
FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI

PhD in Mathematics

Model Categories in Deformation Theory

Advisor:
Prof. Marco Manetti

Candidate:
Francesco Meazzini

1350345

Doctoral Committee:
Prof. Corrado De Concini
Dr. Donatella Iacono
Prof. Paolo Stellari

External referee:
Prof. Vladimir Hinich

30 January 2018
Department of Mathematics ‘Guido Castelnuovo’

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/188829888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The material contained in the present PhD Thesis is part of a joint work in progress with Marco
Manetti.

The aim is the formalization of Deformation Theory in an abstract model category, in order to
study several geometric deformation problems from a unified point of view. The main geometric
application is the description of the DG-Lie algebra controlling infinitesimal deformations of a
separated scheme over a field of characteristic 0.



Contents

Introduction iii

Notation vii

List of axioms ix

1 FLATNESS IN MODEL CATEGORIES 1
1.1 Preliminaries on CDGA≤0

K and Kähler differentials . . . . . . . . . . . . . . . . . . 1
1.2 G-cofibrations and G-immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 W-cofibrations and W-immersions . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Formally open immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Flat morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 DEFORMATION THEORY IN MODEL CATEGORIES 26
2.1 Deformations of a morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Homotopy invariance of deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Idempotents and fixed loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 cf -deformations vs strict cf -deformations . . . . . . . . . . . . . . . . . . . . . . . . 35

3 PSEUDO-SCHEMES AND PSEUDO-MODULES 39
3.1 Colimits of diagrams and Reedy model structures . . . . . . . . . . . . . . . . . . . . 39
3.2 Pseudo-schemes over deformation model categories . . . . . . . . . . . . . . . . . . . 46
3.3 Geometric examples: schemes and DG-schemes . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 DG-schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 The model category of pseudo-modules over a Palamodov pseudo-scheme . . . . . . 52

4 THE COTANGENT COMPLEX FOR PALAMODOV PSEUDO-SCHEMES 56
4.1 The affine relative cotangent complex . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 The extended lower-shriek functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 From pseudo-modules to derived categories . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 A geometric application: The global relative cotangent complex . . . . . . . . 70
4.4 The global Quillen adjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Derivations over Reedy posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Cohomology of derivations in terms of the cotangent complex . . . . . . . . . . . . . 80

5 DEFORMATIONS OF SCHEMES 83
5.1 Lifting of idempotents over Reedy posets . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Lifting of factorizations over Reedy posets . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Deformations of cofibrant pseudo-schemes . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 On the smoothness of certain natural transformations . . . . . . . . . . . . . . . . . 94
5.5 Deformations of separated schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Example: deformations of the projective cuspidal cubic in P2
C . . . . . . . . . 105

A Introduction to model categories 111

i



Bibliography 115

ii



Introduction

During the last sixty years Deformation Theory has played a crucial role in Algebraic Geometry.
The functorial approach has been formalized by A. Grothendieck [19], M. Schlessinger [44], M.
Schlessinger and J. Stasheff [45], and M. Artin [1]. The key idea is that infinitesimal deformations
of a geometric object can be better understood through a deformation functor of Artin rings, which
can be thought as infinitesimal thickening of a point. Several examples of deformation problems
appear in various areas of mathematics, many of them are listed in e.g. [39].

The main motivation for this work is the study of infinitesimal deformations of a separated
scheme over a field of characteristic 0. The deformation functor associated with this geometric
problem is defined as follows.

Problem 0.1 (Geometric deformation functor for separated K -schemes, see Definition 5.33). Let

X be a separated scheme over a field K of characteristic 0. The geometric deformation functor

associated to X is the functor of Artin rings

DefX : ArtK → Set

defined by

DefX(A) =

{
morphisms OA → OX of sheaves of flat A-algebras,

and the reduction OA ⊗A K → OX is an isomorphism

}
�∼=

for every A ∈ ArtK . Two infinitesimal deformations OA → OX and O′A → OX are isomorphic if

and only if there exists an isomorphism OA
∼=−→ O′A of sheaves of A-algebras such that the diagram

OA
∼= //

!!

O′A

}}
OX

commutes.

Here we denoted by ArtK the category of local Artin K -algebras (with residue field K ). Since
Spec(A) consists of a point for every A ∈ ArtK , the deformation problem associated to X is
equivalent to the one associated to its structure sheaf. This motivates the definition above.

The modern approach “solves” deformation problems as the one above via differential graded
Lie algebras. The leading principle, which is due to P. Deligne, V. Drinfeld, D. Quillen and M.
Kontsevich [30], can be formulated by saying that “in characteristic zero, every deformation problem
is controlled by a differential graded Lie algebra, with quasi-isomorphic differential graded Lie
algebras giving the same deformation theory”, see [12] and [16]. This approach has been deeply
investigated by M. Manetti, see [33] and [34]. More precisely, every DG-Lie algebra L is associated
with a deformation functor of Artin rings DefL : ArtK → Set defined by Maurer-Cartan solutions
modulo gauge equivalence:

DefL(A) = MC(L⊗K mA)�∼gauge =

{
x ∈ L1 ⊗K mA | dx+

1

2
[x, x] = 0

}
�∼gauge
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where mA denotes the (unique) maximal ideal of A ∈ ArtK . By “solving” the geometric deformation
problem defined above we mean to find a DG-Lie algebra L ∈ DGLAK together with a natural
isomorphism between the deformation functor DefL associated to L and the geometric deformation
functor DefX .

Respectively in [35] and [23], M. Manetti and V. Hinich explicitly adopted the point of view of
the so-called Derived Deformation Theory, which looks at functors F : DGArtK → Set. The choice
of passing to Artin DG-algebras seems natural; in fact in order to lift first order deformations to
second order deformations one needs to study the fiber of the map

F
(
K [x]�(x3)

)
→ F

(
K [x]�(x2)

)
which in turn leads to the homotopy cartesian square

K [x]�(x3)
//

��

K [x]�(x2)

��
K // K [ε1]

where ε1 has degree −1. Clearly, in order to apply F to the diagram above it is not sufficient for F
to be a classical deformation problem (i.e. only defined on ArtK ). In [35] and [23], for every DG-Lie
algebra L the construction L 7→ DefL described above is extended to Artin DG-algebras. This led
to the formalization of the leading principle of Deformation Theory in characteristic 0. In fact, J.
Lurie [32] and J. Pridham [40] proved that the association L 7→ DefL extends to an equivalence of
categories between the homotopy category of DG-Lie algebras and the category of formal moduli
problems, which are functors defined on DGArtK satisfying certain additional conditions. This was
somehow expected after the ideas carried out by V. Drinfeld [13], M. Kontsevich, M. Manetti, V.
Hinich, M. Kapranov and I. Ciocan-Fontanine.

The abstract theory developed in this Thesis will be adapted to the general framework of ex-
tended deformation functors [35] defined over Artin DG-algebras in a future work in collaboration
with M. Manetti. Here the aim is to provide definitions and well-posedness results, together with
concrete geometric applications. Namely, we will focus on the classical deformation problem 0.1.

The strategy to solve the geometric deformation problem associated with DefX can be briefly
described as follows. Given a separated K -scheme X together with an open affine cover {Uh}h∈H ,
we consider the associated nerve defined as I = {α = {i0, . . . , ik} |Uα = Ui0∩· · ·∩Uik 6= ∅}. Roughly
speaking, the idea consists in thinking of OX as a diagram (indexed by I) of commutative differential
graded algebras, see Example 3.32. More precisely, for every α ∈ I we consider the commutative K -
algebra SX,α = OX(Uα). Moreover, whenever α ≤ β in I the open immersion Uβ ↪→ Uα corresponds
to a morphism sαβ : SX,α → SX,β of K -algebras. Thus, with the pair (X, {Uh}h∈H) it is associated
a diagram

SX : I → CDGA≤0
K

α 7→ SX,α

where each SX,α has to be thought as a commutative DG-algebra concentrated in degree 0. The
reason why it is convenient to deal with SX instead of X itself is that the category of diagrams
(CDGA≤0

K )I is endowed with the Reedy model structure, see Remark 3.5. This allows us to consider
a cofibrant replacement R → SX , which in turn induces the DG-Lie algebra of (global) K -linear
derivations Der∗K (R,R), see Definition 4.45. The result below represents the solution for the geo-
metric deformation problem introduced at the beginning.

Theorem 0.2 (DG-Lie algebra controlling DefX , see Theorem 5.46). Let X be a separated scheme

over a field K of characteristic 0. Choose an open affine cover for X and let I be its nerve. Moreover,

consider the associated diagram SX together with a cofibrant replacement R→ SX in (CDGA≤0
K )I .

Then there exists a natural isomorphism

ψ : DefDer∗K (R,R) → DefX

iv



of functors of Artin rings.

Actually, in the literature it was somehow expected that the DG-Lie algebra controlling DefX
should be given by K -linear derivations of a suitable resolvent of the scheme X, see [37], [8], and [14].
Nevertheless, a precise statement (and proof) was still missing. Moreover, from our point of view the
notion of resolvent existing in the literature is not good enough for geometric applications. Therefore
we decided to restrict the concept to the one of cofibrant resolutions. We point out that to prove the
existence of the resolvent V. P. Palamodov constructs in fact a Reedy cofibrant resolution, see [37].

The philosophy that to deal with deformations of X we need to pass to a cofibrant resolution
was already suggested by V. Hinich, see [21]. Moreover, the deformation problem was already solved
by V. Hinich in [22] with a completely different approach.

Since both the tangent space T 1 DefX and an obstruction theory for DefX are easily described
in terms of the cohomology of the DG-Lie algebra Der∗K (R,R), we also prove a result for concrete
computations of it in terms of the cotangent complex of X.

Theorem 0.3 (see Theorem 4.64). Let K be a field of characteristic 0, let X be a separated

finite-dimensional Noetherian scheme over K , and consider the associated SX . Take a cofibrant

replacement R→ SX in (CDGA≤0
K )I . Then for every k ∈ Z

Hk (Der∗K (R,R)) ∼= Hk
(
Hom∗SX (ΩR/K ⊗R SX , SX)

) ∼= ExtkOX (LX ,OX)

where LX denotes the cotangent complex of X. In particular,

T 1 DefX ∼= Ext1
OX (LX ,OX)

and there exists an obstruction theory with values in Ext2
OX (LX ,OX).

The study of the deformation functor DefX has to be intended as the main geometric motivation
for the theory developed in the present Thesis. Our goal is indeed to develop a homotopy-theoretic
formalism of Deformation Theory in abstract model categories, in order to obtain general results
which can be applied in several geometric deformation problems. To this aim, several steps have
been considered.

The notion of flatness is definitely essential for a good Deformation Theory, since it comes out
in all geometric examples we are interested in, see e.g. [38, Section 1.3] for a discussion about the
flatness assumption in the case of deformations of complex spaces. Chapter 1 contains the notion of
flat morphism in a model category M, see Definition 1.50. A map f : A → B is flat if the induced
functor

f∗ = −qA B : A ↓M→ B ↓M

preserves pullback diagrams of trivial fibrations. In order to keep the exposition as clear as possible
we decided to carry on the example M = CDGA≤0

K throughout all the chapter. Hence, explicit
characterizations will be given for every notion defined in abstract model categories, see e.g. The-
orem 1.55. Moreover, several notions of flatness for morphisms in CDGA≤0

K can be found in the
literature (see e.g. [2]); we discuss the relation between them, and we also show that if A → B
is a morphism of commutative DG-algebras concentrated in degree 0 then our notion of flatness
coincides with the usual algebraic one, see Theorem 1.56.

In Chapter 1 we also define formally open immersions in abstract model categories, see Def-
inition 1.39. As explained in Remark 4.38, this notion represents the geometric setting to work
on. We characterize formally open immersions in CDGA≤0

K in terms of Kähler differentials, see
Proposition 1.48.

Chapter 2 is devoted to the development of Deformation Theory in a left-proper model category
M. In particular, in Section 2.1 it is introduced the notion of deformation of a morphism in M, see
Definition 2.3, while in Section 2.2 it is proven a homotopy invariance result, see Theorem 2.16. When
dealing with geometric applications, it is useful to consider strict deformations of a morphism, see
Definition 2.23. This concept is introduced in Section 2.4, where it is proven that under some mild
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assumptions (isomorphism classes of) deformations are in bijection with (isomorphism classes of)
strict deformations, see Theorem 2.28. In particular, this result suggests that cofibrant replacements
are expected to play a key role in Deformation Theory on model categories.

In Chapter 3 we introduce pseudo-schemes and pseudo-modules, see Definition 3.23 and Defini-
tion 3.44 respectively. Examples of pseudo-schemes are schemes and DG-schemes, see Section 3.3.
In the seventies V. P. Palamodov studied deformations of complex spaces through a similar con-
struction, this is the reason why pseudo-schemes over CDGA≤0

K will be called Palamodov pseudo-
schemes. The notion of pseudo-module aims to imitate (complexes of) quasi-coherent sheaves. In
particular the category of pseudo-modules over a pseudo-scheme will be endowed with a model
structure, see Theorem 3.47, so that it makes sense to consider objects in its homotopy category;
this plays the role of the derived category of quasi-coherent sheaves over a separated scheme. The
main (geometric) motivation for the notion of pseudo-scheme (see Definition 3.23) relies on the fact
that the pseudo-module of Kähler differentials over a Palamodov pseudo-scheme is quasi-coherent,
see Theorem 4.35.

In Chapter 4 we develop the theory of the cotangent complex over a Palamodov pseudo-scheme.
In particular, given a pseudo-scheme B over CDGA≤0

K , see Definition 3.23, we consider the model
category ΨMod(B) of pseudo-modules over B; in its homotopy category we construct the cotangent
complex LB of B, see Definition 4.34.

One of the main results of the chapter is the proof that the global cotangent complex LB lies
in the homotopy category of quasi-coherent pseudo-modules over B, see Theorem 4.35. Moreover,
we shall prove in Theorem 4.36 that our definition of the cotangent complex LB is consistent with
the usual one whenever the pseudo-scheme B comes from a finite-dimensional separated Noetherian
K -scheme X.

Chapter 5 presents the geometric application described above. In particular, Theorem 5.49
summarizes the main results of the chapter in a series of natural isomorphisms of deformation
functors. We conclude the chapter with an example in the non-affine case, where all the objects
involved in the theory are described in detail.

Further developments. Other geometric applications are going to be investigated; above all
we plan to deal with the deformation problem associated to a separated DG-scheme in the sense
of [29], see Definition 3.38. To this aim, several preliminary results are already contained in the
Thesis. We expect to solve this deformation problem through the same approach that we adopted
for separated K -schemes.

Acknowledgements. I am deeply in debt to my advisor, professor Marco Manetti, who ac-
companied me during the last four years. I am sincerely grateful to him for the opportunity I was
given to daily learn how to approach mathematical problems, looking for plenty of ways to solve
them under his constant supervision. He definitely taught me everything I know about Deformation
Theory, Model Categories and Derived Algebraic Geometry. I hope the trust he had in my skills
will be successfully rewarded.

My sincere gratitude goes to the referees Vladimir Hinich and Donatella Iacono for their precious
comments after carefully reading the Thesis.

January 28, 2018

vi



Notation

Our general setting will be a fixed left-proper model category M. Recall that a model category is
called left-proper if weak equivalences are preserved under pushouts along cofibrations. Moreover,
for every A ∈ M we shall denote by A ↓M (or equivalently by MA) the model undercategory of
maps A → X in M, and by M ↓A the overcategory of maps X → A, [25, p. 126]. Notice that for
every f : A→ B we have (A ↓M) ↓ B = A ↓ (M ↓ B).

Every morphism f : A→ B in M induces two functors:

f∗ = − ◦ f : MB →MA, (B → X) 7→ (A
f−→ B → X),

f∗ = −qA B : MA →MB , X 7→ X qA B .

According to the definition of the model structure in the undercategories of M, a morphism h in MB

is a weak equivalence (respectively fibration, cofibration) if and only if f∗(h) is a weak equivalence
(respectively fibration, cofibration), see [25, p. 126].

We shall often think of ArtK as a subcategory of CDGA≤0
K where every object is concen-

trated in degree 0. Therefore, for every fixed A ∈ ArtK we will consider the model undercategory
CDGA≤0

A = A ↓ CDGA≤0
K .

For notational simplicity, in the diagrams we adopt the following labels about maps: C=cofibration,
F=fibration, W=weak equivalence, CW=trivial cofibration, FW=trivial fibration. We adopt the
labels y for denoting pullback (Cartesian) squares, and p for pushout (coCartesian) squares.

