p(N) ∝ 1/Ng and g = 0, 1, 2. The posterior distributions have been obtained with
a Metropolis-Hastings algorithm with Poisson proposals. Note that different values of
k produce quite different posterior distributions, while sensitivity with respect to the
proposed values is g is limited. The vertical line is the solution of the equation (3.8),
which properly approximates the maximum a posteriori estimate when g = 0.

3.2 Connections with capture-recapture models with non
homogeneous capture probabilities and duplication rates

Now suppose that, in order to form the jth list, each one of the N population units
is subject to being captured a random number of times. That is for each label j′ and
for each list j there are Tjj′ attempts to capture the population unit Uj′ and for each
attempt, the capture probability is pj . Moreover assume that the random variables Tjj′

are independent Poisson with mean δj . Hence δ1, . . . , δL are list dependent parame-
ters providing the ”within- list” duplication rates while p1, . . . , pL are the different list
capture probabilities.

Now let Xjj′t for t = 1, . . . , Tjj′ , j
′ = 1, . . . , N and j = 1, . . . , L be a random number

of independent Bernoulli variables with probability pj indicating if, in list j, unit Uj′

has been captured at the attempt t and let Xjj′ =
∑Tjj′

t=1 Xjj′t be the number of times
that Uj′ has been captured in list j. Note that the mean of Xjj′ is δjpj and it is Poisson
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distributed being the sum of a Poisson number of Bernoulli variables. Now let nj be the

list size, for j = 1, . . . , L, and observe that nj =
∑N

j′ Xjj′ is Poisson distributed with
mean Nδjpj , the conditional distribution of Xjj′ |nj is Binomial(nj , 1/N) and

p(xj1, . . . xjN |nj) =
nj !∏N

j′=1 xjj′ !

N∏
j′=1

(1/N)xjj′ =
nj !∏N

j′=1 xjj′!

1

Nnj
j = 1, . . . , L.

Moreover, each label sequence of the j list, that is the vector λj = (λ1j , . . . , λnjj) has
probability

p(λj |nj) = p(λj |xj1, . . . xjN , nj)p(xj1, . . . xjN |nj) =
1

Nnj
.

Assuming duplication and capture independence across the lists, we also have that
p(λ|n1, . . . nL) = 1

Nn . Then, the conditioning on list sizes has eliminated the duplica-
tion rates and the capture probabilities, thus providing a conditional likelihood for N
which depends on the non identifiable population labels which, in turn, provides the like-
lihood function for N (3.2) given the observable partition Z. In summary, the proposed
prior (3.1) for λ exactly embeds the sampling information, conditional on list sizes, pro-
vided by a capture-recapture model with non homogeneous capture probabilities and
duplication rates.

Notice that the elimination of the capture probabilities and the duplication rate
parameters from the prior model for λ automatically implies that two records of the
same list and two records of two different sets would have the same prior probability to
be duplicates. Such assumption, which follows directly from the prior (3.1), is admittedly
unlikely to be true in practice. We simply consider this assumption a convenient and
operative starting point for performing matching estimation.

4 The hit-miss marginal model for record clustering

A convenient property of the hit-miss model illustrated in Section 2 is that one can
integrate out the unknown population values ṽ to directly obtain the distribution
p(v|Z,U,N, α, θ), as it is illustrated below. The resulting marginal distribution is the
product of within-blocks distributions. In fact, records belonging to different blocks are
independent because they refer to different and independent population records, while
records within the same block are dependent, since they are observations on the same
population individual. Clustering approaches based on similar dependence structures
are discussed in Booth et al. (2008) and McCullagh and Yang (2008).

Let z ∈ Z be a partition block, let vz = (vij : ij ∈ z) denote the corresponding
cluster of records and let vz � = (vij� : ij ∈ z) denote the cluster of observed records
for the �-th key variable. Also let uz denote the label in U corresponding to the block
z and let ṽU = (ṽuz , z ∈ Z) and αU = (αuz , z ∈ Z) be the relative sets of population
records and distortion probabilities.
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Firstly, note that equation (2.3) can be re-expressed, taking into account the parti-
tion imposed by λ, in the following way

p(v|ṽ, λ,N, α, θ) = p(v|ṽ, Z, U,N, α, θ) =
N∏

j′=1

∏
ij:λij=j′

p(vij |ṽ, Z, U,N, α, θ)

=
∏
z∈Z

p(vz|ṽuz , Z, U,N, α, θ).

Hence, observing that p(ṽU |Z,U,N, α, θ) =
∏

z∈Z p(ṽuz |Z,U,N, α, θ), and marginalizing
out the true values ṽU , one obtains

p(v|Z,U,N, α, θ) =
∏
z∈Z

p(vz|Z,U,N, α, θ).

