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During my PhD studies, I have worked with two enzymatic targets having 

diverse functions and so, different physiological/pathological features.  

The first part focused on the design and synthesis of human carbonic anhydrase 

inhibitors, which were tested against four hCA isoforms, the ubiquitous CA I and 

CA II and the tumor-associated ones CA IX and CA XII, thanks to the precious 

collaboration of Prof. Claudiu T. Supuran and colleagues. 

I have spent the last part of my PhD for the discovery of human monoamine 

oxidases inhibitors, which were tested against hMAOs and cortex synaptosomes 

thank to the valuable collaboration of Prof. Jacobus P. Petzer and Prof. Claudio 

Ferrante. 
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Carbonic anhydrases: functions and dark side 
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1.1 Introduction 

Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous enzymes found in numerous 

organisms across the tree of life, encoded by seven genetically distinct CA families: α-

, β-, γ-, δ-, η-, ζ- and the last discovered family θ-CAs [1–9]. Carbonic anhydrases are 

metalloenzymes and they are catalytically effective only with one metal ion bound 

within the active site cavity, the apoenzymes being devoid of any catalytic action [10–

16]. The active centre contains three amino acid residues which act as ligands, 

coordinating in a tetrahedral geometry the central divalent ion M(II). All the seven 

genetic families of CA may contain Zn(II) as metal ion, although it is substitutable with 

Cd(II) in the ζ-CAs [10]. γ-CAs seem to be endowed with Fe(II) ion, at least in 

anaerobic conditions [4,17], whereas Co(II) may substitute the zinc ion in many α-CAs 

without significant loss of the catalytic activity [1,18–20].  

Carbonic anhydrases catalyse reversible hydration of CO2 (eq.1) transforming two 

neutral molecules, CO2 and water, into a weak base (bicarbonate) and a strong acid (H+ 

ions). This very simple reaction is particularly slow at the physiological pH, while it 

becomes very effective at higher pH values, being instantaneous at pH > 12 [12,19,21–

23].  

 

 

 

Carbonic anhydrases make faster this reaction in physiological condition that is 

important for pH regulation, as well as for other crucial physiological processes like 

respiration, photosynthesis, pH homeostasis, CO2 transport and electrolyte secretion, 

virtually in all tissues in organisms [5,6,9–11,13,24–34].   

To date, fifteen isoforms of human carbonic anhydrase (hCAs) have been discovered 

(hCAI-XIV). They belong to the α-class and share a common organization of the active 

site, located in a deep cleft and containing a central zinc ion (Zn2+), coordinated by 
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three histidine residues (His94, His96 and His119) and a water molecule/hydroxide 

ion (Figure 1.1) [5,19,32,35]. 

 

 

Figure 1.1 Active site of hCA II, showing the network of interactions in the active site. Water 

molecules are indicated as red circles. The side chain of His64 is shown in both the “in” and 

“out” conformations [19]. 

 

The zinc-bound water molecule/hydroxide ion establishes hydrogen bond network 

with the hydroxyl group of Thr residue (Thr 199), and with two water molecules 

positioned on two opposite side: the first called “deep water” is located in a 

hydrophobic cavity, while the second is in a hydrophilic environment toward the 

entrance of the active site (Figure 1.1) [19,36]. All these interactions are able to increase 

zinc bound water molecule nucleophilicity. As a consequence, the proton transfer 

occurs leading to the production of the catalytically active form of the enzyme 

containing zinc-bound hydroxide ion. The hydration of carbon dioxide proceeds 

through a two-step catalytic mechanism (eq.2 and 3).  

The first step (eq.2) is the nucleophilic zinc-bound hydroxide ion attack on the CO2 

molecule located in a hydrophobic binding pocket, to obtain metal coordinated 

bicarbonate. The interaction between bicarbonate and central zinc ion is fairly weak; 

so, it is displaced by a water molecule and released in solution forming water 
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coordinated Zn2+, which is the acidic and inactive form of the enzyme (catalytically 

inactive enzyme, eq.2).  

 

 

 

The second step is the rate limiting one in which enzyme’s active form (eq.3)  is 

regenerated by the proton transfer directly to the buffer or assisted by His 64, which 

serves as a proton shuttle between the metal center and buffer molecules of the 

medium [37]. The presence of His 64 that works as a “proton-shuttle” affects positively 

the catalytic activity. Indeed the absence of this system in enzymes as CAIII, impaires 

activity about 500-fold [29,38–40].  

This working machinery based on a “ping-pong” mechanism,  makes some of the 

members of the CA superfamily among the most effective enzymes known in nature, 

with kcat/KM values close to the limit of the diffusion-controlled processes [25]. How 

anticipated, human carbonic anhydrases exist in fifteen isoforms which differ by 

molecular features, oligomeric arrangement, cellular localization, distribution in 

organs and tissues, expression levels, kinetic properties and response to different 

classes of inhibitors [5,34,35,41].  

Five of these enzymes are cytosolic (hCA I-III, hCA VII and hCA XIII), two are 

mitochondrial (CA VA and VB), four are membrane bound (hCA IV, hCA IX, hCA XII 

and hCA XIV), one is secreted (hCA VI) and three are acatalytic hCA-related proteins 

(CARPs, hCA VIII, X and XI) (Figure 1.2). Even if CARPs are acatalytic isozymes 

because of the absence of metal ion (these proteins not possess histidine residues 

required for the coordination of the zinc atom) [42],  they still possess significant 

functions in physiologic and pathologic processes as well as the other hCA isoforms 

(Table 1.1) [43]. 
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Figure 1.2. Domain composition and subcellular localization of catalytically active human α-

Cas [19]. 

 

CA I is the major isozyme found in human erythrocytes with a concentration of about 

6-fold higher than CA II, also found in erythrocytes. However, the specific activity of 

CA I in erythrocytes is 2 x 105 s-1, whereas the specific activity of CA II in erythrocytes 

is 106 s-1. Although CA I has been found to be expressed in a variety of tissues, its 

physiological role is not completely clear [19]. Feeener’s group demonstrated that this 

enzyme is involved in retinal and cerebral edema, and its inhibition may be a valuable 

tool for fighting these conditions [44]. CA II is the high activity or “rapid” isozyme in 

order to distinguish it from the low activity or “slow” one, hCA I. It is expressed in the 

cytoplasm of many cell types and it is involved in processes spanning from bone 

resorption to respiration and pH regulation. Other functions include urine formation 

and bicarbonate reabsorption in the kidney tubules, biosynthetic reactions such as 

gluconeogenesis, lipogenesis and ureagenesis, bone resorption and calcification, and 

probably many other less well understood physiologic/pathologic processes [19,45,46]. 

Deficiency of hCA II is characterized by renal tubular acidosis, osteopetrosis, cerebral 

calcification, and growth retardation [47]. hCA III is known as muscle isoform because 
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it is found in high levels in red skeletal muscle, even if this isoform is present also in 

adipocytes. The activity of hCA III is only 3% that of hCA II and is thought that its 

physiological importance is beyond its catalytical activity.  In fact, this enzyme 

possesses two reactive sulfhydryl groups able to reversibly bind glutathione, 

protecting cells from irreversible protein oxidation [48–50]. hCA IV is found in heart 

[51], brain [52], capillary bed of the eye [53], and erythrocytes [54] and is a possible 

drug target for several pathologies, including glaucoma (together with CA II and XII), 

retinitis pigmentosa and stroke [55,56]. The two mitochondrial isoforms hCA VA and 

hCA VB are implicated in metabolism. hCA VA is found in the mitochondria of the 

kidney, heart, lung, spleen and intestines; it provides bicarbonate for gluconeogenesis 

and fatty acids for pyrimidine base synthesis [57]. On the other hand, hCA VB is found 

in pancreas, kidney and salivary glands mitochondria, showing intermediate role in 

metabolism [58]. These two isoforms could be useful targets for antiobesity agents [59]. 

CA VI, the secreted isoform, is implicated in cariogenesis [60,61]. hCA VII has been 

implicated in neuronal excitation, contributing to epileptiform activity together with 

CA II and XIV [60–62]. Although hCAVIII not possess catalytic activity, its role has 

been documented in various pathologies. Indeed, has been associated with 

neurodegenerative diseases with studies conducted in mice and then in human, 

showing how mutations in CA8 gene cause mental retardation and ataxia. CARP VIII 

is known to be also involved in tumors, being upregulated in colorectal, lung and 

several other cancers [63]. The precise physiological/pathological roles of the 

remaining two acatalytic isoforms CA X and XI are poorly known, albeit ongoing 

studies are trying to shed light on these proteins. 
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Table 1.1. hCA isoforms, their organ/tissue distribution, subcellular localization, relative CO2 

hydratase activity and diseases in which they are involved. 

 

 

hCA XIII was localized in several tissues as the thymus, kidney, submandibular gland, 

small intestine, and notably in reproductive organs, accounting for its involvement in 

the sperm motility processes (probably together with CA XIV) [64]. hCA XIV is 

involved in epileptogenesis and has been localized to the apical and basal membranes 

of the retinal pigment epithelium. This implies that CA XIV have specific and unique 

functions in the context of acid-based balance in the retina. 

 

 

 

 



13 

 

1.2 Involvement of carbonic anhydrase IX and XII isoforms in tumors: the 

dark side of the enzyme 

The two remaining isoforms are the established tumor-related enzymes IX and XII 

[58,65,66]. These membrane-bound isoforms show a limited expression in normal 

tissues, unlike hCA I and hCA II [67]. hCA IX is a dimeric transmembrane glycoprotein 

possessing the catalytic domain oriented toward the extracellular milieu, working at 

the outer side of the cells [65,68–70]. It is overexpressed mainly in hypoxic tumours, 

being regulated by hypoxia and facilitate also the metastatic spread of solid tumors 

[69]. The extracellular acidosis is known to negatively affect drug uptake and radiation 

damage, so the overexpression of hCA IX is associated to radio- and chemotherapy 

resistance [71]. hCA XII shares common features with hCA IX, as the secondary 

structure, orientation and hypoxia induced expression; however, it is a monomer and 

lacks the proteoglycan-like domain [72]. It has a wider tissue distribution compared 

with isoform IX, including kidney, lung, prostate, ovaries, uterine endometrium, 

breast.  Unlike isoform hCA IX, hCA XII is regulated by estrogens and in breast cancer 

patients, hCA XII expression correlates with positive prognosis [73,74]. hCA XII 

possesses catalytic activity lower than hCA IX [75], and is generally associated with 

less-aggressive, well-differentiated tumor phenotypes, compared to the hCA IX- 

expressing tumors [67,76,77]. hCA IX mainly, but probably also hCA XII, regulates 

intra- and extracellular pH variations which take place in cellular metabolism 

stimulated by hypoxia. In fact, hypoxia is able to affect genes regulation through 

hypoxia-inducible factor 1, (HIF-1) favouring cellular adaptation to an anaerobic 

metabolism [78,79]. HIF-1 is a transcriptional factor protein constituted by two 

subunits: HIF-1α and HIF-1β. HIF-1β subunit is constitutively expressed and is located 

inside the nucleus. HIF-1α is an oxygen-regulated subunit working as “O2 sensor” 

system. During normoxia condition its concentration is influenced by degradation 

mechanism controlled by oxygen availability. Prolyl-4-hydroxylase (PHD), is able to 

hydroxylates the P564 on HIF-1α. This modification works as a signal for the von 
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Hippel-Lindau protein that binds HIF-1α and targets it for degradation by the 

ubiquitin–proteasome system (Figure 1.3, a) [80–88].  

 

 

Figure 1.3 (a) Mechanism of hypoxia-induced gene expression mediated by the HIF 

transcription factor [88]; (b) Proteins involved in pH regulation within a tumour cell [23]. 

 

On the other hand, the lack of oxygen under hypoxia inhibits the PHD activity leading 

to the absence of HIF-1α hydroxylation which cannot be recognized by the VHL 

protein. So, HIF-1α translocates to the nucleus where dimerizes with the HIF-1β, 

constituting the active form of the transcription factor that binds the hypoxia response 

element (HRE) in target genes and activate their transcription. Target genes include 

glucose transporters (GLUT1 and GLUT3) that increase glucose caption and take part 

in glucose metabolism, vascular endothelial growth factor (VEGF) that triggers 

neoangiogenesis, erythropoietin (EPO1) involved in erythropoiesis, carbonic 

anhydrase (CA) IX involved in pH regulation and tumorigenesis, and additional genes 

with functions in cell survival, proliferation, metabolism and other processes. The final 

effect of this transformation is a cell ready to face hypoxic condition switching the 

metabolism to anaerobic route. In normal tissues glucose follows the normal aerobic 

b a 
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processes (glycolysis, Krebs-cycle and oxidative phosphorylation) until its complete 

oxidation to carbon dioxide and water. Cancer cells in hypoxic conditions produce 

energy from glycolysis and lactic acid fermentation in the cytosol, completely 

changing its metabolism (the so-called Warburg effect). In this condition cells organize 

a complex machinery system constituted by transporters, pumps and carbonic 

anhydrases, able to cope the new state (Figure 1.3 b). The new system encourages the 

extracellular acidification and the maintaining of a weakly alkaline pH, which is 

optimal for cell proliferation and tumour survival as well as metastatic behaviour 

[66,89,90]. 

 

1.3 Carbonic anhydrase inhibition 

Since the discovery of Mann and Keilinin in 1940 about the capability of sulfanilamide 

to inhibit carbonic anhydrase, the researchers have discovered a huge number of 

molecules which effectively inhibit hCAs isoforms.  

Up to day, five inhibition mechanism have been discovered [91]: 

1. CAIs anchoring to the central zinc ion: this kind of inhibition mechanism belong 

to most of the inhibitors discovered up to day. Compounds exercising this 

mechanism have a scaffold endowed with an anchoring group (AG) which works 

as zinc binder group (ZBG) [92–95]. The most used ZBG is the primary 

sulfonamide moiety, although other groups are able to coordinate central zinc ion 

(e.g. sulfamates, and sulfamides, which are in fact sulfonamide isosters) [96].  

Although these inhibitors are very effective, inhibiting hCAs in the low nanomolar 

range, they lack of selectivity due to the common active site organization of the 

fifteen isoforms. With the aim to increase selectivity, these inhibitors are designed 

using the “tail approach” [97], which takes advantage from the insertion of 

functional groups able to interact fairly away from the Zn2+ ion, where more 

differences among the isoforms occur (Figure 1.4).  
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Figure 1.4. CAIs anchoring to the central zinc ion. 

 

2. CAIs anchoring to the zinc-coordinated water/hydroxide ion:  belong to this 

class compounds able to anchor the zinc-coordinated water 

molecule/hydroxide ion. This mechanism was observed for the first time with 

phenol, but other compounds showing this kind of inhibition contain primary 

amine, carboxylic acids or esters, and sulfonic acids [98–100]. The scaffold of 

these compounds can be aromatic, aliphatic, heterocyclic, or sugar-based type 

and could be designed keeping in mind the “tail approach” (Figure 1.5). 

 

 

Figure 1.5. CAIs anchoring to the zinc-coordinated water/hydroxide ion. 
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3. CA inhibition by occlusion of the active site entrance: the first compound with 

this interesting CA inhibition mechanism was a natural compound with 

coumarin structure [101]. The de facto inhibitor is in this case the hydrolysed 

form of coumarin, produced because of the esterase activity of hCAs. Other 

compounds endowed with “sticky group” showed similar activity [102]. The 

most notable aspect of this inhibition mechanism is that the inhibitors bind the 

active site region, which is the most variable between the various isoforms, i.e. 

the entrance to the cavity (Figure 1.6).  

 

 

Figure 1.6. CA inhibition by occlusion of the active site entrance 

 

4. Out of the active site binding as a CA inhibition mechanism: this is the last 

mechanism discovered with crystal structure obtained between hCA II and 2-

(benzylsulfonyl)-benzoic acid [103]. The electronic density of the inhibitor was 

not observed within the active site but in a binding pocket next to to the active 

site. The compound inhibits hCA blocking the proton-shuttling residue His64 

in the “out” conformation, interfering with the transfer of a proton from the 

zinc-coordinated water molecule to the environment. In this way it prevents the 

formation of zinc-coordinated hydroxide ion, the active form of the enzyme 

(Figure 1.7). 
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Figure 1.7. Out of the active site binding CA inhibition mechanism. 

 

5. Compounds acting as CAIs with an unknown mechanism of action: finally, 

there are a series of compounds whose inhibition mechanism has not been 

discovered, due to the absence of their co-crystal with hCA enzymes. 

Compounds based on saccharin scaffold, belong to this class. 
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1.4 Development of new saccharin inhibitors 

Saccharin derivatives have been documented as good inhibitors of hCA by various 

research groups, that in the last years focused their attention towards the development 

of new molecules based on this scaffold [104–109]. By analysing the structure and 

substitution pattern of published compounds possessing saccharin scaffold, it is 

possible to find that for the design of new molecules two general approach have been 

exploited (Figure 1.5). The first is relative to compounds obtained through the 

substitution of benzene ring of saccharin, with various substituents, maintaining the 

secondary sulfonamide functional group free (Figure 1.5, I and II). Compounds 

containing secondary sulfonamides, have been extensively studied for their ability to 

inhibit hCAs [110–112]. In fact, this approach produced molecules endowed with 

activity in the nanomolar range against isoforms IX and XII, although residual activity 

against the off-targets hCA I and hCA II was unfortunately observed [107,113].  

 

 

Figure 1.5 The two different approaches for the synthesis of hCAs inhibitors based on 

saccharin scaffold.  
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The second approach was based on the substitution of saccharin nitrogen with 

different groups, in order to obtain N-substituted saccharins (Figure 1.5, III). Tertiary 

sulfonamides have been investigated for the atypical mechanism that these substances 

must possess, because they are not able to coordinate zinc ion due to the absence of 

deprotonable nitrogen atom [114–117]. N-substituted saccharins were effective 

inhibitors of hCA IX and XII, even if some of them retained activity against off-targets 

[106,109].  

 

 

 

 

 

Here I report two approaches used to increase activity and selectivity of saccharin-based 

inhibitors of the two tumor-related isoforms hCA IX and XII. The outcomes of these strategies 

were the open saccharin-based secondary sulfonamides and the saccharin/isoxazole - 

saccharin/isoxazoline derivatives. 
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Chapter 2 

Open saccharin-based secondary sulfonamides as potent and selective 

inhibitors of cancer-related carbonic anhydrase IX and XII isoforms 
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2.1 Open saccharin-based secondary sulfonamides: aim of the work 

In a recent publication, Ivanova et al. reported on the spontaneous ring opening of 

cyclic tertiary sulfonamides under basic (pH= 9) crystallization conditions [118]. Since 

hCAs do not possess any peptidase activity, they concluded that the base-catalysed 

hydrolysis of the saccharin isothiazolone ring happened before the inhibitor entered 

the active site, and proved their hypothesis by testing both open and closed analogues 

against a panel of hCAs (hCA I, hCA II, hCA IX and hCA XII) [119]. In particular, these 

open saccharin derivatives determined an increased inhibition of hCA IX, while 

retaining high activity against hCA II. I used a reductive ring opening approach to 

induce the 5-membered isothiazolone ring of saccharin to collapse into its 

corresponding secondary sulfonamide and benzyl alcohol (Figure 2.1) [120]. 

 

 

Figure 2.1. Design of new open-saccharin based inhibitors. 
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 The rationale behind this choice could be found in the opportunity of generating two 

new potential anchoring points for the zinc ion, while introducing several degrees of 

freedom to the bonds connecting the two hydrophobic phenyl substituents to the polar 

core of the molecule. In general, the newly synthesized compounds (1-21) proved to 

be as potent as or slightly less potent than parent inhibitors (I-XXI), while the 

selectivity for the cancer-related isoforms (hCA IX and XII) over the off-target hCA I 

and II improved dramatically. In fact, none of the reported compounds inhibited hCA 

I and II isoforms at concentrations lower than 10 nM, while Ki values spanned from 20 

to 298 nM against hCA IX and from 4.3 to 382 nM against hCA XII. 

 

2.2 Chemistry 

Saccharin (1.0 eq.) was activated using freshly ground anhydrous potassium carbonate 

and the corresponding salt was then directly reacted with a proper electrophile (2 eq. 

of substituted benzyl halide or α-haloacetophenone) by stirring the reaction mixture 

in N,N-dimethylformamide at 80 °C overnight (Scheme 1). Following these optimized 

conditions (polar aprotic solvent), we strictly obtained only the more stable 

regioisomers (N-substituted saccharin derivatives) limiting the Chapman-Mumm 

thermal rearrangement to the less stable O-substituted counterparts [121]. N-

substituted saccharin (the parent drugs) derivatives were then subjected to reductive 

ring opening with an excess of NaBH4 in dry methanol at room temperature for 2-8 hrs 

to give the corresponding secondary sulfonamide compounds 1-21 in discrete yields 

following a previously reported procedure with slight modifications [120]. 
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Scheme 2.1. Synthesis and structure of compounds I-XXI and 1-21. For R substituents see 

Table 2.1 and 2.2. 

 

The choice of NaBH4 as a reducing agent was influenced by preliminary experiments 

which suggested that (i) the sulfone group was not affected by these mild reducing 

conditions leading to the carbonyl group reduction to the alcohol level only with 

saccharin ring cleavage and that (ii) similar results were obtained for the preparation 

of o-hydroxymethyl-N-alkyl-benzamides starting from N-alkyl-phthalimides [120]. 

In their IR spectra, I usually registered for the open saccharin derivatives new but 

expected signals for the OH and NH stretching at 3240 and 3470 cm-1, respectively, and 

the disappearance of the C=O stretching at 1735 cm-1. 

 

2.3 Biological evaluation 

All the synthesized compounds were tested to evaluate their inhibitory activity 

towards the ubiquitous off-target isoforms, hCA I and II, and the cancer-related ones, 

hCA IX and XII, by a stopped-flow, CO2 hydrase assay method and their CA inhibition 

data (Ki) are summarized in Table 2.1 and Table 2.2. 
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2.4 Results and discussion 

2.4.1 Inhibition of hCA I, II, IX, and XII.  

The analysis of the biological data was accomplished comparing the open saccharin-

based derivatives (Table 1) with their corresponding parent compounds (activities 

reported in Table 2) in order to evaluate if the ring opening enhanced or reduced their 

biological activity. All the tested compounds had no affinity for the common off-target 

hCA I and II isoforms (Kis> 10000 nM) compared to their corresponding parent drugs. 

Moreover, our molecules with a benzyl alcohol group, instead of a carboxylic acid one 

[118], abolished completely this inhibitory activity improving the biological profile of 

this scaffold. The inhibition profile of the open saccharin-based derivatives against the 

two tumor-related hCA IX and XII isoforms also displayed some important changes 

compared to parent drugs. Among the new open saccharin derivatives reported here, 

the best activity was obtained toward hCA XII isoform by compounds 1, 5, 6, 10 and 

11, all provided of CH3 or CF3 groups. These molecules exhibited a slightly preference 

for hCA XII respect to hCA IX isoform, although the inhibition of the latter was also in 

the nanomolar range. Compound 5, containing a phenyl ring substituted with methyl 

group in meta position, had the highest inhibitory activity against hCA XII (Ki = 4.3 

nM), but also compound 6, containing a meta trifluoromethyl substituent on phenyl 

ring, exhibited similar inhibitory activity (Ki = 4.4 nM). Comparable profile against 

hCA XII was observed for compounds 10 (Ki = 5.7 nM) and 11 (Ki = 7.2 nM), which are 

para substituted regioisomers of 5 and 6, respectively. Compound 1, which had a 

methyl group at ortho position of phenyl ring, showed similar inhibitory activity (Ki 

hCA XII = 4.7 nM) with respect to 5 and 6. Other compounds with strong selectivity 

between hCA IX and XII were 9 (Ki hCA IX = 267 nM, Ki hCA XII = 64 nM) with bromine 

in meta position of phenyl ring, 12 (Ki hCA IX = 126 nM, Ki hCA XII = 57 nM) containing 

a cyano group in para position, 15 (Ki hCA IX = 154 nM, Ki hCA XII = 48 nM) which had 

a para chloro-substituted phenyl ring, 17 and 18 with, respectively, 2,6-difluoro and 

3,4-dichloro-substituted phenyl rings. 
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Conversely, some compounds displayed a good selectivity towards hCA IX isoform. 

Compounds with nitro substituents in ortho (3), meta (7) or para (13) position of the ring 

had potent inhibitory activity preferentially against this overexpressed isoform in the 

hypoxic tumoral niche. 

For compounds 20 (Ki hCA IX = 224 nM, Ki hCA XII = 64 nM) and 21 (Ki hCA IX = 31 

nM, Ki hCA XII = 355 nM), the reaction with NaBH4 led to the further reduction of 

exocyclic carbonyl moiety. The presence of this additional group maintained the 

biological profile with a loss of inhibitory activity against hCA I and II and a 

preferential selectivity against the cancer-related isoforms. 

Collectively, these promising data showed that the reductive ring opening of the 

saccharin nucleus improved the hCA inhibitory activity with a better selectivity with 

respect to the off-target isoforms. From the above, we also observed that the inhibition 

profile was affected positively or negatively by the substitution pattern. 

 

Table 2.1. Inhibitory activity of the saccharin parent drugs I-XXI and acetazolamide as a 

reference drug, against selected hCA isoforms by a stopped-flow CO2 hydrase assay. 

 

Compound R 
Ki (nM)* 

hCA I hCA II hCA IX hCA XII 

I 2-CH3 1368 > 10000 221 16 

II 2-CF3 3579 > 10000 616 15 

III 2-NO2 > 10000 40.9 91 28.1 

IV 2-Br > 10000 43.5 > 10000 25.1 

V 3-CH3 1503 > 10000 184 26 

VI 3-CF3 > 10000 > 10000 19 17 

VII 3-NO2 > 10000 39.1 11 24.6 

VIII 3-F > 10000 91 380 2690 
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IX 3-Br > 10000 86.8 360 21.1 

X 4-CH3 > 10000 > 10000 234 5.1 

XI 4-CF3 1347 > 10000 51 4.7 

XII 4-CN > 10000 47.6 240 150 

XIII 4-NO2 324 > 10000 1169 29 

XIV 4-F 2479 > 10000 539 41 

XV 4-Cl 2361 > 10000 19 4.4 

XVI 4-Br > 10000 > 10000 22 4.3 

XVII 2,6-diF >10000 460 > 10000 1310 

XVIII 3,4-diCl > 10000 > 10000 390 2760 

XIX 
-CH=CH-

CH=CH- 
> 10000 > 10000 > 10000 2540 

 

XX H > 10000 > 10000 > 10000 1780 

XXI 3-OCH3 1342 > 10000 1570 6.0 

AAZ (acetazolamide) 250 12 25 6.0 

*Mean from 3 different assays (errors were in the range of ±5–10% of the reported values). 

 

Table 2.2. Inhibitory activity of the open saccharin-based derivatives 1-21 and acetazolamide 

as a reference drug, against selected hCA isoforms by a stopped-flow CO2 hydrase assay. 

 

Compound R 
Ki (nM)* 

hCA I hCA II hCA IX hCA XII 

1 2-CH3 >10000 >10000 218 4.6 

2 2-CF3 >10000 >10000 200 54 

3 2-NO2 >10000 >10000 104 383 
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4 2-Br >10000 >10000 113 323 

5 3-CH3 >10000 >10000 223 4.3 

6 3-CF3 >10000 >10000 238 4.4 

7 3-NO2 >10000 >10000 176 382 

8 3-F >10000 >10000 268 247 

9 3-Br >10000 >10000 267 64 

10 4-CH3 >10000 >10000 120 5.7 

11 4-CF3 >10000 >10000 253 7.2 

12 4-CN >10000 >10000 126 57 

13 4-NO2 >10000 >10000 20 54 

14 4-F >10000 >10000 26 63 

15 4-Cl >10000 >10000 154 48 

16 4-Br >10000 >10000 145 432 

17 2,6-diF >10000 >10000 296 45 

18 3,4-diCl >10000 >10000 298 40 

19 
-CH=CH-

CH=CH- 
>10000 >10000 294 345 

 

20 H >10000 >10000 224 64 

21 3-OCH3 >10000 >10000 31 355 

AAZ (acetazolamide) 250 12 25 6.0 

*Mean from 3 different assays (errors were in the range of ±5–10% of the reported values). 

 

2.4.2 Docking studies into the active site of hCA XII 

The open saccharin analogs (compounds 1–21) were endowed with inhibition values 

in the nanomolar range against hCA XII isoform (Ki values: 4.3–432 nM, Table 1, 

approximately 100-fold difference between lowest and highest Ki values). The 

interaction of compound 6 with the active site of hCA XII was shown as an example 
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(Figure 2.2). Docking studies indicated that the hydroxymethyl group and one of the 

sulfonamide oxygen atoms could interact simultaneously with the Zn2+-ion, whereas 

the other sulfonamide oxygen atom was water accessible. This oxygen might also form 

hydrogen bonds with the backbone of Thr199. The other polar substituents of the 

molecule were water accessible. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Docked pose of compound 6 in the active site of hCA XII. Hydrogen bonds and 

interactions to the Zn2+-ion are depicted in red dashed lines. The Zn2+-ion is depicted as a 

turquoise sphere. The three zinc-binding Histidines (H94, H96 and H119) are depicted in light 

grey for clarity. 

 

2.5 Conclusions 

The design, synthesis, characterization and in vitro pharmacological evaluation of 

several new secondary sulfonamides based on the open saccharin scaffold as selective 

inhibitors of human carbonic anhydrase, have been proposed. They were shown to be 

inactive against the two cytosolic off-target hCA I and II (Kis > 10 µM); conversely, all 

these compounds inhibited hCA IX and XII in the low nanomolar range with Kis 

ranging between 4.3 and 432 nM. The analysis of the Ki values showed as the 
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substituent on phenyl moiety that gives the best outcomes relative to inhibition of hCA 

XII isoform are methyl and trifluoromethyl groups. The results were also rationalized 

by means of docking studies into the active site of hCA XII. Since these two cancer-

related hCA isoforms were recently validated as drug targets, these results provided 

the development of new anticancer candidates. 