In all the examples and applications, K denotes a fixed field of characteristic 0.

For the reader convenience we now summarize the categories which we deal with throughout
the Thesis.

• ArtK : the category of local Artin K -algebras (with residue field K ).

• Set: the category of sets.

• Ho(M): the homotopy category of a model category M.

• CDGAK : the category of commutative differential graded K -algebras.

• CDGA≤0
K : the category of commutative differential graded K -algebras concentrated in non-

positive degrees.

• CGA≤0
K : the category of commutative graded K -algebras concentrated in non-positive de-

grees.

• (CDGA≤0
K )I : the category of diagrams over CDGA≤0

K indexed by a Reedy poset I.

• Mod(R): the category of modules over a commutative ring R.

• DGMod(A): the category of differential graded modules over a commutative DG-algebra A.

• DGMod≤0(A): the category of DG-modules concentrated in non-positive degrees over a com-
mutative DG-algebra A.

• DGMod(OX): the category of cochain complexes of sheaves of OX -modules.
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• K(OX): the homotopy category of sheaves of OX -modules.

• D(OX): the derived category of sheaves of OX -modules.

• D(QCoh(X)): the derived category of quasi-coherent sheaves on a separated scheme X.

• Dqc (OX): the derived category of cochain complexes of sheaves of OX -modules with quasi-
coherent cohomology.

• DGAffK : the category of differential graded affine K -schemes.

• DGSchK : the category of differential graded K -schemes.

• ΨSchI(M): the category of pseudo-schemes over M indexed by the Reedy poset I.

• ΨMod(A): the category of pseudo-modules over a pseudo-scheme A ∈ ΨSchI(M).

• ΨMod≤0(A): the category of pseudo-modules concentrated in non-positive degrees over a
pseudo-scheme A ∈ ΨSchI(M).

• QCoh(A): the category of quasi-coherent pseudo-modules over a pseudo-schemeA ∈ ΨSchI(M).

• Ho(QCoh(A)): the homotopy category of quasi-coherent pseudo-modules over a pseudo-
scheme A ∈ ΨSchI(M).

viii



List of axioms

Throughout the Thesis, we shall assume additional properties (called axioms) on a model category
M.

Remark 0.4. The axioms are subjected to the following mandatory conditions:

1. the axiom is valid in CDGA≤0
K ;

2. if the axiom is valid on M, then it is valid on every undercategory MA

3. if the axiom is valid on M, then it is valid on MI , for every Reedy poset I, see Definition 3.1.

In order to keep the exposition as clear as possible, we summarize all the axioms that will be
introduced.

Axiom 0.5 (Cone and cylinder, see Axiom 1.44). A model category M satisfies the Cone and

cylinder Axiom if the following holds. Every morphism of trivial extensions B
i−→ C

f−→ D
p−→ B

extends canonically to a diagram of trivial extensions

B
i // C

f

$$

��

//
y

cyl(f)

γ

��

δ
// D

p // B

B // cone(f)

66

where δ is a trivial fibration, γ is a fibration and the square y is cartesian. If f is a fibration then

also cyl(f)
(γ,δ)−−−→ cone(f)×B D is a fibration.

Axiom 0.6 (Hereditarity of fibrations, see Axiom 1.59). A model category M satisfies the Heredi-

tary of fibrations Axiom if for every pair of morphisms A→ B → C, if A→ C is a fibration, then

so is B → C.

Axiom 0.7 (Flatness of cofibrations, see Axiom 1.62). A model category M satisfies the Flatness

of cofibrations Axiom if every cofibration is flat.

Axiom 0.8 (Idempotent axiom, see Axiom 2.21). Given a deformation model category M, a mor-

phism A→ K in M(K) satisfies the idempotent axiom if the natural map

F (A)→ F (A)×F (K) F (K)

is surjective.

Axiom 0.9 (CW-lifting axiom, see Axiom 2.26). Given a deformation model category M, a mor-

phism A→ K in M(K) satisfies the CW-lifting axiom if the natural map G(A)→ G(K)×G(K)G(K)

is surjective.

Axiom 0.10 (Meet axiom, see Axiom 3.20). A Reedy poset I satisfies the meet axiom if for every

α ∈ I the set {β ∈ I | α ≤ β} is closed under the meet operator.

ix



Chapter 1

FLATNESS IN MODEL

CATEGORIES

The notion of flatness is definitely essential for a good Deformation Theory, since it comes out in
all geometric examples we are interested in. The main goal of the present chapter is to introduce
the notion of flat morphism in an abstract model category M. As we will see in Definition 1.50, a
map f : A→ B is flat if the induced functor

f∗ = −qA B : A ↓M→ B ↓M

preserves pullback diagrams of trivial fibrations. The exposition carries on the example M =
CDGA≤0

K throughout all the chapter, so that for every notion defined in abstract model categories
we shall prove explicit characterizations, see e.g. Theorem 1.55. In the literature (see e.g. [2]) there

exist several notions of flatness for morphisms in CDGA≤0
K ; we discuss the relation between them,

and moreover we prove that if A→ B is a morphism of commutative DG-algebras concentrated in
degree 0 then our notion of flatness coincides with the usual algebraic one, see Theorem 1.56.

In Section 1.3 we also define formally open immersions in abstract model categories, see Defini-
tion 1.39. We will characterize formally open immersions in CDGA≤0

K in terms of Kähler differen-
tials, see Proposition 1.48, explaining why this notion represents a good geometric setting to work
on.

1.1 Preliminaries on CDGA≤0
K and Kähler differentials

Let K be a field of characteristic 0. The category of commutative differential graded K -algebras
concentrated in non-positive degrees will be denoted by CDGA≤0

K . This is endowed with a model
structure where weak equivalences are quasi isomorphisms, fibrations are surjections in negative
degrees, see [6]. In CDGA≤0

K , cofibrations are retracts of semifree extensions, see [4, Theorem 5].
We shall recall the notion of semifree extension in Definition 1.64 and Remark 1.65. Moreover, the
model category CDGA≤0

K is left-proper, see [47]; i.e. pushouts along cofibrations preserve weak
equivalences.

Remark 1.1. If we drop the assumption on the characteristic of the field K then CDGA≤0
K does

not admit a model structure where weak equivalences are quasi-isomorphisms and fibrations are

surjections in negative degrees. Moreover, in positive characteristic we should not expect CDGA≤0
K

to be Quillen equivalent the model category of simplicial commutative K -algebras. Therefore we

shall always assume K to be of characteristic 0, even when if not explicitly written.

The category of unbounded commutative differential graded K -algebras CDGAK is endowed
with a model structure where weak equivalences are quasi isomorphisms and fibrations are surjec-
tions, see [24, Theorem 4.1.1 and Remark 4.2] or [46].
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1. Preliminaries on CDGA≤0
K and Kähler differentials

Given A ∈ CDGA≤0
K we consider the undercategory CDGA≤0

A = A ↓ CDGA≤0
K , which inherits

the same model structure, see [25, p. 126]. Given a commutative differential graded K -algebra B,
we shall denote by DGMod≤0(B) the model category of DG-modules over B concentrated in non-
positive degrees, where weak equivalences are quasi isomorphisms and fibrations are surjections
in negative degrees. Similarly, we denote by DGMod(B) the model category of unbounded DG-
modules over B, where weak equivalences are quasi-isomorphisms and fibrations are surjections.
Notice that given a commutative (unitary) algebra B, the homotopy category with respect to such
a model structure is the standard derived category D(B) = Ho (DGMod(B)).

We begin by introducing Kähler differentials and trivial extensions in CDGA≤0
K , in order to

prove the Quillen adjunction of Theorem 1.3.

Theorem 1.2 (Existence of Kähler differentials, see [47]). Let B ∈ CDGA≤0
A . Then there exists a

DG-module ΩB/A ∈ DGMod≤0(B) together with a closed derivation of degree 0, δ ∈ Z0(Der∗A(B,ΩB/A)),

such that for every other DG-module M ∈ DGMod(B) the natural morphism

− ◦ δ : Hom∗B(ΩB/A,M)→ Der∗A(B,M)

is an isomorphism of differential graded B-modules.

Let B ∈ CDGA≤0
A . Then it is defined a functor

−⊕B : DGMod≤0(B)→ CDGA≤0
A ↓ B

as follows. Consider M ∈ DGMod≤0(B).

1. For every j ∈ Z, define (M ⊕ B)j = M j ⊕ Bj where the direct sum is taken in the category
Mod(B0).

2. For every j ∈ Z, the differential is given by

djM⊕B : (M ⊕B)j → (M ⊕B)j+1

(m, b) 7→ (dMm, dBb)

3. For every j, k ∈ Z, the (graded) commutative product is given by

(M ⊕B)j × (M ⊕B)k −→ (M ⊕B)j+k

((m, b), (m′, b′)) 7→ (bm′ + (−1)j+kb′m, bb′)

4. Since B ∈ CDGA≤0
A , there is a natural morphism A→M ⊕B which endows M ⊕B with a

structure of CDGA≤0
A . Moreover, the morphism M ⊕B → B is the natural projection, which

is clearly a morphism in CDGA≤0
A , so that M ⊕B is a well defined object in CDGA≤0

A ↓ B.

5. The morphisms are induced in the obvious way.

Given M ∈ DGMod≤0(B), the DG-algebra M ⊕B ∈ CDGA≤0
A ↓ B is called a trivial exten-

sion of B.

Theorem 1.3. Given B ∈ CDGA≤0
A , the pair of functors

Ω−/A ⊗− B : CDGA≤0
A ↓ B � DGMod≤0(B) : −⊕B

is a Quillen adjunction. In particular, Ω−/A ⊗− B preserves cofibrations and trivial cofibrations,

and commutes with arbitrary small colimits.

Proof. Given R ∈ CDGA≤0
A ↓ B, and M ∈ DGMod≤0(B), we shall exhibit a binatural bijection

Hom
CDGA

≤0
A ↓B

(R,M ⊕B) ∼= HomDGMod≤0(B)(ΩR/A ⊗R B,M).
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To this aim, it is sufficient to consider the following chain of isomorphisms:

HomDGMod≤0(B)(ΩR/A ⊗R B,M) ∼= HomDGMod≤0(R)(ΩR/A,M) ∼=
∼= DerA(R,M) ∼=
∼= Hom

CDGA
≤0
A ↓B

(R,M ⊕B)

where the first isomorphism follows from the base change, and the second one follows by Theorem 1.2

thinking of M as an R-module and passing to 0-cocycles. Moreover, the last isomorphism is explicitly

given as follows:

Hom
CDGA

≤0
A ↓B

(R,M ⊕B)→ DerA(R,M)

(f, α) 7→ f

where α : R→ B is the fixed morphism of DG-algebras coming with R. Notice that f is a derivation

if and only if (f, α) is a morphism in CDGA≤0
A ↓ B. All the above isomorphisms are functorial

with respect to both R and M .

To conclude the proof, it is now sufficient to show that the right adjoint −⊕B preserves fibrations

and trivial fibrations. This is immediate by construction and by recalling that in both categories

DGMod≤0(B) and CDGA≤0
A ↓ B weak equivalences are quasi-isomorphisms while fibrations are

surjections in negative degrees. Hence Ω−/A ⊗− B is a left Quillen functor, so that it preserves

cofibrations and trivial cofibrations, and commutes with arbitrary small colimits.

We now recall three different notions of flatness for DG-modules due to Avramov and Foxby.

Definition 1.4 (Avramov-Foxby, [2]). Let R be a commutative (unitary) K -algebra. An object

M ∈ DGMod(R) is called:

• DG-flat if the functor − ⊗R M : DGMod(R) → DGMod(R) preserves the class of injective

quasi-isomorphisms,

• π-flat if the functor −⊗RM : DGMod(R)→ DGMod(R) preserves quasi-isomorphisms,

• #-flat if M j is a flat R-module for every j ≤ 0.

Clearly every morphism f : A→ B in CDGA≤0
K endows B with a structure of DG-module over

A. In particular, Definition 1.4 induces several notions of flatness on f whenever A is concentrated
in degree 0.

Definition 1.5. Let f : A → B be a morphism in CDGA≤0
K , and assume that A is concentrated

in degree 0. Consider the functor

f∗ = −⊗A B : CDGA≤0
A → CDGA≤0

B

given by the (graded) tensor product. Then f is called:

• DG-flat if the functor f∗ preserves the class of injective quasi-isomorphisms,

• π-flat if the functor f∗ preserves quasi-isomorphisms,

• #-flat if Bj is a flat A-module for every j ≤ 0.

An object A ∈ CDGA≤0
K is called DG-flat (respectively π-flat, #-flat) if the initial morphism

K → A is DG-flat (respectively π-flat, #-flat). We shall prove in Lemma 1.6 that Definition 1.5 is
consistent with Definition 1.4.

Lemma 1.6. Let f : A → B be a morphism in CDGA≤0
K , and assume that A is concentrated in

degree 0. Then the following conditions are equivalent:

3
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1 B is DG-flat (respectively: π-flat, #-flat) in DGMod≤0(A), see Definition 1.4,

2 f is DG-flat (respectively: π-flat, #-flat) in CDGA≤0
K , see Definition 1.5.

Proof. First notice that the statement is tautological for #-flatness. It is clear that 2 follows from 1

since every map C → D in CDGA≤0
A can be seen as a morphism in DGMod≤0(A). For the converse,

take a morphism M → N in DGMod≤0(A) and apply − ⊕ A : DGMod≤0(A) → CDGA≤0
K ↓ A,

which is a right Quillen functor by Theorem 1.3. It is immediate to check that M → N is a quasi-

isomorphism (respectively, an injective quasi-isomorphism) if and only if M ⊕ A → N ⊕ A is so.

By definition, if A→ B is π-flat (respectively, DG-flat) in the sense of Definition 1.5, applying the

(graded) tensor product −⊗A B we get that the map

(M ⊗A B)⊕B ∼= (M ⊕A)⊗A B −→ (N ⊕A)⊗A B ∼= (N ⊗A B)⊕B

is a quasi-isomorphism (respectively, an injective quasi-isomorphism) in CDGA≤0
K ↓ B. This in

turn implies that the map

M ⊗A B → N ⊗A B

is a quasi-isomorphism (respectively, an injective quasi-isomorphism) in DGMod(B).

Example 1.7. Recall that a commutative DG-algebra A ∈ CDGA≤0
K is called contractible if

it is so as a complex, i.e. its identity morphism is homotopic to the zero map. Any contractible

DG-algebra A ∈ CDGA≤0
K is π-flat.

Throughout Chapter 1 we will introduce several notions of flatness in abstract model categories.
In order to make these notions as clear as possible we shall always consider examples and prove
explicit characterizations in M = CDGA≤0

K , see e.g. Theorem 1.55. We will investigate relations
between them and the ones given in Definition 1.5, see e.g. Theorem 1.56.

The following result shows that π-flatness implies #-flatness for a morphism of commutative
(unitary) K -algebras. Notice that in this case the notion of #-flatness coincide with the usual
algebraic one. We shall see in Theorem 1.56 that the converse holds.

Lemma 1.8. Let f : A → B be a morphism in CDGA≤0
K , and assume that both A and B are

concentrated in degree 0. If the (graded) tensor product

f∗ = −⊗A B : CDGA≤0
A → CDGA≤0

B

preserves quasi-isomorphisms (i.e. f is π-flat), then B is a flat A-module in the usual algebraic

sense (i.e. f is #-flat).

Proof. Take a short exact sequence of A-modules

0→ N
i−→M

p−→ P → 0

and consider the trivial extensions

R = cone(i)⊕A and S = P ⊕A

obtained applying the Quillen functor −⊕ A, see Theorem 1.3. Clearly the projection R → S is a

trivial fibration and the morphism

R⊗A B :

��

· · · // 0

��

// N ⊗A B //

��

M ⊕B

p⊕B
��

// 0

��

// · · ·

S ⊗A B : · · · // 0 // 0 // P ⊕B // 0 // · · ·

4
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is a weak equivalence if and only if

0→ N ⊗A B →M ⊗A B → P ⊗A B → 0

is a short exact sequence of B-modules.

As we will see in Section 1.2.1, it is useful to extend the notion of π-flatness to general morphisms
in CDGA≤0

K . This will lead us to the definition of W-cofibrations in abstract model categories.

Therefore, in the following result we consider morphisms f : A → B in CDGA≤0
K such that f∗

preserves quasi-isomorphisms dropping the assumption that A is concentrated in degree 0.