Now, let us consider a block with only a single record, i.e., z = {(i j)}. Then the
marginal distribution of the observed value for the l-th field of this record is

p(vz�|Z,U,N, α, θ) =
∑

ṽuz�∈V�

p(vz�, ṽuz�|Z,U,N, α, θ)

=
∑

ṽuz�∈V�

p(vz�|ṽuz�, Z, U,N, α, θ)p(ṽuz�|Z,U,N, α, θ)

=
∑

ṽuzl∈V�

[(1− αuz�)δ(vz�, ṽuz�) + αuz�θ� vz� ]θ�ṽuz�
= θ�vz� .

Since we have assumed conditional independence among the key variables, one has

p(vz|Z,U,N, α, θ) =

p∏
�=1

p(vz�|Z,U,N, α, θ) =

p∏
�=1

θ� vz� .

After simple algebra, an analytical expression can also be found for a cluster z =
{(i1 j1), (i2 j2)} with two records, that is,

p(vz|Z,U,N, α, θ) =

p∏
�=1

[
δ(vi1j1�, vi2j2�)θ� vi1j1�

(1− αuz�)
2 +

(2αuz� − α2
uz�)θ� vi1j1l

θ� vi2j2�

]
.

Furthermore, it is straightforward (see Appendix B in Supplementary Material, Tan-
credi, Steorts, and Liseo, 2019) to obtain a general and recursive formula for the marginal
distribution of a cluster with n records, z = {(i1 j1), . . . , (in jn)}:

p(vz �|Z,U,N, α, θ) = αuz�θ�vinjn�
p(vz\(in jn) �|Z,U,N, α, θ) +

(1− α�uz )θ�vinjn�

n−1∏
h=1

[
(1− αuz�)δ(vihjh�, vinjn�) + αuz�θ�vihjh�

]
,

where vz\(in jn) � indicates the cluster values for the �-th key variable excluding those
observed on the record (in, jn).
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As a final note, observe that, for all z, p(vz|Z,U,N, α, θ) depends on α and on
the partition block z along with the corresponding label uz. Then p(v|λ,N, α, θ) =
p(v|Z,U, α, θ), that is the distribution of the observed data depends on Z,U, α, θ and
not on the population size N .

5 Posterior simulation

De-duplication and population size inference can be carried out by simulating from the
posterior p(Z,N |v), that is the marginal distribution of p(λ,N, β, β0, θ|v) where β is the
vector with the logit transformations of the distortion probabilities of the N population
entities, β0 is the vector with their means for each key variable and

p(λ,N, β, β0, θ|v) ∝ p(Z,U,N, β, β0, θ|v) (5.1)

∝ p(v|Z,U, β, θ)p(U |Z,N)p(Z|N)p(β|β0)p(N)p(β0)p(θ)

∝
∏
z∈Z

p(vz|Z,U, βuz , θ)p(U |Z,N)p(Z|N)p(β|β0)p(N)p(β0)p(θ).

Note that the marginal posterior p(Z,N, β0, θ|v) is

p(Z,N, β0, θ|v)

∝
∑
U

[∫
RN×p

∏
z∈Z

p(vz|Z,U, βuz , θ)p(β|β0)dβ

]
p(U |Z,N)p(Z|N)p(N)p(β0)p(θ)

∝
∑
U

[∫
Rk×p

∏
z∈Z

p(vz|Z,U, βuz , θ)p(βU |β0)dβU

]
p(U |Z,N)p(Z|N)p(N)p(β0)p(θ)

∝
∑
U

[∏
z∈Z

∫
Rp

p(vz|Z,U, βuz , θ)p(βuz |β0)dβuz

]
p(U |Z,N)p(Z|N)p(N)p(β0)p(θ).

Note that by integrating out the measurement error parameters βuz , the integrals inside
the square brackets in the last expression do not depend on the population labels {uz, z ∈
Z}. Hence we have that

p(Z,N, β0, θ|v) ∝
∏
z∈Z

q(vz|β0, θ)p(Z|N)p(N)p(β0)p(θ) (5.2)

where q(vz|β0, θ) is the marginal distribution of the block z given β0 and θ.

Now let η be an alternative set of labels for the sample records where ηij ∈ {1, . . . , n}
∀ij. Let Z be the partition generated by η and U ′ the set of labels assigned by η to the
blocks z ∈ Z. Note that η ↔ (Z,U ′). Assume that p(Z|N) = Nk/N

n, as for the random
partition generated by λ, while p(U ′|Z,N) = 1/

((
n
k

)
k!
)
so that

p(η|N) = p(Z|N)p(U ′|Z,N) =
Nk

Nn

1

nk
.
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Moreover let β′
j′ for j

′ = 1, . . . , n be a vector with L measurement error parameters with
the same prior model of the original variable dimension vector β. Then the posterior
(5.2) can also be seen as the marginal, with respect to U ′ and β′ of the distribution

p(η,N, β′, β0, θ|v) ∝ p(Z,U ′, N, β′, β0, θ|v) (5.3)

∝
∏
z∈Z

p(vz|Z,U ′, β′
u′
z
, θ)p(U ′|Z,N)p(Z|N)p(β′|β0)p(N)p(β0)p(θ).