 

2.6 Experimental section 

General 

Solvents and reagents were used as supplied without further purification. Where 

mixtures of solvents are specified, the stated ratios are volume:volume. Acetazolamide 

was purchased by Sigma-Aldrich (Italy) and used in the biological assays without 

further purification. All synthesized compounds have been fully characterized by 

analytical and spectral data. Column chromatography was carried out using Sigma-

Aldrich® silica gel (high purity grade, pore size 60 Å, 200-425 mesh particle size). 

Analytical thin-layer chromatography was carried out on Sigma-Aldrich® silica gel on 

TLA aluminum foils with fluorescent indicator. Visualization was carried out under 

UV irradiation (254 nm). 1H-NMR spectra were recorded on a Bruker AV400 (1H: 400 

MHz, 13C: 101 MHz). 19F-NMR spectra were recorded on a Bruker AVANCE 600 

spectrometer (19F: 564.7 MHz). Chemical shifts are quoted in ppm, based on 

appearance rather than interpretation, and are referenced to the residual non 

deuterated solvent peak. In the case of 19F, chemical shifts are referenced to an external 

standard (CF3COOH, δ -76.55 ppm). Infra-red spectra were recorded on a Bruker 

Tensor 27 FTIR spectrometer equipped with an attenuated total reflectance attachment 

with internal calibration. Absorption maxima (νmax) are reported in wavenumbers (cm-

1). All melting points were measured on a Stuart® melting point apparatus SMP1 and 

are uncorrected. Temperatures are reported in °C. Where given, systematic compound 

names are those generated by ChemBioDraw Ultra® 12.0 following IUPAC 

conventions. 
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Synthesis and characterization data of compounds I-XXI and 1-21 

 

 

2-(2-Methylbenzyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (I): anhydrous 

potassium carbonate (1.1 eq.) were added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide. 2-Methylbenzyl bromide (1.1 eq.) was added and 

the reaction stirred at 80 °C for 48 h. The mixture was poured on ice and the resulting 

suspension was filtered. Purification via column chromatography on silica gel (ethyl 

acetate:n-hexane, 1:2) gave the title compound as a white solid (72% yield); mp 153-

155 °C; IR νmax 3073 (ν Csp2-H), 1726 (ν C=O), 1335 (νas S=O), 1244 (ν C-N), 1181 (νs S=O), 

754 (δ Csp2-H), 676 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.50 (3H, s, CH3), 4.98 

(2H, s, CH2), 7.21-7.25 (m, 3H, Ar), 7.44 (d, J = 7.2 Hz, 1H, Ar), 7.83-7.91 (m, 2H, Ar), 

7.95 (d, J = 6.8 Hz, 1H, Ar), 8.10 (d, J = 8.0 Hz, 1H, Ar); 13C-NMR (101 MHz, CDCl3) δ 

19.3 (CH3), 40.6 (CH2), 121.0 (Ar), 125.3 (Ar), 126.3 (Ar), 127.3 (Ar), 128.3 (Ar), 128.7 

(Ar), 130.5 (Ar), 132.1 (Ar), 134.4 (Ar), 134.9 (Ar), 136.3 (Ar), 137.9 (Ar), 159.0 (C=O). 

Anal. Calcd for C15H13NO3S: C, 62.70; H, 4.56; N, 4.87. Found: C, 62.52 ; H, 4.81; N, 5.06. 

 

 

2-(2-Trifluoromethylbenzyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (II): anhydrous 

potassium carbonate (1.1 eq.) were added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide. 2-Trifluoromethylbenzyl bromide (1.1 eq.) was 

added and the reaction stirred at 80 °C for 48 h. The mixture was poured on ice and 

the resulting suspension was filtered. Purification via column chromatography on 

silica gel (ethyl acetate:n-hexane, 1:2) gave the title compound as a white solid (60% 
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yield);  mp 142-143 °C; IR νmax 3095 (ν Csp2-H), 1733 (ν C=O), 1336 (νas S=O), 1241 (ν C-

N), 1171 (νs S=O), 749 (δ Csp2-H), 676 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 5.20 

(2H, s, CH2), 7.41-7.45 (t, 1H, Ar), 7.51-7.57 (m, 2H, Ar), 7.72 (d, J = 8.0 Hz, 1H, Ar), 7.87-

7.95 (m, 3H, Ar), 8.13 (d, J = 7.6 Hz, 1H, Ar); 13C-NMR (101 MHz, CDCl3) δ 39.0 (CH2), 

121.2 (Ar), 122.9 (Ar), 125.5 (Ar), 126.2 (Ar), 127.0 (Ar), 128.0 (Ar), 128.3 (Ar), 132.3 (Ar), 

133.0 (Ar), 134.6 (Ar), 135.1 (Ar), 137.9 (Ar), 159.1 (C=O). 19F-NMR (564.7 MHz, CDCl3) 

δ -57.34 (s, CF3). Anal. Calcd for C15H10F3NO3S: C, 52.79; H, 2.95; N, 4.10. Found: C, 

52.55 ; H, 3.17; N, 3.91. 

 

 

2-(2-nitrobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (III): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide at room temperature. 2-Nitrobenzyl chloride (1.1 

eq.) was added and the reaction mixture was stirred at 80 °C for 24 h. The mixture was 

poured on ice and the resulting suspension was filtered. Purification by column 

chromatography on silica gel (ethyl acetate:n-hexane 1:2) gave title compound  as a 

white solid (78% yield); mp 173-178 °C; IR νmax 3086 (ν Csp2-H), 1721 (ν C=O), 1526 (νas 

N-O), 1333 (νas SO2), 1302 (νs N-O), 1259 (ν C-N), 1178 (νs SO2), 723 (δ Csp2-H), 670 (δ 

Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 5.33 (s, 2H, CH2), 7.63-7.65 (m, 2H, 2 x 

Ar), 7.75-7.76 (m, 1H, Ar), 8.04-8.18 (m, 4H, 4 x Ar), 8.37-8.38 (m, 1H, Ar); 13C-NMR 

(101 MHz, DMSO-d6): δ 122.18 (Ar), 125.63 (Ar), 125.82 (Ar), 126.72 (Ar), 129.77 (Ar), 

129.97 (Ar), 130.36 (Ar), 134.72 (Ar), 135.83 (Ar), 136.45 (Ar), 137.34 (Ar), 148.16 (Ar), 

159.28 (C=O), (CH2 signal missing due to overlap with DMSO-d6). 
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2-(2-bromobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (IV): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide at room temperature. 2-Bromobenzyl bromide (1.1 

eq.) was added and the reaction mixture was stirred at 80 °C overnight. The mixture 

was poured on ice and the resulting suspension was filtered and washed with n-

hexane and diethyl ether to give the title compound as a white solid (46% yield);  mp 

160-161 °C; IR νmax 3095 (ν Csp2-H), 1730 (ν C=O), 1334 (νas SO2), 1259 (ν C-N), 1173 (νs 

SO2), 746 (δ Csp2-H), 673 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 4.98 (s, 2H, 

CH2), 7.25-7.31 (m, 1H, Ar), 7.37-7.45 (m, 2H, Ar), 7.68 (d, J = 8.0 Hz, 1H, Ar), 8.01-8.11 

(m, 2H, 2 x Ar), 8.16 (d, J = 7.6 Hz, 1H, Ar), 8.35 (d, J = 7.6 Hz, 1H, Ar); 13C-NMR (101 

MHz, DMSO-d6): δ 42.48 (CH2), 122.13 (Ar), 122.70 (Ar), 125.79 (Ar), 126.69 (Ar), 128.52 

(Ar), 129.72 (Ar), 130.41 (Ar), 133.15 (Ar), 134.02 (Ar), 135.81 (Ar), 136.44 (Ar), 137.35 

(Ar), 159.08 (C=O). 

 

 

2-(3-Methylbenzyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (V): anhydrous 

potassium carbonate (1.1 eq.) were added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide. 3-Methylbenzyl bromide (1.1 eq.) was added and 

the reaction stirred at 80 °C for 48 h. The mixture was poured on ice and the resulting 

suspension was filtered. Purification via column chromatography on silica gel (ethyl 

acetate:n-hexane, 1:2) gave the title compound as a white solid (72% yield); mp 94-96 

°C; IR νmax 3065 (ν Csp2-H), 1729 (ν C=O), 1329 (νas S=O), 1260 (ν C-N), 1178 (νs S=O), 

748 (δ Csp2-H), 676 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.37 (3H, s, CH3), 4.90 
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(2H, s, CH2), 7.14 (d, J = 7.6 Hz, 1H, Ar), 7.24-7.33 (m, 3H, Ar), 7.82-7.88 (m, 2H, Ar), 

7.95 (d, J = 7.2 Hz, 1H, Ar), 8.08 (d, J = 8.0 Hz, 1H, Ar); 13C-NMR (101 MHz, CDCl3) δ 

21.4 (CH3), 42.7 (CH2), 121.0 (Ar), 125.2 (Ar), 125.8 (Ar), 127.3 (Ar), 128.6 (Ar), 129.1 

(Ar), 129.4 (Ar), 134.3 (Ar), 134.4 (Ar), 134.8 (Ar), 137.8 (Ar), 138.4 (Ar), 158.9 (C=O). 

Anal. Calcd for C15H13NO3S: C, 62.70; H, 4.56; N, 4.87. Found: C, 62.99; H, 4.28; N, 4.69. 

 

 

8.2.4. 2-(3-Trifluoromethylbenzyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (VI): 

anhydrous potassium carbonate (1.1 eq.) were added to a stirring solution of saccharin 

(1.0 eq.) in 10 mL of N,N-dimethylformamide. 3-Trifluoromethylbenzyl bromide (1.1 

eq.) was added and the reaction stirred at 80 °C for 48 h. The mixture was poured on 

ice and the resulting suspension was filtered.. Purification via column chromatography 

on silica gel (ethyl acetate:n-hexane, 1:2) gave the title compound as a white solid (79% 

yield); mp 128-130 °C; IR νmax 3092 (ν Csp2-H), 1720 (ν C=O), 1332 (νas S=O), 1263 (ν C-

N), 1175 (νs S=O), 752 (δ Csp2-H), 680 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 4.97 

(2H, s, CH2), 7.49-7.52 (m, 1H, Ar), 7.60 (d, J = 8.0 Hz, 1H, Ar), 7.72 (d, J = 7.6 Hz, 1H, 

Ar), 7.79 (s, 1H, Ar), 7.84-7.97 (m, 3H, Ar), 8.09 (d, J = 7.6 Hz, 1H, Ar); 13C-NMR (101 

MHz, CDCl3) δ 42.1 (CH2), 121.1 (Ar), 125.3 (Ar), 125.4 (Ar), 125.6 (Ar), 127.1 (Ar), 129.3 

(Ar), 131.0 (Ar), 132.1 (Ar), 134.5 (Ar), 135.0 (Ar), 135.5 (Ar), 137.7 (Ar), 158.9 (C=O). 

19F-NMR (564.7 MHz, CDCl3) δ -60.08 (s, CF3). Anal. Calcd for C15H10F3NO3S: C, 52.79; 

H, 2.95; N, 4.10. Found: C, 52.98; H, 2.76; N, 4.32. 
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2-(3-nitrobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (VII): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide at room temperature. 3-Nitrobenzyl bromide (1.1 

eq.) was added and the reaction mixture was stirred at 80 °C for 72 h. The mixture was 

poured on ice and extracted with dichloromethane. The organics were reunited, dried 

over sodium sulfate and concentrated in vacuo. Purification by column 

chromatography on silica gel (ethyl acetate:n-hexane 1:1) gave the title compound as a 

white solid (37 % yield); mp 179-181 °C; IR νmax 3091 (ν Csp2-H), 1734 (ν C=O), 1529 (νas 

N-O), 1324 (νas SO2), 1294 (νs N-O), 1263 (ν C-N), 1180 (νs SO2), 751 (δ Csp2-H), 696 (δ 

Csp2-H) cm-1; 1H-NMR (400 MHz, CD2Cl2): δ 4.83 (s, 2H, CH2), 7.39-7.43 (m, 1H, Ar), 

7.68-7.82 (m, 4H, 4 x Ar), 7.91 (d, J = 7.2 Hz, 1H, Ar), 8.01 (d, J = 7.2 Hz, 1H, Ar), 8.18 (s, 

1H, Ar); 13C-NMR (101 MHz, CD2Cl2): δ 41.58 (CH2), 121.13 (Ar), 123.16 (Ar), 123.40 

(Ar), 125.30 (Ar), 127.03 (Ar), 129.76 (Ar), 134.59 (Ar), 134.69 (Ar), 135.27 (Ar), 136.94 

(Ar), 137.55 (Ar), 148.10 (Ar), 158.94 (C=O). 

 

 

2-(3-fluorobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (VIII): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide at room temperature. 3-Fluorobenzyl chloride (1.1 

eq.) was added and the reaction mixture was stirred at 80 °C for 48 h. The mixture was 

poured on ice and the resulting suspension was filtered and washed with petroleum 

ether to give compound 18a as a white solid (34% yield); mp 105-107 °C; IR νmax 3075 

(ν Csp2-H), 1735 (ν C=O), 1316 (νas SO2), 1264 (ν C-N), 1179 (νs SO2), 752 (δ Csp2-H), 673 
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(δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 4.96 (s, 2H, CH2), 7.12-7.17 (m, 1H, 

Ar), 7.26-7.28 (m, 2H, 2 x Ar), 7.39-7.44 (m, 1H, Ar), 7.94-8.18 (m, 3H, Ar), 8.35 (d, J = 

7.2 Hz, 1H, Ar); 13C-NMR (101 MHz, DMSO-d6): δ 41.47 (CH2), 114.98 (Ar), 115.19 (Ar), 

122.12 (Ar), 124.28 (Ar), 125.71 (Ar), 126.72 (Ar), 131.04 (Ar), 135.77 (Ar), 136.37 (Ar), 

137.26 (Ar), 138.54 (Ar), 159.12 (C=O), 162.57 (d, J = 244.42 Hz, Ar). 

 

 

2-(3-bromobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (IX): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide at room temperature. 3-Bromobenzyl bromide (1.1 

eq.) was added and the reaction mixture was stirred at 80 °C for 72 h. The mixture was 

poured on ice and extracted with dichloromethane. The organics were reunited, dried 

over sodium sulfate, and evaporated in vacuo. Purification by column chromatography 

on silica gel (ethyl acetate:petroleum ether 1:2) gave the title compounds as a white 

solid (86% yield); mp 92-95 °C; IR νmax 1720 (ν C=O), 1330 (νas SO2), 1265 (ν C-N), 1180 

(νs SO2), 705 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 4.95 (s, 2H, CH2), 7.31-

7.35 (m, 1H, Ar), 7.43-7.45 (m, 1H, Ar), 7.49-7.51 (m, 1H, Ar), 7.65 (s, 1H, Ar), 7.98-8.12 

(m, 3H, Ar), 8.34 (d, J = 7.2 Hz, 1H, Ar); 13C-NMR (101 MHz, DMSO-d6): δ 41.35 (CH2), 

122.13 (Ar), 125.73 (Ar), 126.70 (Ar), 127.38 (Ar), 131.03 (Ar), 131.16 (Ar), 135.79 (Ar), 

136.38 (Ar), 137.25 (Ar), 138.42 (Ar), 159.13 (C=O) (two aromatic carbon missing due to 

signals overlapping). 
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2-(4-Methylbenzyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (X): anhydrous 

potassium carbonate (1.1 eq.) were added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide. 4-Methylbenzyl bromide (1.1 eq.) was added and 

the reaction stirred at 80 °C for 48 h. The mixture was poured on ice and the resulting 

suspension was filtered. Purification via column chromatography on silica gel (ethyl 

acetate:n-hexane, 1:2) gave the title compound as a white solid (67% yield); mp 111-

113 °C; IR νmax 2920 (ν Csp3-H), 1732 (ν C=O), 1329 (νas S=O), 1257 (ν C-N), 1174 (νs S=O), 

747 (δ Csp2-H), 674 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.35 (3H, s, CH3), 4.89 

(2H, s, CH2), 7.18 (d, J = 8.0 Hz, 2H, Ar), 7.42 (d, J = 8.0 Hz, 2H, Ar), 7.81-7.88 (m, 3H, 

Ar), 8.06 (d, J = 8.0 Hz, 1H, Ar); 13C-NMR (101 MHz, CDCl3) δ 21.2 (CH3), 42.5 (CH2), 

121.0 (Ar), 125.2 (Ar), 127.4 (Ar), 128.8 (Ar), 129.4 (Ar), 131.5 (Ar), 134.3 (Ar), 134.7 (Ar), 

137.8 (Ar), 138.1 (Ar), 158.9 (C=O). Anal. Calcd for C15H13NO3S: C, 62.70; H, 4.56; N, 

4.87. Found: C, 62.57; H, 4.34; N, 4.58. 

 

 

2-(4-Trifluoromethylbenzyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (XI): 

anhydrous potassium carbonate (1.1 eq.) were added to a stirring solution of saccharin 

(1.0 eq.) in 10 mL of N,N-dimethylformamide. 4-Trifluoromethylbenzyl bromide (1.1 

eq.) was added and the reaction stirred at 80 °C for 48 h. The mixture was poured on 

ice and the resulting suspension was filtered. Purification via column chromatography 

on silica gel (ethyl acetate:n-hexane, 1:2) gave the title compound as a white solid (57% 

yield); mp 119-121 °C; IR νmax 2963 (ν Csp3-H), 1741 (ν C=O), 1319 (νas S=O), 1264 (ν C-

N), 1167 (νs S=O), 750 (δ Csp2-H), 679 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 4.97 

(2H, s, CH2), 7.64 (bs, 4H, Ar), 7.84-7.98 (m, 3H, Ar), 8.08 (d, J = 8.0 Hz, 1H, Ar); 13C-

NMR (101 MHz, CDCl3) δ 42.0 (CH2), 121.2 (Ar), 125.4 (Ar), 125.6 (Ar), 125.7 (Ar), 127.1 

(Ar), 129.0 (Ar), 134.5 (Ar), 135.0 (Ar), 137.7 (Ar), 138.4 (Ar), 158.9 (C=O). 19F-NMR 
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(564.7 MHz, CDCl3) δ -60.12 (s, CF3). Anal. Calcd for C15H10F3NO3S: C, 52.79; H, 2.95; 

N, 4.10. Found: C, 53.04; H, 2.78; N, 3.95. 

 

 

4-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)benzonitrile (XII): 

anhydrous potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin 

(1.0 eq.) in 10 mL of N,N-dimethylformamide at room temperature. 4-

(Bromomethyl)benzonitrile (1.1 eq.) was added and the reaction mixture was stirred 

at 80 °C for 72 h. The mixture was poured on ice and the resulting suspension was 

filtered. Purification by column chromatography on silica gel (ethyl acetate:petroleum 

ether 1:1) gave compound 10a as a white solid (71% yield); mp 178-180 °C; IR νmax 3096 

(ν Csp2-H), 2227 (ν C≡N), 1723 (ν C=O), 1334 (νas SO2), 1254 (ν C-N), 1181 (νs SO2), 751 

(δ Csp2-H), 673 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 5.05 (s, 2H, CH2), 7.62 

(d, J = 7.2 Hz, 2H, 2 x Ar), 7.85 (d, J = 7.2 Hz, 2H, 2 x Ar), 8.01-8.16 (m, 3H, 3 x Ar), 8.37 

(d, J = 7.6 Hz, 1H, Ar); 13C-NMR (101 MHz, DMSO-d6): δ 41.57 (CH2), 111.05 (CN), 119.08 

(Ar), 122.18 (Ar), 125.77 (Ar), 126.69 (Ar), 129.03 (Ar), 132.94 (Ar), 135.85 (Ar), 136.45 

(Ar), 137.26 (Ar), 141.37 (Ar), 159.15 (C=O). 

 

 

2-(4-Nitrobenzyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (XIII): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide. Then 4-nitrobenzyl bromide (1.1 eq.) was added 

and the reaction mixture was stirred at 80 °C for 24 h. The mixture was poured on ice 
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and the resulting suspension was filtered and washed with water and n-hexane. 

Purification by column chromatography on silica gel (ethyl acetate:petroleum ether, 

1:3) gave the title compound as a yellow powder (91% yield); mp 178-180 °C; IR νmax 

3092 (ν Csp2-H), 1727 (ν C=O), 1516 (νas N-O), 1338 (νas S=O), 1299 (νs N-O), 1248 (ν C-

N), 1197 (νs S=O), 755 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6) δ 5.10 (s, 2H, CH2), 

7.69-7.71 (m, 2H, Ar), 8.03-8.36 (m, 6H, Ar); 13C-NMR (101 MHz, DMSO-d6) δ 41.3 (CH2), 

122.2 (Ar), 124.1 (Ar), 125.7 (Ar), 126.7 (Ar), 129.3 (Ar), 135.8 (Ar), 136.4 (Ar), 137.2 (Ar), 

143.3 (Ar), 147.5 (Ar), 159.1 (C=O). Anal. Calcd for C14H10N2O5S: C, 52.83; H, 3.17; N, 

8.80. Found: C, 52.56; H, 3.41; N, 9.04. 

 

 

2-(4-Fluorobenzyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (XIV): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide. Then 4-fluorobenzyl bromide (1.5 eq.) was added 

and the reaction mixture was stirred at 80 °C for 72 h. The mixture was poured on ice 

and the resulting suspension was filtered and washed with water and petroleum ether. 

Purification by column chromatography on silica gel (ethyl acetate:n-hexane, 1:3) gave 

the title compound as a white powder (89% yield);  mp 125-126 °C; IR νmax 1726 (ν 

C=O), 1335 (νas S=O), 1295 (ν C-N), 1180 (νs S=O), 1158 (ν Csp2-F), 838 (δ Csp2-H) cm-1; 

1H-NMR (400 MHz, DMSO-d6) δ 4.92 (s, 2H, CH2), 7.18 (t, J = 8.8 Hz, 2H, Ar), 7.47-7.50 

(m, 2H, Ar), 7.97-8.11 (m, 3H, Ar), 8.31 (d, J = 7.6 Hz, 1H, Ar); 13C-NMR (101 MHz, 

DMSO-d6) δ 41.4 (CH2), 115.6 (Ar), 115.9 (Ar), 122.1 (Ar), 125.6 (Ar), 126.7 (Ar), 130.6 

(Ar), 130.7 (Ar), 131.8 (Ar), 135.7 (Ar), 136.3 (Ar), 137.3 (Ar), 159.1 (C=O), 162.2 (d, JC-F 

= 244.9 Hz, Ar). 19F-NMR (564.7 MHz, CDCl3) δ -111.04 (tt, JF-H = 8.6 Hz (ortho), 5.2 Hz 

(meta), CF). Anal. Calcd for C14H10FNO3S: C, 57.72; H, 3.46; N, 4.81. Found: C, 57.99; H, 

3.67; N, 4.55. 
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2-(4-Chlorobenzyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (XV): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide. Then 4-chlorobenzyl bromide (1.1 eq.) was added 

and the reaction mixture was stirred at 80 °C for 48 h. The mixture was poured on ice 

and the resulting suspension was filtered and washed with water, petroleum ether and 

diethyl ether. Purification by column chromatography on silica gel (ethyl 

acetate:petroleum ether, 1:3) gave the title compound as a white powder (89% yield); 

mp 153-155 °C; IR νmax  3092 (ν Csp2-H), 1726 (ν C=O), 1331 (νas S=O), 1307 (ν C-N), 1197 

(νs S=O), 749 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6) δ 4.93 (s, 2H, CH2), 7.41-

7.45 (m, 4H, Ar), 7.98-8.08 (m, 3H, Ar), 8.30-8.32 (m, 1H, Ar); 13C-NMR (101 MHz, 

DMSO-d6) δ 41.4 (CH2), 122.1 (Ar), 125.6 (Ar), 126.7 (Ar), 128.9 (Ar), 130.3 (Ar), 133.0 

(Ar), 134.6 (Ar), 135.6 (Ar), 136.3 (Ar), 137.2 (Ar), 159.1 (C=O). Anal. Calcd for 

C14H10ClNO3S: C, 54.64; H, 3.28; N, 4.55. Found: C, 54.90; H, 3.47; N, 4.27. 

 

 

2-(4-Bromobenzyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (XVI): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide. Then 4-bromobenzyl bromide (1.5 eq.) was added 

and the reaction mixture was stirred at 80 °C for 72 h. The mixture was poured on ice 

and the resulting suspension was filtered and washed with water and petroleum ether. 

Purification by column chromatography on silica gel (ethyl acetate:petroleum ether, 
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1:3) gave the title compound  as a white powder (89% yield); mp 158-160 °C; IR νmax 

1725 (ν C=O), 1332 (νas S=O), 1303 (ν C-N), 1180 (νs S=O or ν C-Br), 861 (δ Csp2-H) cm-1; 

1H-NMR (400 MHz, CDCl3) δ 4.87 (s, 2H, CH2), 7.40 (d, J = 8.4 Hz, 2H, Ar), 7.49 (d, J = 

8.4 Hz, 2H, Ar), 7.81-7.95 (m, 3H, Ar), 8.06 (d, J = 7.2 Hz, 1H, Ar); 13C-NMR (101 MHz, 

CDCl3) δ 42.0 (CH2), 121.1 (Ar), 122.4 (Ar), 125.3 (Ar), 127.1 (Ar), 130.5 (Ar), 131.9 (Ar), 

133.6 (Ar), 134.5 (Ar), 134.9 (Ar), 137.6 (Ar), 158.9 (C=O). Anal. Calcd for C14H10BrNO3S: 

C, 47.74; H, 2.86; N, 3.98. Found: C, 47.92; H, 3.01; N, 4.15. 

 

 

2-(2,6-difluorobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (XVII): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 ml of N,N-dimethylformamide at room temperature. 2,6-Difluorbenzyl bromide 

(1.1 eq.) was added and the reaction mixture was stirred at 80 °C overnight. The 

mixture was poured on ice and the resulting suspension was filtered and washed with 

petroleum ether to give compound 20a as a white solid (81% yield); mp 173-175 °C; IR 

νmax 1733 (ν C=O), 1338 (νas SO2), 1295 (ν Csp2-F), 1252 (ν C-N), 1181 (νs SO2), 753 (δ Csp2-

H), 673 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 5.01 (s, 2H, CH2), 7.13-7.17 (m, 

2H, 2 x Ar), 7.46-7.50 (m, 1H, Ar), 8.01-8.06 (m, 2H, 2 x Ar), 8.15 (d, J = 7.2 Hz, 1H, Ar), 

8.28 (d, J = 7.2 Hz, 1H, Ar); 13C-NMR (101 MHz, DMSO-d6): δ 30.27 (CH2), 110.81 (Ar), 

112.02 (Ar), 121.93 (Ar), 125.78 (Ar), 126.45 (Ar), 131.82 (Ar), 135.82 (Ar), 136.48 (Ar), 

137.17 (Ar), 158.21 (C=O), 161.52 (d, J = 258.36 Hz, Ar). 
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2-(3,4-dichlorobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (XVIII): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide at room temperature. 3,4-Dichlorobenzyl chloride 

(1.1 eq.) was added and the reaction mixture was stirred at 80 °C for 48 h. The mixture 

was poured on ice and the resulting suspension was filtered and washed with 

petroleum ether and diethyl ether to give the title compound as a white solid (46% 

yield); mp 135-137 °C; IR νmax 3079 (ν Csp2-H), 1726 (ν C=O), 1312 (νas SO2), 1263 (ν C-

N), 1182 (νs SO2), 749 (δ Csp2-H), 675 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 

4.76 (s, 2H, CH2), 7.22 (d, J = 7.6 Hz, 1H, Ar), 7.43 (d, J = 8.0 Hz, 1H, Ar), 7.51 (s, 1H, 

Ar), 7.81-7.93 (m, 3H, 3 x Ar), 8.15 (d, J = 7.2 Hz, 1H, Ar); 13C-NMR (101 MHz, DMSO-

d6): δ 40.83 (CH2), 122.14 (Ar), 125.74 (Ar), 126.74 (Ar), 128.66 (Ar), 130.39 (Ar), 130.98 

(Ar), 131.17 (Ar), 131.54 (Ar), 135.79 (Ar), 136.38 (Ar), 136.89 (Ar), 137.22 (Ar), 159.12 

(C=O). 

 

 

2-(naphthalen-1-ylmethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (XIX): 

anhydrous potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin 

(1.0 eq.) in 10 mL of N,N-dimethylformamide at room temperature. 1-

(Chloromethyl)naphthalene (1.1 eq.) was added and the reaction mixture was stirred 

at 80 °C for 72 h. The mixture was poured on ice and extracted with dichloromethane. 

The organics were reunited, dried over sodium sulfate and evaporated in vacuo. 

Purification by column chromatography on silica gel (ethyl acetate:petroleum ether 

1:2) gave the title compound as a white solid (19% yield); mp 142-145 °C; IR νmax 3047 

(ν Csp2-H), 1726 (ν C=O), 1336 (νas SO2), 1298 (ν C-N), 1171 (νs SO2), 748 (δ Csp2-H), 675 

(δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 5.43 (s, 2H, CH2), 7.49-7.63 (m, 4H, 4 

x Ar), 7.92-8.09 (m, 4H, 4 x Ar), 8.18-8.24 (m, 2H, Ar), 8.33-8.35 (m, 1H, Ar); 13C-NMR 

(101 MHz, DMSO-d6): δ 122.05 (Ar), 123.53 (Ar), 125.81 (Ar), 125.85 (Ar), 126.54 (Ar), 
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126.65 (Ar), 127.12 (Ar), 129.07 (Ar), 129.16 (Ar), 130.48 (Ar), 130.94 (Ar), 133.71 (Ar), 

135.80 (Ar), 136.45 (Ar), 137.46 (Ar), 159.27 (C=O), (CH2 signal missing due to overlap 

with DMSO-d6). 