Lemma 1.9. Let f : A→ B be a morphism in CDGA≤0
K and consider the (graded) tensor product

f∗ : CDGA≤0
A → CDGA≤0

B . Then the following conditions are equivalent:

1 f∗ preserves quasi-isomorphisms,

2 f∗ preserves surjective quasi-isomorphisms (i.e. f∗ preserves trivial fibrations).

Proof. In order to prove the claim above, take a trivial fibration h : P → R in CDGA≤0
A and

assume that condition 1 holds. By definition h is a surjective quasi-isomorphism so that

f∗(h) : P ⊗A B → R⊗A B

is a quasi-isomorphism by hypothesis, and moreover it is a surjection being f∗ a right exact functor.

For the converse assume that condition 2 holds. Take a weak equivalence h : P → R in CDGA≤0
A

and consider a factorization

P
h //

CW
ι

,,

R

Q
FW

π

MM

in CDGA≤0
A . Now, f∗(ι) : P ⊗A B → Q ⊗A B is a trivial cofibration since the class of trivial

cofibrations is closed under pushouts. By hypothesis f∗(π) : Q⊗AB → R⊗AB is a trivial fibration,

so that f∗(h) is a weak equivalence as required.

We conclude the section by recalling the explicit construction of (co)cones for a morphism of
DG-modules.

Definition 1.10 (Cocone of a morphism between DG-modules). Let B ∈ CDGA≤0
K and let

f : M → N be a morphism in DGMod(B). The cocone of f is defined by the following

δj : cocone(f)j = M j ⊕N j−1 → cocone(f)j+1 = M j+1 ⊕N j

(m,n) 7→ (dMm, f(m)− dNn)

for every j ∈ Z. Hence cocone(f) ∈ DGMod(B).

Similarly we can define the cone of a morphism between DG-modules.

Definition 1.11 (Cone of a morphism between DG-modules). Let B ∈ CDGA≤0
K and consider a

morphism ϕ : M → N in DGMod(B). We define the cone of ϕ as

cone(ϕ)j = M j+1 ⊕N j , djcone(ϕ) : cone(ϕ)j → cone(ϕ)j+1

(m,n) 7→
(
−dj+1

M m,ϕj+1(m) + djNn
)

for every j ∈ Z. Hence cone(ϕ) ∈ DGMod(B).
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Remark 1.12. By the distributivity of the tensor product with respect to direct sums, it follows

that tensor products commute with (co)cones.

Remark 1.13. In the setup of Definition 1.11, it is clear that if ϕ : M → N is a morphism between

DG-modules concentrated in non-positive degrees, then cone(ϕ) lies in DGMod≤0(B). This is false

for the cocone, see Definition 1.10. In fact, (cocone(ϕ))
1

does not necessarily vanish even if M

and N are both concentrated in non-positive degrees. More precisely, cocone(ϕ) ∈ DGMod≤0(B) if

and only if M is concentrated in non-positive degrees and N is concentrated in (strictly) negative

degrees.

1.2 G-cofibrations and G-immersions

The goal of this section is to introduce and to study the notions ofW-cofibration andW-immersion.
To this aim, we first define G-cofibrations and G-immersions.

Let M be a category closed under finite colimits; recall that the codiagonal ∇ : B qA B → B of
a morphism f : A→ B is defined by the commutative diagram

A

f

��

f // B

i2
��

Id

��

B

Id //

i1 // B qA B
∇

##
B

where both i1 and i2 are pushouts of f by itself and differ by an automorphism of B qA B. More
generally, for every morphism h : B → C we define the codiagonal ∇ : C qA B → C by extending
the above diagram

A

f

��

f // B

��

h // C

��
Id

��

B

Id //

i1 // B qA B
∇

&&

// B qA C
∇

##
B

h // C

(1.2.1)

Definition 1.14. Let G be a class of morphisms of M such that G is closed under composition and

the isomorphisms are contained in G. A morphism f : A→ B in M is called:

1. a G-cofibration, if for every A→M
g−→ N with g ∈ G, the pushout morphism

M qA B −−→ N qA B

belongs to G;

2. a G-immersion, if it is a G-cofibration and for every morphism h : B → C the codiagonal

∇ : C qA B → C is in G.

Example 1.15. When G is exactly the class of isomorphisms, then every morphism is a G-

cofibration and a morphism A→ B is a G-immersion if and only if the codiagonal BqAB → B is an

isomorphism. In fact, under this assumption the natural map B → BqAB → B is an isomorphism

and for every morphism B → C the double pushout square of (1.2.1) implies that C → C qA B is

an isomorphism too.

6



1. G-cofibrations and G-immersions

For the applications we have in mind, it is convenient to point out the role of G-cofibrations and
G-immersions when M = CDGA≤0

K and G = W is the class of weak equivalences. The following
examples make this notions explicit in terms of (graded) tensor products.

Example 1.16. Let M = CDGA≤0
K and let G = W be the class of weak equivalences. Then a

morphism A→ B in CDGA≤0
K is a W-cofibration if and only if the (graded) tensor product

−⊗A B : CDGA≤0
A → CDGA≤0

B

preserves quasi-isomorphisms. In particular, if A is concentrated in degree 0 we recover the notion

of π-flat morphisms in the sense of [2], see Definition 1.5 and Lemma 1.8. We shall see how W-

cofibrations in CDGA≤0
K are related to the different notions of flatness in model categories, see

Theorem 1.56.

Example 1.17. Let M = CDGA≤0
K and let G = W be the class of weak equivalences. We will

prove (see Corollary 1.22) that a morphism A → B in CDGA≤0
K is a W-immersion if and only if

the following conditions are satisfied

1. the (graded) tensor product −⊗AB : CDGA≤0
A → CDGA≤0

B preserves quasi-isomorphisms,

2. the natural map B ⊗A B → B is a quasi-isomorphism.

Remark 1.18. Since finite colimits are defined by a universal property, they are defined up to

isomorphism: therefore the assumption on the class G are required in order to have that the notion

of G-cofibration makes sense.

Lemma 1.19. In the situation of Definition 1.14, the classes of G-cofibrations and G-immersions

contain the isomorphisms and are closed under composition and pushouts. If G is closed under

retractions, then the same holds for G-cofibrations and G-immersions.

Proof. It is plain that every isomorphism is a G-immersion. Let f : A → B and g : B → C be

G-cofibration; then for every A→M
h−→ N , if h ∈ G then also the morphism M qA B

hB−−→ N qA B
belongs to G, and therefore also the morphism

M qA C = (M qA B)qB C
hC−−→ (N qA B)qB C = N qA C

belongs to G. Let A → B be a G-cofibration and A → C a morphism. For every C → M
h∈G−−−→ N

we have

M qC (C qA B) = M qA B
G−→ N qA B = N qC (C qA B) ,

and then C → C qA B is a G-cofibration.

Thus we have proved that G-cofibrations are stable under composition and pushout; we now

prove that the same properties hold for G-immersions. Let f : A → B and g : B → C be two G-

immersions: since for every morphism h : C → D the codiagonal D qB C → D belongs to G, in

order to prove that the composition gf is a G-immersion it is sufficient to prove that the natural

map D qA C → D qB C belongs to G. The commutative diagram

A
f //

f

��

B

Id

##

g //

i2
��

C

Id

��
B

Id

##

i1 //

hg

��

B qA B
∇

##

B

Id

��

g // C

D

Id

$$

B
Id //

hg

��

B

D

7
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induces a colimit map

D qA B = D qB B qA B
IdD qB∇−−−−−−−→ D qB B = D

which belongs to G because f is a G-immersion. The same diagram induces a colimit map

D qA C = D qB B qA B qB C
IdD qB∇qBIdC−−−−−−−−−−−→ D qB B qB C = D qB C

which belongs to G since g is a G-cofibration.

Assume now that f : A → B is a G-immersion and let g : A → C be any morphism. Then for

every morphism h : C
∐
AB → D the codiagonal map

D qC (C qA B) = D qA B → D

belongs to G and then also C → C qA B is a G-immersion.

Finally, assume that G is closed under retracts and consider a retraction

A //

f

��

C
p //

g

��

A

f

��
B // D

q // B .

Then every morphism A
α−→M gives a commutative diagram

M
Id // M

Id // M

A //

f

��

α

OO

C
p //

g

��

pα

OO

A

f

��

α

OO

B // D
q // B

and then a functorial retraction M qA B →M qC D →M qA B.

If g is a G-cofibration, then f is a G-cofibration, since for every A → M
G−→ N the morphism

M qA B → N qA B is a retract of M qC D
G−→ N qC D.

Similarly, every morphism B
β−→ H gives a commutative diagram

A //

f

��

C //

g

��

A

f

��
B //

β

��

D
q //

βq

��

B

β

��
H

Id // H
Id // H

and then a functorial retraction HqAB → HqCD → HqAB. If g is a G-immersion then also f is a

G-immersion, since for every B → H the codiagonal HqAB → H is a retract of HqCD
G−→ H.

Corollary 1.20. Assume that the class G satisfies the 2 out of 3 axiom. Let A
f−→ B be a G-

immersion and B
g−→ C a G-cofibration. Then g is a G-immersion if and only if gf is a G-immersion.

Proof. We have already seen in the proof of Lemma 1.19 that for every morphism C → D, the

morphisms D
∐
A C → D

∐
B C belongs to G.
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1.2.1 W-cofibrations and W-immersions

Assume now that M is a left-proper model category: we shall denote by C,F ,W the classes of cofi-
brations, fibrations and weak equivalences, respectively. All these classes contain the isomorphisms
and are closed by composition, and then it makes sense to define G-cofibration and G-immersion
for G = C,F ,W, C ∩W,F ∩W, C ∩F . For instance, since (trivial) cofibrations are preserved under
pushouts, we have that every morphism is a C-cofibration and also a (C ∩W)-cofibration.

Here we are only interested in the case G = W, and we shall denote by CofW and ImmW the
classes of W-cofibrations and W-immersions respectively.

It is immediate from definition of left-properness in model categories that every cofibration is a
W-cofibration (C ⊂ CofW). The class CofW of W-cofibrations was considered by Grothendieck in
his personal approach to model categories [17, page 8], and more recently by Batanin and Berger
[3] under the name of h-cofibrations.

Lemma 1.21. In a left-proper model category every cofibration is a W-cofibration. Weak equiva-

lences between W-cofibrant objects are preserved by pushout, i.e. for every commutative diagram

A

g   

f // E

h
��
D

, f, g ∈ CofW , h ∈ W,

and every morphism A→ B the pushout map E qA B → D qA B is a weak equivalence.

Proof. The first part follows immediately from the definition of left-proper model category. For the

second part, consider a factorization A
α−→ P

β−→ B with α ∈ C ⊂ CofW , β ∈ W and then apply the

2 out of 3 axiom to the diagram

E qA P

W
��

W // E qA B

��
D qA P

W // D qA B

to obtain the statement.

Corollary 1.22. Let W be the class of weak equivalences in a left-proper model category. Then:

1. a morphism f : A → B is a W-cofibration, if and only if for every A → M
g−→ N with

g ∈ W ∩ F , the pushout morphism M qA B −−→ N qA B belongs to W;

2. a morphism f : A→ B is aW-immersion if and only if it is aW-cofibration and the codiagonal

∇ : B qA B → B is a weak equivalence.

3. W ∩ CofW ⊂ ImmW , i.e. a weak equivalence is a W-immersion if and only if it is a W-

cofibration.

Proof. The first part follow from the fact that every weak equivalence is the composition of a trivial

cofibration and a trivial fibration, and trivial cofibrations are preserved under pushouts.

For the second part, assume that f : A → B is a W-cofibration and the natural morphism

B = B qA A→ B qA B is a weak equivalence. By Lemma 1.19 the composition A→ B → B qA B
is a W-cofibration and then, by Lemma 1.21, for every morphism B → C the pushout

C = C qB B → C qB (B qA B) = C qA B

is a weak equivalence. The conclusion follows from the 2 out of 3 axiom. Finally it is immediate

from definition that if f : A → B is a W-cofibration and a weak equivalence, then its pushout

B → B qA B is a weak equivalence.

9
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Example 1.23. Let K be a field of characteristic 0. Consider an open immersion between affine K -

schemes ϕ : Spec(B)→ Spec(A). Then the morphism ϕ# : A→ B can be considered as a morphism

between commutative DG-algebras concentrated in degree 0. As we will see in Theorem 1.56, the

functor − ⊗A B preserves quasi-isomorphisms, being ϕ a flat map in the usual algebraic sense.

Moreover, the map of K -algebras B ⊗A B → B induced by ϕ# is an isomorphism (in particular,

ϕ# is a weak equivalence). Therefore, by Corollary 1.22 it follows that for every open immersion

ϕ : Spec(B)→ Spec(A), the induced map of algebras ϕ# : A→ B is a W-immersion in CDGA≤0
K .

Example 1.24. Let f : A → B be a morphism of commutative K -algebras. By Corollary 1.22

and Lemma 1.8 it immediately follows that if f is a W-cofibration in CDGA≤0
K then B is a flat

A-module.

Theorem 1.25. Consider a commutative diagram

R

f

��

W // A

g

��
S

W // B

with f, g W-cofibrations and the horizontal arrows weak equivalences. Then the natural morphism

S qR S → B qA B is a weak equivalence. In particular f is a W-immersion if and only if g is a

W-immersion.

Proof. Since R→ S is a W-cofibration, the natural maps

S qR S → S qR B, S = S qR R→ S qR A,

are weak equivalences. By the universal property of pushout we have a diagram

R

f

��

// A

g

��

��

S //

..

B

S qR A

q
cc

and q is a weak equivalence by the 2 out of 3 axiom. Now, since g : A→ B is a W-cofibration, the

composite map

S qR S → S qR B = (S qR A)qA B → B qA B

is a weak equivalence. The last part follows from Corollary 1.22 and the commutative diagram

S qR S

∇
��

// B qA B

∇
��

S // B

.

Corollary 1.26. Consider a commutative diagram

A
f //

W
��

B

W
��

C
g // D

such that C qA B → D is a W-cofibration. If f is a W-immersion, then g is a W-immersion.

10
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Proof. Since f is a W-immersion, its pushout C → C qA B is a W-immersion and the morphism

B → C qA B is a weak equivalence. By the 2 out of 3 axiom the morphism C qA B → D is a

weak equivalence and therefore a W-immersion by Corollary 1.22. Thus g is composition of W-

immersions.

Corollary 1.27. Consider a commutative diagram

A
f //

��

B

��
C

g //

W
��

D

W
��

E
h // F

such that k : C qA B → D is a W-cofibration. If f and h are W-immersions, then g and k are

W-immersions.

Proof. By stability of W-immersions under pushouts it is not restrictive to assume A = C and

the map B → D a W-cofibration. Thus g is composition of W-cofibrations and then it is a W-

immersion by Theorem 1.25, since h is a W-immersion. The proof that k is W-immersions follows

from Corollary 1.20 applied to the factorization g : C
f∗−→ C qA B

k−→ D.

Example 1.28. Let A be a commutative unitary algebra over a field of characteristic 0, and let

M be a contractible complex of A-modules. Then the inclusion A → A ⊕M of A into the trivial

extension (see Theorem 1.3) is a W-cofibration CDGA≤0
K .

Example 1.29. For every R = ⊕n≤0R
n ∈ CDGA≤0

K and every multiplicative part S ⊂ R0, the

natural morphism R → S−1R = S−1R0 ⊗R0 R is a W-immersion. In fact R0 → S−1R0 is flat,

S−1R0 ⊗R0 S−1R0 = S−1(S−1R0) = S−1R0, and W-immersions are preserved by pushouts.

1.3 Formally open immersions

This section plays a key role in order to define pseudo-schemes, see Definition 3.23. The main
tool we will deal with is the notion of formally open immersion in abstract model categories, see
Definition 1.39. Proposition 1.48 characterizes formally open immersions in the model category
M = CDGA≤0

K in terms of Kähler differentials. This will imply that the pseudo-module of Kähler
differentials over a Palamodov pseudo-scheme is quasi-coherent, see Theorem 4.35, motivating in
fact Definition 3.23.

As usual we work in a left-proper model category M, although the first part of this section
makes sense over any category closed under finite limits and finite colimits.