Note that simulating the distribution (5.3) instead of (5.1) may imply a considerable
saving of computing time since the label indicators ηij vary in {1, . . . , n} and no longer
in {1, . . . , N} without any loss of information for the de-duplication and population size
inference. Drawings from the distribution (5.3) can be obtained updating the elements
η, β′, β0, N and θ via the following Gibbs sampler algorithm.

In particular, the updating of the vector η which leads to the consequent updating
of both Z and U ′ is the most critical step of the algorithm. Denote η(−ij) the vector η
without the element ηij . Moreover let z \ (ij) be a partition block without the record
ij, and let zq be the partition block such that u′

zq = q. Then, the full conditional
distribution of ηij can be written as

p(ηij = q|η(−ij), N, β′, β0, θ, v) ∝
∏
z∈Z

p(vz|Z,U ′, β′
u′
z
, θ) p(ηij = q|η(−ij)) (5.4)

∝
∏
z∈Z

p(vz|Z,U ′, β′
u′
z
, θ)

p(vz\(ij)|Z,U ′, β′
u′
z
, θ)

p(ηij = q|η(−ij))

∝
p(vzq |η, β′

q, θ)

p(vzq\(ij)|η, β′
q, θ)

p(ηij = q|η(−ij)) q = 1, . . . n.

This occurs because, in equation (5.4), setting ηij = q, one has z = z \ (ij), ∀z �= zq so
that

p(vz|η, β′
u′
z
, θ)

p(vz\(ij)|η, β′
u′
z
, θ)

= 1 ∀z �= zq.

Equation (5.4) suggests that the conditional posterior probability p(ηij |η(−ij), N, β′, β0,
θ, v) depends on the ratio between the probability of the cluster of records referring to
the label q considering η−(ij) and ηij = q and the probability of the same cluster with
the exclusion of the record ij.

The above ratio, when the label q identifies an already existing block given η−(ij),
exploiting the recursive formula (4.1), can also be written as

p(vzq |η, β′
q, θ)

p(vzq\(ij)|η, β′
q, θ)

=

p∏
�=1

⎡
⎣β′

q�θ� vij� + (1− β′
q�)

∏
(ih,jh)∈zq\(ij)

(
(1− β′

q�)δ(vihjh�, vij�) + β′
q�θ�vihjh�

)
p(vzq\(ij) �|η, β′

q�, θ)

⎤
⎦ ;
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however, it gets simplified into

p(vzq |η, β′
q, θ)

p(vzq\(ij)|η, β′
q, θ)

=

p∏
�=1

θ�,vij�

when the label q identifies a new block.

Thus we can update ηij with the following distribution

p(ηij = q|η(−ij), N, β′, β0, θ, v)

=

⎧⎨
⎩

p(vzq |η,β′
q,θ)

p(vzq\(ij)|η,β′
q,θ)

p(ηij = q|η(−ij)) if q labels an observed cluster∏p
�=1 θ�,vij�p(ηij = new|η(−ij))/(n− k(−ij)) if q labels a new cluster

(5.5)

for i = 1, . . . , L, j = 1, . . . , ni, where k(−ij) is the number of clusters without the label
ηij and

p(ηij = q|η−(ij)) ∝ 1 and p(ηij = new|η−(ij)) ∝ (N − k−(ij)).

Such a way to update the cluster composition is a standard approach for mixture
models when the marginal likelihood of the cluster observations is known or it can
be easily calculated, as in our case via the recursive formula (4.1); see for example
MacEachern (1994) and Neal (2000).

The full conditional distribution

p(β′
j′�|β′

−(j′�), β0, η,N, θ, v) ∝ p(vzj′ �|β
′
j′�, η, θ)p(β

′
j′�|β0)

can be updated using a Metropolis step when j′ labels a record cluster or directly by
the prior distribution p(β′

j′l|β0) when j′ does not identify any cluster. A Metropolis step
can also be used to update the parameters β0l whose conditional distribution is

p(β0�|β−(0�), β
′, η,N, θ, v) ∝

∏
z∈Z

p(β′
uz�|β0�, η)p(β

′
0�).

Anyway, to improve the mixing of the chain we have adopted a non centered parameter-
ization (Papaspiliopoulos et al., 2003), for β′

j′�, updating the differential effects β′
j′l−β0�

slightly modifying the Metropolis steps for βj′l and β0l.