 

 

2-(2-oxo-2-phenylethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (XX): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide at room temperature. α-Bromoacetophenone (1.1 

eq.) was added and the reaction mixture was stirred at 80 °C overnight. The mixture 

was poured on ice and the resulting suspension was filtered and washed with 

petroleum ether and diethyl ether to give the title compound as a yellow solid (89% 

yield); mp 192-194 °C; IR νmax 3070 (ν Csp2-H), 1735 (ν C=O), 1698 (ν C=O), 1332 (νas 

SO2), 1296 (ν C-N), 1180 (νs SO2), 744 (δ Csp2-H), 673 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, 

DMSO-d6): δ 5.49 (s, 2H, CH2), 7.60 (t, J = 7.4 Hz, 2H, 2 x Ar), 7.74 (t, J = 7.2 Hz, 1H, Ar), 

8.03-8.07 (m, 1H, Ar), 8.09-8.12 (m, 3H, 3 x Ar), 8.17 (d, J = 7.6 Hz, 1H, Ar), 8.37 (d, J = 

7.6 Hz, 1H, Ar); 13C-NMR (101 MHz, DMSO-d6): δ 45.32 (CH2), 122.22 (Ar), 125.64 (Ar), 

126.67 (Ar), 128.86 (Ar), 129.43 (Ar), 134.28 (Ar), 134.77 (Ar), 135.86 (Ar), 136.50 (Ar), 

137.72 (Ar), 159.35 (C=O), 190.61 (C=O). 

 

 

2-[2-(3-Methoxyphenyl)-2-oxoethyl]-1,2-benzothiazol-3(2H)-one 1,1-dioxide (XXI): 

anhydrous potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin 

(1.0 eq.) in 10 mL of N,N-dimethylformamide. 2-bromo-3’-methoxyacetophenone (1.1 

eq.) was added and the reaction mixture was stirred at 80 °C for 72 h. The mixture was 

poured on ice and the resulting suspension was filtered and washed with water and 
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petroleum ether. Purification by column chromatography on silica gel (ethyl 

acetate:petroleum ether, 1:3) gave the title compound as a yellow powder (58% yield); 

mp 167-169 °C; mp 167-169 °C; IR νmax 1736 (ν C=O), 1694 (ν C=O), 1328 (νas S=O), 1258 

(ν C-N), 1182 (νs S=O), 864 (δ Csp2-H) 752 (δo Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 

3.86 (s, 3H, OCH3), 5.14 (s, 2H, CH2), 7.18-7.20 (m, 1H, Ar), 7.41-7.58 (m, 3H, Ar), 7.87-

7.96 (m, 3H, Ar), 8.11 (s, 1H, Ar); 13C-NMR (101 MHz, CDCl3) δ 44.6 (CH2), 55.5 (OCH3), 

112.4 (Ar), 120.7 (Ar), 120.9 (Ar), 121.2 (Ar), 125.5 (Ar), 127.3 (Ar), 129.9 (Ar), 134.5 (Ar), 

134.9 (Ar), 135.3 (Ar), 137.9 (Ar), 159.1 (Ar), 160.0 (C=O), 188.7 (C=O). Anal. Calcd for 

C16H13NO5S: C, 58.00; H, 3.95; N, 4.23. Found: C, 58.22; H, 4.11; N, 4.02. 

 

 

2-(Hydroxymethyl)-N-(2-methylbenzyl)benzenesulfonamide (1): (2-

methylbenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 2 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product which was purified by column chromatography (EtOAc/n-

hexane, 1:4). The title compound was a white solid (52% yield); mp 64-66 °C; IR νmax 

3459 (ν O-H), 3237 (ν N-H), 3065 (ν Csp2-H), 1319 (νas S=O), 1167 (νs S=O), 712 (δ Csp2-

H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.25 (s, 3H, CH3), 2.77 (bs, 1H, OH, D2O exch.), 

4.08 (s, 2H, CH2), 5.01 (s, 2H, CH2), 5.43 (bs, 1H, NH, D2O exch.), 7.09-7.19 (m, 4H, Ar), 

7.47-7.61 (m, 3H, Ar), 8.01-8.04 (m, 1H, Ar); 13C-NMR (101 MHz, CDCl3) δ 18.7 (CH3), 

45.5 (CH2), 64.2 (CH2), 126.2 (Ar), 128.2 (Ar), 128.5 (Ar), 128.9 (Ar), 129.6 (Ar), 129.9 

(Ar), 130.5 (Ar), 131.6 (Ar), 133.2 (Ar), 134.1 (Ar), 136.6 (Ar), 138.2 (Ar). 
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2-(Hydroxymethyl)-N-(2-(trifluoromethyl)benzyl)benzenesulfonamide (2): (2-

trifluoromethylbenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was 

suspended in 20 mL of anhydrous methanol at room temperature. An excess of NaBH4 

was added portionwise and the reaction monitored by TLC. After 4 h the reaction was 

quenched with water and the aqueous phase was extracted with dichloromethane (3 x 

30 mL). The organic layers were reunited, dried over sodium sulfate, and concentrated 

in vacuo to give a crude product that was purified by column chromatography 

(EtOAc/n-hexane, 1:3). The title compound was a white solid (47% yield);  mp 66-68 

°C; IR νmax 3446 (ν O-H), 3214 (ν N-H), 1310 (νas S=O), 1157 (νs S=O), 714 (δ Csp2-H) cm-

1; 1H-NMR (400 MHz, CDCl3) δ 2.81 (t, 1H, J = 5.4 Hz, OH, D2O exch.), 4.17 (d, 2H, J = 

6.0 Hz, CH2), 4.91 (s, 2H, CH2), 5.83 (m, 1H, NH, D2O exch.), 7.27 (t, 1H, J = 7.6 Hz, Ar), 

7.35-7.41 (m, 3H, Ar), 7.46-7.50 (m, 3H, Ar), 7.89-7.91 (m, 1H, Ar); 13C-NMR (101 MHz, 

CDCl3) δ 43.7 (CH2), 63.9 (CH2), 124.2 (C-F, 1JC-F =274.8 Hz, CF3), 125.9 (Ar), 126.0 (Ar), 

127.9 (Ar), 128.6 (Ar), 129.7 (Ar), 130.6 (Ar), 131.6 (Ar), 132.3 (Ar), 133.3 (Ar), 135.0 (Ar), 

138.0 (Ar), 138.1 (Ar); 19F-NMR (564.7 MHz, CDCl3) δ -56.89 (s, CF3). 

 

 

2-(Hydroxymethyl)-N-(2-nitrobenzyl)benzenesulfonamide (3): (2-

nitrobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 6 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 
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to give the title compound as a light brown solid (37% yield); mp 103-105 °C; IR νmax 

3498 (ν O-H), 3238 (ν N-H), 2973 (ν Csp3-H), 1522 (ν N-O), 1327 (νas S=O), 1165 (νs S=O), 

698 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6) δ 4.34 (d, 2H, J = 5.6 Hz, CH2), 4.88 

(s, 2H, CH2), 5.45 (bs, 1H, OH, D2O exch.), 7.39 (t, 1H, J = 7.2 Hz, Ar), 7.50 (t, 1H, J = 7.6 

Hz, Ar), 7.60-7.68 (m, 3H, 3 x Ar), 7.74-7.79 (m, 2H, 2 x Ar), 7.96 (d, 1H, J = 8.4 Hz, Ar), 

8.29 (bs, 1H, NH, D2O exch.); 13C-NMR (101 MHz, DMSO-d6) δ 43.4 (CH2), 60.0 (CH2), 

125.1 (Ar), 127.3 (Ar), 128.2 (Ar), 128.5 (Ar), 129.1 (Ar), 130.7 (Ar), 133.0 (Ar), 133.4 (Ar), 

134.1 (Ar), 137.0 (Ar), 141.6 (Ar), 148.1 (Ar). 

 

 

N-(2-Bromobenzyl)-2-(hydroxymethyl)benzenesulfonamide (4): (2-

bromobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 6 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product which was purified by column chromatography (EtOAc/n-

hexane, 2:1). The title compound was a white solid (0.05 g, 11% yield);  mp 162-164 °C; 

IR νmax 3273 (ν O-H and ν N-H), 2920 (ν Csp3-H), 1402 (νas S=O), 1065 (νs S=O), 676 (δ 

Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 3.45 (bs, 1H, OH, D2O exch.), 4.14 (d, 2H, J 

= 6.4 Hz, CH2), 4.93 (s, 2H, CH2), 6.18 (m, 1H, NH, D2O exch.), 7.03 (t, 1H, J = 7.6 Hz, 

Ar), 7.15 (t, 1H, J = 7.4 Hz, Ar), 7.28 (d, 1H, J = 6.8 Hz, Ar), 7.33-7.49 (m, 4H, Ar), 7.87 

(d, 1H, J = 8.0 Hz, Ar); 13C-NMR (101 MHz, CDCl3) δ 47.4 (CH2), 63.5 (CH2), 123.4 (Ar), 

127.6 (Ar), 128.3 (Ar), 129.4 (Ar), 129.6 (Ar), 130.3 (Ar), 131.3 (Ar), 132.7 (Ar), 133.1 (Ar), 

135.6 (Ar), 137.8 (Ar), 138.4 (Ar). 
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2-(Hydroxymethyl)-N-(3-methylbenzyl)benzenesulfonamide (5): (3-

methylbenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 7 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product which was purified by column chromatography (EtOAc/n-

hexane, 1:4). The title compound was a white solid (51% yield); mp 79-80 °C; IR νmax 

3431 (ν O-H), 3161 (ν N-H), 2936 (ν Csp3-H), 1316 (νas S=O), 1152 (νs S=O), 694 (δ Csp2-

H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.27 (s, 3H, CH3), 2.80 (bs, 1H, OH, D2O exch.), 

4.07 (bs, 2H, CH2), 4.99 (s, 2H, CH2), 5.72 (bs, 1H, NH, D2O exch.), 6.96 (d, 2H, J = 7.6 

Hz, Ar), 7.04 (d, 1H, J = 8.0 Hz, Ar), 7.14 (t, 1H, J = 7.4 Hz, Ar), 7.44-7.49 (m, 2H, Ar), 

7.55-7.59 (m, 1H, Ar), 7.98 (d, 1H, 7.8 Hz, Ar); 13C-NMR (101 MHz, CDCl3) δ 21.3 (CH3), 

47.5 (CH2), 63.8 (CH2), 124.9 (Ar), 128.4 (Ar), 128.5 (Ar), 128.6 (Ar), 128.7 (Ar), 129.8 

(Ar), 131.5 (Ar), 133.1 (Ar), 136.1 (Ar), 138.1 (Ar), 138.2 (Ar), 138.3 (Ar). 

 

 

2-(Hydroxymethyl)-N-(3-(trifluoromethyl)benzyl)benzenesulfonamide (6): (3-

trifluoromethylbenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was 

suspended in 20 mL of anhydrous methanol at room temperature. An excess of NaBH4 

was added portionwise and the reaction monitored by TLC. After 8 h the reaction was 

quenched with water and the aqueous phase was extracted with dichloromethane (3 x 

30 mL). The organic layers were reunited, dried over sodium sulfate, and concentrated 
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in vacuo to give a crude product which was purified by column chromatography 

(EtOAc/n-hexane, 1:3). The title compound was a white solid (71% yield); mp 76-78 °C; 

IR νmax 3430 (ν O-H), 3278 (ν N-H), 1317 (νas S=O), 1160 (νs S=O), 700 (δ Csp2-H) cm-1; 

1H-NMR (400 MHz, CDCl3) δ 2.98 (t, 1H, J = 4.8 Hz, OH, D2O exch.), 4.06 (d, 2H, J = 6.4 

Hz, CH2), 4.91 (d, 2H, J = 4.0 Hz, CH2), 6.07 (m, 1H, NH, D2O exch.), 7.24-7.37 (m, 6H, 

Ar), 7.42-7.46 (m, 1H, Ar), 7.82 (d, 1H, J = 7.6 Hz, Ar); 13C-NMR (101 MHz, CDCl3) δ 

46.9 (CH2), 63.9 (CH2), 123.9 (C-F, 1JC-F =273.4 Hz, CF3), 124.5 (Ar), 124.6 (Ar), 128.6 (Ar), 

129.1 (Ar), 129.7 (Ar), 130.7 (Ar), 131.3 (Ar), 131.7 (Ar), 133.3 (Ar), 137.4 (Ar), 137.8 (Ar), 

138.0 (Ar); 19F-NMR (564.7 MHz, CDCl3) δ -60.09 (s, CF3). 

 

 

2-(Hydroxymethyl)-N-(3-nitrobenzyl)benzenesulfonamide (7):  (3-

nitrobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. Excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 6 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product that was purified by column chromatography (EtOAc/n-

hexane, 2:1). The title compound was a white solid (37% yield); mp 109-111 °C; mp 

109-111 °C; IR νmax 3491 (ν O-H), 3164 (ν N-H), 2958 (ν Csp3-H), 1536 (ν N-O), 1326 (νas 

S=O), 1162 (νs S=O), 695 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6) δ 4.16 (s, 2H, 

CH2), 4.87 (s, 2H, CH2), 5.47 (bs, 1H, OH, D2O exch.), 7.33-7.37 (m, 1H, Ar), 7.51-7.60 

(m, 2H, Ar), 7.64 (d, 1H, J = 7.6 Hz, Ar), 7.73-7.75 (m, 2H, Ar), 8.04 (s, 1H, Ar), 8.06 (s, 

1H, Ar), 8.35 (bs, 1H, NH, D2O exch.); 13C-NMR (101 MHz, DMSO-d6) δ 45.4 (CH2), 59.9 

(CH2), 122.5 (Ar), 122.6 (Ar), 127.1 (Ar), 127.9 (Ar), 128.5 (Ar), 130.2 (Ar), 132.9 (Ar), 

134.6 (Ar), 137.2 (Ar), 140.8 (Ar), 141.5 (Ar), 148.1 (Ar). 
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N-(3-Fluorobenzyl)-2-(hydroxymethyl)benzenesulfonamide (8): (3-

fluorobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 5 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product which was purified by column chromatography (EtOAc/n-

hexane, 1:1). The title compound was a light yellow oil (67% yield);  IR νmax 3492 (ν O-

H), 3283 (ν N-H), 2895 (ν Csp3-H), 1318 (νas S=O), 1252 (ν Csp2-F), 1175 (νs S=O), 689 (δ 

Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.84 (bs, 1H, OH, D2O exch.), 4.05 (s, 2H, 

CH2), 4.97 (s, 2H, CH2), 6.04 (bs, 1H, NH, D2O exch.), 6.85-6.94 (m, 3H, Ar), 7.17-7.20 

(m, 1H, Ar), 7.39-7.55 (m, 3H, Ar), 7.92 (d, 1H, J = 7.6 Hz, Ar); 13C-NMR (101 MHz, 

CDCl3) δ 46.6 (CH2), 63.6 (CH2), 114.6 (Ar-F, 2JC-F = 21.1 Hz), 114.8 (Ar-F, 2JC-F = 22.0 Hz), 

123.4 (Ar-F, long-rangeJC-F = 2.7 Hz), 128.5 (Ar), 129.7 (Ar), 130.1 (Ar-F, 3JC-F = 8.2 Hz), 131.6 

(Ar), 133.2 (Ar), 137.9 (Ar), 138.1 (Ar), 139.0 (Ar-F, 3JC-F = 7.3 Hz), 162.7 (Ar-F, 1JC-F = 

247.45 Hz); 19F-NMR (564.7 MHz, CDCl3) δ -110.03 (ddd, JF-H = 9.5 Hz, 8.6 Hz, 5.2 Hz, 

CF). 

 

 

N-(3-Bromobenzyl)-2-(hydroxymethyl)-benzenesulfonamide (9): (3-

bromobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 
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portionwise and the reaction monitored by TLC. After 5 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in 

vacuo to give a crude product which was purified by column chromatography 

(EtOAc/n-hexane, 1:1). The title compound was a white solid (70% yield); mp 75-76 °C; 

IR νmax 3454 (ν O-H), 3214 (ν N-H), 2955 (ν Csp3-H), 1319 (νas S=O), 1156 (νs S=O), 694 (δ 

Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6) δ 4.00 (d, 2H, J = 6 Hz, CH2), 4.87 (d, 2H, J 

= 5.2 Hz, CH2), 5.42 (bs, 1H, OH, D2O exch.), 7.20 (bs, 2H, Ar), 7.38 (bs, 3H, Ar), 7.59-

7.63 (m, 1H, Ar), 7.75-7.78 (m, 2H, Ar), 8.23 (bs, 1H, NH, D2O exch.); 13C-NMR (101 

MHz, DMSO-d6) δ 45.6 (CH2), 59.9 (CH2), 122.0 (Ar), 127.0 (Ar), 127.2 (Ar), 127.9 (Ar), 

128.5 (Ar), 130.4 (Ar), 130.7 (Ar), 130.8 (Ar), 132.9 (Ar), 137.2 (Ar), 141.2 (Ar), 141.5 (Ar). 

 

 

2-(Hydroxymethyl)-N-(4-methylbenzyl)benzenesulfonamide (10): (4-

methylbenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 6 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in 

vacuo to give a crude product which was purified by column chromatography 

(EtOAc/n-hexane, 1:4). The title compound was a white solid (56% yield); mp 100-102 

°C; IR νmax 3437 (ν O-H), 3130 (ν N-H), 2930 (ν Csp3-H), 1310 (νas S=O), 1151 (νs S=O), 

701 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.31 (s, 3H, CH3), 2.80 (bs, 1H, OH, 

D2O exch.), 4.07 (d, 2H, J = 5.2 Hz, CH2), 4.99 (s, 2H, CH2), 5.60 (bs, 1H, NH, D2O exch.), 

7.06 (bs, 4H, Ar), 7.44-7.50 (m, 2H, Ar), 7.55-7.60 (m, 1H, Ar), 8.00 (d, 1H, 7.6 Hz, Ar); 



51 

 

13C-NMR (101 MHz, CDCl3) δ 21.1 (CH3), 47.3 (CH2), 63.8 (CH2), 127.9 (Ar), 128.5 (Ar), 

129.3 (Ar), 129.9 (Ar), 131.6 (Ar), 133.1 (Ar), 133.2 (Ar), 137.6 (Ar), 138.1 (Ar), 138.2 (Ar). 

 

 

2-(Hydroxymethyl)-N-(4-(trifluoromethyl)benzyl)benzenesulfonamide (11): (4-

trifluoromethylbenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was 

suspended in 20 mL of anhydrous methanol at room temperature. An excess of NaBH4 

was added portionwise and the reaction monitored by TLC. After 8 h the reaction was 

quenched with water and the aqueous phase was extracted with dichloromethane (3 x 

30 mL). The organic layers were reunited, dried over sodium sulfate, and concentrated 

in vacuo to give a crude product which was purified by column chromatography 

(EtOAc/n-hexane, 1:3). The title compound was a white solid (79% yield); mp 78-80 °C; 

IR νmax 3417 (ν O-H), 3161 (ν N-H), 3065 (ν Csp2-H), 1321 (νas S=O), 1157 (νs S=O), 688 (δ 

Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 3.03 (bs, 1H, OH, D2O exch.), 4.15 (d, 2H, J 

= 6.4 Hz, CH2), 5.02 (d, 2H, J = 5.2 Hz CH2), 6.14 (t, 1H, J = 6.4 Hz, NH, D2O exch.), 7.32 

(d, 2H, J = 8.0 Hz, Ar), 7.40-7.49 (m, 4H, Ar), 7.54-7.58 (m, 1H, Ar), 7.91 (s, 1H, Ar); 13C-

NMR (101 MHz, CDCl3) δ 46.9 (CH2), 63.9 (CH2), 124.0 (C-F, 1JC-F= 273.1 Hz, CF3), 125.4 

(Ar), 125.5 (Ar), 128.1 (Ar), 128.6 (Ar), 129.7 (Ar), 129.8 (Ar), 130.1 (Ar), 131.7 (Ar), 133.3 

(Ar), 137.8 (Ar), 138.0 (Ar), 140.4 (Ar); 19F-NMR (564.7 MHz, CDCl3) δ -60.08 (s, CF3). 

 

 

N-(4-Cyanobenzyl)-2-(hydroxymethyl)benzenesulfonamide (12): (4-

cyanobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 
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mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 8 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate and concentrated in vacuo 

to give a crude product, which was purified by column chromatography (EtOAc/n-

hexane, 2:1). The title compound was a white solid (67% yield); mp 93-95 °C; IR νmax 

3481 (ν O-H), 3187 (ν N-H), 2949 (ν Csp3-H), 2235 CN, 1325 (νas S=O), 1156 (νs S=O), 703 

(δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6) δ 4.09 (s, 2H, CH2), 4.88 (s, 2H, CH2), 

5.46 (bs, 1H, OH, D2O exch.), 7.35-7.41 (m, 3H, Ar), 7.59-7.62 (m, 1H, Ar), 7.70-7.77 (m, 

4H, Ar), 8.33 (bs, 1H, NH, D2O exch.); 13C-NMR (101 MHz, DMSO-d6) δ 45.9 (CH2), 59.9 

(CH2), 110.3 (Ar), 119.3 (CN), 127.2 (Ar), 127.9 (Ar), 128.5 (Ar), 128.7 (Ar), 132.6 (Ar), 

132.9 (Ar), 137.1 (Ar), 141.6 (Ar), 144.3 (Ar). 

 

 

2-(Hydroxymethyl)-N-(4-nitrobenzyl)benzenesulfonamide (13): (4-

nitrobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 8 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product, which was purified by column chromatography (EtOAc/n-

hexane, 1:1). The title compound was a yellow solid (57% yield); mp 98-99 °C; IR νmax 

3493 (ν O-H), 3243 (ν N-H), 1515 (ν N-O), 1318 (νas S=O), 1160 (νs S=O), 690 (δ Csp2-H) 

cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.74 (bs, 1H, OH, D2O exch.), 4.21 (bs, 2H, CH2), 5.08 

(s, 2H, CH2), 6.13 (bs, 1H, NH, D2O exch.), 7.40-7.59 (m, 5H, Ar), 7.96-7.97 (m, 1H, Ar), 

8.11-8.13 (m, 2H, Ar); 13C-NMR (101 MHz, CDCl3) δ 46.7 (CH2), 64.3 (CH2), 123.7 (Ar), 
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128.5 (Ar), 128.8 (Ar), 129.8 (Ar), 131.6 (Ar), 133.4 (Ar), 137.6 (Ar), 138.7 (Ar), 144.0 (Ar), 

147.2 (Ar). 

 

 

N-(4-Fluorobenzyl)-2-(hydroxymethyl)benzenesulfonamide (14): (4-

fluorobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 8 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product which was purified by column chromatography (EtOAc/n-

hexane, 1:3). The title compound was a light brown solid (79% yield); mp 99-100 °C; IR 

νmax 3439 (ν O-H), 3140 (ν N-H), 1312 (νas S=O), 1151 (νs S=O), 696 (δ Csp2-H) cm-1; 1H-

NMR (400 MHz, CDCl3) δ 3.18 (bs, 1H, OH, D2O exch.), 4.04 (d, 2H, J = 6.4 Hz, CH2), 

4.98 (s, 2H, CH2), 6.00 (bs, 1H, NH, D2O exch.), 6.88-6.93 (m, 2H, Ar), 7.12-7.15 (m, 2H, 

Ar), 7.41-7.57 (m, 3H, Ar), 7.93 (d, 1H, J = 8.0 Hz, Ar); 13C-NMR (101 MHz, CDCl3) δ 

46.7 (CH2), 63.7 (CH2), 115.4 (Ar-F, 2JC-F =21.2 Hz), 128.5 (Ar), 129.6 (Ar), 129.7 (Ar), 131.6 

(Ar), 132.0 (Ar), 132.1 (Ar), 133.2 (Ar), 138.0 (Ar), 138.1 (Ar), 135.4 (Ar-F, 1JC-F =247.3 

Hz); 19F-NMR (564.7 MHz, CDCl3) δ -111.71 (tt, JF-H = 8.7 Hz (ortho), 5.3 Hz (meta), CF). 

 

 

N-(4-Chlorobenzyl)-2-(hydroxymethyl)benzenesulfonamide (15): (4-

chlorobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq) was suspended in 20 
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mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 7 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product which was purified by column chromatography (EtOAc/n-

hexane, 1:1). The title compound was a white solid (70% yield); mp 103-105 °C; IR νmax 

3458 (ν O-H), 3236 (ν N-H), 2876 (ν Csp3-H), 1314 (νas S=O), 1152 (νs S=O), 690 (δ Csp2-

H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.90 (bs, 1H, OH, D2O exch.), 4.06 (d, 2H, J = 6.0 

Hz, CH2), 5.01 (s, 2H, CH2), 5.88 (bs, 1H, NH, D2O exch.), 7.11 (d, 2H, J = 8.4 Hz, Ar), 

7.21 (d, 2H, J = 8.4 Hz, Ar), 7.43-7.49 (m, 2H, Ar), 7.56-7.60 (m, 1H, Ar), 7.95 (d, 1H, J = 

7.6 Hz, Ar); 13C-NMR (101 MHz, CDCl3) δ 46.8 (CH2), 63.9 (CH2), 128.6 (Ar), 128.7 (Ar), 

129.3 (Ar), 129.8 (Ar), 131.6 (Ar), 133.2 (Ar), 133.7 (Ar), 134.8 (Ar), 137.9 (Ar), 138.1 (Ar). 

 

 

N-(4-bromobenzyl)-2-(hydroxymethyl)benzenesulfonamide (16): (4-

bromobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 7 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product which was purified by column chromatography (EtOAc/n-

hexane, 1:2). The title compound was a white solid (53% yield); mp 124-125 °C; IR νmax 

3461 (ν O-H), 3234 (ν N-H), 3064 (ν Csp2-H), 1314 (νas S=O), 1152 (νs S=O), 690 (δ Csp2-

H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.71 (bs, 1H, OH, D2O exch.), 4.06 (bs, 2H, CH2), 

5.03 (s, 2H, CH2), 5.78 (bs, 1H, NH, D2O exch.), 7.06-7.08 (m, 2H, Ar), 7.37-7.59 (m, 5H, 
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Ar), 7.96-7.97 (m, 1H, Ar); 13C-NMR (101 MHz, CDCl3) δ 46.9 (CH2), 64.1 (CH2), 121.9 

(Ar), 128.6 (Ar), 129.6 (Ar), 129.8 (Ar), 131.7 (Ar), 133.2 (Ar), 137.9 (Ar), 138.3 (Ar). 

 

 

N-(2,6-Difluorobenzyl)-2-(hydroxymethyl)benzenesulfonamide (17): (2,6-

difluorobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 

mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 7 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product which was purified by column chromatography (EtOAc/n-

hexane, 1:1). The title compound was a white solid (67% yield); mp 128-130 °C; IR νmax 

3495 (ν O-H), 3159 (ν N-H), 2958 (ν Csp3-H), 1320 (νas S=O), 1159 (νs S=O), 693 (δ Csp2-

H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.72 (bs, 1H, OH, D2O exch.), 4.23 (s, 2H, CH2), 

4.89 (bs, 2H, CH2), 6.04 (bs, 1H, NH, D2O exch.), 6.79-6.73 (m, 2H, Ar), 7.10-7.14 (m, 1H, 

Ar), 7.26 (s, 1H, Ar), 7.33-7.48 (m, 2H, Ar), 7.92-7.94 (m, 1H, Ar); 13C-NMR (101 MHz, 

CDCl3) δ 35.1 (CH2), 63.6 (CH2), 111.2 (Ar-F, 2JC-F = 24.8 Hz), 128.3 (Ar), 129.7 (Ar), 129.9 

(Ar), 130.0 (Ar), 130.1 (Ar), 131.2 (Ar), 133.1 (Ar), 137.8 (Ar), 138.2 (Ar), 161.2 (Ar-F, 1JC-

F = 246.9 Hz); 19F-NMR (564.7 MHz, CDCl3) δ -112.08 (t, JF-H = 6.9 Hz, CF). 

 

 

N-(3,4-Dichlorobenzyl)-2-(hydroxymethyl)benzenesulfonamide (18): (3,4-

chlorobenzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended in 20 
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mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 7 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product which was purified by column chromatography (EtOAc/n-

hexane, 2:1). The title compound was a light brown solid (81% yield); mp 83-84 °C; IR 

νmax 3463 (ν O-H), 3192 (ν N-H), 2947 (ν Csp3-H), 1319 (νas S=O), 1158 (νs S=O), 690 (δ 

Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.88 (bs, 1H, OH, D2O exch.), 3.96 (d, 2H, J 

= 6.4 Hz, CH2), 4.93 (bs, 2H, CH2), 6.00 (t, 1H, J = 6.0 Hz NH, D2O exch.), 6.94-6.96 (bs, 

1H, Ar), 7.17-7.22 (m, 2H, Ar), 7.33-7.39 (m, 2H, Ar), 7.46-7.48 (m, 1H, Ar), 7.83 (d, 1H, 

J = 7.6 Hz, Ar); 13C-NMR (101 MHz, CDCl3) δ 46.3 (CH2), 64.0 (CH2), 127.2 (Ar), 128.6 

(Ar), 129.7 (Ar), 129.8 (Ar), 130.5 (Ar), 131.7 (Ar), 131.8 (Ar), 132.6 (Ar), 133.3 (Ar), 136.7 

(Ar), 137.7 (Ar), 138.1 (Ar). 