Every retraction B
i−→ C

p−→ B induces the two dotted morphisms

α1 : C qB C → C and α2 : C qB C → C

11



1. Formally open immersions

through the following commutative diagram

B

i

��

i // C

�� e

��

C

idC

��

��

B
ioo

i

��
C

idC //

// C qB C

α1

##

C qB C

α2

{{

C

e
oo

oo

C

p

��
B

where we defined e = ip : C → C. Notice that the universal property of the coproduct C qB C

implies that pα1 = pα2. Therefore, every retraction B
i−→ C

p−→ B induces a natural morphism
α : C qB C → C ×B C through the following commutative diagram

C qB C α2

##

α1

,,

α

&&
C ×B C //

��

C

p

��
C

p
// B

in M. For instance, in the category of commutative differential graded algebras over a field K , the
morphisms introduced above are defined as

α1(x⊗ y) = xe(y) , α2(x⊗ y) = e(x)y , α(x⊗ y) = (xe(y), e(x)y)

for every x⊗y ∈ C⊗BC. The equality pα1 = pα2 is guaranteed by the relation pe = pip = p : C → B.

Lemma 1.30. In the above setup, the diagram

B //

i

��

C qB C

α

��

∇ // C

p

��
C

∆ // C ×B C // B

is commutative.

Proof. It is straightforward to check the commutativity of the diagram above.

Definition 1.31. Let C be a category closed under finite limits and finite colimits. A retraction

B
i−→ C

p−→ B is called a trivial extension of B if:

1 the pushout of α under the codiagonal is an isomorphism:

C qB C
∇ //

α

��

C

'α∗

��
C ×B C

∇∗ //

q

66

(C ×B C)qCqBC C

, q = α−1
∗ ∇∗ .

2 The diagram

C ×B C ×B C
(Id,q) //

(q,Id)

��

C ×B C

q

��
C ×B C

q // C

is commutative.

12



1. Formally open immersions

3 If π1, π2 : C ×B C → C are the projections, then for every i = 1, 2 the commutative diagram

C ×B C
q //

πi

��

y
C

p

��
C

p // B

is a pullback square.

Notice that the commutativity of the last diagram follows formally from 1 and Lemma 1.30.

Example 1.32. B
Id−→ B

Id−→ B is a trivial extension.

Example 1.33. In the setting of Definition 1.31, let C be the category of rings. If B
i−→ C

p−→ B is

a retraction then C ∼= B ⊕M as a B-module, where M = ker(p), the morphism α is surjective and

ker(α) = M ⊗B M . Thus

(C ×B C)⊗C⊗BC C =
C

∇(ker(α))

and then the pushout of α under ∇ is an isomorphism if and only if M2 = 0. In this case we have

q : C ×B C → C, q(x, y) = x+ y − e(x) = x+ y − e(y),

and the condition 2 and 3 are trivially satisfied.

Example 1.34. In an abelian category every retraction is a trivial extension.

For every trivial extension B
i−→ C

p−→ B and every morphism f : X → B, we define the set of
liftings as L(f, C) = {g : X → C | f = pg}.

Lemma 1.35. In the setting of Definition 1.31, the set L(f, C) carries a group structure with

product

(g, h) 7→ g · h : X
(g,h)−−−−→ C ×B C

q−→ C,

and unit element if : X → C.

Proof. The associativity is clear. Given any g ∈ L(f, C) it is easy to check that g · if = if · g = g.

Finally, define g−1 = π2G, where G is defined by the diagram

X

G

##

g

--

if

��
C ×B C

q //

π1

��

y
C

p

��
C

p // B

By construction g · g−1 = if ; exchanging π1 and π2 in the above construction, we get a morphism

ĝ ∈ L(f, C) such that ĝ · g = if . Now the associativity implies that ĝ = g−1 is the inverse of g.

Definition 1.36. A morphism between trivial extensions of B is a commutative diagram

B
i // C

α

��

// B

B // D
p // B

where both rows are trivial extensions.

13



1. Formally open immersions

For notational simplicity we shall write either B
i−→ C

α−→ D
p−→ B or C

α−→ D the morphism of
trivial extensions over B as in Definition 1.36. It is clear that for every morphism f : X → B the
induced map of liftings L(f, C)→ L(f,D) is a group homomorphism.

From now on we come back into our left-proper model category M.

Definition 1.37. Let M be a left-proper model category. In the setting of Definition 1.36, a

morphism B
i−→ C

α−→ D
p−→ B of trivial extensions of B is called a semitrivial extension if the

map α is a fibration.

Example 1.38. Let M = CDGA≤0
K . Every semitrivial extension of B ∈ CDGA≤0

K is of the form

B →M ⊕B g⊕B−−−→ N ⊕B → B

for some fibration g : M → N in DGMod≤0(B). This can be checked as in Example 1.33.

Definition 1.39. A morphism u : U → V in a left-proper model category is called a formally

open immersion over s : S → U if it is aW-immersion and it has the lifting property with respect

to every diagram

S
s //

��

U

α

��

u // V

β

��~~
B

i // C
f // D

p // B

(1.3.1)

where the bottom row is a semitrivial extension. When S = 0 is the initial object we shall simply

talk about formally open immersion, without any mention to the (unique) morphism 0→ U .

For instance, every trivial cofibration is a formally open immersion.

Example 1.40. In the model category M = CDGA≤0
K , formally open immersions have a precise

characterization in terms of Kähler differentials. We shall prove in Proposition 1.48 that a W-

immersion f : P → R in CDGA≤0
A is a formally open immersion if and only if the induced map

ΩP/A ⊗P R→ ΩR/A

is a trivial cofibration in DGMod≤0(R). In particular, by the fundamental sequence of Kähler

differentials (see Theorem 4.9) it turns out that given a formally open immersion f : P → R in

CDGA≤0
A there exists a short exact sequence

0→ ΩP/A ⊗P R
CW−−→ ΩR/A → ΩR/P → 0

in DGMod≤0(R).

Lemma 1.41. Formally open immersions are stable under composition, pushouts and retracts.

Proof. Since the same is true for W-immersions, the proof becomes completely straightforward.

Keep attention that we have two different kind of pushout: assume S
s−→ U

u−→ V with u a formally

open immersion over S. Then for every factorization s : S → T → U , the morphism u is a formally

open immersion over T ; in particular the pushout U qS T → V qS T is a formally open immersion

over T .

Remark 1.42. Let K be a field of characteristic 0 and assume M = CDGA≤0
K . Then the lifting

property (1.3.1) of u : U → V in Definition 1.39 can be checked only on semitrivial extensions of V .

In order to prove this claim, first notice that Example 1.38 implies that every semitrivial extension

of B is of the form

B →M ⊕B g⊕B−−−→ N ⊕B → B

14



1. Formally open immersions

for some fibration g : M → N in DGMod≤0(B). Moreover, every commutative diagram

S
s //

��

U

α

��

u // V

β

��
B

i // M ⊕B // N ⊕B
p // B

induces in particular a morphism pβ : V → B, and therefore it can be extended to a diagram

S
s //

��

U

��

u // V

��
V //

��

M ⊕ V //

��

N ⊕ V //

��

V

��
B

i // M ⊕B // N ⊕B
p // B

whence the statement.

Corollary 1.43. Consider a commutative diagram

A
f //

W
��

B

W
��

C
g // D

such that C qA B → D is a cofibration. If f is a formally open immersion, then g is a formally

open immersion.

Proof. Since f is a W-cofibration, the morphism B → C qA B is a weak equivalence and then

C qA B → D is a trivial cofibration, hence a formally open immersion. Since f is a formally open

immersion, also C → CqAB is a formally open immersion and g is the composition of two formally

open immersions.

In general we cannot expect that the usual factorization properties hold in the category of trivial
extensions. In some cases it is therefore necessary to add as an axiom the existence of canonical
mapping cylinder and mapping cones, see [15, p. 155].

Axiom 1.44 (cone and cylinder). Every morphism of trivial extensions B
i−→ C

f−→ D
p−→ B extends

canonically to a diagram of trivial extensions

B
i // C

f

$$

��

//
y

cyl(f)

γ

��

δ
// D

p // B

B // cone(f)

66

where δ is a trivial fibration, γ is a fibration and the square y is cartesian. If f is a fibration then

also cyl(f)
(γ,δ)−−−→ cone(f)×B D is a fibration.

Notice that the cone and cylinder axiom holds in the category CDGA≤0
K and extends immedi-

ately to the model category of diagrams over a Reedy poset, see Definition 3.1.
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1. Formally open immersions

Theorem 1.45. Assume that the left-proper model category M satisfies the cone and cylinder

axiom. Then a W-immersion u : U → V is a formally open immersion over s : S → U if and only

it has the lifting property with respect to every diagram

S
s //

��

U

α

��

u // V

β

��~~
B

i // C
f // D

p // B

where the bottom row is a semitrivial extension and either

(E1) f is a trivial fibration, or

(E2) α = ipβu = ipfα.

Proof. Up to a restriction to the undercategory S ↓ M, we can assume S the initial object with-

out loss of generality. Applying the cone and cylinder axiom to the semitrivial extension of dia-

gram (1.3.1), the lifting property (E1) gives a diagram:

U
u //

α

��

V
β

##
φ

��
B

i // C

p

��

//
y

cyl(f)

γ

��

δ // D
p // B

B
j // cone(f)

66

Denoting by (γφ)−1 : V → cone(f) the inverse of γφ in the group L(pβ, cone(f)), by functoriality

(γφ)−1u is the inverse of the unit element γφu = jpα. Therefore, by the lifting property (E2) we

get a commutative diagram

U
u //

pα

��

V
(γφ,ipβ)

''
ψ

��
B

i // C // cyl(f)
δ // cone(f)×B D // B

where by construction δ(φ ·ψ) = β · ipβ = β, γ(φ ·ψ) = jpβ. Thus we have a commutative diagram

U
u //

α

��

V
β

##
φ·ψ
��{{

B
i // C

p

��

//
y

cyl(f)

γ

��

δ // D
p // B

B
j // cone(f)

where the dotted arrow exists in view of the lower pullback square.

Remark 1.46. Notice that the condition (E2) of Theorem 1.45 is equivalent to the lifting property

for a diagram

S

��

s // U

u

��

u // V

β

����

V
pβ

~~
B

i // C
f // D

p // B

with the bottom row a semitrivial extension.
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1. Formally open immersions

Corollary 1.47. Assume that the left-proper model category satisfies the cone and cylinder axiom,

see Axiom 1.44. Let u : U → V be a cofibration such that the codiagonal map ∇ : V qU V → V is a

weak equivalence, then u is a formally open immersion.

Proof. We have already proved that u is a W-immersion, see Corollary 1.22. Therefore we may use

the criterion of Theorem 1.45. The lifting property (E1) is clear since u is a cofibration and f is a

trivial fibration. As regards condition (E2) we need to prove the lifting property in a commutative

diagram

V

γ

��

U
uoo u // V

β

��~~
B

i // C
f // D

p // B

with the lower row a semitrivial extension. Taking the pushout of the upper row we get a commu-

tative diagram

U
u //

u

��

V

��
β

tt

V //

γ

��

V qU V

��{{
B // C

f // D

and the dotted lifting exists since f is a fibration and V → V qU V is a trivial cofibration.

The above results apply in particular to the category CDGA≤0
K , which we are particularly inter-

ested in. The following result is a characterization of formally open immersions in undercategories
of CDGA≤0

K in terms of Kähler differentials, see Theorem 1.3.

Proposition 1.48. Let P
f−→ R be a W-immersion in the category CDGA≤0

A . The following

conditions are equivalent:

1 f is a formally open immersion in CDGA≤0
A ,

2 the induced map ΩP/A ⊗P R→ ΩR/A is a trivial cofibration in DGMod≤0(R),

3 ΩP/A ⊗P R → ΩR/A is a cofibration in DGMod≤0(R) and ΩR/A ⊗P R → ΩR⊗PR/A is a trivial

cofibration in DGMod≤0(R⊗P R).

Proof. By Remark 1.42 it is sufficient to deal only with semitrivial extensions of R. Notice that

every semitrivial extension of R in CDGA≤0
A is of the form

R→M ⊕R g⊕R−−−→ N ⊕R→ R

for some fibration g : M → N in DGMod≤0(R). We first prove that condition 1 is equivalent to

condition 2. Consider a commutative diagram of solid arrows

A //

��

P //

��

R

��
h

yy
R // M ⊕R F // N ⊕R // R

in CDGA≤0
A . By the adjointness of Theorem 1.3 there exists the dotted lifting h : R → M ⊕ R if

and only if there exists the dotted lifting in the diagram

ΩP/A ⊗P R //

��

ΩR/A

h′

xx ��
M

g // N

17



1. Formally open immersions

in DGMod≤0(R). By the arbitrariness of the fibration g, it follows that h′ : ΩR/A →M exists if and

only if the map ΩP/A ⊗P R→ ΩR/A is a trivial cofibration in DGMod≤0(R).

A completely analogous argument shows that the lifting property (E1) of Theorem 1.45 is

equivalent to require that the induced map

ΩP/A ⊗P R→ ΩR/A

is a cofibration. Moreover, by Remark 1.46 the lifting property (E2) of Theorem 1.45 is equivalent

to require the existence of the dotted morphism h : R⊗P R→M ⊕R in the diagram

A //

��

P //

��

R

��

��
R //

{{ ��

R⊗P R

%%
h

yy
R // M ⊕R F // N ⊕R // R

in CDGA≤0
A . Notice that the above diagram can be extended on the bottom by adding the following

rows

R //

��

M ⊕R F //

��

N ⊕R

��

// R

��
R⊗P R //

��

M ⊕ (R⊗P R)
F //

��

N ⊕ (R⊗P R) //

��

R⊗P R

��
R // M ⊕R F // N ⊕R // R

where any vertical composition gives the identity. It follows that the lifting property (E2) of The-

orem 1.45 is equivalent to the existence of the dotted lifting h′ : R ⊗P R → M ⊕ (R ⊗P R) in the

diagram

R //

��

R⊗P R

��
h′

vv
M ⊕ (R⊗P R)

F // N ⊕( R⊗P R)

which in turn by Theorem 1.3 is equivalent to the existence of the dotted lifting h′′ : Ω(R⊗PR)/A →M

in the diagram

ΩR/A ⊗R (R⊗P R) //

��

Ω(R⊗PR)/A

��
h′′

uu
M

g
// N

in DGMod≤0(R⊗P R). By the arbitrariness of the fibration g, it follows that h′′ : Ω(R⊗PR)/A →M

exists if and only if the map

ΩR/A ⊗P R ∼= ΩR/A ⊗R (R⊗P R) −→ Ω(R⊗PR)/A

is a trivial cofibration in DGMod≤0(R⊗P R). Hence, by Theorem 1.45 condition 1 is equivalent to

condition 3.

In particular, by Proposition 1.48 it follows that the morphism of Example 1.29 is a formally
open immersion.

18



1. Flat morphisms

Corollary 1.49. Assume that the left-proper model category M satisfies the cone and cylinder

axiom, see Axiom 1.44. Let

A
f //

��

B

��
C

g //

W
��

D

W
��

E
h // F

be a commutative diagram such that k : C qA B → D is a cofibration. If f is a formally open

immersion and h is a W-immersion, then g and k are formally open immersions.

Proof. According to Corollary 1.27 both g and k are W-immersions and then k is a formally open

immersion by Corollary 1.47. The morphism g is the composition of k and the pushout of the

formally open immersion f .

1.4 Flat morphisms

The aim of this section is to introduce a notion of flatness in model categories. In order to better
understand this abstract definition of flatness, we shall investigate step by step how flat morphisms
A→ B between (unitary) commutativeK -algebras are related to flat morphisms andW-cofibrations
introduced in Definition 1.50 and Section 1.2.1 respectively. Once again the idea is to consider the
morphism A → B above as a morphism in the model category M = CDGA≤0

K of commutative
differential graded algebras concentrated in non-positive degrees.

Recall that a morphism A → B in a model category M is a W-cofibration if and only if the
functor −qAB : MA →MB preserves weak equivalences, see Section 1.2.1. Therefore, in the special
case M = CDGA≤0

K , a morphism A → B is a W-cofibration if and only if the (graded) tensor
product −⊗A B preserves quasi-isomorphisms.

Every morphism f : A→ B in M induces two functors:

f∗ = − ◦ f : MB →MA, (B → X) 7→ (A
f−→ B → X),

f∗ = −qA B : MA →MB , X 7→ X qA B .
According to the definition of the model structure in the undercategories of M, a morphism

h in MB is a weak equivalence (respectively fibration, cofibration) if and only if f∗(h) is a weak
equivalence (respectively fibration, cofibration), see [25, p. 126].

The functor f∗ preserves cofibrations and trivial cofibrations, and f is a W-cofibration if and
only if f∗ preserves weak equivalences. Given a pushout square

A

h

��

f // B

k

��
C

g // C qA B

we have the base change formula

f∗h
∗ = k∗g∗ : MC →MB , (1.4.1)

which is equivalent to the canonical isomorphism D qA B ∼= D qC (C qA B) for every object D in
the category MC .