The full conditional distribution of N is given by

p(N |η, β′, β0, θ, v) ∝ p(Z|N)p(N) ∝ Nk

Nn+g
I{N≥k}

and an exact Gibbs step truncating N to a very large integer or a Metropolis step
with integer proposals can be easily implemented. Lastly, note that the full conditional
distribution of the probability vector θ� is

p(θ�|θ−(�), η, β
′, β0, N, v) ∝

∏
z∈Z

p(vz�|β′
u′
z,�

, θ�, η)p(θ�)
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which can be updated using a Metropolis-Hastings steps with a Dirichlet proposal dis-
tribution. Finally note that having all n records from a single set or from L > 1 sets
would not make a difference for the whole proposed algorithm. This is a direct conse-
quence of the use of the uniform prior distribution p(λ|N) which, although based on
overly restrictive assumptions, has the advantages of simplifying the computation of the
posterior distribution. In fact, more elaborated prior distributions for λ would require
more complex posterior sampling schemes.

6 Experiments with synthetic data

To investigate the performance of our proposed methodology we first consider the
RLdata500 data set from the RecordLinkage package in R. This synthetic data set
consists of 500 records, each comprising first and last name and full date of birth. This
data set contains 50 records that are intentionally constructed as “duplicates” of other
records. Hence the true value of k is 450 and the true partition is represented by 400
clusters of size one and 50 clusters of size two. In order to apply a model with categorical
variables only, we partially modify the data set by transforming names and surnames
via the English soundex algorithm. This way we obtain records with 14 fields; 4 of them
are produced by the name, 4 comes from the surname and the last 6 are obtained from
the date of birth (4 given by the year, 1 by the month, and 1 by the day). Table 2 shows
the first 6 records of the transformed data set.

name fields surname fields day of birth fields
year month day

1 C 6 2 3 M 6 0 0 1 9 4 9 7 22
2 G 6 3 0 B 6 0 0 1 9 6 8 7 27
3 R 1 6 3 H 6 3 5 1 9 3 0 4 30
4 S 3 1 5 W 4 1 0 1 9 5 7 9 2
5 R 4 1 0 K 6 2 6 1 9 6 6 1 13
6 J 6 2 5 F 6 5 2 1 9 2 9 7 4

Table 2: First 6 records of the RLdata500 data set with names and surnames transformed
via the soundex algorithm.

We fit our de-duplication and size estimation model to the modified RLdata500

data set by taking p(N) ∝ 1/Ng with g=1.02. Note that with this choice, as reported
in Table 1, the prior mean for K is approximately 450, that is the true number of
clusters for this file, and the dispersion is quite large as we can see also from the upper
left panel of Figure 2 where the prior for K has been plotted. The probability vector
θ� are uniform on the simplex. The prior variance of the logit transformations βj′� of
the distortion probabilities is equal to s2 = 0.5 while the mean and the variance of
their common mean β0� are m0 = logit(0.01) and s2 = 0.1. Such a prior specification
leads to a prior mean and a 0.99 prior quantile for αj′l respectively equal to 0.013 and
0.058 indicating strong belief towards low block distortion probabilities. We observe
that this is a condition to facilitate the micro-clustering effect since larger distortion
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Figure 2: RLdata500 data set. Prior and posterior distributions of K and posterior
distribution of N , FNR and FDR when s2 = 0.5, m0 = logit(0.01) and s2 = 0.1 and
g = 1.02.

probabilities would allow to gather more records into the same cluster even if they do
not refer to the same entity. Instead, with low values of αj′l we force all the clusters
to have a reduced within-cluster variability and a greater between-cluster separation.
At this regard, Johndrow et al. (2018) show from a more general and theoretical point
of view that, in order to be effective, entity resolution via micro-clusters identification
requires that the measurements errors go to zero as the number of entities increases.
Such a condition practically states the infeasibility of cluster based approaches for high
dimensional record linkage problems without introducing further information that may
facilitate the correct aggregation into microclusters as our informative prior on αjl tries
to do.

The Metropolis within Gibbs algorithm described in Section 5, was run for 50000
iterations. Figure 2 reports the posterior distributions for K and N and the performance
of the record linkage procedure measured in terms of the posterior distributions of the
false negative rates (FNR) and the false discovery rates (FDR) (third and fourth rows).
For a review of false negative and false discovery rates in the context of record linkage
we refer to Steorts (2015). In single list framework, these rates are obtained by setting

Δj1j2 =

{
1 η1j1 = η1j2
0 η1j1 �= η1j2

and calculating

FNR =

∑
j1<j2

(1−Δj1j2)Δ
true
j1j2∑

j1<j2
Δtrue

j1j2

FDR =

∑
j1<j2

Δj1j2(1−Δtrue
j1j2

)∑
j1<j2

Δj1j2

across the MCMC simulation.
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Note that the posterior means for K and N are equal to 446.6 and 2209 while
the 95% posterior intervals are respectively [443,449] and [1710,2854]. Hence we have
a considerable uncertainty reduction with respect to the prior specification for these
quantities. The low posterior mean for the FNR, equal to 0.015, indicates that almost
all the true matches are correctly linked in the same cluster. In addition, the posterior
mean for the FDR, equal to 0.080, suggests that the model produces a limited number
of false links. Hence the performance of the de-duplication process is quite satisfactory
considering also the information lost in the data set transformation via the soundex
algorithm and the diffuse prior specification of N and K.