 

 

2-(Hydroxymethyl)-N-(naphthalen-1-ylmethyl)benzenesulfonamide (19): 2-

(naphthalen-1-ylmethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was 

suspended in 20 mL of anhydrous methanol at room temperature. An excess of NaBH4 

was added portionwise and the reaction monitored by TLC. After 6 h the reaction was 

quenched with water and the aqueous phase was extracted with dichloromethane (3 x 

30 mL). The organic layers were reunited, dried over sodium sulfate, and concentrated 

in vacuo to give a crude product which was purified by column chromatography 

(EtOAc/n-hexane, 1:1). The title compound was a white solid (57% yield); mp 80-81 °C; 

IR νmax 3517 (ν O-H), 3347 (ν N-H), 3061 (ν Csp2-H), 1318 (νas S=O), 1157 (νs S=O), 690 (δ 

Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.68 (bs, 1H, OH, D2O exch.), 4.51 (s, 2H, 

CH2), 4.91 (s, 2H, CH2), 5.69 (bs, 1H, NH, D2O exch.), 7.29-7.55 (m, 7H, Ar), 7.74-7.86 
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(m, 3H, Ar), 8.05 (s, 1H, Ar); 13C-NMR (101 MHz, CDCl3) δ 45.6 (CH2), 63.7 (CH2), 123.2 

(Ar), 125.2 (Ar), 126.0 (Ar), 126.6 (Ar), 127.0 (Ar), 128.4 (Ar), 128.7 (Ar), 129.0 (Ar), 130.0 

(Ar), 131.1 (Ar), 131.4 (Ar), 131.5 (Ar), 133.2 (Ar), 133.7 (Ar), 137.6 (Ar), 138.3 (Ar). 

 

 

N-(2-Hydroxy-2-phenylethyl)-2-(hydroxymethyl)benzenesulfonamide (20): 2-(2-

oxo-2-phenylethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (1.0 eq.) was suspended 

in 20 mL of anhydrous methanol at room temperature. An excess of NaBH4 was added 

portionwise and the reaction monitored by TLC. After 8 h the reaction was quenched 

with water and the aqueous phase was extracted with dichloromethane (3 x 30 mL). 

The organic layers were reunited, dried over sodium sulfate, and concentrated in vacuo 

to give a crude product which was purified by column chromatography (EtOAc/n-

hexane, 2:1). The title compound was a light yellow oil (49% yield); IR νmax 3291 (ν O-

H and ν N-H), 2923 (ν Csp3-H), 1316 (νas S=O), 1153 (νs S=O), 696 (δ Csp2-H) cm-1; 1H-

NMR (400 MHz, CDCl3) δ 2.94 (bs, 1H, CH2), 3.15 (bs, 1H, CH2), 3.42 (bs, 1H, OH, D2O 

exch.), 4.56-4.64 (m, 2H, CH2), 4.91-5.03 (m, 1H, CH), 5.28 (bs, 1H, OH, D2O exch.), 6.57 

(bs, 1H, NH, D2O exch.), 7.13-7.20 (m, 5H, Ar), 7.38-7.47 (m, 3H, Ar), 7.91 (d, 1H, J = 6.4 

Hz, Ar); 13C NMR (101 MHz, CDCl3) δ 50.4 (CH2), 62.7 (CH2), 72.4 (CH), 125.8 (Ar), 

127.9 (Ar), 128.2 (Ar), 128.5 (Ar), 129.5 (Ar), 131.3 (Ar), 133.3 (Ar), 137.3 (Ar), 138.6 (Ar), 

140.8 (Ar). 

 

 

N-(2-Hydroxy-2-(3-methoxyphenyl)ethyl)-2-(hydroxymethyl)benzenesulfonamide 

(21): 2-(2-hydroxy-2-(3-methoxyphenyl)ethyl)benzo[d]isothiazol-3(2H)-one 1,1-
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dioxide (1.0 eq.) was suspended in 20 mL of anhydrous methanol at room temperature. 

An excess of NaBH4 was added portionwise and the reaction monitored by TLC. After 

8 h the reaction was quenched with water and the aqueous phase was extracted with 

dichloromethane (3 x 30 mL). The organic layers were reunited, dried over sodium 

sulfate, and concentrated in vacuo to give a crude product which was purified by 

column chromatography (EtOAc/n-hexane, 1:2). The title compound was a yellow oil 

(88% yield); IR νmax 3477 (ν O-H), 3295 (ν N-H), 2935 (ν Csp3-H), 1317 (νas S=O), 1160 (νs 

S=O), 697 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, CDCl3) δ 2.89-2.95 (m, 1H, CH2), 3.13-

3.17 (m, 1H, CH2), 3.64 (s, 3H, OCH3), 4.41 (bs, 2H, CH2), 4.58 (bs, 1H, OH), 4.87-4.91 

(m, 1H, CH), 4.97 (bs, 1H, OH, D2O exch.), 6.48 (bs, 1H, NH, D2O exch.), 6.67-6.71 (m, 

3H, Ar), 7.07-7.11 (m, 1H, Ar), 7.32-7.47 (m, 3H, Ar), 7.87 (d, 1H, J = 7.6 Hz, Ar); 13C-

NMR (101 MHz, CDCl3) δ 50.4 (CH2), 55.1 (OCH3), 60.6 (CH2), 72.2 (CH), 111.4, (Ar), 

113.3 (Ar), 118.1 (Ar), 128.2 (Ar), 129.5 (Ar), 129.6 (Ar), 131.2 (Ar), 133.2 (Ar), 137.3 (Ar), 

138.6 (Ar), 142.5 (Ar), 159.5 (ArO). 

 

Enzyme inhibition assays 

An Applied Photophysics stopped-flow instrument has been used for assaying the 

CA-catalyzed CO2 hydration activity. Phenol red (0.2 mM) has been used as indicator, 

working at the absorbance maximum of 557 nm, with 20 mM Hepes (pH 7.5, for α-

CAs) as buffer, and 20 mM NaClO4 (for maintaining constant the ionic strength), 

following the initial rates of the CA-catalyzed CO2 hydration reaction for a period of 

10-100 s. The CO2 concentrations ranged from 1.7 to 17 mM for the determination of 

the kinetic parameters and inhibition constants. For each inhibitor at least six traces of 

the initial 5-10% of the reaction have been used for determining the initial velocity. The 

uncatalyzed rates were determined in the same manner and subtracted from the total 

observed rates. Stock solutions of each inhibitor (1 µM) were prepared in distilled-

deionized water and dilutions up to 0.1 nM were done thereafter with the assay buffer. 

Inhibitor and enzyme solutions were preincubated together for 15 min at room 

temperature prior to assay, in order to allow for the formation of the E-I complex or 
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for the eventual active site mediated hydrolysis of the inhibitor. The inhibition 

constants were obtained by non-linear least-squares methods using PRISM 3 and the 

Cheng-Prusoff equation, and represent the average from at least three different 

determinations. All recombinant CA isoforms were obtained in-house as previously 

reported[97]. 

 

Molecular modelling studies 

Preparation of saccharin-based structures 

The saccharin-based analogs 1-21 were prepared in 3D with the MOE software 

package (v2013.08.02, Chemical Computing Group Inc., Montreal, Canada) as 

previously reported28. All possible structural isomers of compounds were constructed. 

Strong acids were deprotonated and strong bases were protonated. Finally, the ligands 

were energy minimized using a steepest-descent protocol (MMFF94x force field). 

 

Preparation of hCA crystal  structures for docking studies  

The structures of hCA I (PDB: 3LXE, 1.90 Å), hCA II (PDB: 4E3D, 1.60 Å), hCA IX (PDB: 

3IAI, 2.20 Å) and hCA XII (PDB: 1JD0, 1.50 Å) were obtained from the protein databank 

(PDB). The protein atoms, the active site zinc ions and the zinc-bound water molecule 

of hCA II were retained and all other atoms were omitted. The remaining structure 

was protonated using the MOE software package and subsequently the obtained 

structure was energy-minimized (AMBER99 force field). Finally, the obtained protein 

models were superposed on the hCA I structure using the backbone Cα-atoms. The 

zinc-bound water molecule of hCA II coordinated well to the zinc ions of the other 

hCAs. 

Docking studies  

The GOLD Suite software package (v5.2, CCDC, Cambridge, UK) and the GoldScore 

scoring function were used to dock the derivatives into the hCA structures with and 

without the zinc-bound water molecule (25 dockings per ligand). The binding pocket 

was defined as all residues within 13 Å of a centroid (x: -17.071, y: 35.081, 43.681; 
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corresponding approximately to the position of the thiadiazole ring of acetazolamide 

in the 1JD0 structure). 
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Chapter 3 

Design, synthesis and biological activity of saccharin/isoxazole and 

saccharin/isoxazoline derivatives as selective inhibitors of carbonic 

anhydrase IX and XII isoforms 
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3.1 Saccharin/isoxazoline and saccharin/isoxazoles derivatives: aim of the work 

In one of our first work regarding saccharin inhibitors of hCAs, we reported a 

compound obtained from 1,3-dipolar cycloaddition reaction between N-propargyl 

substituted saccharin and N-hydroxy-4-nitrobenzimidoyl chloride (Figure 3.1) [109]. 

This compound, the first endowed with a heterocyclic “linker” between the methylene 

of benzyl group and phenyl ring, showed activity in the nanomolar range only 

towards tumor-related isoforms, being ineffective against the two off-targets. 

 

 

Figure 3.1. Design of new saccharin/isoxazole and saccharin/isoxazoline compounds. 

 

In the light of the above, I designed the new inhibitors evaluating the insertion of two 

different systems as linker group: isoxazole and isoxazoline. The two chosen linkers 

possess some identical characteristic, e.g. both are five-membered rings with same 

heteroatoms, identical connection and position of substituents. However, there are 

also differences which are noteworthy. Indeed, isoxazole ring is a flat-aromatic system 

that could give п-stacking interaction inside the active site; on the other hands, 

isoxazoline, the 4,5-dihydrogenated form of isoxazole, loss aromaticity and possess 

two tetrahedral carbon atoms inside the ring, that alter the flat conformation (п-

interaction could be established with double bond ring, yet). Furthermore, the 

presence of four different substituents on one of the two tetrahedral carbon (C(5) of 

isoxazoline), account for the existence of a stereocenter. So, all the 

saccharin/isoxazoline compounds exist as couple of enantiomers, that could be 
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resolved and tested in the future with the aim to determine the preferred configuration 

chosen by the enzymes and, in conclusion, the eutomer. 

 

3.2 Chemistry 

For the synthesis of new saccharin derivatives, we followed a multi-step approach 

[122,123], useful to obtain reagents for the final 1,3-dipolar cycloaddition reaction 

between olefin substituted saccharins and hydroximinoyl acid chlorides (chloro 

oximes), leading to final products (Scheme 3.1, a-d).  

 

 

Scheme 3.1. Synthetic approach for the synthesis of new derivatives 1a-9a and 1b-9b. 

 

N-alkylated saccharins were obtained following our previously reported procedure 

[109], through nucleophilic substitution reaction between saccharin and 

allyl/propargyl bromide (Scheme 3.1, a). The hydroximinoyl acid chlorides (chloro 

oximes) were synthesised in two steps from the corresponding benzaldehydes 
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[109,124]. The first step (Scheme 3.1, b) involved the reaction between the selected 

aldehyde and hydroxylamine hydrochloride, in the presence of triethylamine in 

methanol (80 °C) to obtain oximes [109]. At a later time, the freshly synthesised oxime 

was reacted with N-chlorosuccinimide (NCS) in N,N-dimethylformamide (DMF), 

adding gaseous hydrogen chloride (HCl(g)) to promote the beginning of reaction 

(Scheme 3.1, c). In fact, Howe et al. observed that the reaction of NCS with 

benzaldoximes exhibited an induction period that could be reduced through the 

addition of small amounts of gaseous HCl. In this way, we avoided the fairly 

exothermic behaviour observed when the reaction initiates in the presence of  

considerable portion of the NCS [124]. The resulting chloro oximes were not 

contaminated by side-products (i.e. ring chlorinated products) and could be used 

without purification in the next 1,3-dipolar cycloaddition. In this reaction the 1,3-

dipole, that is the nitrile oxides generated in situ by dehydrohalogenation of the chloro 

oxime with triethylamine, reacted with the dipolarophile (N-allyl/propargyl 

saccharins) in ethyl acetate. Regioselectivities in isoxazoline ring synthesis are 

controlled by the energy of the atomic orbitals involved (frontiers molecular orbitals, 

FMO), although in some reactions electronically preferred orientations may be 

disfavoured by steric effects [125]. However, the reaction of nitrile oxides with 

monosubstituted olefins are quite exclusive, giving only or predominantly the 5-

substituted isoxazoline, regardless the nature of the substituent on the dipolarophile. 

On the other hand, cycloaddition of nitrile oxides to acetylenic dipolarophiles leads 

directly to 5-substituted isoxazoles [123,125]. 

 

3.3 Two-dimensional nuclear Overhauser enhancement spectroscopy (2D-NOESY 

NMR) 

Compound 3b synthesised from N-hydroxy-pyridine-2-carbimidoyl chloride and N-

propargyl saccharin, was subjected 2D-NMR using NOESY approach. This analysis 

was able to reveal spatial relationships among proximal protons, in order to confirm 
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the regioselectivity of the 1,3-dipolar cycloaddition reaction, to give 5-substituted 

isoxazoles instead of 4-substituted ones (Figure 3.2).  

 

 

Figure 3.2. (a) Compound 3b containing 5-substituted isoxazoline, proximal protons were 

depicted in red; (b) compound 3b containing unattended 4-substituted isoxazoline and 

without proximal protons.  

 

3.4 Biological evaluation 

All the synthesized saccharin/isoxazoline and saccharin/isoxazole derivatives were 

tested to evaluate their inhibitory activity towards the ubiquitous off-target isoforms, 

hCA I and II, and the cancer-related ones, hCA IX and XII, by a stopped-flow, CO2 

hydrase assay method and their CA inhibition data (Ki) are summarized in Table 3.1. 

 

3.5 Results and discussion 

3.5.1 Inhibition of hCA I, II, IX, and XII.  

Comparing the activity of compounds 1a-9a and 1b-9b with the N-alkyl/propargyl 

saccharins parent drugs, it is possible to asses that the insertion of 

isoxazoline/isoxazole ring, connected with aromatic or heteroaromatic system, 

improved both activity and selectivity.  Data reported in Table 3.1 show that all the 

synthesised compounds are selective inhibitors of tumor-related isoforms (hCA IX and 

hCA XII), being devoid of any activity towards the two ubiquitously expressed 

isoforms hCA I and hCA II, their off-target. Except for compound 9a, all derivatives 

showed preferred affinity for isoform XII with Ki spanning from 7.0 nM obtained for 

compound 6b, to 240 nM exhibited by 2b. The nature of the linker (isoxazoline rather 

than isoxazole) or the substituents on phenyl ring, as well as heterocyclic type system, 
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influenced the inhibitory activity against the tested isoforms. These compounds did 

not show a general trend; however, an important evidence was obtained. Compounds 

1a and 1b, substituted with NO2 on meta position of phenyl ring, showed a similar 

inhibitory activity towards isoform XII (1a, Ki hCA XII = 76.5 nM; 1b, Ki hCA XII = 57.3 

nM), while compound 1a was more effective than 1b against isoform IX (1a, KI hCA IX 

= 102.9 nM; 1b, KI hCA IX = 230.2 nM). Compounds 2a and 2b, possessing a p-NO2 

substituted phenyl ring, displayed a similar trend for hCA IX inhibition, while 

compound 2b containing the isoxazole linker, showed impaired activity towards 

isoform XII (2a, Ki hCA XII = 77 nM; 2b, Ki hCA XII = 240 nM). For these four derivatives 

it was possible to note that starting from 1a, containing a m-NO2 substituted phenyl 

ring bound to the isoxazoline ring, to compound 2b endowed with p-NO2 substituted 

phenyl ring connected to isoxazole system, there was a decrease of activity against 

hCA IX (Table 3.1). This trend was opposite compared with derivatives ranking from 

6a to 7b, possessing methoxy substituent (OMe). Indeed, compound 7b endowed with 

isoxazole linker and p-OMe substituted phenyl ring, showed a good activity against 

isoform IX (KI hCA IX = 22.1 nM). The other derivatives possessing a methoxy group 

were inactive (5a, 5b, 6a), or less effective (6b, 7a) towards isoform IX, compared to 7b. 

However, all the molecules containing methoxy group on phenyl ring were good 

inhibitors of hCA XII (7.0 < Ki hCA XII (nM) < 9.4) with the best activity exhibited by 

compound 6b. From these data it seems that the nature of the linker not favoured one 

isoform instead of the other or influenced in a specific manner the enzyme inhibition. 

In fact, the isoxazoline variation of 1a with isoxazole of 1b, increased the activity 

against hCA XII while reduced that towards hCA IX. For the couple 2a-2b, we 

observed impairment of activity towards both the tumor-related isoforms passing 

from isoxazoline linker to isoxazole one. The changing of the linker type for couples 

6a-6b and 7a-7b influenced only the inhibitory activity towards hCA IX, while hCA 

XII was not affected, showing almost constant inhibition data. Albeit further 

substitution patterns have to be evaluated, these preliminary outcomes showed that 
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was the combination of the substituent type/position on phenyl ring along with linker 

combination, rather than the single feature, which affect the inhibitory activity.  

Heterocyclic systems bound to the linker moiety were also evaluated. Compounds 3a 

and 3b were endowed with pyridin-2-yl moiety bound respectively to isoxazoline and 

isoxazole ring. These molecules showed similar activity against hCA IX (3a, KI hCA IX 

= 258.2 nM; 3b, KI hCA IX = 245.4 nM), whereas compound 3a exhibited better activity 

against hCA XII (3a, Ki hCA XII = 9.7 nM; 3b, Ki hCA XII = 66.5 nM). Derivatives 4a and 

4b whit pyridin-3-yl system showed comparable activity towards isoform XII, while 

differed for activity on hCA IX (4a, KI hCA IX = 273.5 nM; 4b, KI hCA IX = 86.2 nM). 

These data confirmed the absence of the univocal influence of linker. These data 

confirmed the absence of the univocal influence of linker. Compounds endowed with 

unsubstituted phenyl ring bound on the isooxazoline linker 8a showed the inhibition 

of only hCA XII; the isoxazole counterpart 8b was effective against both the tumor-

related isoforms (8b, Ki hCAIX = 50.9 nM; Ki hCAXII = 7.5 nM). Finally, compounds 

containing thiophene 9a and 9b showed the best inhibitory profile with low nanomolar 

activity towards both hCAIX (9a, Ki hCA IX = 7.2 nM; 9b, Ki hCA IX = 9.0 nM) and XII 

(9a, Ki hCA XII = 9.0 nM; 9b, Ki hCA XII = 8.2 nM).  

So, the five-membered heterocyclic system seems to be the best tolerated group bound 

to the linker moiety 

 

Table 3.1. Inhibition data of selected human CA isoforms (hCA I, II, IX and XII) with 

compounds 1a-9a and 1b-9b reported here and the standard sulfonamide inhibitor 

acetazolamide (AAZ) by a stopped flow CO2 hydrase assay. 

Compound Structure 
Ki (nM) 

hCA I hCA II hCA IX hCA XII 

S1 

 

>10000 86 140 94 
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S2 

 

>10000 58 210 570 

1a 

 

>10000 >10000 102.9 76.5 

1b 

 

>10000 >10000 230.2 57.3 

2a 

 

>10000 >10000 235.1 77.0 

2b 

 

>10000 >10000 310 240 

3a 

 

>10000 >10000 258.2 9.7 

3b 

 

>10000 >10000 245.4 66.5 

4a 

 

>10000 >10000 273.5 9.2 

4b 

 

>10000 >10000 86.2 8.0 

5a 

 

>10000 >10000 >10000 9.4 
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5b 

 

>10000 >10000 >10000 9.3 

6a 

 

>10000 >10000 >10000 7.6 

6b 

 

>10000 >10000 247.1 7.0 

7a 

 

>10000 >10000 139.1 8.1 

7b 

 

>10000 >10000 22.1 8.0 

8a 

 

>10000 >10000 >10000 8.5 

8b 

 

>10000 >10000 50.9 7.5 

9a 

 

>10000 >10000 7.2 9.0 

9b 

 

>10000 >10000 7.5 8.2 

AAZ  250 12 25 5.7 

*Mean from 3 different assay, by a stopped flow technique (errors were in the range of  5-10 

% of the reported values). 

 

3.5.2 2D-NOESY NMR of compound 3b  
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2D-NOESY NMR spectra reported in Figure 3.3, displayed the presence of the 

interaction between the two protons previously showed in Figure 3.2. 

 

 

Figure 3.3. 2D-NOESY NMR of compound 3b. 

 

The presence of the interaction between protons with spatial proximity, was confirmed 

by the presence of the “green” circles present along an ideal line which connect the 

proton C4(H) of the isoxazole ring (singlet at ~7.06), with pyridine signals between 7.90 

and 8.10 ppm containing the one of the proton at C3 position of pyridine ring. This 

outcome showed the interaction between the red depicted hydrogens of Figure 3.2, a 

confirming the regioselectivity of the reactions.  

 

3.6 Conclusion 
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The design, synthesis, characterization and in vitro pharmacological evaluation of 

several new saccharin/isoxazoline and saccharin/isoxazole derivatives have been 

reported. They shown to be ineffective towards the two cytosolic off-target hCA I and 

II (Kis > 10 µM); conversely, most of these compounds inhibited both the tumor related 

isoforms hCA IX and XII in the low nanomolar range with Kis ranging between 7.0 and 

310 nM. The majority of molecules 1a-9a and 1b-9b showed preferred activity for hCA 

XII, with the best result observed for compound 6b (Ki hCA XII = 7.0 nM), although 

also hCA IX were inhibited in the low nanomolar range by some derivatives. The 

analysis of the Ki values showed the absence of an explicit correlation between the 

linker type and the activity/selectivity profile; rather, the activity of compounds was 

likely affected by the arrangement of phenyl ring substituent and linker type.  

The results will be rationalized by means docking studies in order to evaluate the 

interactions whose affect the activity and selectivity. Furthermore, some of the 

saccharin/isoxazoline derivatives will be exposed to chiral resolution to obtain the 

enantiomers and evaluate as chiral properties affect the inhibitory activity. 

 

3.7 Experimental section 

General 

Unless otherwise indicated, all reactions were carried out under a positive pressure of 

nitrogen (balloon pressure) in washed and oven-dried glassware. Solvents were used 

as supplied without further purification. Where mixtures of solvents are specified, the 

stated ratios are volume:volume. Reagents were used directly as supplied by Sigma-

Aldrich® Italy. All melting points were measured on a Stuart® melting point apparatus 

SMP1, and are uncorrected. Temperatures are reported in °C. 1H and 13C NMR spectra 

were recorded at 400 and 101 MHz, respectively, on a Bruker spectrometer using 

CDCl3, DMSO-d6, MeOD and CD3CN, as the solvents at room temperature. The 

samples were analysed with a final concentration of ~30 mg/mL. Chemical shifts are 

expressed as δ units (parts per millions) relative to the solvent signal. 1H spectra are 

reported as follows: δH (spectrometer frequency, solvent): chemical shift/ppm (multiplicity, 
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J-coupling constant(s), number of protons, assignment). 13C spectra are reported as follows: 

δC (spectrometer frequency, solvent): chemical shift/ppm (assignment). Multiplets are 

abbreviated as follows: br – broad; s – singlet; d – doublet; t – triplet; q – quartet; m – 

multiplet. Coupling constants J are valued in Hertz (Hz). The processing and analyses 

of the NMR data were carried out with MestreNova. Infra-red spectra were recorded 

on a Bruker Tensor 27 FTIR spectrometer equipped with an attenuated total reflectance 

attachment with internal calibration. Absorption maxima (νmax) are reported in 

wavenumbers (cm-1). Column chromatography was carried out using Sigma-Aldrich® 

silica gel (high purity grade, pore size 60 Å, 230–400 mesh particle size). All the 

purifications and reactions were monitored by TLC performed on 0.2 mm thick silica 

gel-aluminium backed plates (60 F254, Merck). Visualization was carried out under 

ultra-violet irradiation (254 nm). Where given, systematic compound names are those 

generated by ChemBioDraw Ultra 12.0 following IUPAC conventions. 

 

Synthesis and characterization data of saccharin derivatives S1-S2 

 

 

2-allylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide (S1): anhydrous potassium 

carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 10 mL of 

N,N-dimethylformamide (DMF) at room temperature. Allyl chloride (4.0 eq.) was 

added portionwise and the reaction mixture was stirred at 80°C for 48 h. The mixture 

was poured on ice and extracted with chloroform. The organics were reunited, dried 

over sodium sulfate and concentrated in vacuo. Purification by column 

chromatography on silica gel (ethyl acetate:petroleum ether 1:2) gave title compound 

as a white solid (76% yield); mp 73-75 °C; IR νmax 3094 (ν Csp2-H), 1731 (ν C=O), 1331 

(νas SO2), 1262 (ν C-N), 1180 (νs SO2), 751 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-

d6): δ 4.34 (s, 2H CH2), 5.25 (d, J = 10.0 Hz, 1H, =CH2), 5.36 (d, J = 16.8 Hz, 1H, =CH2), 



73 

 

5.89-5.95 (m, 1H, CH=), 7.98-8.12 (m, 3H, 3 x Ar), 8.32 (d, J = 7.6 Hz, 1H, Ar); 13C-NMR 

(101 MHz, DMSO-d6): δ 40.99 (CH2), 118.95 (CH2=), 122.03 (Ar), 125.60 (Ar), 126.71 (Ar), 

131.75 (CH=), 135.73 (Ar), 136.31 (Ar), 137.36 (Ar), 158.71 (C=O). 

 

 

2-(Prop-2-yn-1-yl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide (S2): anhydrous 

potassium carbonate (1.1 eq.) was added to a stirring solution of saccharin (1.0 eq.) in 

10 mL of N,N-dimethylformamide at room temperature. Propargyl bromide (4.0 eq.) 

was added portionwise and the reaction mixture was stirred at room temperature for 

48 h. The mixture was poured on ice and extracted with dichloromethane. The organics 

were reunited, dried over sodium sulfate and concentrated in vacuo. Purification by 

column chromatography on silica gel (ethyl acetate:petroleum ether 1:1) gave 

compound 2a as a white solid (60% yield); mp 112-116 °C; IR νmax 3273 (ν Csp-H), 3093 

(ν Csp2-H), 2126 (ν C≡C), 1737 (ν C=O), 1332 (νas SO2), 1258 (ν C-N), 1177 (νs SO2), 751 (δ 

Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 3.39 (s, 1H, CH≡), 4.57 (s, 2H, CH2), 7.97-

8.’01 (m, 1H, Ar), 8.03-8.07 (m, 1H, Ar), 8.11 (d, J = 7.6 Hz, 1H, Ar), 8.32 (d, J = 7.6 Hz, 

1H, Ar); 13C-NMR (101 MHz, DMSO-d6): δ 27.95 (CH2), 75.68 (CH≡), 77.49 (C≡CH), 

122.16 (Ar), 125.75 (Ar), 126.43 (Ar), 135.84 (Ar), 136.56 (Ar), 137.37 (Ar), 158.36 (C=O). 

 

Synthesis and characterization data of oximes O1-O9 

 

 

3-nitrobenzaldehyde oxime (O1): in an oven dried flask hydroxylamine 

hydrochloride (1.5 eq) and triethylamine (2.25 eq) were dissolved in 10 mL of 
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anhydrous methanol and stirred for 5 minutes at room temperature. 3-

nitrobenzaldehyde (1.0 eq) was added and the reaction mixture stirred at 80 °C until 

complete consumption of starting material. The reaction was cooled down to room 

temperature and the solvent removed in vacuo. 20 mL of ice-cold water were added to 

the residue and the resulting suspension was kept at 0-4 °C overnight in order to obtain 

oximes precipitate, which was filtered and washed with mixture of petroleum 

ether/diethyl ether, obtaining the title compound as a light yellow solid (85.0 % yield); 

mp 108-111 °C; IR νmax 3267 (ν O-H), 1618 (ν C=N), 1531 (νas N-O), 1348 (νs N-O), 976 

(N-O, oxime), 733 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 7.66-7.70  (m, 1H, 

Ar), 8.02 (d, J = 7.6 Hz, 1H, Ar), 8.19 (d, J = 8.0 Hz, 1H, Ar), 8.30 (s, 1H, OH), 8.39 (s, 1H, 

Ar), 11.63 (s, 1H, HC=N-) . 13C-NMR (101 MHz, DMSO-d6): δ 121.3 (Ar), 124.1 (Ar), 

130.8 (Ar), 132.8 (Ar), 135.4 (Ar), 147.1 (Ar), 148.6 (HC=N-). 