Definition 1.50. A morphism f : A → B in M is called flat if the functor f∗ preserves pullback

diagrams of trivial fibrations. An object A ∈M is called flat if the morphism from the initial object

to A is flat. We adopt the label [ for denoting flat morphisms.
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1. Flat morphisms

In a more explicit way, a morphism A −→ B in a model category M is flat if every commutative
square

A

��

// E

��
C
FW // D

gives a pullback square:

(C ×D E)qA B

��

// E qA B

��
C qA B

FW // D qA B
or, equivalently, if CqAB −→ DqAB is a trivial fibration and the natural map

(C ×D E)qA B → (C qA B)×DqAB (E qA B)

is an isomorphism.

Remark 1.51. In the choice of the above terminology we have followed [2]. Given C → A
f−→ B,

then the morphism f is flat in the undercategory MC if and only if it is flat in M; in particular a

morphism A→ B is flat if and only if B is a flat object in MA. Clearly, every isomorphism is flat.

Remark 1.52. The above notion of flatness also makes sense in categories of fibrant objects and it

is not invariant under weak equivalences: thus it does not make sense to talk about flat morphisms

in the homotopy category.

As usual we are particularly interested in the case M = CDGA≤0
K . The next results relate

W-cofibrations and flat morphisms. Moreover, Theorem 1.56 shows that a morphism A → B of
commutative K -algebras is flat in the sense of Definition 1.50 if and only if it is flat in the usual
algebraic sense.

Lemma 1.53. Every flat morphism is a W-cofibration.

Proof. Assume A→ B flat, given A→M
W−→ N , consider a factorization A→M

CW−−→ P
FW−−−→M .

Then

M qA B
CW−−→ P qA B = P qM (M qA B)

is a trivial cofibration by model category axioms, while

P qA B
FW−−−→ N qA B

is a trivial fibration by flatness.

If M = CDGA≤0
K , a morphism A → B is flat in the sense of Definition 1.50 if and only if the

(graded) tensor product −⊗A B preserves pullback diagrams of surjective quasi-isomorphisms.

Lemma 1.54. Let A→ B be a morphism in CDGA≤0
K such that the associated functor

−⊗A B : CDGA≤0
A → CDGA≤0

B

preserves injections and trivial fibrations. Then A→ B is flat in the sense of model categories, see

Definition 1.50.

Proof. By hypothesis the functor − ⊗A B preserves the class of trivial fibrations. Then we only

need to show that it commutes with pullbacks of a given trivial fibration f : P
FW−−−→ Q. To this aim,

consider a morphism C → Q and the pullback P ×Q C represented by the commutative diagram

0 // ker(f) //

id

��

P ×Q C //

��

C

��

// 0

0 // ker(f) // P // Q // 0
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1. Flat morphisms

whose rows are exact. Applying −⊗A B we obtain the commutative diagram

0 // ker(f)⊗A B //

id

��

(P ×Q C)⊗A B //

��

C ⊗A B

��

// 0

0 // ker(f)⊗A B // P ⊗A B // C ⊗A B // 0

whose rows are exact by hypothesis. It follows that (P ×Q C)⊗A B is (isomorphic to) the pullback

(P ⊗A B)×(Q⊗AB) (C ⊗A B) as required.

For the proof of the next result it is convenient to recall that in the category of DG-modules
over a commutative DG-algebra there exists an explicit construction for the cone of a morphism,
see Definition 1.11.

Theorem 1.55 (Flatness in CDGA≤0
K ). Let f : A → B be a morphism in CDGA≤0

K . The

following conditions are equivalent:

1 the graded tensor product − ⊗A B : CDGA≤0
A → CDGA≤0

B preserves the classes of injections

and trivial fibrations,

2 f is flat in the sense of model categories, see Definition 1.50.

Proof. We already proved in Lemma 1.54 that condition 2 follows from condition 1. For the converse,

assume that f : A→ B is flat. In particular, by definition f preserves trivial fibrations. We are only

left with the proof that the graded tensor product −⊗AB preserves injections. To this aim, take an

injective morphism ι : N →M in CDGA≤0
A and consider the exact sequence of differential graded

A-modules

0→ N
ι−→M → Q→ 0

where Q ∈ DGMod≤0(A) is the cokernel of ι; here we should think of ι as a map of DG-modules

over A. Now consider the following pullback diagram

cone(idN )⊕A
ϕ //

��

cone(i)⊕A

FW
��

A // Q⊕A

where − ⊕ A denotes the right Quillen functor of Theorem 1.3. Now, by assumption the functor

−⊗A B : CDGA≤0
A → CDGA≤0

B preserves pullback diagrams of trivial fibrations, so that

(cone(idN )⊕A)⊗A B
ϕ //

��

(cone(i)⊕A)⊗A B

FW
��

B // (Q⊕A)⊗A B

is a pullback square. Notice that the map B → (Q ⊕ A) ⊗A B is split injective as a map of DG-

modules over B. Therefore also the morphism

ϕ : (cone(idN )⊕A)⊗A B → (cone(i)⊕A)⊗A B

is injective. Now observe that there are natural isomorphisms

(cone(idN )⊕A)⊗AB ∼= (cone(idN )⊗AB)⊕B and (cone(i)⊕A)⊗AB ∼= (cone(i)⊗AB)⊕B
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1. Flat morphisms

in CDGA≤0
K ↓ B. Moreover, it is immediate to check that a morphism ψ in DGMod(B) is injective

if and only if ψ⊕B is so in CDGA≤0
K ↓ B. In particular, the injectivity of ϕ implies that the map

cone(idN )⊗A B → cone(i)⊗A B

is injective in DGMod≤0(B), whence we obtain the injectivity of ι : N ⊗A B →M ⊗A B thanks to

Remark 1.12.

Theorem 1.56 (Relation between usual algebraic flatness and flatness in CDGA≤0
K ).

Consider a map A → B in CDGA≤0
K , and assume that both A and B are concentrated in degree

0. The following are equivalent.

1 A→ B is a W-cofibration (see Section 1.2.1);

2 A→ B is flat in the usual algebraic sense (i.e. B is a flat A-module);

3 A→ B is flat in the sense of model categories (see Section 1.4).

Proof. The proof is organized in three steps.

• Lemma 1.8 proves that 1 implies 2.

• In order to prove that 2 implies 3, we begin by showing that the (graded) tensor product

− ⊗A B preserves trivial fibrations. Let f : P
FW−−−→ Q be a trivial fibration in CDGA≤0

A . In

particular, f is surjective degreewise so that the induced morphism P ⊗A B → Q ⊗A B is a

fibration. By hypothesis B is concentrated in degree 0, therefore by the Universal coefficient

Theorem for (co)homology there exist short exact sequences

0→ H∗(P )⊗A B → H∗(P ⊗A B)→ TorA1 (H∗(P ), B) [1]→ 0

0→ H∗(Q)⊗A B → H∗(Q⊗A B)→ TorA1 (H∗(Q), B) [1]→ 0

see e.g. [9, Theorem 3.3]. Moreover TorA1 (H∗(P ), B) = TorA1 (H∗(Q), B) = 0, being B a flat

A-module. Therefore there exist natural isomorphisms

H∗(P ⊗A B) ∼= H∗(P )⊗A B → H∗(Q)⊗A B ∼= H∗(Q⊗A B)

showing that the induced morphism P ⊗A B → Q⊗A B is a quasi-isomorphism as required.

Now observe that the functor − ⊗A B preserves injections, being A → B flat by hypothesis.

Thus Lemma 1.54 gives the statement.

• Lemma 1.53 proves that 3 implies 1.

Theorem 1.56 explains why some authors often avoid the name “W-cofibration” simply defining
“flat” morphisms. The next result relates our notion of flatness in model categories with the one of
π-flatness given in [2], see Definition 1.5.

Proposition 1.57. Let f : A→ B be a morphism in CDGA≤0
K and assume that A is concentrated

in degree 0. Then f is flat in the sense of model categories (see Definition 1.50) if and only if Bj

is a flat A-module for every j ≤ 0 (i.e. f is #-flat).
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1. Flat morphisms

Proof. First, assume that f is flat. Take a short exact sequence of A-modules

0→ N
i−→M → P → 0

and consider the trivial extensions

R = cone(i)⊕A and S = P ⊕A

as in Lemma 1.8. Now observe that there exists a pullback diagram

cone(idN )⊕A //

��

cone(i)⊕A

FW
��

A // P ⊕A

where the projection R→ S is a trivial fibration. Moreover, the map B = A⊗AB → (P ⊕A)⊗AB
is split injective. Thus we obtain that

(cone(idN )⊕A)⊗A B → (cone(i)⊕A)⊗A B

is injective. Now observe that there exist isomorphisms

(cone(idN )⊕A)⊗AB ∼= (cone(idN )⊗AB)⊕B and (cone(i)⊗AB)⊕B ∼= (cone(i)⊗AB)⊕B ,

and recall that a morphism ϕ in DGMod≤0(B) is injective if and only if ϕ ⊕ B is injective in

CDGA≤0
K ↓ B. Therefore we obtain the injectivity of the map

cone(idN )⊗A B → cone(i)⊗A B ,

and this is equivalent to the injectivity of N ⊗A Bj → M ⊗A Bj for every j ≤ 0. Conversely, if

every Bj is a flat A-module then the same argument used in Theorem 1.56 proves that f preserves

trivial fibrations, just replacing [9, Theorem 3.1] by [9, Theorem 3.3]. By flatness, the hypothesis of

Lemma 1.54 are satisfied and the statement follows.

Lemma 1.58. The class of flat morphisms is stable under composition, pushouts and retractions.

Proof. Composition: let A
f−→ B

g−→ C be two flat morphisms, then both the functors f∗ : MA →MB

and g∗ : MB → MC preserve pullback diagrams of trivial fibrations. Therefore also (gf)∗ = g∗f∗

preserves pullback diagrams of trivial fibrations.

Pushout: let A
f−→ B, A −→ C be two morphisms with f flat. Then it follows from the base

change formula (1.4.1) that g : C → C qA B is also flat.

Retracts: let C be any category, and denote by C∆1×∆1

the category of commutative squares

in C. It is easy and completely straightforward to see that every retract of a pullback (respectively,

pushout) square in C∆1×∆1

is a pullback (respectively, pushout) square. Consider now a retraction

A //

f

��

C
p //

g

��

A

f

��
B // D

q // B

in M, with g a flat morphism. By the universal property of coproduct, every map A → X gives a

canonical retraction

X qA B → X qC D → X qA B .

Therefore, every commutative square ξ ∈M∆1×∆1

A gives a retraction ξ qA B → ξ qC D → ξ qA B
in the category M∆1×∆1

. If ξ is the pullback square of a trivial fibration, then also ξ qC D is the

pullback of a trivial fibration. Since trivial fibrations and pullback squares are stable under retracts,

it follows that also ξ qA B is the pullback square of a trivial fibration.
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1. Flat morphisms

For the application that we have in mind it is useful to introduce two more axioms on our model
category. We shall prove later that they satisfy our general requests, see Remark 0.4.

Axiom 1.59 (Hereditarity of fibrations). For every pair of morphisms A → B → C, if A → C is

a fibration, then also B → C is a fibration.

Example 1.60. Since fibrations are surjective morphisms in negative degrees, the model category

CDGA≤0
K satisfies Axiom 1.59.

Lemma 1.61. Assume the Axiom 1.59 holds on a model category M. Then:

1. if the initial object is fibrant, then every object is fibrant;

2. if MorM(X,Y ) 6= ∅, then the projection X × Y → X is a fibration.

Proof. The first part is clear; for the second part notice that the set MorM(X,Y ) is the same as

the sections of the projection map.

Axiom 1.62 (Flatness of cofibrations). Every cofibration is flat.

Remark 1.63. By Lemma 1.53, the Axiom 1.62 implies that the model category is left-proper.

In order to show that the model category CDGA≤0
K satisfies Axiom 1.62 (see Proposition 1.66)

we first recall the notion of semifree extension.

Definition 1.64 (Semifree extension). Denote by

−# : CDGA≤0
K → CGA≤0

K

the forgetful functor, where CGA≤0
K is the category of commutative non-positively graded algebras

over K . A morphism f : A→ B in CDGA≤0
K is called semifree extension if there exists a graded

K -vector space M together with an isomorphism

B# ∼= A# ⊗K Sym∗K (M)

in A# ↓ CGA≤0
K , where Sym∗K (M) ∈ CGA≤0

K denotes the graded symmetric power of M .

Remark 1.65. Roughly speaking, the role of the forgetful functor −# : CDGA≤0
K → CGA≤0

K in

Definition 1.64 is to require that a morphism A → B is a polynomial extension when regarded as

a morphism of graded algebras. Every cofibration in CDGA≤0
K is a retract of a semifree extension,

see [4].

Proposition 1.66. In the model category CDGA≤0
K every cofibration is flat.

Proof. By left-properness it immediately follows that every cofibration is a W-cofibration. More-

over, every trivial fibration in CDGA≤0
K is surjective. Therefore, since tensor products preserves

surjections the functor

−⊗A B : CDGA≤0
A → CDGA≤0

B

preserves the class of trivial fibrations for every cofibration A→ B in CDGA≤0
K .

Now recall that cofibrations in CDGA≤0
K are retracts of semifree extensions (see Remark 1.65),

and since flat morphisms are closed under retracts it is not restrictive to assume the cofibration

A→ B to be in fact a semifree extension. By Lemma 1.54 we are only left with the proof that the

functor − ⊗A B preserves the class of injective morphisms, and this is clearly the case being B a

polynomial extension of A.
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1. Flat morphisms

Lemma 1.67. Assume that cofibrations are flat and fibrations satisfy the hereditary property. Then

trivial fibrations between flat objects are preserved by pushouts.

Proof. By assumption the model category M satisfies Axioms 1.59 and Axiom 1.62. Given a diagram

A

[   

[ // E

FW
��
D

together with a morphism A → B, consider a factorization A
C−→ P

FW−−−→ B. Now, since A → P is

flat the morphism E qA P → D qA P is a trivial fibration. Similarly

E qA P
FW−−−→ E qA B, D qA P

FW−−−→ D qA B,

and the statement follows by the hereditary property of fibrations applied to the commutative

diagram

E qA P
FW //

FW
��

E qA B

��
D qA P

FW // D qA B

.
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Chapter 2

DEFORMATION THEORY IN

MODEL CATEGORIES

The aim of this chapter is to develop Deformation Theory in an abstract model category M.
In particular, in Section 2.1 we introduce the notion of deformation of a morphism in M, see
Definition 2.3. Moreover, in Section 2.2 it is proven a homotopy invariance result, see Theorem 2.16.
For the study of the geometric applications we have in mind, it will be useful the notion of strict
deformations of a morphism, see Definition 2.23. Therefore, Section 2.4 is devoted to the study of
the relation between deformations and strict deformations of a morphism in M. In particular, we
shall prove that under some mild assumptions (isomorphism classes of) deformations are in bijection
with (isomorphism classes of) strict deformations, see Theorem 2.28.

Throughout this chapter we shall work in a fixed left-proper model category M. Recall that
a model category is called left-proper if weak equivalences are preserved under pushouts along
cofibrations. In particular, in a left-proper model category every cofibration is a W-cofibration, see
Lemma 1.21. Moreover, weak equivalences between W-cofibrant objects are preserved by pushouts,
i.e. for every commutative diagram

A

g

--

f // E

h
��
D

, f, g ∈ CofW , h ∈ W,

and every morphism A → B the induced morphism E qA B → D qA B is a weak equivalence.
Recall that the label [ denotes flat morphisms, see Section 1.4.

2.1 Deformations of a morphism

In order to define deformations of a morphism in a model category, our first goal is to introduce
small extensions, see Definition 2.2.

Definition 2.1. Let M be a left-proper model category. For every object K ∈ M we denote by

M(K) the full subcategory of M ↓ K whose objects are the morphisms A → K that have the

following property: for every commutative diagram

A

[

--

[ // E

h
��
D

the morphism h is a weak equivalence (respectively, an isomorphism) if and only if the induced

pushout map E qA K → D qA K is a weak equivalence (respectively, an isomorphism).
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2. Deformations of a morphism

Definition 2.2. Let M be a left-proper model category. A small extension in M is a morphism

A→ K in M(K) for some object K ∈M. The class of small extensions is denoted by SExt.