Table 3 shows the result of a sensitivity analysis with respect to the hyperparameters
controlling the prior for the βjls, i.e. s

2,m0 and s20, and with respect to hyperparameter g
regulating the fatness of the prior forN . In particular we show the posterior means forK,
N , the FNR and the FDR obtained when logit−1(m0) = 0.01, 0.1, 0.2, s2 = 0.1, 0.5, 1
s20 = 0.1, 0.5, 1 and g = 1.01, 1.02, 1.05, 1.1, 1.5, 2. For each value of g, the results are
ordered with respect to increasing values of logit−1(m0), then by the variance of βj′l

s2 + s20 and finally by the covariance between βj′l and βj′′l. As expected increasing a
priori the mean and the variance of the distortion probabilities leads to increase the
cluster sizes as we can see from the reduced values of E(K|y). In fact the posterior
mean of K switches dramatically from the corrected values by about 450 microclusters
to inconsistent values of less than 200 clusters, confirming the theoretical findings of
Johndrow et al. (2018) regarding the necessity to introduce external information to
obtain micro-clusters via a mixture model based approach. The small FNR and the
high FDR when the microcluster effect do not occur confirm that records of the same
entity are gathered into the same cluster although together with the other records
generated by entities without list duplications. Note also that with the same variance
values, micro-clustering is more likely to occur with lower covariance between βj′l and
βj′′l. Finally notice that the effect of g is practically negligible with higher values that
slightly reduce the posterior mean of N .

Table 4 shows the posteriors means forK, FNR and FDR, obtained by conditioning
on grid of known values forN varying from 250 to 10000 and the hyperparameters values
s2, s20 and logit−1(m0) equal to 0.5, 0.1 and 0.01. Note that also by fixing the values of
N we regulate the microclustering effect with larger values producing the desired effect.
Anyway we observe a greater sensitivity of the results when we vary N with respect to
g. In fact for N ≥ 1000 we have the posterior means of K varying from 443 to 451,
while when we vary g the posterior means of K are always 446.5 despite a wider range
for the prior means in this setting.

To increase the difficulty of the deduplication problem in a situation where we know
the exact matching configuration, we have also considered the RLdata10000 data set.
Figure 3 shows the box-plots of the posterior distributions of K, N , FNR and FDR
for ten blocks of size 1000 with approximately 800 single clusters and 100 two-elements
clusters. The hyperparameters values are s2 = 0.01, s20 = 0.001 logit−1(m0) = 0.01 and
g = 1.02. Note that the true value of K (represented by a triangle) is always covered
by the corresponding posterior drawings except for one block. Moreover, the posterior
distributions of N partially overlap even when the related posterior for K are well