 

 

4-nitrobenzaldehyde oxime (O2): in an oven dried flask hydroxylamine 

hydrochloride (1.5 eq) and triethylamine (2.25 eq) were dissolved in 10 mL of 

anhydrous methanol and stirred for 5 minutes at room temperature. 4-

nitrobenzaldehyde (1.0 eq) was added and the reaction mixture stirred at 80 °C until 

complete consumption of starting material. The reaction was cooled down to room 

temperature and the solvent removed in vacuo. 20 mL of ice-cold water were added to 

the residue and the resulting suspension was kept at 0-4 °C overnight in order to obtain 

oximes precipitate, which was filtered and washed with mixture of petroleum 

ether/diethyl ether, obtaining the title compound as a yellow solid (95.9% yield); mp 

99-102 °C; IR νmax 3292 (ν O-H), 1604 (ν C=N), 1532 (νas N-O), 1346 (νs N-O), 942 (N-O, 

oxime), 747 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 7.83 (d, J = 7.6 Hz, 2H, 

Ar), 8.23 (d, J = 8 Hz, 2H, Ar), 8.28 (s, 1H, OH), 11.83 (s, 1H, HC=N-). 13C-NMR (101 

MHz, DMSO-d6): δ 124.4 (2 x Ar), 127.8 (2 x Ar), 140.0 (Ar), 147.3 (Ar), 148.0 (HC=N-). 
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Pyridine-2-aldoxime (O3): in an oven dried flask hydroxylamine hydrochloride (1.5 

eq) and triethylamine (2.25 eq) were dissolved in 10 mL of anhydrous methanol and 

stirred for 5 minutes at room temperature. Pyridine-2-carboxaldehyde (1.0 eq) was 

added and the reaction mixture stirred at 80 °C until complete consumption of starting 

material. The reaction was cooled down to room temperature and the solvent removed 

in vacuo. 20 mL of ice-cold water were added to the residue and the resulting 

suspension was kept at 0-4 °C overnight in order to obtain oximes precipitate, which 

was filtered and washed with mixture of petroleum ether/diethyl ether, obtaining the 

title compound as a white solid (70% yield); mp 64-67 °C; IR νmax 2696 (ν O-H), 1519 (ν 

C=N), 1410 (δ O-H), 982 (N-O, oxime), 702 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-

d6): δ 7.34-7.37 (m, 1H, pyr), 7.78-7.82 (m, 2H, pyr), 8.06-8.07 (m, 1H, pyr), 8.55-8.56 (m, 

1H, OH), 11.67 (s, 1H, HC=N-). 13C-NMR (101 MHz, DMSO-d6): δ 120.2 (pyr), 124.4 

(pyr), 137.2 (pyr), 149.4 (pyr), 149.8 (HC=N-), 152.5 (pyr). 

 

 

Pyridine-3-aldoxime (O4): in an oven dried flask hydroxylamine hydrochloride (1.5 

eq) and triethylamine (2.25 eq) were dissolved in 10 mL of anhydrous methanol and 

stirred for 5 minutes at room temperature. Pyridine-3-carboxaldehyde (1.0 eq) was 

added and the reaction mixture stirred at 80 °C until complete consumption of starting 

material, the reaction was cooled down to room temperature and the solvent removed 

in vacuo. 20 mL of ice-cold water were added to the residue and the resulting 

suspension was kept at 0-4 °C overnight in order to obtain oximes precipitate, which 
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was filtered and washed with mixture of petroleum ether/diethyl ether, obtaining the 

title compound as a white solid (92 % yield); mp 122-123 °C; IR νmax 2773 (ν O-H), 1592 

(ν C=N), 1434 (δ O-H), 975 (N-O, oxime), 735 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, 

DMSO-d6): δ 7.40-7.42 (m, 2H, pyr), 7.96-7.98 (m, 1H, pyr), 8.18 (s, 1H, pyr), 8.53-8.54 

(m, 1H, OH), 11.51 (s, 1H, HC=N-). 13C-NMR (101 MHz, DMSO-d6): δ 124.3 (pyr), 129.5 

(pyr), 133.5 (pyr), 146.2 (pyr), 148.3 (HC=N-), 150.5 (pyr). 

 

 

2-methoxybenzaldehyde oxime (O5): in an oven dried flask hydroxylamine 

hydrochloride (1.5 eq) and triethylamine (2.25 eq) were dissolved in 10 mL of 

anhydrous methanol and stirred for 5 minutes at room temperature. 2-

methoxybenzaldehyde (1.0 eq) was added and the reaction mixture stirred at 80 °C 

until complete consumption of starting material. The reaction was cooled down to 

room temperature and the solvent removed in vacuo. 20 mL of ice-cold water were 

added to the residue and the resulting suspension was kept at 0-4 °C overnight in order 

to obtain oximes precipitate, which was filtered and washed with mixture of 

petroleum ether/diethyl ether, obtaining the title compound as a light yellow solid 

(89.17 % yield); mp 73-76 °C; 1H-NMR (400 MHz, CDCl3): δ 3.90 (s, 3H, CH3), 6.94-7.01 

(m, 2H, Ar), 7.36-7.40 (m, 1H, Ar), 7.66-7.68 (m, 1H, Ar), 8.50 (s, 1H, HC=N-), 9.37 (s, 

1H, OH).  

 

 

3-methoxybenzaldehyde oxime (O6): in an oven dried flask hydroxylamine 

hydrochloride (1.5 eq) and triethylamine (2.25 eq) were dissolved in 10 mL of 
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anhydrous methanol and stirred for 5 minutes at room temperature. 3-

methoxybenzaldehyde (1.0 eq) was added and the reaction mixture stirred at 80 °C 

until complete consumption of starting material. The reaction was cooled down to 

room temperature and the solvent removed in vacuo. 20 mL of ice-cold water were 

added to the residue and the resulting suspension was extracted with ethyl acetate (3 

x 20 mL). The organics were reunited, dried over sodium sulphate and evaporated in 

vacuo to give the title compound as thick oil (89.2% yield); 1H-NMR (400 MHz, 

CD3CN): δ 3.80 (s, 3H, CH3), 6.96-6.98 (m, 2H, Ar), 7.21-7.24 (m, 2H, Ar), 7.31-7.35 (m, 

1H, Ar), 8.20 (s, 1H, HC=N-), 9.45 (br, 1H, OH).  

 

 

4-methoxybenzaldehyde oxime (O7): in an oven dried flask hydroxylamine 

hydrochloride (1.5 eq) and triethylamine (2.25 eq) were dissolved in 10 mL of 

anhydrous methanol and stirred for 5 minutes at room temperature. 4-

methoxybenzaldehyde (1.0 eq) was added and the reaction mixture stirred at 80 °C 

until complete consumption of starting material. The reaction was cooled down to 

room temperature and the solvent removed in vacuo. 20 mL of ice-cold water were 

added to the residue and the resulting suspension was kept at 0-4 °C overnight in order 

to obtain oximes precipitate, which was filtered and washed with mixture of 

petroleum ether/diethyl ether, obtaining the title compound as a white solid (89.2% 

yield); mp 31-33 °C; 1H-NMR (400 MHz, CD3CN): δ 3.81 (s, 3H, CH3), 6.95-7.0 (m, 2H, 

Ar), 7.53-7.55 (m, 2H, Ar), 8.07 (s, 1H, OH), 8.95 (s, 1H, HC=N-).  
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Benzaldehyde oxime (O8): in an oven dried flask hydroxylamine hydrochloride (1.5 

eq) and triethylamine (2.25 eq) were dissolved in 10 mL of anhydrous methanol and 

stirred for 5 minutes at room temperature. Benzaldehyde (1.0 eq) was added and the 

reaction mixture stirred at 80 °C until complete consumption of starting materials. The 

reaction was cooled down to room temperature and the solvent removed in vacuo. 20 

mL of ice-cold water were added to the residue and the resulting suspension was 

extracted with ethyl acetate (3 x 20 mL). The organics were reunited, dried over sodium 

sulphate and evaporated in vacuo to give the title compound as colourless oil (75% 

yield); 1H-NMR (400 MHz, CDCl3): δ 7.41 (m, 3H, Ar), 7.61 (br, 2H, Ar), 8.21 (s, 1H, 

HC=N-), 9.38 (s, 1H, OH).  

 

 

Thiophene-2-carbaldehyde oxime (O9): in an oven dried flask hydroxylamine 

hydrochloride (1.5 eq) and triethylamine (2.25 eq) were dissolved in 10 mL of 

anhydrous methanol and stirred for 5 minutes at room temperature. Thiophene-2-

carbaldehyde (1.0 eq) was added and the reaction mixture stirred at 80 °C until 

complete consumption of starting materials. The reaction was cooled down to room 

temperature and the solvent removed in vacuo. 20 mL of ice-cold water were added to 

the residue and the resulting suspension was kept at 0-4 °C overnight in order to obtain 

oximes precipitate, which was filtered and washed with mixture of petroleum 

ether/diethyl ether, obtaining the title compound as a light brown solid (63% yield); 

1H-NMR (400 MHz, CD3CN): δ 7.13-7.15 (m, 1H, thiophene), 7.44-7.66 (m, 2H, 

thiophene), 7.76 (s, 1H, OH), 9.70 (s, 1H, HC=N-).  
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Synthesis and characterization data of chloro oximes C1-C9 

 

 

N-hydroxy-3-nitrobenzimidoyl chloride (C1): in an oven dried flask m-

nitrobenzaldoxime O1 (1.0 eq) was dissolved in 10 mL of anhydrous DMF. N-

chlorosuccinimide (0.2 eq) were added and the reaction stirred for 10 minutes at room 

temperature. The solution was purged with 20 mL of HCl(g) and the reaction stirred 

for 10 additional minutes and then heated up to 50 °C. N-chlorosuccinimide were 

added portion wise (0.2 eq at the time, up to 1.5 total eq.) over half an hour. The 

progression of the reaction was monitored using iodine starch paper. When the iodine 

starch paper was not turning brown anymore, the reaction was quenched with 4 

volumes of ice-cold water. The aqueous phase was extracted with diethyl ether, the 

organics reunited were dried over sodium sulphate and evaporated in vacuo to give 

the title compound as a yellow-orange solid (49 % yield); mp 99-100 °C; IR νmax 3293 (ν 

O-H), 1523 (νas N-O), 1349 (νs N-O), 979 (N-O, oxime), 728 (δ Csp2-H) cm-1; 1H-NMR (400 

MHz, DMSO-d6): δ 7.74-7.78 (m, 1H, Ar), 8.19-8.31 (m, 2H, Ar),  8.47 (s, 1H, Ar), 12.81 

(s, 1H, OH)  . 13C-NMR (101 MHz, DMSO-d6): δ 121.3 (Ar), 125.3 (Ar), 131.0 (Ar), 133.0 

(Ar), 134.1 (Ar), 134.5 (Ar), 148.4 (ClC=N-).  
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N-hydroxy-4-nitrobenzimidoyl chloride (C2): in an oven dried flask p-

nitrobenzaldoxime O2 (1.0 eq) was dissolved in 10 mL of anhydrous DMF. N-

chlorosuccinimide (0.2 eq) were added and the reaction stirred for 10 minutes at room 

temperature. The solution was purged with 20 mL of HCl(g) and the reaction stirred 

for 10 additional minutes and then heated up to 50 °C. N-chlorosuccinimide were 

added portion wise (0.2 eq at the time, up to 1.5 total eq.) over half an hour. The 

progression of the reaction was monitored using iodine starch paper. When the iodine 

starch paper was not turning brown anymore, the reaction was quenched with 4 

volumes of ice-cold water. The aqueous phase was extracted with diethyl ether, the 

organics reunited were dried over sodium sulphate and evaporated in vacuo to give 

the title compound as light yellow solid (85% yield); mp 107-110 °C; IR νmax 3266 (ν O-

H), 1598 (ν C=N), 1519 (νas N-O), 1349 (νs N-O, NO2), 941 (N-O, oxime), 842 (ν C sp2-Cl), 

(752 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 8.08.02 (m, 2H, Ar), 8.26-8.28 (m, 

2H, Ar), 12.93 (s, 1H, OH). 13C-NMR (101 MHz, DMSO-d6): δ 124.4 (2 x Ar), 128.2 (2 x 

Ar), 134.5 (Ar), 138.7 (Ar), 148.7 (ClC=N-).  

 

 

N-hydroxy- pyridine-2-carbimidoyl chloride (C3): in an oven dried flask pyridine-2-

aldoxime O3 (1.0 eq) was dissolved in 10 mL of anhydrous DMF. N-chlorosuccinimide 

(0.2 eq) were added and the reaction stirred for 10 minutes at room temperature. The 

solution was purged with 20 mL of HCl(g) and the reaction stirred for 10 additional 

minutes and then heated up to 50 °C. N-chlorosuccinimide were added portion wise 

(0.2 eq at the time, up to 1.5 total eq.) over half an hour. The progression of the reaction 

was monitored using iodine starch paper. When the iodine starch paper was not 

turning brown anymore, the reaction was quenched with 4 volumes of ice-cold water. 

The aqueous phase was extracted with diethyl ether, the organics reunited were dried 

over sodium sulphate and evaporated in vacuo to give the title compound as a light 
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brown solid (76.6 % yield); mp 110-110 °C; 1H-NMR (400 MHz, DMSO-d6): δ 7.46-7.49 

(m, 1H, pyr), 7.86-7.88 (m, 2H, pyr), 8.64-8.65 (m, 1H, pyr), 12.64 (m, 1H, OH). 13C-NMR 

(101 MHz, DMSO-d6): δ 122.0 (pyr), 125.4 (pyr), 137.1 (pyr), 137.59 (pyr), 149.8 (ClC=N-

), 150.2 (pyr). 

 

 

N-hydroxy-pyridine-3-carbimidoyl chloride (C4): in an oven dried flask pyridine-3-

aldoxime O4 (1.0 eq) was dissolved in 10 mL of anhydrous DMF. N-chlorosuccinimide 

(0.2 eq) were added and the reaction stirred for 10 minutes at room temperature. The 

solution was purged with 20 mL of HCl(g) and the reaction stirred for 10 additional 

minutes and then heated up to 50 °C. N-chlorosuccinimide were added portion wise 

(0.2 eq at the time, up to 1.5 total eq.) over half an hour. The progression of the reaction 

was monitored using iodine starch paper. When the iodine starch paper was not 

turning brown anymore, the reaction was quenched with 4 volumes of ice-cold water. 

The aqueous phase was extracted with diethyl ether, the organics reunited were dried 

over sodium sulphate and evaporated in vacuo to give the title compound as brown 

solid (8.85 % yield); mp 126-128 °C; IR νmax 2517 (ν O-H), 1525 (ν C=N), 1417 (δ O-H), 

949 (N-O, oxime), 805 (ν C sp2-Cl), 693 (δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 

7.50-7.53 (m, 1H, pyr), 8.13-8.14 (m, 1H, pyr), 8.66 (s, 1H, pyr), 8.95 (s, 1H, pyr), 12.69 

(s, 1H, OH). 13C-NMR (101 MHz, DMSO-d6): δ 124.3 (pyr), 129.4 (pyr), 133.6 (pyr), 134.9 

(pyr), 147.4 (ClC=N-), 151.3 (pyr). 
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N-hydroxy-2-methoxybenzimidoyl chloride (C5): in an oven dried flask 2-

methoxybenzaldehyde oxime O5 (1.0 eq) was dissolved in 10 mL of anhydrous DMF. 

N-chlorosuccinimide (0.2 eq) were added and the reaction stirred for 10 minutes at 

room temperature. The solution was purged with 20 mL of HCl(g) and the reaction 

stirred for 10 additional minutes and then heated up to 50 °C. N-chlorosuccinimide 

were added portion wise (0.2 eq at the time, up to 1.5 total eq.) over half an hour. The 

progression of the reaction was monitored using iodine starch paper. When the iodine 

starch paper was not turning brown anymore, the reaction was quenched with 4 

volumes of ice-cold water. The aqueous phase was extracted with diethyl ether, the 

organics reunited were dried over sodium sulphate and evaporated in vacuo to give 

the title compound as a white solid (81 % yield); mp 105-112 °C; 1H-NMR (400 MHz, 

CDCl3): δ 3.94 (s, 3H, CH3), 7.00-7.06 (m, 2H, Ar), 7.42-7.46 (m, 1H, Ar), 7.63-7.65 (m, 

1H, Ar), 9.88 (br, 1H, OH).  

 

 

N-hydroxy-3-methoxybenzimidoyl chloride (C6): in an oven dried flask 3-

methoxybenzaldehyde oxime O6 (1.0 eq) was dissolved in 10 mL of anhydrous DMF. 

N-chlorosuccinimide (0.2 eq) were added and the reaction stirred for 10 minutes at 

room temperature. The solution was purged with 20 mL of HCl(g) and the reaction 

stirred for 10 additional minutes and then heated up to 50 °C. N-chlorosuccinimide 

were added portion wise (0.2 eq at the time, up to 1.5 total eq.) over half an hour. The 

progression of the reaction was monitored using iodine starch paper. When the iodine 

starch paper was not turning brown anymore, the reaction was quenched with 4 

volumes of ice-cold water. The aqueous phase was extracted with diethyl ether, the 

organics reunited were dried over sodium sulphate and evaporated in vacuo to give 

the title compound as a yellow oil (81% yield); 1H-NMR (400 MHz, CDCl3): 1H-NMR 
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(400 MHz, CDCl3): δ 3.81 (s, 3H, CH3), 6.93-6.98 (m, 1H, Ar), 7.25-7.30 (m, 2H, Ar), 7.38-

7.44 (m, 1H, Ar), 10.84 (br, 1H, OH).  

 

 

N-hydroxy-4-methoxybenzimidoyl chloride (C7): in an oven dried flask 4-

methoxybenzaldehyde oxime O7 (1.0 eq) was dissolved in 10 mL of anhydrous DMF. 

N-chlorosuccinimide (0.2 eq) were added and the reaction stirred for 10 minutes at 

room temperature. The solution was purged with 20 mL of HCl(g) and the reaction 

stirred for 10 additional minutes and then heated up to 50 °C. N-chlorosuccinimide 

were added portion wise (0.2 eq at the time, up to 1.5 total eq.) over half an hour. The 

progression of the reaction was monitored using iodine starch paper. When the iodine 

starch paper was not turning brown anymore, the reaction was quenched with 4 

volumes of ice-cold water. The aqueous phase was extracted with diethyl ether, the 

organics reunited were dried over sodium sulphate and evaporated in vacuo to give 

the title compound as a yellow solid (58.8% yield); mp 70 °C; 1H-NMR (400 MHz, 

CDCl3): 1H-NMR (400 MHz, CDCl3): δ 3.97 (s, 3H, CH3), 6.93-6.95 (m, 2H, Ar), 7.79-7.81 

(m, 2H, Ar), 8.20 (br, 1H, OH). 

 

 

N-hydroxybenzimidoyl chloride (C8): in an oven dried flask benzaldoxime O8 (1.0 

eq) was dissolved in 10 mL of anhydrous DMF. N-chlorosuccinimide (0.2 eq) were 

added and the reaction stirred for 10 minutes at room temperature. The solution was 

purged with 20 mL of HCl(g) and the reaction stirred for 10 additional minutes and 

then heated up to 50 °C. N-chlorosuccinimide were added portion wise (0.2 eq at the 

time, up to 1.5 total eq.) over half an hour. The progression of the reaction was 
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monitored using iodine starch paper. When the iodine starch paper was not turning 

brown anymore, the reaction was quenched with 4 volumes of ice-cold water. The 

aqueous phase was extracted with diethyl ether, the organics reunited were dried over 

sodium sulphate and evaporated in vacuo to give the title compound as a yellow oil 

(65% yield); 1H-NMR (400 MHz, CDCl3): δ 7.27-7.34 (m, 3H, Ar), 7.77-7.80 (m, 2H, Ar), 

11.44 (br, 1H, OH).  

 

 

N-hydroxythiophene-2-carbimidoyl chloride (C9): in an oven dried flask thiophene-

2-carbaldehyde oxime O9 (1.0 eq) was dissolved in 10 mL of anhydrous DMF. N-

chlorosuccinimide (0.2 eq) were added and the reaction stirred for 10 minutes at room 

temperature. The solution was purged with 20 mL of HCl(g) and the reaction stirred 

for 10 additional minutes and then heated up to 50 °C. N-chlorosuccinimide were 

added portion wise (0.2 eq at the time, up to 1.5 total eq.) over half an hour. The 

progression of the reaction was monitored using iodine starch paper. When the iodine 

starch paper was not turning brown anymore, the reaction was quenched with 4 

volumes of ice-cold water. The aqueous phase was extracted with diethyl ether, the 

organics reunited were dried over sodium sulphate and evaporated in vacuo to give 

the title compound as a green solid (34.0% yield); mp 100-102 °C; 1H-NMR (400 MHz, 

MeOD): δ 5.51-5.52 (m, 1H, thiophene), 5.92-5.94 (m, 1H, thiophene), 6.42 (m, 1H, 

thiophene), 10.44 (br, 1H, OH).  
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Synthesis and characterization data of saccharin/isoxazoline derivatives 1a-9a  

 

 

2-((3-(3-nitrophenyl)-4,5-dihydroisoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-

one 1,1-dioxide (1a): 2-allylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide S1 (1.0 eq) and N-

hydroxy-3-nitrobenzimidoyl chloride C1 (1.25 eq) were dissolved in 20 mL of 

anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo to give the title compound as a light yellow solid (7% yield); mp 175–177 °C; IR 

νmax 3088 (ν Csp2-H), 1744 (ν C=O), 1593 (ν C=N), 1525 (νas N-O, NO2), 1343 (νs N-O, 

NO2), 1323 (νas S=O), 1302 (ν N-O), 1263 (ν C-N), 1177 (νs S=O), 719 (δ Csp2-H), 674 (δ 

Csp2-H) cm-1. 1H-NMR (400 MHz, DMSO-d6): δ 3.44 (dd, 2J = 17.2 Hz, 3J = 6.6 Hz, 1H 

C(4)H2-isoxazoline), 3.68 (dd, 2J = 17.0 Hz, 3J = 11.0 Hz, 1H, C(4)H2-isoxazoline), 3.90 

(dd, 2J = 15.2 Hz, 3J = 4.4 Hz, 1H, CH2), 4.03 (dd, 2J = 15.2 Hz, 3J = 7.2 Hz,  1H, CH2), 5.14-

5.21 (m, 1H, C(5)H-isoxazoline), 7.73-7.77 (m, 1H, Ar), 7.98-8.13 (m, 4H, Ar), 8.29- 8.33 

(m, 2H, Ar), 8.37 (s, 1H, Ar). 13C (101 MHz, CDCl3): δ 38.3 (C(4)H2-isoxazoline), 41.5 

(CH2), 78.3 (C(5)H-isoxazoline), 121.2 (Ar), 121.7 (Ar), 124.8 (Ar), 125.5 (Ar), 126.9 (Ar), 

129.9 (Ar), 130.9 (Ar), 132.4 (Ar), 134.6 (Ar), 135.2 (Ar), 137.5 (Ar), 148.5 (Ar), 154.9 

(C=N, isoxazoline), 159.4 (C=O). 
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2-((3-(4-nitrophenyl)-4,5-dihydroisoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-

one 1,1-dioxide (2a): 2-allylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide S1 (1.0 eq) and N-

hydroxy-4-nitrobenzimidoyl chloride C2 (1.25 eq) were dissolved in 20 mL of 

anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was filtered to give title compound as a 

light yellow solid (64% yield); mp 210-213 °C; IR νmax 3076 (ν Csp2-H), 1735 (ν C=O), 

1580 (ν C=N), 1509 (νas N-O), 1326 (νas S=O), 1308 (νs N-O), 1247 (ν C-N), 1181 (νs S=O), 

849 (δ Csp2-H), 749 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, DMSO-d6): δ 3.41 (dd, 2J = 16.2 

Hz, 3J = 7.2 Hz, 1H C(4)H2-isoxazoline), 3.66 (dd, 2J =17.6 Hz, 3J = 10.8 Hz, 1H, C(4)H2-

isoxazoline), 3.91 (dd, 2J = 15.4 Hz, 3J = 4.6 Hz, 1H, CH2), 4.04 (dd, 2J = 15.2 Hz, 3J = 7.2 

Hz,  1H, CH2), 5.17-5.19 (m, 1H, C(5)H-isoxazoline), 7.90 (d, 3J = 8.4 Hz, 2H, Ar), 8.00-

8.12 (m, 3H, Ar), 8.27-8.32 (m, 3H, Ar). 13C (101 MHz, DMSO-d6): δ 38.0 (C(4)H2, 

isoxazoline), 42.1 (CH2), 79.0 (C(5)H-isoxazoline), 122.1 (Ar), 124.5 (2xAr), 125.7 (Ar), 

126.6 (Ar), 128.3 (2xAr), 135.7 (Ar), 135.8 (Ar), 136.4 (Ar), 137.2 (Ar), 148.5 (Ar), 156.4 

(C=N, isoxazoline), 159.4 (C=O). 

 

 

2-((3-(pyridin-2-yl)-4,5-dihydroisoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 

1,1-dioxide (3a): 2-allylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide S1 (1.0 eq) and N-

hydroxy- pyridine-2-carbimidoyl chloride C3 (1.25 eq) were dissolved in 20 mL of 
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anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo to give the title compound as a light orange solid (99% yield); mp 133-135 °C; IR 

νmax 2928 (ν Csp2-H), (1739 (ν C=O), 1578 (ν C=N), 1320 (νas S=O), 1300 (ν N-O), 1288 (ν 

C-N), 1173 (νs S=O), 778 (δ Csp2-H), 745 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, DMSO-d6): 

δ 3.39-3.45 (m, 1H C(4)H2-isoxazoline), 3.59-3.66 (m, 1H, C(4)H2-isoxazoline), 3.89-3.94 

(m, 1H, CH2), 3.99-4.04 (m, 1H, CH2), 5.11-5.12 (m, 1H, C(5)H-isoxazoline), 7.42-7.45 

(m, 1H, pyr), 7.84-7.92 (m, 1H Ar + 1H pyr), 7.97-8.11 (m, 2H Ar + 1H pyr), 8.30-8.32 

(m, 1H, Ar), 8.61 (s, 1H, pyr). 13C (101 MHz, DMSO-d6): δ 38.4 (C(4)H2-isoxazoline), 42.2 

(CH2), 78.5 (C(5)H-isoxazoline), 121.8 (pyr), 122.1 (Ar), 125.2 (pyr), 125.7 (Ar), 126.6 

(pyr), 135.8 (Ar), 136.4 (Ar), 137.1 (Ar), 137.4 (pyr), 148.9 (Ar), 149.9 (pyr), 158.9 (C=N, 

isoxazoline), 159.4 (C=O). 

 

 

2-((3-(pyridin-3-yl)-4,5-dihydroisoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 

1,1-dioxide (4a): 2-allylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide S1 (1.0 eq) and N-

hydroxy- pyridine-3-carbimidoyl chloride C4 (1.25 eq) were dissolved in 20 mL of 

anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo. Purification by column chromatography on silica gel (ethyl acetate:n-hexane 1:1) 
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gave the title compound as a light orange solid (32% yield); mp 98-100 °C; IR νmax 3041 

(ν Csp2-H), 1733 (ν C=O), 1596 (ν C=N), 1335 (νas S=O), 1301 (ν N-O), 1260 (ν C-N), 1180 

(νs S=O), 748 (δ Csp2-H), 673 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, CDCl3): δ 3.31 (dd, 2J = 

17.0 Hz, 3J = 6.6 Hz, 1H, C(4)H2-isoxazoline), 3.45 (dd, 2J =17.0 Hz, 3J = 10.6 Hz, 1H, 

C(4)H2-isoxazoline), 3.86 (dd, 2J = 14.8 Hz, 3J = 6.8 Hz, 1H, CH2), 3.99 (dd, 2J = 15.0 Hz, 

3J = 5.8 Hz,  1H, CH2), 5.16-5.23 (m, 1H, C(5)H-isoxazoline), 7.24-7.27 (m, 1H, pyr), 7.76-

7.88 (m, 2H Ar + 1 H pyr), 7.86-7.98 (m, 1H Ar + 1H pyr), 8.53-8.54 (m, 1H, Ar), 8.74-

8.75 (m, 1H, pyr). 13C (101 MHz, CDCl3): δ 38.4 (C(4)H2-isoxazoline), 41.6 (CH2), 79.2 

(C(5)H-isoxazoline), 121.1 (Ar), 123.6 (pyr), 125.3 (pyr), 125.4 (Ar), 126.8 (Ar), 133.9 

(pyr), 134.6 (Ar), 135.2 (pyr), 137.3 (Ar), 147.8 (Ar), 151.1 (pyr), 154.3 (C=N, isoxazoline), 

159.3 (C=O). 

 

 

2-((3-(2-methoxyphenyl)-4,5-dihydroisoxazol-5-yl)methyl)benzo[d]isothiazol-

3(2H)-one 1,1-dioxide (5a): 2-allylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide S1 (1.0 eq) 

and N-hydroxy-2-methoxybenzimidoyl chloride C5 (1.25 eq) were dissolved in 20 mL 

of anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo. Purification by column chromatography on silica gel (ethyl acetate:n-hexane 1:1) 

gave the title compound as a white solid (36% yield); mp 138-140 °C; IR νmax 2940 (ν 

Csp2-H), 1735 (ν C=O), 1333 (νas S=O), 1599 (ν C=N), 1302 (ν N-O), 1256 (ν C-N), 1174 

(νs S=O), 770 (δ Csp2-H), 753 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, CDCl3): δ 3.51 (dd, 2J = 
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17.8 Hz, 3J = 6.2 Hz, 1H C(4)H2-isoxazoline), 3.60 (dd, 2J =17.8 Hz, 3J = 10.2 Hz, 1H, 

C(4)H2-isoxazoline), 3.86-3.93 (m, 3H OCH3 + 1H CH2), 4.05 (dd, 2J = 14.8 Hz, 3J = 6.0 

Hz, 1H, CH2), 5.16-5.23 (m, 1H, C(5)H-isoxazoline), 6.93-7.00 (m, 2H, Ar), 7.37-7.41 (m, 

1H, Ar), 7.73- 7.75 (m, 1H, Ar), 7.84-7.96 (m, 3H, Ar), 8.08 (d, 3J = 7.6 Hz, 1H, Ar). 13C 

(101 MHz, CDCl3): δ 41.4 (C(4)H2-isoxazoline), 41.9 (CH2), 55.5 (OCH3), 77.2 (C(5)H-

isoxazoline), 111.4 (Ar), 118.3 (Ar), 120.8 (Ar), 121.1 (Ar), 125.4 (Ar), 127.1 (Ar), 129.6 

(Ar), 131.5 (Ar), 134.5 (Ar), 135.1 (Ar), 137.5 (Ar), 156.1 (C=N, isoxazoline), 157.6 (Ar), 

159.3 (C=O). 