Definition 2.3. Let M be a left-proper model category and take (A
p−→ K) ∈M(K). A deforma-

tion of a morphism K
f−→ X over A

p−→ K is a commutative diagram

A

p

��

fA // XA

��
K

f // X

such that fA is flat and the induced map XA qA K → X is a weak equivalence.

A direct equivalence is given by a commutative diagram

A

gA

��

fA // XA

��
YA //

h

==

X

Two deformations are equivalent if they are equivalent under the equivalence relation generated by

direct equivalences.

Notice that the assumption (A
p−→ K) ∈M(K) implies that the morphism h in Definition 2.3 is

a weak equivalence. In fact, the pushout along p gives a commutative diagram

K

g′A
��

f ′A // XA qA K

��
YA qA K //

h′
88

X

and h′ is a weak equivalence by the 2 out of 3 axiom.
We denote by Deff (A) the quotient class1 of deformations up to equivalence.

Remark 2.4. Given an object K ∈M in a left-proper model category there could be several mor-

phisms A→ K in M(K), so that the notation Deff (A) introduced above may seem not satisfactory.

Nevertheless, this is not going to be the case for the geometric applications we have in mind, where

we shall consider morphisms A→ K in ArtK annihilating the maximal ideal mA.

Remark 2.5. Following a standard terminology in algebraic geometry, a deformation as in the

Definition 2.3 is called small if there exists only one morphism from A to K; otherwise it is called

large.

If every cofibration is flat (Axiom 1.62), we can also consider c-deformations, defined as in
Definition 2.3 by replacing flat morphisms with cofibrations. We denote by cDeff (A) the quotient
class of c-deformations up to equivalence.

Since flat morphisms and cofibrations areW-cofibrations (see Lemma 1.53) according to Lemma 1.21
every morphism A→ B in M(K) induces two maps

Deff (A)→ Deff (B), cDeff (A)→ cDeff (B), XA 7→ XA qA B .

Lemma 2.6. In the above setup, if every cofibration is flat (Axiom 1.62) then the natural morphism

cDeff (A)→ Deff (A) is bijective.

1We shall see that in almost all cases of algebro-geometric interest this class is a set.
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2. Deformations of a morphism

Proof. Replacing every deformationA
[−→ XA with a factorizationA

C−→ X̃A
FW−−−→ XA, by Lemma 1.21

we have X̃A ⊗A K
W−→ XA ⊗A K, and this proves that cDeff (A)→ Deff (A) is surjective. The in-

jectivity is clear since we can always assume X̃A = XA whenever A → XA is a cofibration, and

every direct equivalence of deformations

A

gA

��

fA // XA

��
YA //

W
==

X

lifts to a diagram

A

C
��

C // X̃A
FW // XA

��
ỸA

FW //

W
>>

YA //

W
>>

X .

Definition 2.7. A cf -deformation of a morphism K
f−→ X over a morphism A

p−→ K is a

c-deformation

A

p

��

fA // XA

��
K

f // X

such that the map XA → X is a fibration. Equivalence of cf -deformations is defined in the same

way as for deformations, and the quotient class is denoted by cf Deff (A).

If A→ XA → X is a cf -deformation, then for every factorization A
C−→ YA

FW−−−→ XA, the triple
A→ YA → X is a cf -deformation. In fact, the composite map YA → XA → X is a fibration; since
weak equivalences of W-cofibrant objects are preserved by pushouts, the induced map YA qAK →
XA qA K is a weak equivalence.

If the class of fibrations satisfies the hereditary property (Axiom 1.59), then every morphism
A→ B in the overcategory M ↓ K induces a map

cf Deff (A)→ cf Deff (B), XA 7→ XA qA B .

In fact, we have XA → XAqAB → X and by the hereditary property the morphism XAqAB → X
is a fibration. In particular, for every cf -deformation A→ XA → X, the induced weak equivalence
XA qA K → X is a trivial fibration.

Lemma 2.8. If the class of fibrations satisfies the hereditary property (Axiom 1.59), then the

natural morphism cf Deff (A)→ cDeff (A) is bijective.

Proof. For every c-deformation A
C−→ XA → X there exists a factorization A

C−→ XA
CW−−→ X̂A

F−→ X.

It is not restrictive to assume that X̂A = XA whenever XA → X is already a fibration. By applying

the pushout functor −qA K we get a commutative diagram

A

��

// XA
CW //

��

X̂A

��
F

##
K // XA qA K

CW // X̂A qA K α
// X

and by Axiom 1.59 the map α is a trivial fibration. This proves that cf Deff (A) → cDeff (A) is

surjective.
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2. Deformations of a morphism

The injectivity is clear since every direct equivalence of c-deformations

A

C
��

C // XA

��
YA //

W
==

X

extends to a commutative diagram

A

C
��

C // XA
CW // X̂A

F
��

YA
CW //

W
>>

ŶA //

W
>>

X .

Definition 2.9. We shall call deformation model category every left-proper model category

that satisfies Axiom 1.59 and Axiom 1.62.

Thus in a deformation model category we have cf Deff = cDeff = Deff .

Example 2.10. Recall that CDGA≤0
K is a left-proper model category which clearly satisfies Ax-

iom 1.59. Moreover, it satisfies Axiom 1.62 by Proposition 1.66. Therefore CDGA≤0
K is a deforma-

tion model category in the sense of Definition 2.9.

Lemma 2.11. In a deformation model category consider a commutative diagram

A

}} �� !!
XA

!!

ZA
CWoo W //

��

YA

}}
X

(2.1.1)

of cf -deformations A→ XA → X, A→ YA → X and A→ ZA → X. Then A→ XA qZA YA → X

is a cf -deformation.

Proof. Since the composite map A
C−→ YA

CW−−→ XA qZA YA is a cofibration, and XA qZA YA → X

is a fibration by the hereditary property, we only need to prove that

(XA qZA YA)qA K → X

is a weak equivalence. Since YA → XAqZA YA is a weak equivalence between flat A-objects, looking

at the commutative diagram

YA qA K
W //

FW
��

(XA qZA YA)qA K

vv
X

the statement follows from the 2 out of 3 axiom.
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2. Homotopy invariance of deformations

Proposition 2.12. In a deformation model category two cf -deformations A → XA → X and

A → YA → X are equivalent if and only if there exists a cf -deformation A → ZA → X and a

commutative diagram

A

}} �� !!
XA

CW //

!!

ZA

��

YA
CWoo

}}
X

(2.1.2)

Proof. We need to prove that:

1) the relation ∼ defined by diagram (2.1.2) is an equivalence relation. This follows immediately

from Lemma 2.11.

2) if

A

}}   
XA

W //

!!

YA

~~
X

is a direct equivalence of cf -deformations, then XA ∼ YA. To this end consider a factorization

XA

W

��

C // XA qA YA

C
��

YA
Coo

Id

rr

ZA

FW
��
YA

and by Lemma 1.67, the morphism ZA qA K → YA qA K is a trivial fibration.

Remark 2.13. In the diagram (2.1.2) it is not restrictive to assume that XA qA YA → ZA is a

cofibration: in fact we can always consider a factorization XA qA YA
C−→ QA

FW−−−→ ZA and by

Lemma 1.67 the map QA qA K → ZA qA K is a trivial fibration.

2.2 Homotopy invariance of deformations

This section is devoted to the proof of the homotopy invariance of deformations in a deformation
model category, see Definition 2.9 and Theorem 2.16. The following preliminary result is essentially
contained in [7, 41].

Lemma 2.14 (Pullback of path objects). Let f : A→ B be a fibration in a model category. Then,

for every path object

B
i−→ BI

(p1,p2)−−−−→ B ×B, p1i = p2i = Id, i ∈ W, p = (p1, p2) ∈ F ,
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2. Homotopy invariance of deformations

such that p1, p2 ∈ F , there exists a commutative diagram

A

f

��

CW //

α

%%

AI

β

��

FW // A×B BI

π1

��
A×B BI ×B A

π2

��

π1 //

γ
77

A

f

��
B

i
// BI

p1
// B

where every vertical arrow is a fibration, A×B BI ×B A is the limit of the diagram

A
f−→ B

p1←− BI p2−→ B
f←− A,

A×B BI is the fibered product of f and p1, α = (Id, if, Id) and πi denotes the projection on the i-th

factor.

Proof. Define AI by taking a factorization of α as the composition of a trivial cofibration and a

fibration β : AI → A×B BI ×B A. Now we have a pullback diagram

A×B BI ×B A

γ

��

// A

f

��
A×B BI p2π2

// B

and, since f is a fibration, also γ and the composition γβ : AI → A ×B BI are fibrations. Finally,

the projection A ×B BI → A is a weak equivalence since it is the pullback of the trivial fibration

p1. Hence γβ is a weak equivalence by the 2 out of 3 axiom.

Lemma 2.15. Let M be a deformation model category, see Definition 2.9. Take (A
p−→ K) ∈M(K)

and let

A

p

��

fA // Q

h

��
K

f // X

be a cf -deformation of f , and consider a weak equivalence τ : X → Y . Then for every morphism

k : Q→ X such that τh = τk, kfA = fp, the diagram

A

p

��

fA // Q

k

��
K

f // X

is a c-deformation equivalent to the previous one.

Proof. We have a diagram

X

τ

��
A

fA // Q

h

55

k
))

// QqA K
h′

;;

k′

##

Y

X

τ

??
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2. Homotopy invariance of deformations

and by the 2 out of 3 axiom k′ is a weak equivalence, i.e. the map A→ Q
k−→ X is a c-deformation.

Moreover, τ is an isomorphism and h = k in the homotopy category of MA. Now, since A → Q

is a cofibration, the maps h and k are right homotopic. In other words there exist a path object

X → XI (p1,p2)−−−−→ X ×X together with a morphism φ : Q→ XI such that h = p1φ, k = p2φ. Thus

we have the following commutative diagram in MA

Q
ψ //

φ ##

Id

$$
Q×X XI //

��

Q

h

��
XI

p1
// X .

Applying Lemma 2.14 to the fibration h, we obtain the commutative diagram

QI

β

��

FW // Q×X XI

π1

��
Q×X XI ×X Q

π2

��

π1 //

γ
77

Q

h

��
XI

p1
// X .

Since Q is cofibrant there exists a lifting of ψ:

Q

ψ

))

(Id,φ,η)

99
// QI

β // Q×X XI ×X Q
γ // Q×X XI .

In particular hη = p2φ = k, and the morphism η gives the required equivalence of deformations:

Q

h

��
A

??

��

X

Q

k

??η

OO

Our next result shows the homotopy invariance of deformations. Given morphisms K → X → Y
we shall write DefX and DefY instead of DefK→X and DefK→Y respectively.

Theorem 2.16 (Homotopy invariance of deformations). Let M be a deformation model category,

see Definition 2.9. Then for every A → K in M(K) and every weak equivalence K → X
W−→ Y

between fibrant objects, the natural map

DefX(A)→ DefY (A), (A→ XA → X) 7→ (A→ XA → X → Y ),

is bijective.
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2. Idempotents and fixed loci

Proof. By Ken Brown’s lemma we may assume that τ is a trivial fibration. Recall that we may

replace Def(A) with either cDef(A) or cf Def(A) at any time, being M a deformation model

category, see Lemma 2.6 and Lemma 2.8.

In order to show the surjectivity of cDefX(A) → cDefY (A) observe that if A → YA
h−→ Y is a

c-deformation, then K → YAqAK is a cofibration. Therefore the weak equivalence YAqAK
h′−→ Y

lifts to a weak equivalence YA qA K → X.

Next we prove the injectivity. Possibly taking a factorization K
C−→ Q

FW−−−→ X it is not restrictive

to assume K → X to be a cofibration. Let XA → X, ZA → X be two cf -deformations such that

XA → X → Y , ZA → X → Y are equivalent in DefY (A). Also, it is not restrictive to assume that

they are direct equivalent, i.e. the existence of a commutative diagram

A

C

��

C // XA
k // X

τ

��
ZA

EE

g

<<

h // X
τ // Y

Now g : ZA → X is clearly equivalent to k : XA → X, and g, h : ZA → X are equivalent by

Lemma 2.15.

2.3 Idempotents and fixed loci

In order to study the relation between deformations and strict deformations of a morphism in a
model category (see Section 2.4) we need a preliminary result on the structure of idempotents, see
Proposition 2.20. This essentially relates the notions of idempotent and fixed locus of a morphism,
see Definition 2.17 and Definition 2.18 respectively.

Definition 2.17. An idempotent in a category C is a morphism e : Z → Z such that e ◦ e = e.

We now introduce the notion of fixed locus of a morphism in a complete category. It is defined
simply as an equalizer. Proposition 2.20 shows how this notion is related to idempotents.

Definition 2.18 (Fixed locus of a morphism). Let C be a complete category, and let g : Z → Z

be a morphism in C. The fixed locus of g is defined by the limit of the diagram

Z

idZ
((

g
66 Z

and it is denoted by Fg
ι−→ Z.

Example 2.19. Let g : Z → Z be a morphism in Set. Then the fixed locus of g is given by

Fg = {z ∈ Z | g(z) = z} ι−→ Z

where ι : Fg → Z is the natural inclusion. To prove the claim above, consider a map of sets f : C → Z

such that g ◦ f = f : C → Z. In other terms, g(f(c)) = f(c) for every c ∈ C and this proves that

the image of C under f is contained in Fg. Therefore there exists the inclusion h : C → Fg, which

is the unique morphism such that the diagram

C
f

��
h

��
Fg ι

// Z
idZ
((

g
66 Z
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2. Idempotents and fixed loci

commutes in Set. This proves that ι : Fg → Z satisfies the required universal property.

Proposition 2.20 (Structure of idempotents). Let C be a complete and cocomplete category and

let e : Z → Z be an idempotent in C. Then the following holds.

1. There exists a retraction

Fe
ι−→ Z

p−→ Fe

such that ιp = e, where Fe
ι−→ Z is the fixed locus of e, see Definition 2.18.

2. If there exists a retraction

X
ι−→ Z

p−→ X

such that ιp = e and pι = idX , then X
ι−→ Z is the fixed locus of e.

3. The fixed locus of e commutes with pushouts; i.e. for every span Z ← A→ B in C there exists

a (unique) natural isomorphism

Fe qA B ∼= FeqAB

in C.

Proof. We begin by showing that (1) holds. Consider the fixed locus Fe
ι−→ Z of e. By the universal

property it immediately follows that ι is a monomorphism in C. Again by the universal property

it follows the existence of a (unique) morphism p : Z → Fe fitting the following diagram of solid

arrows

Z

e
  

p

��

Z
id
((

e
66 Z

Fe

ι

>>

in C, so that ιp = e. Moreover, by the following chain of equalities

ι(pι) = eι = ι = ι(idFe)

it follows that pι = e, being ι a monomorphism. As a converse, we now prove that (2) holds. For

every morphism T
τ−→ Z such that eτ = τ , consider a diagram of solid arrows

T

τ
  

p

��

Z

idZ
((

e
66 Z

X

ι

>>

where we have a (unique) dotted morphism p = pτ : T → X satisfying ιp = ιpτ = eτ = τ , so

that X
ι−→ Z satisfies the universal property of the limit as required. To conclude, it remains to be

shown that (3) holds. For simplicity of exposition we denote by e = eqA B : Z = Z qA B → Z the

idempotent obtained by the pushout. By (1) it follows the existence of a retraction

Fe
ι−→ Z

p−→ Fe

such that ιp = e, where Fe
ι−→ Z is the fixed locus of e. Applying the functor − qA B we obtain a

retraction

Fe = Fe qA B
ι−→ Z

p−→ Fe

and by (2) it follows that ι : Fe → Z is the fixed locus of e as required.
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The next goal is to introduce an axiom for a morphism in a deformation model category M,
see Definition 2.9. To this aim, we first introduce the general notion of trivial idempotents. Let
(C,W) be a category with weak equivalences (every model category is in particular a category
with weak equivalences). Given an object X ∈ C, an idempotent e : X → X in W is called trivial
idempotent. Given a deformation model category M together with a small extension A → K in
M(K), see Definition 2.2, we define

F (A) =

{
cofibrations PA → QA in MA such that A→ PA is flat,
together with a trivial idempotent e : QA → QA in MPA

}
�∼=

F (A) = {cofibrations PA → QA in MA such that A→ PA is flat}�∼=.

We shall denote by µA : F (A)→ F (A) the map which simply forgets the trivial idempotent. Simi-
larly, we can define

F (K) =

{
cofibrations PK → QK in MK such that K → PK is flat,
together with a trivial idempotent e : QK → QK in MPK

}
�∼=

F (K) = {cofibrations PK → QK in MK such that K → PK is flat}�∼=.