1
8

D
e
d
u
p
lic

a
tio

n
a
n
d

P
o
p
u
la
tio

n
S
iz
e
E
stim

a
tio

n

g = 1.01 g = 1.02 g = 1.05
em0

1+em0
s2 + s20

s20
s2+s20

K N FNR FDR K N FNR FDR K N FNR FDR

0.001 0.20 0.50 453.2 2550 0.065 0.001 453.2 2548 0.065 0.002 453.2 2554 0.065 0.002
0.001 0.60 0.17 452.8 2525 0.057 0.002 452.7 2524 0.057 0.003 452.7 2526 0.057 0.003
0.001 0.60 0.83 448.7 2307 0.024 0.052 448.7 2305 0.024 0.053 448.8 2308 0.024 0.050
0.001 1.00 0.50 448.4 2292 0.024 0.058 448.4 2296 0.024 0.058 448.4 2292 0.024 0.058
0.001 1.10 0.09 452.1 2487 0.048 0.005 452.1 2488 0.047 0.005 452.0 2485 0.046 0.006
0.001 1.10 0.91 152.2 159 0.040 0.940 151.2 158 0.039 0.941 151.6 159 0.039 0.940
0.001 1.50 0.33 448.0 2273 0.022 0.065 447.9 2274 0.022 0.066 447.9 2268 0.022 0.067
0.001 1.50 0.67 138.7 143 0.037 0.947 139.0 144 0.034 0.947 140.7 146 0.037 0.946
0.001 2.00 0.50 136.0 140 0.035 0.949 138.3 143 0.034 0.948 130.9 134 0.036 0.951
0.010 0.20 0.50 447.4 2244 0.016 0.068 447.5 2247 0.016 0.066 447.4 2245 0.016 0.067
0.010 0.60 0.17 446.5 2206 0.014 0.082 446.6 2209 0.015 0.080 446.5 2205 0.014 0.082
0.010 0.60 0.83 148.4 155 0.032 0.940 149.2 156 0.032 0.939 149.3 156 0.033 0.940
0.010 1.00 0.50 144.3 150 0.030 0.943 145.1 151 0.031 0.942 143.6 149 0.031 0.943
0.010 1.10 0.09 445.2 2145 0.011 0.104 445.1 2146 0.011 0.104 445.1 2139 0.010 0.105
0.010 1.10 0.91 129.2 132 0.042 0.950 131.2 135 0.042 0.949 127.2 130 0.043 0.951
0.010 1.50 0.33 140.6 145 0.029 0.947 141.2 146 0.031 0.946 141.9 147 0.028 0.945
0.010 1.50 0.67 122.5 125 0.042 0.954 120.9 123 0.041 0.956 117.4 119 0.042 0.957
0.010 2.00 0.50 119.1 121 0.042 0.956 120.7 123 0.045 0.956 110.9 112 0.044 0.960
0.020 0.20 0.50 442.2 2028 0.008 0.150 442.1 2023 0.008 0.154 442.1 2020 0.008 0.152
0.020 0.60 0.17 439.9 1944 0.008 0.189 439.9 1946 0.007 0.188 440.1 1948 0.007 0.185
0.020 0.60 0.83 139.3 144 0.035 0.945 140.9 146 0.035 0.944 142.0 147 0.033 0.943
0.020 1.00 0.50 134.8 139 0.034 0.948 132.3 136 0.034 0.949 135.0 139 0.033 0.948
0.020 1.10 0.09 436.4 1825 0.006 0.242 436.5 1831 0.007 0.241 436.3 1820 0.007 0.244
0.020 1.10 0.91 123.8 126 0.047 0.953 128.6 132 0.045 0.951 122.8 125 0.047 0.954
0.020 1.50 0.33 135.8 140 0.031 0.948 136.2 140 0.031 0.948 135.7 140 0.033 0.948
0.020 1.50 0.67 117.1 119 0.046 0.957 116.8 119 0.042 0.958 114.5 116 0.046 0.958
0.020 2.00 0.50 117.3 119 0.043 0.958 114.8 117 0.046 0.958 109.9 111 0.044 0.960

Table 3: Rldata500 data set. Posterior means for K, N , the FNR and the FDR obtained when logit−1(m0) = 0.01, 0.1, 0.2,
s2 = 0.1, 0.5, 1 s20 = 0.1, 0.5, 1 and g = 1.01, 1.02, 1.05, 1.1, 1.5, 2.
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g = 1.1 g = 1.5 g = 2
em0

1+em0
s2 + s20

s20
s2+s20

K N FNR FDR K N FNR FDR K N FNR FDR

0.001 0.20 0.50 453.2 2551 0.066 0.001 453.2 2525 0.066 0.001 453.1 2505 0.064 0.002
0.001 0.60 0.17 452.7 2517 0.057 0.003 452.7 2503 0.058 0.003 452.7 2480 0.057 0.002
0.001 0.60 0.83 448.7 2306 0.025 0.052 448.7 2289 0.025 0.051 448.7 2269 0.025 0.052
0.001 1.00 0.50 448.4 2292 0.024 0.057 448.4 2273 0.023 0.058 448.4 2254 0.024 0.058
0.001 1.10 0.09 452.1 2486 0.047 0.005 452.2 2471 0.049 0.006 452.2 2448 0.048 0.005
0.001 1.10 0.91 141.4 146 0.039 0.946 147.3 153 0.038 0.942 150.7 158 0.040 0.941
0.001 1.50 0.33 448.0 2271 0.022 0.065 447.9 2252 0.022 0.067 447.9 2238 0.022 0.066
0.001 1.50 0.67 138.7 143 0.035 0.947 134.8 139 0.037 0.949 139.4 144 0.036 0.947
0.001 2.00 0.50 133.3 137 0.034 0.950 139.0 144 0.036 0.948 129.7 133 0.038 0.952
0.010 0.20 0.50 447.4 2246 0.016 0.067 447.5 2229 0.016 0.067 447.5 2214 0.016 0.066
0.010 0.60 0.17 446.6 2207 0.014 0.081 446.6 2192 0.014 0.080 446.5 2171 0.013 0.082
0.010 0.60 0.83 148.3 155 0.033 0.940 145.9 152 0.033 0.941 150.7 157 0.032 0.939
0.010 1.00 0.50 145.7 151 0.030 0.942 142.6 148 0.032 0.943 138.1 143 0.033 0.946
0.010 1.10 0.09 445.2 2141 0.011 0.106 445.0 2122 0.011 0.107 445.0 2106 0.011 0.108
0.010 1.10 0.91 130.9 134 0.040 0.949 126.4 129 0.043 0.952 126.7 130 0.044 0.951
0.010 1.50 0.33 139.2 144 0.031 0.947 141.7 147 0.030 0.947 143.1 148 0.030 0.945
0.010 1.50 0.67 120.8 123 0.043 0.955 119.0 121 0.044 0.956 114.7 116 0.045 0.957
0.010 2.00 0.50 117.3 119 0.041 0.958 114.1 116 0.042 0.959 114.7 116 0.042 0.959
0.020 0.20 0.50 442.3 2024 0.007 0.150 442.1 2009 0.008 0.152 442.1 1991 0.008 0.153
0.020 0.60 0.17 440.0 1940 0.007 0.188 440.0 1929 0.007 0.187 440.0 1916 0.007 0.188
0.020 0.60 0.83 140.8 146 0.035 0.944 140.5 145 0.035 0.944 142.3 147 0.034 0.943
0.020 1.00 0.50 135.7 140 0.035 0.947 135.2 139 0.036 0.948 136.3 140 0.032 0.946
0.020 1.10 0.09 436.5 1825 0.007 0.242 436.5 1816 0.007 0.242 435.8 1787 0.007 0.252
0.020 1.10 0.91 123.2 126 0.044 0.953 126.5 129 0.043 0.951 120.7 123 0.046 0.955
0.020 1.50 0.33 131.0 134 0.030 0.951 134.7 139 0.031 0.948 130.7 134 0.033 0.951
0.020 1.50 0.67 115.5 117 0.048 0.958 112.4 114 0.046 0.958 120.4 123 0.044 0.954
0.020 2.00 0.50 107.2 108 0.045 0.962 111.8 113 0.046 0.960 112.1 114 0.043 0.959