 

 

2-((3-(3-methoxyphenyl)-4,5-dihydroisoxazol-5-yl)methyl)benzo[d]isothiazol-

3(2H)-one 1,1-dioxide (6a): 2-allylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide S1 (1.0 eq) 

and N-hydroxy-3-methoxybenzimidoyl chloride C6 (1.25 eq) were dissolved in 20 mL 

of anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo. Purification by column chromatography on silica gel (ethyl acetate:petroleum 

ether 1:3) gave the title compound as a highly thick oil (31% yield); IR νmax 2938 (ν Csp2-

H), 1727 (ν C=O), 1595 (ν C=N), 1330 (νas S=O), 1301 (ν N-O), 1254 (ν C-N), 1183(νs 

S=O), 765 (δ Csp2-H), 673 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, CDCl3): δ 3.32-3.36 (m, 1H 

C(4)H2-isoxazoline), 3.43-3.50 (m, 1H C(4)H2-isoxazoline), 3.78-3.80 (m, 3H, OCH3), 

3.87-3.92 (m, 1H CH2), 4.02-4.06 (m, 1H, CH2), 5.20 (br, 1H, C(5)H-isoxazoline), 6.93-

6.95 (m, 1H, Ar), 7.18-7.28 (m, 3H, Ar), 7.83- 7.91 (m, 3H, Ar), 8.02-8.04 (m, 1H, Ar). 13C 

(101 MHz, CDCl3): δ 38.8 (C(4)H2-isoxazoline), 41.8 (CH2), 55.4 (OCH3), 77.2 (C(5)H-
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isoxazoline), 111.5 (Ar), 116.6 (Ar), 119.5 (Ar), 121.1 (Ar), 125.4 (Ar), 126.9 (Ar), 129.8 

(Ar), 130.3 (Ar), 134.6 (Ar), 135.2 (Ar), 137.4 (Ar), 156.5 (C=N, isoxazoline), 159.3 (Ar), 

159.7 (C=O). 

 

 

2-((3-(4-methoxyphenyl)-4,5-dihydroisoxazol-5-yl)methyl)benzo[d]isothiazol-

3(2H)-one 1,1-dioxide (7a): 2-allylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide S1 (1.0 eq) 

and N-hydroxy-4-methoxybenzimidoyl chloride C7 (1.25 eq) were dissolved in 20 mL 

of anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was filtered to give title compound as a 

white solid (62% yield); mp 148-153 °C; IR νmax 3069 (ν Csp2-H), 1740 (ν C=O), 1607 (ν 

C=N), 1321 (νas S=O), 1301 (ν N-O), 1248 (ν C-N), 1178 (νs S=O), 752 (δ Csp2-H), 672 (δ 

Csp2-H) cm-1. 1H-NMR (400 MHz, DMSO-d6): δ 3.32 (dd, 2J = 17.2 Hz, 3J = 6.8 Hz, 1H 

C(4)H2-isoxazoline), 3.56 (dd, 2J = 17.2 Hz, 3J = 10.4 Hz, 1H, C(4)H2-isoxazoline), 3.79 (s, 

3H, OCH3), 3.85 (dd, 2J = 15.2 Hz, 3J = 4.8 Hz, 1H, CH2), 3.97 (dd, 2J = 15.2 Hz, 3J = 7.6 

Hz,  1H, CH2), 5.02-5.10 (m, 1H, C(5)H-isoxazoline), 7.00 (d, 3J = 8.8 Hz, 2H, Ar), 7.60 

(d, 3J = 8.8 Hz, 2H, Ar),  7.99-8.13 (m, 3H, Ar), 8.30 (d, 3J = 7.6 Hz, 2H, Ar). 13C (101 MHz, 

DMSO-d6): δ 38.9 (C(4)H2-isoxazoline), 42.5 (CH2), 55.8 (OCH3), 77.5 (C(5)H-

isoxazoline), 114.7 (2 x Ar), 115.7 (Ar), 121.9 (Ar), 122.0 (Ar), 126.6 (Ar), 128.7 (2 x Ar), 

135.8 (Ar), 136.2 (Ar), 137.1 (Ar), 157.0 (C=N, isoxazoline), 159.6 (Ar),  161.8 (C=O). 
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2-((3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-

dioxide (8a): 2-allylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide S1 (1.0 eq) and N-

hydroxybenzimidoyl chloride C8 (1.25 eq) were dissolved in 20 mL of anhydrous ethyl 

acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in ethyl acetate were 

added dropwise over 30 mins. A white suspension was formed, and the reaction 

stirred overnight at room temperature. The reaction was quenched with 40 mL of 

water and the resulting suspension was extracted with dichloromethane (3x20mL). 

The organics reunited were dried over sodium sulphate and evaporated in vacuo. 

Purification by column chromatography on silica gel (ethyl acetate:petroleum ether 

1:3) gave the title compound as a thick oil (60% yield); IR νmax 2935 (ν Csp2-H), 1729 (ν 

C=O), 1594 (ν C=N), 1331 (νas S=O), 1302 (ν N-O), 1256 (ν C-N), 1175 (νs S=O), 748 (δ 

Csp2-H), 675 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, CDCl3): δ 3.32-3.36 (m, 1H, C(4)H2-

isoxazoline), 3.42-3.49 (m, 1H, C(4)H2-isoxazoline), 3.85-3.90 (m, 1H, CH2), 4.01-4.05 (m, 

1H, CH2), 5.19 (br, 1H, C(5)H-isoxazoline), 7.35 (br, 3H, Ar), 7.64 (br, 2H, Ar), 7.77-7.86 

(m, 3H, Ar), 7.96-7.98 (m, 1H, Ar). 13C (101 MHz, CDCl3): δ 38.7 (C(4)H2-isoxazoline), 

41.8 (CH2), 77.7 (C(5)H-isoxazoline), 121.1 (Ar), 125.3 (Ar), 126.9 (2 x Ar), 128.8 (2 x Ar), 

129.1 (Ar), 130.3 (Ar), 134.6 (Ar), 135.3 (Ar), 137.3 (Ar), 156.6 (C=N, isoxazoline), 159.3 

(C=O). 

 

 

2-((3-(thiophen-2-yl)-4,5-dihydroisoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-

one 1,1-dioxide (9a): 2-allylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide S1 (1.0 eq) and N-
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hydroxythiophene-2-carbimidoyl chloride C9 (1.25 eq) were dissolved in 20 mL of 

anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo. Purification by column chromatography on silica gel (ethyl acetate:n-hexane 1:3) 

gave the title compound as a brown highly thick oil (16% yield); IR νmax 3091 (ν Csp2-

H), 1730 (ν C=O), 1636 (ν C=N), 1332 (νas S=O), 1311 (ν N-O), 1260 (ν C-N), 1178 (νs 

S=O), 752 (δ Csp2-H), 698 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, CDCl3): δ 3.38 (dd, 2J = 16.4 

Hz, 3J = 6.4 Hz, 1H, C(4)H2-isoxazoline), 3.51 (dd, 2J = 16.8 Hz, 3J = 10.4 Hz, 1H, C(4)H2-

isoxazoline), 3.90 (dd, 2J = 14.8 Hz, 3J = 7.2 Hz, 1H, CH2), 4.05 (dd, 2J = 14.8 Hz, 3J = 5.6 

Hz,  1H, CH2), 5.18-5.22 (m, 1H, C(5)H-isoxazoline), 7.04-7.06 (m, 1H, thiophene), 7.04-

7.06 (m, 1H, thiophene), 7.22-7.23 (m, 1H, thiophene), 7.39-7.40 (m, 1H, thiophene), 

7.84-7.95 (m, 3H, Ar), 8.06 (d, 3J = 7.2 Hz, 1H, Ar). 13C (101 MHz, CDCl3): δ 39.6 (C(4)H2-

isoxazoline), 41.6 (CH2), 77.8 (C(5)H-isoxazoline), 121.2 (Ar), 125.4 (thiophene), 126.9 

(thiophene), 127.4 (Ar), 128.7 (thiophene), 129.0 (thiophene), 131.3 (Ar), 134.7 (Ar), 

135.2 (Ar), 137.4 (Ar), 152.3 (C=N, isoxazoline), 159.3 (C=O). 
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Synthesis and characterization data of saccharin/isoxazole derivatives 1b-9b 

 

2-((3-(3-nitrophenyl)isoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 

(1b): 2-(prop-2-yn-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide S2 (1.0 eq) and N-

hydroxy-3-nitrobenzimidoyl chloride C1 (1.25 eq) were dissolved in 20 mL of 

anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo. Purification by column chromatography on silica gel (ethyl acetate:n-hexane 1:1) 

gave the title compound as a white solid (26% yield); mp 191-193 °C; IR νmax 1731 (ν 

C=O), 1605 (ν C=N), 1539 (νas N-O, NO2), 1334 (νas S=O), 1303 (νs N-O, NO2), 1262 (ν C-

N), 1185 (νs S=O), 755 (δ Csp2-H), 670 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, DMSO-d6): δ 

5.23 (s, 2H, CH2), 7.37 (s, 1H, C(4)H, isoxazole), 7.79-7.81 (m, 1H, Ar), 8.02-8.10 (m, 2H, 

Ar), 8.15-8.17 (m, 1H, Ar), 8.31-8.33 (m, 2H, Ar), 8.35-8.37 (m, 1H, Ar), 8.61 (br, 1H, Ar). 

13C (101 MHz, DMSO-d6): δ 33.9 (CH2), 102.7 (C(4)H-isoxazole), 121.6 (Ar), 122.3 (Ar), 

125.4 (Ar), 125.9 (Ar), 126.6 (Ar), 130.2 (Ar), 131.4 (Ar), 133.4 (Ar), 135.9 (Ar), 136.6 (Ar), 

137.3 (Ar), 148.8 (Ar), 158.7 (C(5)-isoxazole), 161.1 (C=N, isoxazole), 168.2 (C=O). 

 

 

2-((3-(4-nitrophenyl)isoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 

(2b): 2-(prop-2-yn-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide S2 (1.0 eq) and N-
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hydroxy-4-nitrobenzimidoyl chloride C2 (1.25 eq) were dissolved in 20 mL of 

anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was filtered to give title compound as a 

white solid (40% yield); mp 260-262 °C; IR νmax 3145 (ν Csp2-H), 1597 (ν C=N), 1720 (ν 

C=O), 1511 (νas N-O, NO2), 1334 (νas S=O), 1303 (νs N-O), 1268 (ν C-N), 1184 (νs S=O), 

755 (δ Csp2-H), 677 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, DMSO-d6): δ 5.23 (s, 2H, CH2), 

7.31 (s, 1H, C(4)H-isoxazole), 8.02-8.10 (m, 2H, Ar), 8.13-8.17 (m, 3H, Ar), 8.31-8.37 (m, 

3H, Ar). 13C (101 MHz, DMSO-d6): δ 33.8 (CH2), 102.9 (C(4)H-isoxazole), 122.3 (Ar), 

124.8 (2 x Ar), 125.9 (Ar), 126.6 (Ar), 128.4 (2 x Ar), 134.6 (Ar), 135.9 (Ar), 136.6 (Ar), 

137.3 (Ar), 148.9 (Ar), 155.2 (C=N, isoxazole), 158.7 (C(5)-isoxazole), 168.3 (C=O). 

 

 

2-((3-(pyridin-2-yl)isoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 

(3b): 2-(prop-2-yn-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide S2 (1.0 eq) and N-

hydroxy- pyridine-2-carbimidoyl chloride C3 (1.25 eq) were dissolved in 20 mL of 

anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was filtered to give title compound as a 

light brown solid (22% yield); mp 161-164 °C; IR νmax 3101 (ν Csp2-H), 1735 (ν C=O), 1593 

(ν C=N), 1326 (νas S=O), 1303 (ν N-O) 1269 (ν C-N), 1180 (νs S=O), 785 (δ Csp2-H), 749 (δ 

Csp2-H) cm-1. 1H-NMR (400 MHz, DMSO-d6): 5.25 (s, 2H, CH2), 7.06 (s, 1H, C(4)H-

isoxazole), 7.48-7.50 (m, 1H, pyr), 7.92-8.08 (m, 2H Ar + 2H pyr), 8.14-8.16 (m, 1H, Ar), 

8.35-8.37 (m, 1H, Ar), 8.68 (s, 1H, pyr). 13C (101 MHz, DMSO-d6): δ 33.8 (CH2), 103.0 
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(C(4)H-isoxazole), 121.8 (pyr), 122.2 (Ar), 125.7 (Ar), 125.9 (pyr), 135.9 (Ar), 136.6 (Ar), 

137.3 (Ar), 138.0 (Ar), 147.5 (pyr), 147.7 (pyr), 150.5 (pyr), 158.7 (C(5)-isoxazole), 163.5 

(C=N, isoxazole), 167.7 (C=O). 

 

 

2-((3-(pyridin-3-yl)isoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 

(4b): 2-(prop-2-yn-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide S2 (1.0 eq) and N-

hydroxy- pyridine-3-carbimidoyl chloride C4 (1.25 eq) were dissolved in 20 mL of 

anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo. Purification by column chromatography on silica gel (ethyl acetate:n-hexane 1:1) 

gave the title compound as a light brown solid (34% yield); mp 140-143 °C; IR νmax 3084 

(ν Csp2-H), 1736 (ν C=O), 1610 (ν C=N), 1327(νas S=O), 1292 (ν N-O), 1260 (ν C-N), 1173 

(νs S=O), 747 (δ Csp2-H), 671 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, CDCl3): 5.11 (s, 2H, 

CH2), 6.74 (s, 1H, C(4)H-isoxazole), 7.37-7.40 (m, 1H, pyr), 7.87-7.99 (m, 2H Ar + 1H 

pyr), 8.11-8.13 (d, J = 7.6, 2H, Ar), 8.67-8.68 (m, 1H, pyr), 8.98 (s, 1H, pyr). 13C (101 MHz, 

CDCl3): δ 33.6 (CH2), 101.9 (C(4)H-isoxazole), 121.3 (Ar), 123.8 (pyr), 125.6 (Ar), 126.1 

(pyr), 126.8 (Ar), 134.2 (pyr), 134.7 (Ar), 135.4 (Ar), 137.7 (Ar), 146.9 (pyr), 147.9 (pyr), 

151.1 (C=N, isoxazole), 158.4 (C(5)-isoxazole), 166.6 (C=O). 

 



96 

 

 

2-((3-(2-methoxyphenyl)isoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-

dioxide (5b): 2-(prop-2-yn-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide S2 (1.0 eq) 

and N-hydroxy-2-methoxybenzimidoyl chloride C5 (1.25 eq) were dissolved in 20 mL 

of anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo. Purification by column chromatography on silica gel (ethyl acetate:n-hexane 1:1) 

gave the title compound as a white solid (27% yield); mp 126-131 °C; IR νmax 1733 (ν 

C=O), 1603 (ν C=N), 1337 (νas S=O), 1300 (ν N-O), 1250 (ν C-N), 1185 (νs S=O), 760 (δ 

Csp2-H), 671 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, CDCl3): δ 3.88 (s, 3H, OCH3), 5.10 (s, 

2H, CH2), 6.93 (s, 1H, C(4)H-isoxazole), 6.97-7.04 (m, 2H, Ar), 7.39-7.42 (m, 1H, Ar), 

7.86-7.91 (m, 3H, Ar), 7.94-7.96 (m, 1H, Ar), 8.08-8.10 (m, 1H, Ar). 13C (101 MHz, CDCl3): 

δ 33.6 (CH2), 55.6 (OCH3), 105.8 (C(4)H-isoxazole), 111.4 (Ar), 117.6 (Ar), 120.9 (Ar), 

121.2 (Ar), 125.5 (Ar), 126.9 (Ar), 129.5 (Ar), 131.4 (Ar), 134.6 (Ar), 135.2 (Ar), 137.6 (Ar), 

157.2 (Ar), 158.5 (C(5)-isoxazole), 160.4 (C=N, isoxazole),  164.3 (C=O). 

 

 

2-((3-(3-methoxyphenyl)isoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-

dioxide (6b): 2-(prop-2-yn-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide S2 (1.0 eq) 

and N-hydroxy-3-methoxybenzimidoyl chloride C6 (1.25 eq) were dissolved in 20 mL 
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of anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo. Purification by column chromatography on silica gel (ethyl acetate:petroleum 

ether 1:3) gave the title compound as a pale yellow solid (21% yield); mp 144-149 °C; 

IR νmax 2937 (ν Csp2-H), 1740 (ν C=O), 1603 (ν C=N), 1328 (νas S=O), 1300 (ν N-O), 1255 

(ν C-N), 1163 (νs S=O), 755 (δ Csp2-H), 675 (δ Csp2-H) cm-1.1H-NMR (400 MHz, DMSO-

d6): δ 3.80 (s, 3H, OCH3), 5.22 (s, 2H, CH2), 7.05-7.07 (m, 1H, Ar), 7.18 (s, 1H, C(4)H-

isoxazole), 7.39-7.45 (m, 3H, Ar), 8.02 (t, 3J = 7.6 Hz, 1H, Ar), 8.07-8.11 (m, 1H, Ar), 8.16 

(d, 3J = 7.6 Hz, 1H, Ar), 8.37 (d, 3J = 7.6 Hz, 1H, Ar). 13C (101 MHz, DMSO-d6): δ 33.8 

(CH2), 55.7 (OCH3), 102.6 (C(4)H-isoxazole), 112.2 (Ar), 116.6 (Ar), 119.4 (Ar), 122.4 

(Ar), 125.8 (Ar), 126.6 (Ar), 129.9 (Ar), 130.7 (Ar), 135.8 (Ar), 136.5 (Ar), 137.3 (Ar), 158.7 

(C(5)-isoxazole), 160.1 (Ar),  162.5 (C=N, isoxazole), 167.3 (C=O). 

 

 

2-((3-(4-methoxyphenyl)isoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-

dioxide (7b): 2-(prop-2-yn-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide S2 (1.0 eq) 

and N-hydroxy-4-methoxybenzimidoyl chloride C7 (1.25 eq) were dissolved in 20 mL 

of anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was filtered to give the title compound 

as a white solid (69% yield); mp 179-185 °C; IR νmax 3127 (ν Csp2-H), 1739 (ν C=O), 1614 

(ν C=N), 1333 (νas S=O), 1294 (ν N-O), 1248 (ν C-N), 1169 (νs S=O), 834 (δ Csp2-H), 752 
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(δ Csp2-H) cm-1; 1H-NMR (400 MHz, DMSO-d6): δ 3.80 (s, 3H, OCH3), 5.18 (s, 2H, CH2), 

7.03-7.06 (m, 2H Ar + 1H C(4)H-isoxazole), 7.78-7.80 (m, 2H, Ar), 8.03-8.09 (m, 2H, Ar), 

8.16-8.17 (m, 1H, Ar), 8.35-8.36 (m, 1H, Ar). 13C (101 MHz, DMSO-d6): δ 33.8 (CH2), 55.7 

(OCH3), 102.1 (C(4)H-isoxazole), 115.0 (2 x Ar), 121.0 (Ar), 122.2 (Ar), 124.8 (Ar), 125.9 

(Ar), 128.6 (2 x Ar), 135.9 (Ar), 136.6 (Ar), 137.2 (Ar), 156.0 (Ar), 158.7 (C(5)-isoxazole), 

161.5 (C=N, isoxazole), 166.9 (C=O). 

 

 

2-((3-phenylisoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (8b): 2-

(prop-2-yn-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide S2 (1.0 eq) and N-

hydroxybenzimidoyl chloride C8 (1.25 eq) were dissolved in 20 mL of anhydrous ethyl 

acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in ethyl acetate were 

added dropwise over 30 mins. A white suspension was formed, and the reaction 

stirred overnight at room temperature. The reaction was quenched with 40 mL of 

water and the resulting suspension was extracted with dichloromethane (3x20mL). 

The organics reunited were dried over sodium sulphate and evaporated in vacuo. 

Purification by column chromatography on silica gel (ethyl acetate:petroleum ether 

1:3) gave the title compound as a pale yellow solid (23% yield); mp 126-130 °C; IR νmax 

3129 (ν Csp2-H), 1741 (ν C=O), 1608 (ν C=N), 1333 (νas S=O), 1292 (ν N-O), 1256 (ν C-N), 

1181 (νs S=O), 754 (δ Csp2-H), 694 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, CDCl3): δ 5.10 (s, 

2H, CH2), 6.71 (s, 1H, CH-isoxazole), 7.42-7.44 (m, 3H, Ar), 7.77-7.79 (m, 2H, Ar), 7.83-

7.92 (m, 2H, Ar), 7.96 (d, 3J = 7.2 Hz, 1H, Ar), 8.09 (d, 3J = 7.6 Hz, 1H, Ar). 13C (101 MHz, 

CDCl3): δ 33.7 (CH2), 102.2 (C(4)H-isoxazole), 121.3 (Ar), 125.6 (Ar), 126.8 (Ar), 126.9 (2 

x Ar), 128.6 (Ar), 128.9 (2 x Ar), 130.2 (Ar), 134.7 (Ar), 135.3 (Ar), 137.6, 158.5 (C(5)-

isoxazole), 162.7 (C=N, isoxazole), 165.9 (C=O). 
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2-((3-(thiophen-2-yl)isoxazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 

(9b): 2-(prop-2-yn-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide S2 (1.0 eq) and N-

hydroxythiophene-2-carbimidoyl chloride C9 (1.25 eq) were dissolved in 20 mL of 

anhydrous ethyl acetate. 1.0 mL of a solution of 0.2 mL of triethylamine (1.25 eq) in 

ethyl acetate were added dropwise over 30 mins. A white suspension was formed, and 

the reaction stirred overnight at room temperature. The reaction was quenched with 

40 mL of water and the resulting suspension was extracted with dichloromethane 

(3x20mL). The organics reunited were dried over sodium sulphate and evaporated in 

vacuo. Purification by column chromatography on silica gel (ethyl acetate:n-hexane 1:3) 

gave the title compound as a white solid, mp 140-146 °C, 27% yield; IR νmax 3136 (ν 

Csp2-H), 1724 (ν C=O), 1612 (ν C=N), 1332 (νas S=O), 1300 (ν N-O), 1268 (ν C-N), 1175 

(νs S=O), 752 (δ Csp2-H), 706 (δ Csp2-H) cm-1. 1H-NMR (400 MHz, CDCl3): δ 5.09 (s, 2H, 

CH2), 6.63 (s, 1H, C(4)H-isoxazole), 7.09-7.12 (m, 1H, thiophene), 7.42-7.46 (m, 2H, 

thiophene), 7.90-7.99 (m, 3H, Ar), 8.01-8.15 (m, 1H, Ar). 13C (101 MHz, CDCl3): δ 33.6 

(CH2), 102.2 (C(4)H, isoxazole), 121.3 (Ar), 125.6 (Ar), 126.8 (Ar), 127.6 (Ar, thiophene), 

127.8 (Ar, thiophene), 127.9 (Ar, thiophene), 130.2 (Ar, thiophene), 134.7 (Ar), 135.3 

(Ar), 137.6 (Ar), 157.9 (C=N, isoxazole), 158.5 (C(5)-isoxazole), 165.9 (C=O). 

 

CA Inhibition Screening Assay  

An Applied Photophysics stopped-flow instrument has been used for assaying the 

CA-catalyzed CO2 hydration activity. Phenol red (at a concentration of 0.2 mM) has 

been used as an indicator, working at the maximum absorbance of 557 nm, with 20 

mM Hepes (pH 7.5 for α-CAs) as buffer, and 20 mM Na2SO4 (for maintaining constant 

the ionic strength). The initial rates of the CA-catalysed CO2 hydration reaction were 

followed for a period of 10−100 s. The CO2 concentrations ranged from 1.7 to 17 mM 
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for the determination of the kinetic parameters and inhibition constants. For each 

inhibitor, at least six traces of the initial 5−10% of the reaction have been used for 

determining the initial velocity. The uncatalyzed rates were determined in the same 

manner and subtracted from the total observed rates. Stock solutions of inhibitor (0.1 

mM) were prepared in distilled−deionized water, and dilutions up to 0.01 nM were 

done thereafter with distilled−deionized water. Inhibitor and enzyme solutions were 

preincubated together for 15 min at room temperature prior to assay to allow for the 

formation of the E−I complex. The inhibition constants were obtained by nonlinear 

least-squares methods using the Cheng−Prusoff equation and represent the mean from 

at least three different determinations. Errors were in the range of ± 5−10% of the 

reported KI values. CA isoforms were recombinant enzymes obtained in house as 

reported earlier [97]. The enzyme concentrations in the assay system were: hCA I, 13.2 

nM; hCA II, 8.4 nM; hCA IX, 7.9 nM; hCA XII, 15.2 nM. 
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I have spent the last part of my PhD in the discovery and synthesis of new inhibitors based on 

benzo[b]thiophen-3-ole scaffold effective against human monoamine oxidases. 
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Chapter 4 

Human monoamine oxidases (hMAOs) 
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4.1 Introduction 

Monoamine oxidases (MAOs; EC 1.4.3.4) are mitochondrial bound flavoenzymes 

which catalyse the oxidative degradation of amines. In human have been observed 

two different isoforms called respectively A and B (hMAO-A / hMAO-B). The initial 

discovery of mammalian MAOs was done in 1928 by Hare, who observed a tyramine 

oxidase activity in rabbit liver, not explainable with tyrosinase function [126]. The 

presence of these enzymes in the main organ addicted to the chemical inactivation of 

xenobiotics, prompted Hare to postulate that they were mainly involved in the 

metabolism of potentially toxic exogenous amines. Follow-up studies showed that 

these enzymes are effective to catalyse the oxidative deamination of some 

neurologically important amine substrates, including dopamine, norepinephrine, 

epinephrine, serotonin and phenethylamine [127]. This reaction occurs due to the 

presence of flavin adenine dinucleotide cofactor (FAD, depicted in yellow in Figure 

4.1) that works as electron acceptor for the oxidation of amines, forming iminium ion 

and FADH2. The regeneration of FAD active form is then accomplished through the 

electron transfer to an oxygen molecule producing hydrogen peroxide (Figure 4.1). 

 

 

 

Figure 4.1. Chemical reaction catalysed by hMAOs using dopamine as an example of 

neurotransmitter substrate. The flavin cofactor is reported in yellow and undergoes a two-
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electron reduction substrate oxidation. Regeneration to its functional form is accomplished by 

molecular oxygen, leading to hydrogen peroxide production [128]. 

The fate of iminium ion is determined by the aqueous medium which provokes its 

hydrolysis to ammonium ion and aldehyde.The latter is then oxidized to carboxylic 

acids by aldehyde dehydrogenase (ALDH) or reduced to alcohol by aldehyde 

reductase (ALR) [129]. The preferred substrates for hMAOs enzymes are primary 

amines, albeit they also can catalyse the oxidation of secondary amines. On the other 

hand, they have little or no activity in the oxidation of tertiary amines, with few 

exceptions as the bioactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP). MPTP was an impurity of synthetic heroin, which once converted in 1-

methyl-4-phenylpyridinium ion (MPP+), led to the development of symptoms 

resembling those of Parkinson’s patients (Figure 4.2) [130].  

 

 

 

Figure 4.2. Bioactivation of MPTP to MPP+, favoured by MAO B. 

 

The discovery that these symptoms could be stopped by the administration of the 

acetylenic MAO-B inhibitor pargyline, confirmed the implication of this enzyme in 

MPTP bioactivation [131], and set in motion the quest for new MAO-B inhibitors as 

potential anti-Parkinson drugs. 
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4.2. Structural properties and catalytic mechanism of hMAOs  

The two isoforms of human monoamine oxidase are quite similar sharing ~70% 

sequence identity [132,133]. Both the enzymes possess a dimeric organization 

structure. Each monomeric unit comprises a membrane binding domain anchoring the 

enzyme to the outer mitochondrial membrane, and a “globular” part which extends 

out of the membrane. The “globular” part contains the flavin-binding domain and a 

substrate-binding domain [128] (Figure 4.3). 

 

                

 

Figure 4.3. Overall crystal structure of human MAO A (I) and MAO B (II) represented as 

models of the protein dimer inserted in the phospholipid bilayer. FAD cofactor is reported in 

yellow and the active site cavity surface in pink [128,134,135]. 

 

Among the two isoforms, only hMAO-B has been purified as a dimer, while hMAO-A 

was separated only as monomer because of the lower biochemical stability of the two 

monomers that dissociate upon detergent-mediated extraction from the membrane. 

Nevertheless, there are some evidences which confirmed the dimeric organization of 

hMAO-A on the membrane [136].  

The membrane binding domains of hMAOs are located in the C-terminal region of the 

proteins. These sites have an α-helix organization containing residues able to create an 

I II 
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apolar surface that facilitate their insertion into the membrane, and aminoacidic side 

chains positively-charged (e.g. arginine, lysine) which bind the phospholipidic heads 

[134,135]. The globular cores comprise two domains, one that contain the covalently-

bound FAD cofactor and the other involved in substrate binding (Figure 4.4, [128]). 

 

       

Figure 4.4. Detailed representation of substrate-binding site of hMAO-A (I) and hMAO-B 

(II). 