We shall denote by µK : F (K)→ F (K) the map which simply forgets the trivial idempotent. Clearly,
there exist morphisms F (A)→ F (K) and F (A)→ F (K) induced by the functor −qA K : MA →
MK .

Axiom 2.21 (Idempotent axiom). Given a deformation model category M, a morphism A → K

in M(K) satisfies the idempotent axiom if the natural map

F (A)→ F (A)×F (K) F (K)

is surjective.

Example 2.22. We shall prove later that in the special case M = CDGA≤0
K , every surjective

morphism A→ B in ArtK satisfies Axiom 2.21, see Corollary 5.29.

2.4 cf-deformations vs strict cf-deformations

The main result of this section is Theorem 2.28, which relates cf -deformations of a morphism in a
model category with strict cf -deformations.

Definition 2.23. Let M be a left-proper model category and take (A
p−→ K) ∈ M(K). A strict

deformation of a morphism K
f−→ X over A

p−→ K is a commutative diagram

A
fA //

p

��

XA

��
K

f // X

such that fA is flat (see Definition 1.50) and the induced map XA qA K → X is an isomorphism.

We shall say that two strict deformations A → XA → X and A → YA → X are isomorphic if
there exists a commutative diagram

A
fA //

gA

��

XA

��
YA //

h

==

X

and we denote by Df (A) the set of strict deformations of f over A→ K modulo isomorphisms.
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2. cf -deformations vs strict cf -deformations

Remark 2.24. Notice that the assumption (A
p−→ K) ∈ M(K) implies that the dotted morphism

above h : YA → XA is an isomorphism, see Definition 2.1. Hence Df (A) is a well defined set.

Following the previous sections we say that A→ XA → X in Df (A) is a strict cf -deformation if
A→ XA is a cofibration and XA → X is a fibration. We shall denote by cf Df (A) the set of strict
cf -deformations of f over A modulo isomorphisms.

Given (A → K) ∈ M(K) and a morphism K
f−→ X, there exists an obvious map of classes

ηA : cf Df (A)→ cf Deff (A) taking A→ XA → X to itself.

Proposition 2.25. Let M be a deformation model category, and consider (A → K) ∈ M(K)

together with a morphism K
f−→ X. Then the map ηA : cf Df (A) → cf Deff (A) defined above is

injective.

Proof. Consider A → XA → X and A → YA → X in cf Df (A). By Proposition 2.12, we need to

show that if there exists A→ ZA → X in cf Deff (A) together with a commutative diagram

A

��

 ��
XA

ι //

F --

ZA

ϕ F
��

YA
σoo

ψ
FqqX

with σ and ι trivial cofibrations, then A → XA → X is isomorphic to A → YA → X. To this aim,

notice that the diagram of solid arrows

YA
id //

σ

��

YA

ψ

��
ZA

ϕ //

π

==

X

admits the dotted lifting π : ZA → YA. Therefore, the diagram

A

�� ��
XA

π◦ι //

F --

YA

ψ
FqqX

commutes, and the reduction πι : XAqAK → YAqAK is an isomorphism. To conclude, recall that

(A→ K) ∈M(K) so that π ◦ ι is an isomorphism and the statement follows.

Given a deformation model category M together with a small extension A → K in M(K), see
Definition 2.2, we define

G(A) = {trivial cofibrations PA → QA in MA such that A→ PA is flat}�∼=.

G(A) = {flat morphisms A→ PA in M}�∼=.

We shall denote by λA : G(A) → G(A) the map which simply forgets the trivial cofibration. Simi-
larly, we can define

G(K) = {trivial cofibrations PK → QK in MK such that K → PK is flat}�∼=.
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2. cf -deformations vs strict cf -deformations

G(K) = {flat morphisms K → PK in M}�∼=.

We shall denote by λK : G(K)→ G(K) the map which simply forgets the trivial cofibration. Clearly,
there exist morphisms G(A)→ G(K) and G(A)→ G(K) induced by the functor −qA K : MA →
MK .

Axiom 2.26 (CW-lifting axiom). Given a deformation model category M, a morphism A→ K in

M(K) satisfies the CW-lifting axiom if the natural map G(A)→ G(K)×G(K) G(K) is surjective.

Example 2.27. We shall prove later (see Remark 5.17) that in the special case M = CDGA≤0
K ,

every surjective morphism A→ B in ArtK satisfies Axiom 2.26.

Theorem 2.28. Let M be a deformation model category, and consider a morphism A → K in

M(K) satisfying Axiom 2.21 and Axiom 2.26. Given a cofibration K
f−→ X in M, the map

ηA : cf Df (A)→ cf Deff (A)

is bijective.

Proof. The injectivity is proven in Proposition 2.25. Given a cf -deformation XA → XAqAK
π−→ X

in cf Deff (A), consider the commutative diagram

K
C

��

C

��
XA qA K C //

//

(XA qA K)qK X

ϕ

��

XCoo

idX
ooX

in M, and take a factorization of the natural map ϕ : (XA qA K) qK X → X as a cofibration

followed by a trivial fibration:

(XA qA K)qK X
C−→ Z

p−→ X.

By the 2 out of 3 axiom we obtain the following commutative diagram of solid arrows

XA

��

CW // ZA

��
XA qA K CW //

π
//

Z

pFW
��

X
ι

CW
oo

idX
ooX

in M, where by Axiom 2.26 there exists a trivial cofibration XA → ZA lifting XA qA K → Z.

Now observe that e = ιp : Z → Z is a trivial idempotent, whose fixed locus (see Definition 2.18)

coincides with X by Proposition 2.20. By hypothesis, the morphism A → K satisfies Axiom 2.21

so that there exists a trivial idempotent ẽ : ZA → ZA lifting e. Now consider the fixed locus X ′A =

lim

 ZA

id **

ẽ

44 ZA

 of ẽ together with the natural morphism X ′A
ι̃−→ ZA, and observe that its

reduction X ′A qA K → ZA qA K is ι : X → Z by Proposition 2.20. To conclude, observe that since
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2. cf -deformations vs strict cf -deformations

A→ K belongs to M(K) we obtain the following commutative diagram

ZA

��

X ′AWoo

��
Z

��

X
ι

CW
oo

idXooX

proving that X ′A → X
id−→ X is a cf -deformation equivalent to ZA → Z → X, and therefore to

XA → XA qA K → X.
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Chapter 3

PSEUDO-SCHEMES AND

PSEUDO-MODULES

In this chapter we shall introduce pseudo-schemes and pseudo-modules, see Definition 3.23 and
Definition 3.44 respectively. As we will see in Section 3.3, pseudo-schemes aim to be an abstract
generalization of schemes and DG-schemes in model categories. Concerning pseudo-modules, the
goal is to give a notion of (complexes of) quasi-coherent sheaves on pseudo-schemes. In particular
the category of pseudo-modules over a pseudo-scheme will be endowed with a model structure, see
Theorem 3.47, so that it makes sense to consider objects in its homotopy category; this plays the
role of the derived category of quasi-coherent sheaves over a separated scheme.

Section 3.1 should be thought as an introductory part for the present chapter.

3.1 Colimits of diagrams and Reedy model structures

As outlined above, the aim of this section is to prove some preliminary result which will be useful
later on. In particular we shall recall the Reedy model structure on diagrams over a model category,
see Remark 3.5. Moreover, we point out some technical issues that arise when dealing with colimits
in undercategories, see Remark 3.14.

Definition 3.1 (Reedy poset). A partially ordered set I is called a Reedy poset if there exists a

strictly monotone map deg : I → N, i.e. deg(α) < deg(β) whenever α < β.

Example 3.2. For every set S, the family I = P0(S) of finite subsets of S is a Reedy poset, where

α ≤ β if and only if α ⊆ β while the degree function on α ∈ P0(S) is defined as the cardinality of

α.

Remark 3.3. Every Reedy poset is Artinian (i.e. every descending chain is stationary) but the

converse is false in general. For instance, if S is an infinite set, then the poset P0(S) ∪ {S} is

Artinian but not Reedy.

Definition 3.4. Let I and J be Reedy posets. A map of sets ϕ : I → J is called a morphism of

Reedy posets if it commutes with the Reedy structure, i.e. ϕ satisfies the following condition

degJ(ϕ(α)) < degJ(ϕ(β)) whenever degI(α) < degI(β) .

Let M be a model category. Following the notation of the previous chapters, for every A ∈M we
shall denote by A↓M the model undercategory of maps A→ X in M, and by M↓A the overcategory
of maps X → A [25, p. 126]. Notice that for every f : A→ B we have (A ↓M) ↓ f = f ↓ (M ↓ B).

Remark 3.5 (Reedy model structure). Let I be a Reedy poset. Since I is a direct Reedy category,

for every model category M the category of functors MI naturally inherits a model structure, [25,

Theorem 15.3.4], where a morphism A→ B in MI is
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3. Colimits of diagrams and Reedy model structures

1. a (Reedy) weak equivalence if and only if the morphism Aα → Bα is a weak equivalence in

M for every α ∈ I,

2. a (Reedy) fibration if and only if the morphism Aα → Bα is a fibration in M for every α ∈ I,

3. a (Reedy) cofibration if and only if the natural morphism

colim
γ<α

Bγ qcolim
γ<α

(Aγ) Aα → Bα

is a cofibration in M for every α ∈ I.

The Reedy model structure commutes with undercategories and overgategories. In other terms:

(A ↓M)I = c(A) ↓MI , (M ↓ A)I = MI ↓ c(A),

where c : M→MI denotes the constant diagram.

Remark 3.6. In particular, an object A ∈MI is Reedy cofibrant if and only if the natural morphism

colim
γ<α

Aγ → Aα

is a cofibration in M for every α ∈ I. Moreover, a morphism A → B in MI is a Reedy trivial

cofibration if and only if the natural morphism

colim
γ<α

Bγ qcolim
γ<α

(Aγ) Aα → Bα

is a trivial cofibration in M for every α ∈ I, see [25, Theorem 15.3.15].

Remark 3.7. Let I be a Reedy poset and let M be a left-proper model category (i.e. weak equiv-

alences are stable under pushouts along cofibrations). Then the model category of diagrams MI is

left-proper. To prove the claim, consider a commutative diagram

A //

h

��

C
g //

��

D

��
B // B qA C

f // B qA D

in MI , where h is a cofibration and g is a weak equivalence. Recall that colimits in MI are taken

pointwise, so that for every α ∈ I the map

fα : (B qA C)α ∼= Bα qAα Cα −→ Bα qAα Dα
∼= (B qA D)α

is the pushout of gα along hα. Now notice that every Reedy cofibration is pointwise a cofibration

in M; therefore for every α ∈ I the map fα is a weak equivalence in M by left-properness, whence

the statement.

Definition 3.8 (Lower set). A subset H ⊆ I is called a lower set (or initial segment) if for

every α ∈ H, then {γ ∈ I | γ < α} ⊆ H.

The following is a preliminary result we need in order to prove Lemma 3.10, where we will prove
the same result dropping the assumption on the cardinality |H \K|.

Lemma 3.9. Let I be a Reedy poset and let A ∈MI be a Reedy cofibrant object. Then the natural

morphism

colim
γ∈K

Aγ → colim
γ∈H

Aγ

is a cofibration in M for every pair of lower sets K ⊆ H in I such that the cardinality |H \K| is

finite.
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3. Colimits of diagrams and Reedy model structures

Proof. Assume for the moment that |H \K| = 1, and let h ∈ H \K. Then the following

colim
γ<h

Aγ //

��

colim
γ∈K

Aγ

��
Ah // colim

γ∈H
Aγ

is a pushout square in M, so that the vertical morphism on the left hand side is a cofibration by

hypothesis and the other vertical morphism is therefore a cofibration too.

If |H \K| = n ≥ 2 then there exist n+ 1 lower sets {Ym}m∈{0,...,n} such that

1. K = Y0 ⊆ Y1 ⊆ · · · ⊆ Ym = H,

2. |Ym \ Ym−1| = 1 for every m ∈ {1, . . . , n}.

Now observe that the morphism colim
γ∈K

Aγ → colim
γ∈H

Aγ is precisely the composition

colim
γ∈K

Aγ = colim
γ∈Y0

Aγ → colim
γ∈Y1

Aγ → · · · → colim
γ∈Ym

Aγ = colim
γ∈H

Aγ

in which every morphism is a cofibration. The statement follows.

Lemma 3.10. Let I be a Reedy poset and let A ∈MI be a Reedy cofibrant object. Then the natural

morphism

colim
γ∈K

Aγ → colim
γ∈H

Aγ

is a cofibration in M for every pair of lower sets K ⊆ H in I.

Proof. We shall prove that the morphism

colim
γ∈K

Aγ → colim
γ∈H

Aγ

satisfies the left lifting property with respect to the class of trivial fibrations. Let p : U → V be a

trivial fibration and consider a commutative square

colim
K

A
g //

��

U

p

��
colim
H

A // V

in M. Define F to be the set of pairs (Y, f) such that

• Y is a lower set,

• K ⊆ Y ⊆ H,

• the diagram

colim
K

A
g //

��

U

p

��

colim
Y

A

f

88

��
colim
H

A // V

commutes in M.
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3. Colimits of diagrams and Reedy model structures

Clearly F 6= ∅ since (K, g) ∈ F . Moreover, there is a natural partial order relation on F , where

(Y1, f1) ≤ (Y2, f2) if and only if the diagram

colim
Y1

A
f1 //

��

U

colim
Y2

A

f2

88

commutes in M. Now, let C = {(Yt, ft)}t∈T be a chain in F and define Ỹ =
⋃
t∈T Yt ⊆ H. By the

universal property of colimỸ A there exists a morphism f̃ : colimỸ A → U such that (Ỹ , f̃) ∈ F .

Hence, Zorn’s Lemma ensures the existence of a maximal element (Y , f) ∈ F . To conclude the

proof it is sufficient to show that Y = H. By contradiction, suppose H \Y 6= ∅. Then there exists a

minimal element h ∈ H \ Y , so that Y ∪ {h} is a lower set. Lemma 3.9 implies that the morphism

colim
Y

A→ colim
Y ∪{h}

A

is a cofibration; therefore there exists a morphism f ′ : colimY ∪{h}A→ U such that the diagram

colim
Y

A
f //

��

U

p

��

colim
Y ∪{h}

A

f ′

88

��
colim
H

A // V

commutes in M. In particular, (Y ∪ {h}, f ′) ∈ F and (Y , f) ≤ (Y ∪ {h}, f ′). By maximality we

obtain Y = Y ∪ {h}, whence h ∈ Y .

Lemma 3.11. Let I be a Reedy poset and let A ∈ MI be a Reedy cofibrant object. Then the

morphism Aα → Aβ is a cofibration in M, for every α ≤ β in I.

Proof. By Lemma 3.10 it is sufficient to observe that the morphism Aα → Aβ is obtained as the

natural morphism

Aα = colim
γ≤α

Aγ → colim
γ≤β

Aγ = Aβ .

Lemma 3.12 (Commutativity of colimits). Let X ∈ M be an object in a cocomplete category,

H a small category, and denote by c(X) ∈ MH the constant diagram. Moreover, take a span

Q← A→ c(X) in MH . Then:

colim
H

(QqA c(X)) ∼= colim
H

Qq(
colim
H

A

) colim
H

c(X)

and

colim
H

Qq(
colim
H

A

) X ∼= colim
H

(QqA c(X))q(
colim
H

c(X)

) X.
Proof. The first part of the statement is just to say that colimits commute with pushouts, and to

obtain the second it is sufficient to apply the functor −q(
colim
H

c(X)

) X to the first one.
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3. Colimits of diagrams and Reedy model structures

Remark 3.13 (Undercategory of functors over a constant diagram). Let X ∈M be an object in a

cocomplete category, H a small category, and denote by c(X) ∈MH the constant diagram. Then

the undercategory c(X) ↓MH is (isomorphic to) the category of functors (MX)H , where as usual

we denoted by MX the undercategory X ↓M.

Motivated by Remark 3.13, we shall simply denote by MH
X the undercategory

c(X) ↓MH = (MX)H .

Remark 3.14 (Colimits in undercategories). When dealing with colimits in undercategories

there is a technical issue to be aware of. More precisely, let X ∈ M be an object in a cocomplete

category, and H a small category. Take an object A ∈MH
X . Denote by

MX

colim
H

A ∈MX the colimit

of A. Of course, the diagram A can be considered as an object in MH , as well as
MX

colim
H

A can be

thought of as an object in M. Therefore, one may investigate the relation between
MX

colim
H

A and

colim
H

A. By Remark 3.13, it follows that

MX

colim
H

A = colim
H

Aqcolim
H

(c(X)) X.