Table 3: Continued.
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N K FNR FDR
250 227 0.02 0.89
500 389 0.01 0.63

1000 443 0.01 0.14
2500 447 0.01 0.08
5000 448 0.02 0.06
10000 449 0.02 0.05

100000 451 0.05 0.02

Table 4: Rldata500 data set. Posterior means for K, FNR and the FDR conditional
on fixed values of N .

Figure 3: Rldata10000 data set. Boxplots of the posterior distributions of K, N , FNR
and FDR for ten blocks of size 1000. The triangles represent the true values of K. The
hyperparameters values are s2 = 0.5, s20 = 0.1 logit−1(m0) = 0.001 and g = 1.02.

separated confirming the robustness of population size inference when we account for
matching uncertainty. Finally record linkage performances are quite satisfactory with
posterior medians for FNR and FDR respectively less than 0.07 and 0.15 except for one
block

7 Application with Syrian data

As a real application we now face the problem of matching records from two public
available data sets reporting different number of recorded victims killed in the recent
Syrian conflict, along with available identifying information including first and family
names, date of death, and death location. A more detailed application can be found in
Chen et al. (2018). Here we consider the data provided by the Violations Documentation
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Cluster size
Analysis Data set 1 2 3 4
Separated lists VDC 1582.35 49.66 3.97 0.10

CSR 916.02 39.34 2.07 0.43
Joined lists VDC and CSR 1588.88 482.78 43.06 1.60

VDC 1519.14 77.01 5.91 0.63
CSR 899.89 46.00 2.60 0.48

Record linkage VDC and CSR 1833.25 431.52 0.00 0.00

Table 5: Syrian data. Distribution of the cluster sizes averaged across MCMC simula-
tions.

Center in Syria (VDC) and the Syrian Center for Statistics and Research (CSR) and we
focus on the killings in the province of Raqqa from the beginning of the conflict until
March 2017, since the CSR data set does not report records after this date.

The VDC data set provides directly the English equivalents of the Arabic names
while, for the CSR list, the English equivalents have been obtained by software translit-
eration of the reported Arabic names causing additional noise. Several records of the
VDC data set represent unidentified victims and report only the date of death or do
not have the first name and report only the relationship with the head of the family.
All these records have been eliminated and the resulting VDC data sets comprises 1694
records. The CSR list presents only completely identified victims for a total size of 1003
records. As in the previous experiments first and family names have been transformed
by the English version of the soundex algorithm and the resulting fields have been con-
sidered as key variables together with year, month and day of death for a total of 11
variables.

We show the results obtained with the same hyperparameters set for the
Rldata10000 data set and considering three different analyses. In the first case, that we
call separated list analysis, we investigate only the within list deduplication problem.
Hence we fit our model to the single lists one by one. Note that identification of true
within list duplicates is a very challenging problem with these data since most attacks
killed whole families causing records differing only in the first name that may easily
confused as duplicates. Anyway the number of record pairs that exceed a 0.5 posterior
probability of being duplicates, p(ηij1 = ηij2 |v), is small. In fact we have 51 pairs in the
first data set and 43 in the second one hence visual inspection of these pairs may even-
tually confirm their matching status. Table 5 reports the distribution of the of cluster
sizes averaged across the MCMC simulations showing the microcluster effect for both
the lists.

In the second analysis we consider both within and between lists de-duplication,
that is the natural scenario for our model where the two lists are joined into a single
data set. The total number of pairs with p(ηi1j1 = ηi2j2 |v) > 0.5 is 617 out of which
481 are between lists duplicates and 84 and 52 are respectively within the first and the
second list. Hence about 78% of duplicates link the same victim across the two lists.
Table 5 shows the distribution of the cluster sizes for the joined lists but also within
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the two lists separately. Note the cluster size distribution within the two lists are quite
similar to the previous case where the lists are separated before fitting the model.