 

The two substrate-binding domains of hMAOs share some conserved aminoacidic 

residues which line the cavity, like Phe 352 of hMAO-A corresponding to the Phe 343 

of hMAO-B. The two aminoacids Tyr 407 / Tyr 444 are disposed in a face to face manner 

in order to create an “aromatic caged environment” that is responsible for the correct 

alignment of the substrate toward the catalytic FAD (similar to the couple of Tyr398 / 

Tyr 435 of hMAO-B). Furthermore, the three residues Pro 113, Phe 112 and Trp 128 of 

hMAO-A (corresponding to Pro 104, Phe 103 and Trp 119 of hMAO-B), located at the 

bottom of the protein near the membrane surface, constitute the “cap” of a loop that 

seals the active site from the exterior and may serve as “gating switch”, because the 

movement of this loop permits the access to the entrance cavity.  

Both the isoforms share a substrate binding cavity of ~ 400 Å3. However, hMAO-B is 

endowed with a further small hydrophobic cavity of 290 Å3. This additional chamber, 

named “entrance cavity”, can be coupled (producing a single cavity with a total 

I II 
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volume of ~ 700 Å3) or not with the substrate cavity depending on Ile 199 side chain 

conformation, which works as a “gate” existing in either a “closed” or “open” 

conformations. The Ile 199 controlled connection of the two pockets in a single cavity, 

can be exploited to design selective inhibitors for hMAO-B [137]. 

FAD cofactor is covalently-bound via a thioether linkage by means a Cys residue of the 

enzyme (Cys 406 for hMAO-A; Cys 397 for hMAO-B) to the 8a-methylene of 

isoalloxazine ring and is involved in the oxidative deamination.  

In the last years two proposals have been suggested to explain the mechanism of 

electron transfer from the amine to the flavin ring. The first is the single electron 

transfer (SET) mechanism proposed by Silverman [138–140] (Scheme 4.1). 

 

 

Scheme 4.1. Single electron transfer (SET) mechanism of action of monoamine oxidases [141]. 

 

Attempts to provide any experimental support for SET mechanism failed, enforcing 

the conclusion that this “route” is both kinetically and thermodynamically 



108 

 

improbable. In 1999 Edmonson proposed the polar nucleophilic mechanism (Scheme 

4.2) which is more in accordance with experimental evidences [142]. 

 

 

Scheme 4.2. Polar nucleophilic mechanism of action of monoamine oxidases [142]. 

 

This hypothesis did not lie on radical mechanism. The nucleophilic attack of amine 

nitrogen on C(4a) position of isoalloxazine ring, produces an adduct with a positively-

charged nitrogen deriving from the amine substrate, and a negatively-charged 

nitrogen N(5) of the FAD. This condition increases the pKa of the α-carbon protons 

that can be easily abstracted due to the proximal distance to the isoalloxazine 

negatively-charged N(5), producing the iminium ion (Scheme 4.2).  

The main by-product of this metabolic pathway is hydrogen peroxide which is 

normally deactivated by glutathione peroxidase (GDO). However, if the levels of 

glutathione (GSH) in the brain are low, hydrogen peroxide can be converted by Fe2+ 

ions (the Fenton reaction) into highly reactive oxygen species (ROS), which have been 

proposed to be involved in the neurotoxicity observed in some neurodegenerative 

disorders [143–146].  
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4.3 Pathological roles and inhibitors of hMAOs 

Physiological and pathological roles of hMAO-A and hMAO-B have been extensively 

studied [127,131,139,147–152]. The two enzymes share similar affinity for some 

substrate as dopamine, epinephrine, norepinephrine, and tyramine. Serotonin is the 

preferred substrate for hMAO-A while benzylamine for hMAO-B [153]. 

hMAOs are coexpressed in almost all human tissues except for placenta, which 

predominantly expresses hMAO-A and platelets and lymphocytes, which 

predominantly express hMAO-B. Furthermore, hMAO-A is prevalent in the intestinal 

tract, while hMAO-B is found mostly in the brain and liver. The localization of these 

proteins reflects their functions. In fact, hMAO in peripheral tissues seems to protect 

the body by oxidizing amines from the blood or by preventing their entry into the 

circulation. hMAO-B in the microvessels of the blood brain barrier (BBB) presumably 

has a similar protective function, acting as a metabolic barrier [154]. In the central 

nervous system (CNS) they affect monoamines concentration controlling in this way 

the physiological and functional concentration of some neurotransmitters as 

dopamine, norepinephrine and serotonin.  So, the use of hMAOs inhibitors able to act 

in the CNS, reduce the degradation of neurotransmitters. This has beneficial effects for 

the treatment of pathologies spanning from mental illness like depression to 

Parkinson’s disease and other neurodegenerative disorders. While hMAO-A 

inhibitors positively affect depression due to the increasing of serotonin and 

norepinephrine levels [151], hMAO-B inhibitors ameliorate neurodegenerative 

disorders conditions raising dopaminergic tone. 

Furthermore, hMAOs inhibition reduces the products (aldehyde and ammonium ion) 

and by-product (hydrogen peroxide, H2O2) amounts. Albeit aldehydes do not appear 

to accumulate in the healthy brain, some studies have shown that elevate 

concentration of this product exert cytotoxic effects [155].  

Concerning H2O2 the cells usually possess some machinery systems able to act as 

defenders against this oxidant molecule. Abnormal expression or increased activity of 

hMAOs lead to excessive production of H2O2 which can corrode all the protective 
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agents of the cells, exposing these to the oxidative damages. The presence of some 

cations as Fe2+ and/or Cu+ affect and increase the rate of production of reactive species 

of oxygen (ROS). ROS are less stable than H2O2 and react suddenly with the 

surrounding protein systems, with structural/functional damage leading to cells 

death. This cellular stress has been associated with different pathologies as 

neurodegenerative disorders and cardiomyopathies [156–158], so hMAOs inhibition 

reduces the amount of produced hydrogen peroxide and so, the exposure to oxidative 

stress.  

The first indication for hMAO inhibitors was for the treatment of depression after the 

serendipitous discovery that the mood elevating properties of antitubercular agent 

isoniazid were related to the inhibition of hMAOs [159]. Iproniazid possessing similar 

structure of isoniazid but with minor toxicity, was the first hMAO inhibitor approved 

for the treatment of major depression [160]. The neurotransmitters involved in 

depressive illness are serotonin and norepinephrine. They undergo the activity of 

hMAO-A in the brain, so one approach for development of antidepressant was the 

design of specific and irreversible inhibitors of the hMAO-A isoform [161,162]. 

Nowadays some irreversibly acting compounds such as tranylcypromine (Figure 4.5) 

are still used for the treatment of major depression, although appropriate dietary 

restrictions must be observed to avoid the “cheese reaction” resulting in hypertensive 

crisis and brain haemorrhages [163–165].  

To avoid the drawbacks of these compounds, reversible inhibitors such as 

moclobemide and toloxatone have been developed and used in the therapy of 

depression. They are safer and better-tolerated, not showing the effect of tyramine on 

blood-pression, likely because the increase of amount of physiological substrate 

displaces the inhibitors that reversibly bound the enzyme [166,167].  

As mentioned before hMAO-A specific inhibitors may find future also as protectants 

against cardiac cellular degeneration [168], while ongoing studies are evaluating the 

involvement of hMAO-A overexpression in cancer [169,170]. 
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Figure 4.5. Irreversible and reverible inhibitors of hMAOs. 

 

hMAO-B inhibitors are useful in the treatment of Parkinson’s disease reducing the 

degradation of central dopamine. They were used both as monotherapy in the early 

phase of disease delaying the need for L-dopa [171], or co-administered with L-dopa 

enhancing the levels of dopamine “artificially” derived from L-dopa [172,173]. 

Increased hMAO-B expression as well as iron levels in other neurodegenerative 

disorders like Alzheimer’s disease have been observed [30]. So, these compounds 

potentially act also as neuroprotective molecules reducing the amount of by-product 

deriving from hMAOs activity, whose expression increase with the age.  

Up to day, two hMAO-B inhibitors are used for the treatment of Parkinson’s disease: 

(R)-deprenyl (also known as selegiline) and rasagiline (Figure 4.5). These compounds 

exhibited irreversible mechanism based on the propargylamine functional group. The 

reversible hMAO-B inhibitor, safinamide, has recently been approved for the 

management of Parkinson´s disease [174,175]. 
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Chapter 5 

Benzo[b]tiophen-3-ol derivatives as effective inhibitors of hMAOs: 

design, synthesis and biological activity 
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5.1 Development of new inhibitors of hMAOs: aim of the work 

An extensive number of natural and synthetic compounds have shown effective 

inhibition of human MAOs [152,157]. Keeping in mind the structure and properties of 

endogenous substrates and reversible inhibitors that bind to hMAOs, Wouters et al. 

[176] proposed that ideal MAO inhibitors should be flat molecules (Figure 5.1) with 

specific dimensions depending on the isoform (11.5 x 5.5 x 1.8 Å for hMAO-A and 8.5 

x 5.1 x 1.8 Å for hMAO-B). 

 

 

Figure 5.1. Molecular properties of the pharmacophore for the inhibition of the hMAOs. The 

part of the structure shown in red corresponds to the chalcone moiety. 

 

The pharmacophore reported in Figure 5.1 was inspired by isatin and indole 

analogues which possess different enzyme specificities, inhibiting respectively 

hMAO-B and hMAO-A [137,177]. Although the dimensions of compounds may 

explain the different affinities for the MAO isoforms (hMAO-A can accommodate 

larger molecule than hMAO-B), the changes of the electron density in the molecules 

play an important role in enzyme selectivity. As a matter of the fact, follow-up studies 

focused on the isosteric substitution of the nitrogen of the indole system with an 

oxygen atom or methylene group, to obtain respectively aurone [178] and indanone 

derivatives [179,180] (Figure 5.2). 

 



114 

 

    

Figure 2. Structure of aurone (A) and indanone (B) derivatives. Chalcone moiety has been depicted in 

red. 

 

Aurone derivatives (Figure 5.2, A) showed selective inhibition towards rat MAO-B 

(rMAO-B) with IC50 values ranging from 11.6 µM to 26.3 µM, without activity against 

the A isoform of rMAO (IC50 > 100 µM). On the other hand, indanone derivatives 

showed good inhibitory profile in the low micromolar range especially for hMAO-B 

(0.0052 < IC50 hMAO-B (µM) < 2.74). All these structures (indole analogues, aurone and 

indanone derivatives) show a common structural feature, similar to the chalcone 

moiety (highlighted in red), whose ability to bind to hMAO enzymes have been 

reported in the past by our group [181]. With the aim to explore new structures for the 

inhibition of hMAO, I proposed a new scaffold based on benzo[b]thiophen-3-ol 

structure (Figure 5.3). This scaffold retained some similarity with the compounds 

discussed above, for example the presence of bicyclic system connected with a 

“bridge” to aromatic/heteroaromatic ring. The bridge, for indole, aurone and indanone 

derivatives is the β-carbon of the α,β-unsaturated ketone. Conversely, for the structure 

of benzo[b]thiophen-3-ol, the carbonyl moiety of the α,β-unsaturated ketone is the 

“bridge”. 

 

 

 

Figure 5.3. Benzo[b]thiophen-3-ole scaffold. Similarities and differences with previously 

reported scaffolds. 

A B 
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Other important differences among these scaffolds are the isosteric replacement of the 

oxygen atom of aurones with sulphur and the presence of 1,3-diketonic system that, 

via keto-enol tautomerism, generates the corresponding chalcone while also 

possessing the potential for metal chelation [182]. This is a very interesting aspect and 

provides the possibility to obtain multi-target drug in the light of the evidence that 

some cations (e.g. Fe2+ and Cu+) may contribute to neurodegeneration in central 

nervous system tissues. In fact, these ions are implicated in the Fenton reaction [183] 

which catalyse the production of hydroxyl radicals from hydrogen peroxide, a well-

known by-product of MAO enzymatic activity [145,146]. Since hydroxyl radicals 

possess a very short half-life, estimated at 1 ns, they can be highly toxic to biomolecules 

and the use of chelating agents should repair this metal dyshomeostasis leading to 

reduced damage derived from oxidative stress. 

 

5.2 Chemistry 

The structure of benzo[b]thiophen-3-ol has been previously studied from a chemical 

point of view, and several research groups have proposed synthetic strategies to obtain 

this class of compounds [184–186]. Here I propose a new one-step, very simple 

synthetic procedure which allowed us to obtain the desired compounds PM1-PM20 

(Scheme 5.1). Methyl 2-mercaptobenzoate and α-bromo acetophenone in equimolar 

amount, were reacted in methanol in the presence of potassium hydroxide. The 

reaction was performed in a nitrogen atmosphere (to avoid sulphur oxidation) and at 

room temperature for 1-2 h. After this time, an excess of potassium hydroxide was 

added, and the temperature was raised to 60 °C. The completion of reactions was 

usually reached in 4-5 hours producing all the compounds PM1-PM20 in moderate to 

high yields. 
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Scheme 5.1. Synthesis of compounds PM1-PM20. 

 

We proposed a reaction mechanism for the synthesis of the benzo[b]thiophen-3-ol 

derivatives as reported in Scheme 5.2. The reaction starts with the nucleophilic attack 

of deprotonated thiol group on alfa brominated position of the ketone to obtain the 

intermediate W (Scheme 5.2, I). Then, an intramolecular crossed aldolic reaction take 

place (Scheme 5.2, II). The methylene y attacks methyl ester functional group with 

consequent methanol elimination, producing the benzo[b]thiophen-3-ol [187]. 

 

  

Scheme 2. Proposed mechanism of reaction. 
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5.3 Biological assays 

5.3.1 hMAO-A and hMAO-B inhibition studies 

The synthesised compounds PM1-PM20 were evaluated as hMAO inhibitors using the 

recombinant hMAOs as enzyme sources. For these assays, kynuramine was used as 

substrate for both hMAO isoforms. The oxidation of kynuramine by the hMAOs yields 

4-hydroxyquinoline which was measured by fluorescence spectrophotometry. By 

measuring the hMAO-Activities in the presence of a range of different inhibitor 

concentrations (0.003-100 µM), the IC50 values were measured. The inhibitory activities 

of compounds PM1-PM20 are summarized in Table 5.1 along with selectivity index 

(SI) values given as the ratio (IC50 hMAO-A)/(IC50 hMAO-B). 

 

5.3.2 Evaluation of DOPAC/DA ratio and LDH activity 

Compounds that showed the best inhibitory activity towards hMAO (PM4, PM5, 

PM6, PM9, PM10, PM12, PM13) were also been tested with cortex synaptosomes in 

both basal and LPS-induced inflammatory conditions, to estimate the capability of 

reducing DOPAC/DA ratio and LDH activity. DOPAC/DA ratio describes the extent 

of dopamine turnover and could be considered an indirect index of MAO-B activity 

[188]. On the other hand, LDH has long been considered a valuable marker of tissue 

damage [189,190], and thus the neuroprotective effects of the new compounds were 

also evaluated. 

 

5.4 Result and discussion 

5.4.1 In vitro MAO inhibition study 

All the synthesised compounds PM1-PM20 have been evaluated as potential 

inhibitors of hMAO-A and hMAO-B and the activities are given as the IC50 values in 

Table 5.1. Among these derivatives only compounds PM2, PM17 and PM18 were 

superior inhibitors of hMAO-A compared to hMAO-B, although only to a small extent. 

All the other compounds were selective hMAO-B inhibitors with IC50 values in the 
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micromolar/low micromolar range. The simplest compound of this series, PM1, 

containing an unsubstituted phenyl ring bound to the carbonyl “bridge”, showed 

similar inhibition against both the isoforms with poor selectivity (IC50 hMAO-A = 13.27 

µM; IC50 hMAO-B = 7.39 µM; SIPM1 = 1.8). When phenyl ring was substituted, we 

observed different effects depending on the position and chemical nature of the 

substituent. In fact, the presence of a weak electron donor such as the methyl group on 

phenyl ring, improved inhibition activity towards hMAO-B when it was placed on 

meta- (PM3, IC50 hMAO-B = 1.81 µM) or para- (PM4, IC50 hMAO-B = 0.47 µM) positions. 

PM4 also displayed improved inhibition activity towards hMAO-A (PM4, IC50 hMAO-

A = 2.71 µM), accounting for the slightly reduced SI compared with PM3 (PM3, IC50 

hMAO-A = 12.59 µM). On the other hand, when this substituent was located at the 

ortho-position, we observed reduced inhibitory activity against both the isoforms, with 

a slight preference for hMAO-A (PM2, IC50 hMAO-A = 18.66 µM; IC50 hMAO-B = 23.38 

µM; SI = 0.8). A similar trend was observed for compounds substituted with the 

methoxy group, which is considered to be a stronger electron donor than the methyl 

(PM5-PM6). For these two derivatives we also recorded different inhibition activities 

towards hMAO-B, with the best outcome observed when methoxy group was placed 

on the para-position of the phenyl ring (PM6, IC50 hMAO-B = 0.28 µM). Similar to the 

methyl substituted derivatives, the placement of the methoxy substituent on meta-

position negatively affected inhibition activity against hMAO-A (PM5, IC50 hMAO-A 

= 32.97 µM), thus improving the selectivity index (SI = 42.3). In the light of the above, 

it may be concluded that electron donor groups improve inhibitory activity towards 

hMAO-B when they were on meta- and para-positions. Furthermore, when these 

groups are on meta-position, they also led to an increase in selectivity due to the 

reduction of hMAO-A inhibition. A different trend was observed for halogen-

substituted derivatives (PM7-PM13). The data show that when substitution is changed 

from the fluorine, to chlorine and finally to bromine, there is an incremental increase 

of inhibitory activity and selectivity towards hMAO-B, according with the increased 

size and reduced electronegativity of the halogen, with the best inhibition shown by 
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compound PM12 (IC50 hMAO-B = 0.35 µM; SI = 180.4). In the light of the above, we 

conclude that halogens, which represent electron-withdrawing groups, positively 

affect both inhibition activity and selectivity when they are placed in meta-position 

(e.g. PM12, IC50 hMAO-B = 0.35 µM vs. PM13, IC50 hMAO-B = 0.88 µM). This trend 

differs from that observed with the electron donor groups (e.g. methyl or methoxy). 

Other compounds such as PM14 and PM15 which are substituted on para-position 

with CN and NO2, exhibited hMAO-B inhibition in the low micromolar range (PM14, 

IC50 hMAO-B = 4.51 µM; PM15, IC50 hMAO-B = 2.75 µM) with little selectivity between 

the two isoforms (PM14 SI = 4.7; PM15 SI = 6.8). The presence of a heterocyclic ring for 

compounds PM16-PM19 negatively affected the inhibition of hMAO-B. Finally, 

substitution of the phenyl ring with the bulky naphthyl, but not biphenyl, improved 

both activity and selectivity towards hMAO-B (PM20, IC50 hMAO-B = 1.08 µM; SI = 

39.4). 

 

Table 5.1. Inhibitory activity (IC50) and selectivity index (SI) towards hMAO-A and hMAO-B 

of compounds PM1-PM20. 

 

IC50 ± SD (µM)a 

SIb 

Compound Substituent hMAO-A hMAO-B 

PM1 
 

13.27 ± 0.29 7.39 ± 0.15 1.8 

PM2 

 

18.66 ± 2.99 23.38 ± 3.03 0.8 

PM3 
 

12.59 ± 1.58 1.81 ± 0.13 6.9 

PM4 

 

2.71 ± 0.14 0.47 ± 0.02 5.8 



120 

 

PM5 
 

32.97 ± 0.88 0.78 ± 0.07 42.3 

PM6 

 

4.18 ± 0.77 0.28 ± 0.03 14.9 

PM7 
 

25.05 ± 2.17 1.44 ± 0.40 17.4 

PM8 
 

13.40 ± 0.92 2.28 ± 0.18 5.8 

PM9 
 

51.04 ± 1.72 0.55 ± 0.09 92.8 

PM10 
 

13.75 ± 0.51 0.89 ± 0.07 15.4 

PM11 

 

43.36 ± 2.81 37.31 ± 1.01 1.2 

PM12 
 

63.16 ± 3.48 0.35 ± 0.08 180.4 

PM13 
 

21.05 ± 1.98 0.88 ± 0.08 23.9 

PM14 
 

21.21 ± 3.27 4.51 ± 0.13 4.7 

PM15 

 

18.80 ± 1.53 2.75 ± 0.02 6.8 

PM16 
 

50.05 ± 2.56 49.73 ± 1.90 1.0 

PM17 
 

53.75 ± 2.90 56.93 ± 5.62 0.9 

PM18 
 

6.44 ± 0.68 7.56 ± 0.70 0.8 
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PM19 

 

36.45 ± 1.07 5.59 ± 0.74 6.5 

PM20 
 

42.54 ± 1.88 1.08 ± 0.097 39.4 

aValues are the mean ± SD of triplicate determinations. bSelectivity index for the MAO-B 

isoform, given as the ratio: (IC50 hMAO-A)/(IC50 hMAO-B). 

 

5.4.2 Evaluation of DOPAC/DA ratio and LDH activity 

Figures 5.4-5.7 show that deprenyl, an irreversible and selective MAO-B inhibitor, and 

the new MAO inhibitors PM4, PM5, PM6, PM9, PM10, PM12 and PM13 were able to 

exert modulatory effects on cortex synaptosomes DA/DOPAC ratio and LDH activity, 

in both basal and LPS-induced inflammatory conditions. 

Particularly, in Figure 4 it is possible to observe that deprenyl and PM9 stimulated 

DOPAC/DA ratio, while PM10, PM12 and PM13 inhibited basal DOPAC/DA ratio. On 

the other hand, no significant effect was exerted by PM4, PM5 and PM6. When 

synaptosomes were challenged with inflammatory LPS stimulus (Figure 5.5), we 

observed that deprenyl and all PM inhibitors were able to reduce DOPAC/DA ratio. 

Additionally, the present molecules were more effective than deprenyl, with the 

highest inhibitory effects displayed by PM10, PM12 and PM13. 

DOPAC/DA ratio has long been proposed as an index of MAO-B activity [188], while 

microdialysis studies demonstrated the ability of LPS to increase monoamine 

degradation and extracellular DOPAC levels, in mouse prefrontal cortex [191]. 

Additionally, we have recently reported that the pro-oxidant stimulus induced by 

amyloid β-peptide could reduce monoamine levels, in rat cortex synaptosomes [192]. 

Despite there being agreement between the data reported in Figure 5.5 and the MAO-

B inhibitory activity described in Table 5.1, whereas the contrasting results obtained 

in basal condition (Figure 5.4), following PMs treatment, suggest the possible onset of 

pro-inflammatory/pro-oxidant effects, which could have overcome the intrinsic MAO 

inhibitory activity of these molecules, thus leading to increased DA turnover in rat 
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cortex synaptosomes. In order to test this hypothesis, we performed a second set of 

experiments to evaluate the effect of deprenyl and the PM inhibitors on cortex 

synaptosome LDH activity, in both basal and LPS-induced inflammatory condition 

(Figures 5.6-5.7). 

LDH has long been considered a valuable marker of tissue damage [189,190]. 

Additionally, antioxidants resulted able to downregulate its activity, ex vivo [193]. In 

the present study we observed that, except for compound PM13, most of the PM 

inhibitors upregulated basal LDH activity (Figure 5.6). Conversely, when 

synaptosomes were perfused with Krebs-Ringer buffer added with LPS, deprenyl 

inhibited LDH activity at the lowest concentration (20 nM), which is very close to its 

MAO-B IC50 value (17 nM) [194], despite exerting a stimulatory effect at the highest 

tested concentration (1 µM). We cannot exclude that the highest tested deprenyl 

concentration (1 µM) could be toxic for cortex synaptosomes. Similarly, the PM 

inhibitors displayed a significant LDH inhibitory activity, which is more evident 

around their respective IC50 values, which are included in the range 0.1-1 µM (Table 

5.1). Unlike deprenyl, all the PM molecules inhibited LDH activity in the concentration 

range (0.1-1 μM). Our findings of reduced LPS-induced LDH activity by both deprenyl 

(20 nM) and PMs (0.1-1 μM), in rat cortex synaptosomes, are consistent with the 

reported antioxidant activity of MAO inhibitors, in vivo [195,196]. On the other hand, 

we should consider that the contrasting finding of stimulation of LDH activity (Figure 

5.6), induced by deprenyl and PM inhibitors in basal condition, could be related to the 

employed ex vivo experimental model. Specifically, it is well known that antioxidants 

in the cell medium could exert pro-oxidative effects, by generating hydrogen peroxide 

and thus activating adaptive responses of cells to mild oxidative stress [197]. In this 

context, it is rational to hypothesize that our results of blunted LPS-induced 

DOPAC/DA ratio and LDH activity, in cortex synaptosomes treated with both 

deprenyl and PMs, could be related to both MAO-B inhibition activity and improved 

neuron antioxidant defence system. Taken together, these findings support further 

deepening of PM inhibitor efficacy in in vivo experimental models of 
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neuroinflammation and oxidative stress. Particularly, future studies should involve 

inhibitors PM10, PM12 and PM13 which exerted the highest inhibitory efficacy on 

both LPS-induced DOPAC/DA ratio and LDH activity (Figures 5.5 and 5.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Effect of PMs on DOPAC/DA ratio in rat cortex synaptosomes. ANOVA: P<0.0001; 

post-hoc: ***P<0.001 vs. Vehicle group. 
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Figure 5.5. Effect of PMs on DOPAC/DA ratio in rat cortex synaptosomes challenged with LPS. 

ANOVA: P<0.0001; post-hoc: *P<0.05, ***P<0.001 vs. LPS group. 

 

 

Figure 5.6. Effect of PMs on LDH activity in rat cortex synaptosomes. ANOVA: P<0.0001; post-

hoc: *P<0.05, **P<0.01, ***P<0.001 vs. Vehicle group. 
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Figure 5.7. Effect of PMs on LDH activity in rat cortex synaptosomes challenged with LPS. 

ANOVA: P<0.0001; post-hoc: *P<0.05, **P<0.01, ***P<0.001 vs. LPS group. 

 

5.5 Conclusions 

The design, synthesis, characterization and in vitro biological activity evaluation of 

some novel benzo[b]thiophen-3-ol derivatives as inhibitors of hMAO-B have been 

reported. These compounds have been synthesised through a new simple synthetic 

approach consisting in a one-step reaction, with moderate to high yields. The 

compounds PM1-PM20 showed activity in the micromolar/low micromolar range 

against hMAO-B, with the best activity exhibited by PM6 with Ki = 0.28 µM, however 

possessing only a little selectivity index (SI = 14.9). On the other hand, the halogen-

substituted compounds, showed a better inhibition profile, with increased activity, 

with the best performance obtained for compound PM12, containing meta-bromo 

substituted phenyl ring (Ki hMAO-B = 0.35 µM; SI = 180).  
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Compounds PM1-PM20 have also been tested with cortex synaptosomes in both basal 

and LPS-induced inflammatory conditions to evaluate their ability to affect the 

DOPAC/DA ratio as well as LDH activity. DOPAC/DA ratio is an indirect index of 

MAO-B activity, and all the tested compounds are effective in reducing this value in 

cortex synaptosomes challenged with LPS, showing outcomes better than the reference 

drug deprenyl. Furthermore, all the PM molecules inhibited LDH activity in the 

concentration range 0.1-1 µM, showing potential activity as neuroprotective agents. 
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5.6 Experimental section 

General 

Unless otherwise indicated, all reactions were carried out under a positive nitrogen 

pressure (balloon pressure) in washed and oven-dried glassware. Solvents were used 

as supplied without further purification. Where mixtures of solvents are specified, the 

stated ratios are volume:volume. Reagents were used directly as supplied by Sigma-

Aldrich® (Italy). All melting points were measured on a Stuart® melting point 

apparatus SMP1, and are uncorrected. Temperatures are reported in °C. Fluorescence 

spectrophotometry was carried out with a Varian Cary Eclipse fluorescence 

spectrophotometer. 1H and 13C NMR spectra were recorded at 400 and 101 MHz, 

respectively, on a Bruker spectrometer using CDCl3 and DMSO-d6 as the solvents at 

room temperature. The samples were analysed with a final concentration of ~30 

mg/mL. Chemical shifts are expressed as δ units (parts per millions) relative to the 

solvent signal. 1H spectra are reported as follows: δH (spectrometer frequency, solvent): 

chemical shift/ppm (multiplicity, J-coupling constant(s), number of protons, assignment). 13C 

spectra are reported as follows: δC (spectrometer frequency, solvent): chemical shift/ppm 

(assignment). Multiplets are abbreviated as follows: br – broad; s – singlet; d – doublet; t 

– triplet; q – quartet; m – multiplet. Coupling constants J are valued in Hertz (Hz). The 

processing and analyses of the NMR data were carried out with MestreNova. Column 

chromatography was carried out using Sigma-Aldrich® silica gel (high purity grade, 

pore size 60 Å, 230–400 mesh particle size). All the purifications and reactions were 

monitored by TLC performed on 0.2 mm thick silica gel-aluminium backed plates (60 

F254, Merck). Visualization was carried out under ultra-violet irradiation (254 nm). 

Where given, systematic compound names are those generated by ChemBioDraw 

Ultra 12.0 following IUPAC conventions. Microsomes from insect cells containing 

recombinant hMAO-A and hMAO-B (5 mg protein/mL) and kynuramine 

dihydrobromide were obtained from Sigma–Aldrich. 
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Chemistry 

General procedure for the synthesis of derivatives PM1-PM20: in an oven dried flask 

containing a stirring solution of methyl 2-mercaptobenzoate (1.0 eq.) in methanol (10 

mL), were added freshly ground potassium hydroxide (1.5 eq.) and the appropriate α-

bromoacetophenone (1.0 eq). The reaction was performed at room temperature for 1-

2 hours. After this time, an excess of potassium hydroxide was added (1.5 eq.) and the 

temperature was raised to 60 °C. The progression of reaction was monitored by TLC 

and completion was usually reached in 4-5 hours. The reaction was poured on ice-cold 

water (30 mL) and the pH was adjusted to the value of ~7 to induce the complete 

precipitation of compound. The resulting benzo[b]thiophen-3-ol was collected by 

filtration and washed with hot methanol (20 mL). This procedure was used in order to 

obtain all the compounds PM1-PM20 in moderate to high yields and a good level of 

purity. 

 

Chemical characterization of compounds PM1-PM20 

 

 

(3-hydroxybenzo[b]thiophen-2-yl)(phenyl)methanone (PM1) 

Yellow powder, mp 117-120 °C, 80% yield; 1H NMR (400 MHz, DMSO-d6): δ 7.48-7.52 

(m, 1H, benzothiophene), 7.58-7.72 (m, 3H Ar + 1H benzothiophene), 7.92-7.95 (m, 2H, 

Ar), 7.98 (d, J = 8.2 Hz, 1H, benzothiophene), 8.05 (d, J = 8.0 Hz, 1H, benzothiophene), 

12.02 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, DMSO-d6): δ 112.2 

(benzothiophene), 123.9 (benzothiophene), 124.0 (benzothiophene), 125.5 

(benzothiophene), 128.8 (2 x Ar), 129.1 (2 x Ar), 130.4 (benzothiophene), 131.1 (Ar), 

133.1 (Ar), 138.6 (benzothiophene), 140.0 (benzothiophene), 160.3 (Cbenzothiophene-OH), 

190.9 (C=O). 
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(3-hydroxybenzo[b]thiophen-2-yl)(o-tolyl)methanone (PM2) 

Yellow powder, mp 131-133 °C, 86% yield; 1H NMR (400 MHz, CDCl3): δ 2.50 (s, 3H, 

CH3), 7.32-7.36 (m, 2H, Ar), 7.43-7.48 (m, 1H Ar + 1H benzothiophene), 7.54-7.58 (m, 

1H, benzothiophene), 7.63-7.65 (m, 1H, Ar), 7.71 (d, J = 8.2 Hz, 1H, benzothiophene), 

8.09 (d, J = 8.0 Hz, 1H, benzothiophene), 12.84 (br, 1H, OH, D2O exch.). 13C NMR (101 

MHz, CDCl3): δ 19.7 (CH3), 112.0 (benzothiophene), 123.1 (benzothiophene), 124.0 

(benzothiophene), 124.7 (benzothiophene), 125.5 (Ar), 127.4 (Ar), 130.0 

(benzothiophene), 130.5 (benzothiophene), 130.9 (Ar), 131.3 (Ar), 136.3 (Ar), 138.3 (Ar), 

141.0 (benzothiophene), 160.3 (Cbenzothiophene -OH), 190.9 (C=O). 

 

 

(3-hydroxybenzo[b]thiophen-2-yl)(m-tolyl)methanone (PM3) 

Yellow powder, mp 122-124 °C, 76% yield; 1H NMR (400 MHz, CDCl3): δ 2.49 (s, 3H, 

CH3), 7.44-7.48 (m, 2H Ar + 1H benzothiophene), 7.56-7.60 (m, 1H, benzothiophene), 

7.76 (d, J = 8.2 Hz, 1H, benzothiophene), 7.87-7.89 (m, 2H, Ar), 8.09 (d, J = 8.0 Hz, 1H, 

benzothiophene), 13.49 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, CDCl3): δ 21.5 

(CH3), 109.7 (benzothiophene), 123.0 (benzothiophene), 124.0 (benzothiophene), 124.7 

(benzothiophene), 125.6 (Ar), 128.6 (Ar), 128.9 (Ar), 130.1 (benzothiophene), 130.3 

(benzothiophene), 133.4 (Ar), 138.3 (Ar), 138.7 (Ar), 140.8 (benzothiophene), 165.3 

(Cbenzothiophene-OH), 192.1 (C=O). 
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(3-hydroxybenzo[b]thiophen-2-yl)(p-tolyl)methanone (PM4) 

Yellow powder, mp 99-101 °C, 77% yield; 1H NMR (400 MHz, CDCl3): δ 2.49 (s, 3H, 

CH3), 7.35-7.37 (m, 2H, Ar), 7.43-7.47(m, 1H, benzothiophene), 7.55-7.59 (m, 1H, 

benzothiophene), 7.75 (d, J = 8.2 Hz, 1H, benzothiophene), 7.87-7.89 (m, 2H, Ar), 7.99-

8.01 (m, 2H, Ar), 8.09 (d, J = 8.0 Hz, 1H, benzothiophene), 13.6 (br, 1H, OH, D2O exch.). 

13C NMR (101 MHz, CDCl3): δ 21.7 (CH3), 109.5 (benzothiophene), 122.9 

(benzothiophene), 123.9 (benzothiophene), 124.7 (benzothiophene), 128.6 (2 x Ar), 

129.4 (2 x Ar), 130.0 (benzothiophene), 130.3 (benzothiophene), 135.5 (Ar), 140.7 

(benzothiophene), 143.5 (Ar), 165.3 (Cbenzothiophene-OH), 191.4 (C=O). 

 

 

(3-hydroxybenzo[b]thiophen-2-yl)(3-methoxyphenyl)methanone (PM5) 

Yellow powder, mp 100-104 °C, 63% yield; 1H NMR (400 MHz, CDCl3): δ 3.93 (s, 3H, 

OCH3), 7.16-7.19 (m, 1H, Ar), 7.44-7.49 (m, 1H Ar + 1H benzothiophene), 7.56-7.60 (m, 

1H Ar + 1H benzothiophene), 7.66-7.69 (m, 1H, Ar), 7.76 (d, J = 8.2 Hz, 1H, 

benzothiophene), 7.87-7.89 (m, 2H, Ar), 8.09 (d, J = 8.1 Hz, 1H, benzothiophene), 13.45 

(br, 1H, OH, D2O exch.). 13C NMR (101 MHz, CDCl3): δ 55.5 (OCH3), 109.7 

(benzothiophene), 119.2 (Ar), 120.8 (Ar), 123.0 (benzothiophene), 124.0 

(benzothiophene), 124.8 (benzothiophene), 129.8 (Ar), 130.2 (benzothiophene), 130.3 

(benzothiophene), 139.5 (Ar), 140.8 (benzothiophene), 159.8 (Ar), 165.4 (Cbenzothiophene-

OH), 191.6 (C=O). 
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(3-hydroxybenzo[b]thiophen-2-yl)(4-methoxyphenyl)methanone (PM6) 

Yellow powder, mp 181-183 °C, 73% yield; 1H NMR (400 MHz, DMSO-d6): δ 3.88 (s, 

3H, OCH3), 7.13-7.15 (m, 2H, Ar), 7.49-7.53 (m, 1H, benzothiophene), 7.62-7.66 (m, 1H, 

benzothiophene), 7.98-8.01 (m, 2H Ar + 1H benzothiophene), 8.03 (d, J = 8.0 Hz, 1H, 

benzothiophene), 12.76 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, DMSO-d6): δ 56.1 

(OCH3), 111.4 (benzothiophene), 114.6 (2 x Ar), 123.7 (benzothiophene), 123.9 

(benzothiophene), 125.5 (benzothiophene), 130.3 (benzothiophene), 130.7 

(benzothiophene), 130.9 (Ar), 131.3 (2 x Ar), 139.7 (benzothiophene), 160.9 (Ar), 163.5 

(Cbenzothiophene-OH), 189.5 (C=O). 

 

 

(3-fluorophenyl)(3-hydroxybenzo[b]thiophen-2-yl)methanone (PM7) 

Yellow powder, mp 114-118 °C, 82% yield; 1H NMR (400 MHz, CDCl3): δ 7.31-7.36 (m, 

1H, Ar), 7.45-7.49 (m, 1H, benzothiophene), 7.52-7.62 (m, 1H Ar + 1H benzothiophene), 

7.74-7.77 (m, 1H Ar + 1H benzothiophene), 7.88 (d, J = 7.7 Hz, 1H, Ar), 8.09 (d, J = 8.1 

Hz, 1H, benzothiophene), 13.49 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, CDCl3): 

δ 109.4 (benzothiophene), 115.4 (d, JC-F = 23.1 Hz, Ar), 119.5 (d, JC-F = 21.3 Hz, Ar), 123.0 

(benzothiophene), 124.1 (benzothiophene), 124.2 (d, JC-F = 3.2 Hz, Ar), 124.9 

(benzothiophene), 130.2 (benzothiophene), 130.4 (benzothiophene), 130.4 (d, JC-F = 7.8 

Hz, Ar), 140.2 (d, JC-F = 6.8 Hz, Ar), 140.8 (benzothiophene), 162.7 (d, JC-F = 248.5 Hz, Ar), 

165.8 (Cbenzothiophene-OH), 190.2 (C=O). 
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(4-fluorophenyl)(3-hydroxybenzo[b]thiophen-2-yl)methanone (PM8) 

Yellow powder, mp 96-100 °C, 87% yield; 1H NMR (400 MHz, CDCl3): δ 7.12 (t, J = 8.6 

Hz, 2H, Ar), 7.34 (t, J = 7.6 Hz, 1H, benzothiophene), 7.46 (t, J = 7.6 Hz, 1H, 

benzothiophene), 7.63 (d, J = 8.2 Hz, 1H, benzothiophene), 7.95-8.01 (m, 2H Ar + 1H 

benzothiophene), 13.32 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, CDCl3): δ 109.2 

(benzothiophene), 115.9 (d, JC-F = 21.9 Hz, 2 x Ar), 123.0 (benzothiophene), 124.0 

(benzothiophene), 124.8 (benzothiophene), 130.2 (benzothiophene), 130.3 

(benzothiophene), 131.0 (d, JC-F = 9.2 Hz, 2 x Ar), 134.4 (d, JC-F = 3.0 Hz, Ar), 140.6 

(benzothiophene), 165.4 (d, JC-F = 254.7 Hz, Ar), 165.6 (Cbenzothiophene-OH), 190.2 (C=O). 

 

 

(3-chlorophenyl)(3-hydroxybenzo[b]thiophen-2-yl)methanone (PM9) 

Yellow powder, mp 148-158 °C, 89% yield; 1H NMR (400 MHz, CDCl3): δ 7.45-7.52 (m, 

1H Ar + 1H benzothiophene), 7.58-7.62 (m, 1H Ar + 1H benzothiophene), 7.76 (d, J = 

8.2 Hz, 1H, benzothiophene), 7.94-7.96 (m, 1H, Ar), 8.03-8.04 (m, 1H, Ar), 8.09 (d, J = 

8.0 Hz, 1H, benzothiophene), 13.29 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, 

CDCl3): δ 109.4 (benzothiophene), 123.0 (benzothiophene), 124.1 (benzothiophene), 

124.9 (benzothiophene), 126.5 (Ar), 128.5 (Ar), 130.0 (Ar), 130.2 (benzothiophene), 130.5 

(benzothiophene), 132.6 (Ar), 135.0 (Ar), 139.8 (Ar), 140.8 (benzothiophene), 165.7 

(Cbenzothiophene-OH), 190.2 (C=O). 
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(4-chlorophenyl)(3-hydroxybenzo[b]thiophen-2-yl)methanone (PM10) 

Yellow powder, mp 136-138 °C, 88% yield; 1H NMR (400 MHz, CDCl3): δ 7.44-7.48 (m, 

1H, benzothiophene), 7.52-7.55 (m, 2H, Ar), 7.57-7.61 (m, 1H, benzothiophene), 7.75 (d, 

J = 8.2 Hz, 1H, benzothiophene), 8.00-8.04 (m, 2H, Ar), 8.08 (d, J = 8.1 Hz, 1H, 

benzothiophene), 13.40 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, CDCl3): δ 109.3 

(benzothiophene), 123.0 (benzothiophene), 124.1 (benzothiophene), 124.9 

(benzothiophene), 129.1 (2 x Ar), 129.9 (2 x Ar), 130.2 (benzothiophene), 130.4 

(benzothiophene), 136.5 (Ar), 139.1 (Ar), 140.7 (benzothiophene), 165.7 (Cbenzothiophene-

OH), 190.3 (C=O). 

 

 

(2,4-dichlorophenyl)(3-hydroxybenzo[b]thiophen-2-yl)methanone (PM11) 

White powder, mp 138-140 °C, 88% yield; 1H NMR (400 MHz, DMSO-d6): δ 7.44 (t, J = 

7.6 Hz, 1H, benzothiophene), 7.58-7.60 (m, 2H Ar + 1H benzothiophene), 7.78 (s, 1H, 

Ar), 7.94 (d, J = 8.1 Hz, 1H, benzothiophene), 8.06 (d, J = 8.1 Hz, 1H, benzothiophene), 

11.74 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, DMSO-d6): δ 116.5 

(benzothiophene), 124.2 (Ar + benzothiophene), 125.2 (benzothiophene), 128.0 (Ar), 

129.4 (Ar), 130.0 (Ar), 130.1 (benzothiophene), 131.2 (Ar), 132.2 (benzothiophene), 135.1 

(Ar), 139.5 (benzothiophene), 140.0 (benzothiophene), 157.3 (Cbenzothiophene-OH), 186.7 

(C=O). 
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(3-bromophenyl)(3-hydroxybenzo[b]thiophen-2-yl)methanone (PM12) 

Yellow powder, mp 152-158 °C, 90% yield; 1H NMR (400 MHz, CDCl3): δ 7.42-7.49 (m, 

1H Ar + 1H benzothiophene), 7.58-7.62 (m, 1H, benzothiophene), 7.74-7.77 (m, 1H Ar 

+ 1H benzothiophene), 7.99 (d, J = 7.8 Hz, 1H,  Ar), 8.09 (d, J = 8.0 Hz, 1H, 

benzothiophene), 8.18-8.19 (m, 1H, Ar), 13.27 (br, 1H, OH, D2O exch.). 13C NMR (101 

MHz, CDCl3): δ 109.4 (benzothiophene), 123.0 (Ar), 123.1 (benzothiophene), 124.1 

(benzothiophene), 124.9 (benzothiophene), 126.9 (Ar), 130.1 (benzothiophene), 130.3 

(Ar), 130.5 (benzothiophene), 131.4 (Ar), 135.5 (Ar), 140.0 (Ar), 140.8 (benzothiophene), 

165.7 (Cbenzothiophene-OH), 190.1 (C=O). 

 

 

(4-bromophenyl)(3-hydroxybenzo[b]thiophen-2-yl)methanone (PM13) 

Yellow powder, mp 142-147 °C, 74% yield; 1H NMR (400 MHz, CDCl3): δ 7.46 (t, J = 7.6 

Hz, 1H, benzothiophene), 7.59 (t, J = 7.6 Hz, 1H, benzothiophene), 7.70 (d, J = 8.5 Hz, 

2H, Ar), 7.75 (d, J = 8.2 Hz, 1H, benzothiophene), 7.94 (d, J = 8.5 Hz, 2H, Ar), 8.08 (d, J 

= 8.0 Hz, 1H, benzothiophene), 13.39 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, 

CDCl3): δ 109.3 (benzothiophene), 123.0 (benzothiophene), 124.1 (benzothiophene), 

124.9 (benzothiophene), 127.7 (Ar), 130.0 (2 x Ar), 130.2 (benzothiophene), 130.4 

(benzothiophene), 132.0 (2 x Ar), 136.9 (Ar), 140.7 (benzothiophene), 165.7 (Cbenzothiophene-

OH), 190.4 (C=O). 
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4-(3-hydroxybenzo[b]thiophene-2-carbonyl)benzonitrile (PM14) 

Orange powder, mp 192-200 °C, 61% yield; 1H NMR (400 MHz, DMSO-d6): δ 7.48 (t, J 

= 7.6 Hz, 1H, benzothiophene), 7.62 (t, J = 7.6 Hz, 1H, benzothiophene), 7.96-8.04 (m, 

4H Ar + 1H benzothiophene), 8.08 (d, J = 8.1 Hz, 1H, benzothiophene), 11.95 (br, 1H, 

OH, D2O exch.). 13C NMR (101 MHz, DMSO-d6): δ 114.2 (Ar), 114.5 (benzothiophene), 

118.8 (CN), 124.1 (benzothiophene), 124.2 (benzothiophene), 125.4 (benzothiophene), 

129.4 (2 x Ar), 130.2 (benzothiophene), 131.8 (benzothiophene), 132.8 (2 x Ar), 140.0 

(benzothiophene), 143.1 (Ar), 158.3 (Cbenzothiophene-OH), 188.9 (C=O). 

 

 

(3-hydroxybenzo[b]thiophen-2-yl)(4-nitrophenyl)methanone (PM15) 

Orange powder, mp 205-207 °C, 79% yield; 1H NMR (400 MHz, DMSO-d6): δ 7.49 (t, J 

= 7.6 Hz, 1H, benzothiophene), 7.58-7.71 (m, 1H, benzothiophene), 7.99 (d, J = 8.1 Hz, 

1H, benzothiophene), 8.06-8.11 (m, 2H Ar + 1H benzothiophene), 8.38 (d, J = 8.1 Hz, 

2H, Ar), 11.94 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, DMSO-d6): δ 114.5 

(benzothiophene), 123.9 (2 x Ar), 124.1(benzothiophene), 124.2 (benzothiophene), 125.4 

(benzothiophene), 130.1 (2 x Ar), 130.2 (benzothiophene), 131.9 (benzothiophene), 

140.0 (benzothiophene), 144.8 (Ar), 149.6 (Ar-NO2), 158.1 (Cbenzothiophene-OH), 188.5 

(C=O). 
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(3-hydroxybenzo[b]thiophen-2-yl)(pyridin-3-yl)methanone (PM16) 

Orange powder, mp 132-134 °C, 79% yield; 1H NMR (400 MHz, DMSO-d6): δ 7.47-7.51 

(m, 1H, benzothiophene), 7.58-7.64 (m, 1H Pyr + 1H benzothiophene), 7.99 (d, J = 8.1 

Hz, 1H, benzothiophene), 8.10 (d, J = 8.1 Hz, 1H, benzothiophene), 8.21-8.24 (m, 1H, 

Pyr), 8.79-8.80 (m, 1H, Pyr), 9.00-9.01 (m, 1H, Pyr), 11.92 (br, 1H, OH, D2O exch.). 13C 

NMR (101 MHz, DMSO-d6): δ 109.5 (benzothiophene), 123.1 (benzothiophene), 123.8 

(Pyr), 124.2 (benzothiophene), 125.1 (benzothiophene), 130.0 (benzothiophene), 130.7 

(benzothiophene), 136.3 (Pyr), 136.4 (Pyr), 140.8 (benzothiophene), 148.8 (Pyr), 152.4 

(Pyr), 165.9 (Cbenzothiophene-OH), 189.3 (C=O). 

 

 

(3-hydroxybenzo[b]thiophen-2-yl)(pyridin-4-yl)methanone (PM17) 

Orange powder, mp 203-205 °C, 65% yield; 1H NMR (400 MHz, CDCl3): δ 7.46-7.50 (m, 

1H, benzothiophene), 7.60-7.64 (m, 1H, benzothiophene), 7.76 (d, J = 8.2 Hz, 1H, 

benzothiophene), 7.85-7.86 (m, 2H, Pyr), 8.10 (d, J = 8.1 Hz, 1H, benzothiophene), 8.87-

8.89 (m, 1H, Pyr), 13.12 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, CDCl3): δ 109.4 

(benzothiophene), 121.6 (2 x Pyr), 123.1 (benzothiophene), 124.3 (benzothiophene), 

125.1 (benzothiophene), 130.0 (benzothiophene), 130.9 (benzothiophene), 141.0 

(benzothiophene), 144.7 (Pyr), 150.6 (2 x Pyr), 165.4 (Cbenzothiophene-OH), 189.7 (C=O). 
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(3-hydroxybenzo[b]thiophen-2-yl)(thiophen-3-yl)methanone (PM18) 

Yellow powder, mp 114-116 °C, 63% yield; 1H NMR (400 MHz, CDCl3): δ 7.44-7.48 (m, 

1H thiophene + 1H benzothiophene), 7.57-7.61 (m, 1H, benzothiophene), 7.78 (d, J = 8.2 

Hz, 1H, benzothiophene), 7.80-7.81 (m, 1H, thiophene), 8.07 (d, J = 8.0 Hz, 1H, 

benzothiophene), 8.39-8.40 (m, 1H, thiophene), 13.55 (br, 1H, OH, D2O exch.). 13C NMR 

(101 MHz, CDCl3): δ 109.4 (benzothiophene), 123.0 (benzothiophene), 123.9 

(benzothiophene), 124.8 (benzothiophene), 126.6 (thiophene), 127.6 (thiophene), 130.2 

(benzothiophene), 130.4 (benzothiophene), 132.2 (thiophene), 140.2 (thiophene), 141.0 

(benzothiophene), 165.7 (Cbenzothiophene-OH), 184.6 (C=O). 

 

 

[1,1'-biphenyl]-4-yl(3-hydroxybenzo[b]thiophen-2-yl)methanone (PM19) 

Yellow powder, mp 150-154 °C, 89% yield; 1H NMR (400 MHz, CDCl3): δ 7.44-7.54 (m, 

3H Ar + 1H benzothiophene), 7.57-7.61 (m, 1H, benzothiophene), 7.69-7.71 (m, 2H, Ar), 

7.77-7.80 (m, 2H Ar + 1H benzothiophene), 8.11 (d, J = 8.1 Hz, 1H, benzothiophene), 

8.17-8.19 (m, 2H, Ar), 13.61 (br, 1H, OH, D2O exch.). 13C NMR (101 MHz, CDCl3): δ 

109.6 (benzothiophene), 123.0 (benzothiophene), 124.0 (benzothiophene), 124.8 

(benzothiophene), 127.3 (2 x Ar), 127.4 (2 x Ar), 128.3 (Ar), 129.0 (2 x Ar), 129.1 (2 x Ar), 

130.2 (benzothiophene), 130.3 (benzothiophene), 136.9 (Ar), 139.8 (benzothiophene), 

140.8 (Ar), 145.5 (Ar), 165.6 (Cbenzothiophene-OH), 191.14 (C=O). 
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(3-hydroxybenzo[b]thiophen-2-yl)(naphthalen-2-yl)methanone (PM20) 

Yellow powder, mp 126-128 °C, 60% yield; 1H NMR (400 MHz, CDCl3): δ 7.44-7.49 (m, 

1H, benzothiophene), 7.57-7.68 (m, 2H Ar + 1H benzothiophene), 7.78 (d, 2H, J = 8.2 

Hz, 1H, benzothiophene), 7.93-7.95 (m, 1H, Ar), 7.99-8.05 (m, 2H, Ar), 8.09-8.12 (m, 1H 

Ar + 1H benzothiophene), 8.65 (s, 1H, Ar), 13.58 (br, 1H, OH, D2O exch.). 13C NMR (101 

MHz, CDCl3): δ 109.8 (benzothiophene), 123.0 (benzothiophene), 124.0 

(benzothiophene), 124.4 (Ar), 124.8 (benzothiophene), 127.0 (Ar), 127.9 (Ar), 128.5 (Ar), 

128.7 (Ar), 129.5 (Ar), 129.9 (Ar), 130.2 (benzothiophene), 130.4 (benzothiophene), 132.4 

(Ar), 135.3 (Ar), 135.3 (Ar), 139.8, 140.8 (benzothiophene), 145.5 (Ar), 165.6 (Cbenzothiophene-

OH), 191.14 (C=O). 

 

Biological assays 

hMAO-A and hMAO-B inhibition studies 

IC50 values for the inhibition of hMAO-A and hMAO-B were measured according to 

the literature protocol [198,199] with the commercially available recombinant enzymes 

(Sigma-Aldrich) serving as enzyme sources. The enzyme reactions (200 µL) were 

carried out in white 96-well microtiter plates (Eppendorf) in potassium phosphate 

buffer (pH 7.4, 100 mM) and contained kynuramine (50 µM), the test inhibitors 

spanning at least three order of magnitude (0.003-100 µM) and hMAO-A (0.0075 mg 

protein/mL) or hMAO-B (0.015 mg protein/mL). The reactions were initiated with the 

addition of enzyme, incubated for 20 min at 37 °C, and at endpoint were treated with 

2 N NaOH (80 µL) to terminate the enzyme reactions. The fluorescence intensity of 4-

hydroxyquinoline, the product formed by the MAO-catalyzed oxidation of 

kynuramine, was measured (λex = 310 nm; λem = 400 nm). Sigmoidal plots of catalytic 

rate versus logarithm of inhibitor concentration were constructed and the IC50 values 
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were estimated and reported as the mean ± standard deviation (SD) of triplicate 

measurements. 

 

 

Rat cortex synaptosomes 

Male adult Sprague-Dawley rats (200-250 g) were housed in Plexiglass cages (40 cm × 

25 cm × 15 cm), two rats per cage, in climatized colony rooms (22 ± 1 °C; 60% humidity), 

on a 12 h/12 h light/dark cycle (light phase: 07:00–19:00 h), with free access to tap water 

and food, 24 h/day throughout the study, with no fasting periods. Rats were fed a 

standard laboratory diet (3.5% fat, 63% carbohydrate, 14% protein, 19.5% other 

components without caloric value; 3.20 kcal/g). Housing conditions and 

experimentation procedures were strictly in accordance with the European Union 

ethical regulations on the care of animals for scientific research. According to the 

recognized ethical principles of “Replacement, Refinement and Reduction of Animals 

in Research”, specimens were obtained as residual material from vehicle-treated rats 

randomized in our previous experiments approved by Local Ethical Committee 

(University “G. d’Annunzio” of Chieti-Pescara) and Italian Health Ministry (Project N. 

880 definitely approved by Italian Health Ministry on 24th August 2015). 

Synaptosomes were prepared from a pool of frontal and parietal cortex, which are 

more sensitive to oxidative stress, compared to other areas such as occipital and dorsal 

cortex [200]. Briefly, the frontal and parietal cortex was quickly dissected, 

homogenized in 0.32 M saccharose solution and centrifuged, first at 4000×g for 10 min, 

and then at 12000×g for 20 min, to isolate neuronal endings from cell nuclei and glia. 

The purified synaptosomes were suspended at 37 °C, under O2/CO2 95%/5%, pH 7.35–

7.45, in Krebs-Ringer buffer (mM: NaCl 125, KCl 3, MgSO4 1.2, CaCl2 1.2, Tris–HCl 10, 

glucose 10). Then, the synaptosome suspension was divided into fractions (each 

containing 100 mg of tissue in 3 mL medium) that were incubated at 37 °C, under 

agitation for 30 min (incubation period), and treated with a pharmacological stimulus 

as follows: i) Krebs-Ringer buffer (vehicle); ii) vehicle plus oxidant stimulus [LPS 
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10 μg/mL]; iii) vehicle plus oxidant stimulus and I-MAO inhibitors (20 nM-1μM). After 

the incubation period, synaptosome suspension was centrifuged (12000×g for 20 min) 

and the supernatant assayed for LDH, DA and DOPAC determination. 

LDH activity determination 

LDH activity was measured by evaluating the consumption of NADH in 20 mM 

HEPES-K+ (pH 7.2), 0.05% bovine serum albumin, 20 µM NADH and 2 mM pyruvate 

using a microplate reader (excitation 340 nm, emission 460 nm) according to 

manufacturer’s protocol (Sigma-Aldrich). Extracts were tested at 25 µg/mL. Data were 

obtained from triplicate test and expressed as relative variations compared to vehicle-

treated cells [201]. 

 

Neurotransmitter extraction and high performance liquid chromatography (HPLC) 

determination 

Extracellular DA, 5-HT and NE levels were analysed through HPLC apparatus 

consisting of a Jasco (Tokyo, Japan) PU-2080 chromatographic pump and an ESA 

(Chelmsford, MA, USA) Coulochem III coulometric detector, equipped with 

microdialysis cell (ESA-5014b) porous graphite working electrode and solid state 

palladium reference electrode. The analytical conditions for biogenic amine 

identification and quantification were selected as previously reported [202]. Briefly, 

the analytical cell was set at −0.150 V, for detector 1 and at +0.300 V, for detector 2, with 

a range of 100 nA. The chromatograms were monitored at the analytical detector 2. 

Integration was performed by Jasco Borwin Chromatography software, version 1.5. 

The chromatographic separation was performed by isocratic elution on Phenomenex 

Kinetex reversed-phase column (C18, 150 mm×4.6 mm i.d., 2.6 µm). The mobile phase 

was (10:90, v/v) acetonitrile and 75 mM, pH 3.00 phosphate buffer containing 

octanesulfonic acid 1.8 mM, EDTA 30 µM and triethylamine 0.015% v:v. Flow rate was 

0.6 mL/min and the samples were manually injected through a 20 µL loop. 

Neurotransmitter peaks were identified by comparison with the retention time of pure 

standard. Neurotransmitter concentrations in the samples were calculated by linear 
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regression curve (y = bx + m) obtained with standard. Neither internal nor external 

standard were necessary for neurotransmitter quantification and all tests performed 

for method validation yielded results in accordance to limits indicated in official 

guidelines for applicability in laboratory trials. The standard stock solutions of DA, 

and DOPAC at 2 mg/mL were prepared in bi-distilled water containing 0.004% EDTA 

and 0.010% sodium bisulfite. The stock solutions were stored at 4 °C. Work solutions 

(1.25-20.00 ng/mL) were obtained daily progressively diluting stock solutions in 

mobile phase. 

 

Statistical analysis 

GraphPad Prism version 5.01 for Windows (GraphPad Software, San Diego, CA) was 

used as statistical analysis software. Experiments were performed at least in triplicate 

and results are presented as mean ± standard deviation (SD). One-way analysis of 

variance (ANOVA) followed by Newman-Keuls post-hoc test was employed to assess 

significant differences (p<0.05). As regards the animals randomized for each 

experimental group, the number was calculated on the basis of the “Resource 

Equation” N=(E+T)/T [203]. 
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