In the third analysis we exclude the within list duplications and we consider only the
record linkage problem across the two lists. One way to adapt our proposed model to
that particular case is to modify the prior distribution on the λ’s such that ηij1 �= ηij2
∀j1 �= j2 and for i = 1, 2. Note that, in this case, clusters consist of at most two
elements so that the distribution of the observed records v, conditional on η and α,
can be calculated analytically without exploiting the recursive formula. Moreover, the
above conditioning is equivalent to assuming that the two lists are two simple random
samples without replacement from a population of N units.

This is the same situation described in Tancredi and Liseo (2011). From a com-
putational perspective, this scenario does not imply substantial changes. In fact, we
can arbitrarily fix the labels of the first file, for example by assuming that η1j = j for
j = 1, . . . , n1 and update only the labels of the second file. In particular, indicating with
mq the size of the cluster identified by the label q without the record (i, j) we can use
the Gibbs step provided by equation (5.5) by setting

p(η2j = q|η−(2j)) ∝

⎧⎨
⎩

1 if q ≤ n1 and mq = 1
0 if q ≤ n1 and mq = 2
0 if q > n1 and mq = 1

and
p(η2j = new|η−(2j)) ∝ (N − k−(2j))

The number of pairs with p(η1j1 = η2j2 |v) > 0.5 in the record linkage framework is 423
and the posterior mean of the match number, that is the frequency of the two elements
clusters, is 431.52. The reduced number of matches between the lists with respect to
the previous case is due to a larger estimate of the measurement error when within list
duplications are taken into account with the consequent increase also of between lists
estimated duplications.

Finally, Figure 4 shows the posterior distribution for N provided by the three dif-
ferent data analyses described above. Notice that, since we eliminated records with
missing information from the first list, here N represents the size of a smaller popula-
tion than all the victims killed in the province of Raqqa until March 2017. We may say
that N represents the size of victims with recordable information about first and last
name. The posterior mean for N , when accounting for duplications both within and
between the lists is equal to 5350 while when accounting only for between lists dupli-
cations is equal to 7507. When considering the two lists separately the posterior mean
of N increases considerably to 24832 with the VDC list and to 11116 with the CSR
list. Anyway the former two estimates are more reliable for the additional informative
content obtained by joining the two lists. Note also that our estimates depend on the in-
formation retrieved on the original records via the soundex algorithm and that adding
other key variables or using the full Arabic names with suitable string distance may
lead to different estimates. Moreover population size estimates are strongly dependent
on the capture-recapture model specifications, hence introducing heterogeneous and/or
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Figure 4: Syrian data. Posterior distribution for N obtained joining the CSR and VDC
lists into a single data set (solid line), via a record linkage analysis without within list
duplications (dashed line) and the CSR (dot-dashed line) and VDC (dotted line) single
list analyses.

dependent captures may also produce different estimates. However our estimates can
be seen as a starting point for future comparisons.

8 Discussion

In this paper we have shown how population size estimation can be performed when
records related to population units have been sampled and duplicated across multiple
files and the matching reconstruction within the same file and across different files is
uncertain. In particular, through the prior specification of the matching process, we
assumed that the observed lists are obtained as independent simple random sampling
with replacement from a closed population of unknown size N . The hit-and-miss model
(Copas and Hilton, 1990) has been used as a measurement error model in order to
interpret differences among the sample records and the population records.

As a by-product of this approach, we obtained a more adequate prior distribution
for the matching pattern, which can also be used when the population size estimation is
not the primary task of the de-duplication process. However, more sophisticated prior
distributions could be used to incorporate more realistic sampling design. For example,
it would be important to extend our approach by introducing both heterogeneity and
dependence in the sampling probability of the population units as in usual capture-
recapture models. In particular the independence among the L lists is a very strong as-
sumption which rarely occurs in real applications. Note also that, in the de-duplication
framework, the problem is even more involved, because we may have different degrees of
dependence among captures and duplications across the lists. Moreover, from a theoret-
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ical perspective, it would be also worthwhile to investigate the role that different prior
distributions on the partition space, like that one induced by the Pitman-Yor process,
may play in the facilitation of the microclustering effect.

Other specific assumptions that we made throughout the paper concern the inde-
pendence of the key variables at the population level and the conditional independence
of the measurement error mechanism. Also in this case, more sophisticated versions of
the hit-and-miss model together with an appropriate model for the key variables should
be used to take into account more realistic scenarios. Anyway, we are confident that our
framework may provide a basis for all these kinds of extensions.

Supplementary Material

Supplementary Material for “A Unified Framework for De-Duplication and Population
Size Estimation”
(DOI: 10.1214/19-BA1146SUPP; .pdf).
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