Clearly, if H is a connected category this is just to say that the two colimits are the same since

in this case colim
H

(c(X)) = X and the natural morphism colim
H

(c(X)) → X is the identity. On the

other hand, suppose for instance that H = H1 qH2 is a category with two connected components.

Then:

colim
H

A = colim
H1

Aq colim
H2

A, while
MX

colim
H

A = colim
H1

AqX colim
H2

A.

Notice that applying the functor −qXqXX to the object on the left we obtain the one on the right.

For the general case, observe that colim
H

(c(X)) is simply the coproduct of a number of copies of X

(one for each connected component of H). Roughly speaking, the role of the functor −qcolim
H

(c(X))X

is indeed to turn the coproduct q into qX .

Lemma 3.15. Let I be a Reedy poset and let M be a model category. Consider a Reedy cofibration

A→ Q in MI . Then the diagram

Rβ = {γ ∈ I | γ ≤ β} →MAβ

γ 7→ Qγ qAγ Aβ

is Reedy cofibrant in M
Rβ

Aβ
for every β ∈ I. Equivalently, the diagram Q qA c(Aβ) is cofibrant in

the undercategory c(Aβ) ↓MRβ .

Proof. We need to show that the map c(Aβ)→ QqA c(Aβ) is a Reedy cofibration in MRβ , i.e. that

for every ε ≤ β the natural morphism

colim
γ<ε

(
Qγ qAγ Aβ

)
q(

colim
γ<ε

Aβ

) Aβ → Qε qAε Aβ

is a cofibration in M. To this aim, consider the following commutative diagram

colim
γ<ε

Qγ q(
colim
γ<ε

Aγ

) Aε

��

// colim
γ<ε

Qγ q(
colim
γ<ε

Aγ

) Aβ

��
Qε // Qε qAε Aβ
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3. Colimits of diagrams and Reedy model structures

where the left vertical arrow is a cofibration by hypothesis, and observe that it is actually a pushout

square since

colim
γ<ε

Qγ q(
colim
γ<ε

Aγ

) Aβ ∼=
(

colim
γ<ε

Qγ q(
colim
γ<ε

Aγ

) Aε
)
qAε Aβ .

Therefore the morphism

colim
γ<ε

(
Qγ qAγ Aβ

)
q(

colim
γ<ε

Aβ

) Aβ ∼= [Lemma 3.12] ∼= colim
γ<ε

Qγ q(
colim
γ<ε

Aγ

) Aβ −→ Qε qAε Aβ

is a cofibration in M as required.

Theorem 3.16. Let I be a Reedy poset and let M be a model category. Consider a Reedy cofibration

A→ Q in MI . Then, for every α < β in I, the natural morphisms

Qα qAα Aβ → colim
γ<β

Qγ q(
colim
γ<β

Aγ

) Aβ
and

Qα qAα Aβ → Qβ

are cofibrations in M.

Proof. Fix α < β in I. Observe that the morphism

Qα qAα Aβ =
MAβ

colim
γ≤α

(QqA c(Aβ)) −→
MAβ

colim
γ<β

(QqA c(Aβ)) = [Remark 3.14] =

= colim
γ≤α

(QqA c(Aβ))qcolim
γ<β

(c(Aβ)) Aβ =

= [Lemma 3.12] =

= colim
γ<β

Qγ qcolim
γ<β

Aγ Aβ

is a cofibration by Lemma 3.15 and Lemma 3.10. The statement follows.

For future purposes we point out some other properties of colimits.

Remark 3.17. Let I be Reedy poset, fix α ∈ I and define Rα = {γ ∈ I | γ < α}. The colimit functor

colimRα
: MRα →M is a left Quillen functor, the right adjoint being the constant diagram functor.

In particular:

1. given a Reedy cofibration X → Y in MRα then the morphism colim
γ<α

Xγ → colim
γ<α

Yγ is a

cofibration in M,

2. given a Reedy weak equivalence X → Y between Reedy cofibrant objects in MRα then the

morphism

colim
γ<α

Xγ → colim
γ<α

Yγ

is a weak equivalence in M.

Example 3.18. Let I be the Reedy poset

1 //

��

3 // 5

2 //

@@

4

@@

.
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3. Colimits of diagrams and Reedy model structures

If A,B are cofibrant objects in M, then the diagram

A //

##

AqB // AqB

B //

;;

AqB

99

where every map is the natural inclusion, is Reedy cofibrant. Notice however that if J = {x | 1 ≤
x} ⊂ I, then the restriction of the above diagram to J is generally not Reedy cofibrant.

In order to avoid the unpleasant situation of the above example we introduce the following
assumption on a Reedy poset.

Definition 3.19. Let J be any poset; we shall say that the meet α ∧ β of two elements α, β ∈ J
is defined if the set of common lower bounds S = {γ ∈ J | γ ≤ α, γ ≤ β} is not empty and has a

maximum α∧β = max(S). We shall say that a subset K ⊂ J is closed under the meet operator

if for every α, β ∈ J their meet α ∧ β is defined in J , and belongs to K.

Axiom 3.20 (meet axiom). A Reedy poset I satisfies the meet axiom if for every α ∈ I the set

{β ∈ I | α ≤ β} is closed under the meet operator.

Lemma 3.21. Let F : I → C be a diagram into a cocomplete category indexed by a Reedy poset I,

and let K ⊆ I be a nonempty subset which is closed under the meet operator. Denoting by

K = {α ∈ I | α ≤ β for some β ∈ K},

the smallest lower set containing K, we have

colim
K

F = colim
K

F .

Proof. For every α ≤ β denote F (α → β) = fβα : Fα → Fβ . By the universal property of colimits

it is sufficient to prove that for every M ∈ C, every set of arrows

{fα : Fα →M}α∈K such that fγfγβ = fβ whenever β ≤ γ

extends uniquely to K. Given γ ∈ K, the set Kγ = {δ ∈ K | γ ≤ δ} is nonempty and contains a

unique element α of minimum degree: in fact if α, β ∈ Kγ and deg(α) = deg(β) ≤ deg(δ) for every

δ ∈ Kγ , then α ∧ β ∈ Kγ , deg(α) = deg(β) = deg(α ∧ β) and this implies α = β.

We then define fγ = fαfαγ : Fγ → M . Since the unicity is clear, we only need to show that for

every γ ≤ δ in K the relation fδfδγ = fγ holds. To this aim, let α ∈ Kγ and β ∈ Kδ be the elements

of minimum degree; since γ ≤ δ we have β ∈ Kγ , so that α ∧ β ∈ Kγ and therefore α ∧ β = α by

the minimality of the degree of α. Thus α ≤ β and then

fδfδγ = fβfβδfδγ = fβfβγ = fβfβαfαγ = fαfαγ = fγ .

Theorem 3.22 (Restrictions of Reedy cofibrant diagrams). Let I be a Reedy poset. Let K ⊆ I be

a nonempty subset which is closed under the meet operator. Then for every Reedy cofibrant diagram

F ∈MI the restriction F |K ∈MK is Reedy cofibrant.

Proof. Fix β ∈ K and define Kβ = {α ∈ K | α ≤ β}. We shall prove that the natural morphism

colimKβ F → Fβ is a cofibration in M. To this aim, define

Kβ = {α ∈ I | α ≤ k for some k ∈ Kβ}

45



3. Pseudo-schemes over deformation model categories

and observe that the morphism

colim
Kβ

F = colim
Kβ

F → colim
α≤β

Fα = Fβ

is a cofibration by Lemma 3.21 and Lemma 3.10.

3.2 Pseudo-schemes over deformation model categories

The aim of this section is to introduce one of the main topics of our study, namely pseudo-schemes
over model categories (see Definition 3.23). Pseudo-schemes over a fixed model category M form a
full subcategory of the category of diagrams over M, endowed with the Reedy model structure.
In particular, we shall prove that this subcategory is closed under cofibrant replacements, see
Proposition 3.28. Concrete geometric examples and motivations will be discussed in Section 3.3.

Throughout all this section, M will denote a deformation model category (see Definition 2.9)
satisfying the cone and cylinder axiom, see Axiom 1.44.

Definition 3.23 (Pseudo-schemes over a deformation model category). Let I be a Reedy poset, see

Definition 3.1. A pseudo-scheme indexed by I over a deformation model category M satisfying

Axiom 1.44 is an object A ∈MI such that Aα → Aβ is a formally open immersion for every α ≤ β
in I, see Definition 1.39.

We shall denote by ΨSchI(M) ⊆ MI the full subcategory of pseudo-schemes over M indexed
by I. We will see in Section 3.3 that schemes and DG-schemes are examples of pseudo-schemes, see
Example 3.32 and Example 3.42.

Definition 3.24 (Global sections of a pseudo-scheme). Let A ∈ ΨSchI(M) be a pseudo-scheme

over a deformation model category M satisfying Axiom 1.44. The object of global sections of A

is defined to be

Γ(A) = lim
I
A ∈M .

Remark 3.25. Notice that flatness in model categories only depends on trivial fibrations and pull-

back squares, see Definition 1.50. Given a Reedy poset I (see Definition 3.1) we can consider the

model category (CDGA≤0
K )I where pullbacks and trivial fibrations are detected pointwise, see Re-

mark 3.5. Therefore, all the results of Section 1.4 about flatness in CDGA≤0
K immediately extend

to (CDGA≤0
K )I .

Remark 3.26. Let I be a Reedy poset, and let M be a deformation model category satisfying

Axiom 1.44. Given a pseudo-scheme A ∈ ΨSchI(M), for every α ≤ β in I the natural morphism

Aβ qAα Aβ → Aβ

is a weak equivalence in M. This immediately follows by Corollary 1.22 recalling that every formally

open immersion is, in particular, a W-immersion.

Definition 3.27 (Palamodov pseudo-scheme). Let I be a Reedy poset and let M = CDGA≤0
K .

An object A ∈ ΨSchI(M) is called Palamodov pseudo-scheme.

Definition 3.27 is motivated by [37], where V. P. Palamodov constructs the resolvent of a K -

scheme X, essentially thinking of X as a pseudo-scheme over CDGA≤0
K .

Our next result shows that ΨSchI(M) is closed under relative cofibrant replacements.

Proposition 3.28 (Closure of pseudo-schemes under cofibrant replacements). Let A→ B

be a morphism in MI between pseudo-schemes. Consider a factorization A
C−→ Q

FW−−−→ B in MI as

a cofibration followed by a trivial fibration. Then Q is a pseudo-scheme.
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3. Geometric examples: schemes and DG-schemes

Proof. In order to show that Q is a pseudo-scheme, fix α ≤ β in I and consider the commutative

diagram

Aα //

��

Aβ

��

��

Qα //

//

Qα qAα Aβ

%%
Qβ

and observe that the dotted morphism is a cofibration by Theorem 3.16. By Corollary 1.49 it follows

that Qα → Qβ is a formally open immersion.

Remark 3.29. Notice that if A
C−→ Q

FW−−−→ B are morphisms between pseudo-schemes in MI , then

the natural morphism

Qα qAα Aβ → Qβ

is a formally open immersion for every α ≤ β in I. In fact, by Theorem 3.16 it follows that it is a

cofibration. Therefore, by Corollary 1.49 it is a formally open immersion.

Proposition 3.28 suggests that the subcategory ΨSchI(M) ⊆MI inherits part of the algebraic
structure of MI . However, it is natural to consider morphisms between pseudo-schemes indexed by
different Reedy posets. Geometrically, even in the case of schemes over C, this can be rephrased
saying that we need to consider morphisms between schemes X =

⋃
h∈H

Uh and Y =
⋃
k∈K

Vk covered

by open affines indexed by different sets, see Remark 3.35.
Motivated by these geometric situations, our next goal is to define a natural notion of morphism

between pseudo-schemes indexed by different Reedy posets. To this aim, first notice that given a
morphism of Reedy posets f : I → J there exists a functor

f−1 : ΨSchJ(M)→ ΨSchI(M)

A→ f−1A

defined as follows.

1. f−1Aα = Af(α) for every α ∈ I,

2. For every α ≤ β in I, the morphism f−1Aα → f−1Aβ in M is given by Af(α) → Af(β).

3. For every morphism ϕ : A → B in ΨSchJ(M), the morphism f−1(ϕ) in ΨSchI(M) is given
by f−1(ϕ)α = ϕf(α) : Af(α) → Bf(α), for every α ∈ I.

Definition 3.30 (Morphisms between pseudo-schemes). Let M be a deformation model category

satisfying Axiom 1.44, and let A ∈ ΨSchJ(M) and B ∈ ΨSchI(M) be pseudo-schemes indexed by

J and I respectively. A morphism of pseudo-schemes A→ B consists of a morphism f : I → J

between Reedy posets, together with a morphism f−1A→ B in ΨSchI(M).

3.3 Geometric examples: schemes and DG-schemes

The aim of this section is to provide concrete geometric examples of pseudo-schemes, see Defini-
tion 3.23. Namely, we show that schemes and DG-schemes are pseudo-schemes over the deformation
model category M = CDGA≤0

K , see Example 3.32 and Example 3.42 respectively. We shall also
discuss how morphisms of schemes are related to morphisms of pseudo-schemes, see Remark 3.35.
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3.3.1 Schemes

In order to explain the main geometric motivation which led to Definition 3.23 we begin by showing
the following preliminary result.

Lemma 3.31. Given an open immersion between affine K -schemes ι : Spec(B) → Spec(A), the

induced natural morphism ΩA ⊗A B → ΩB is an isomorphism of B-modules.

Proof. In order to keep the notation as clear as possible we shall write U and V in place of Spec(A)

and Spec(B) respectively. To prove the statement it is sufficient to show that

ι∗ΩU = ι−1ΩU ⊗ι−1OU OV −→ OV

is an isomorphism of sheaves on V . To this aim, take x ∈ V and observe that

(ι∗ΩU )x = ΩU,ι(x) ⊗OU,ι(x) OV,x = Ω(OU,ι(x)) ⊗OU,ι(x) OV,x = Ω(OV,x) = (ΩV )x

are isomorphisms at the level of stalks.

Example 3.32 (Schemes as pseudo-schemes). Let X be a separated scheme over a field K
covered by open affines {Uh}h∈H . Setting M = CDGA≤0

K and I = P0(H) we can define Uα =

Uh0
∩ · · · ∩ Uhn for every α = {h0, . . . , hn} ∈ I. Notice that I is a Reedy poset as explained in

Example 3.2, and Uα is affine for every α ∈ I being X separated. We can now define the pseudo-

scheme A ∈ ΨSchI(M) associated to X (depending on the choice of the affines {Uh}h∈H) as

follows:

1. for every α ∈ I define Aα as the coordinate K -algebra of Uα concentrated in degree 0, i.e.

Uα = Spec(Aα),

2. the morphism Aα → Aβ is given by the open immersion Spec(Aβ) → Spec(Aα) for every

α ≤ β in I.

To prove that A is indeed a pseudo-scheme, first notice that every open immersion is a flat morphism

of unitary algebras, so that Aα → Aβ is a W-cofibration by Theorem 1.56. Now observe that the

intersection Uβ = Uβ ∩ Uβ is given by Spec(Aβ) ∼= Uβ ×Uα Uβ ∼= Spec(Aβ ⊗Aα Aβ), so that

the natural morphism Aβ ⊗Aα Aβ → Aβ is an isomorphism. By Corollary 1.22 it follows that

Aα → Aβ is a W-immersion in CDGA≤0
K . To conclude, Lemma 3.31 and Proposition 1.48 imply

that Aα → Aβ is a formally open immersion, hence A ∈ ΨSchI(M) is a Palamodov pseudo-scheme

(see Definition 3.27).

Remark 3.33 (Formally open immersions in Classical Algebraic Geometry). Of course in

classical Algebraic Geometry there is a notion of formally open immersion, see [18]. A morphism

f : Spec(B) → Spec(A) of affine schemes is a formally open immersion if and only if it is flat and

the natural map B ⊗A B → B is an isomorphism, see [18, Theorem 17.9.1 and Proposition 17.2.6].

Example 3.32 proves that the classical notion of formally open immersion is consistent with the one

of Definition 1.39, where A and B are considered as objects in CDGA≤0
K concentrated in degree 0.

We now want to understand how standard geometric situations are related to Definition 3.30.
Namely, let ϕ : X → Y be a morphism of separated schemes over C. Then every choice of open
affine coverings X =

⋃
h∈H

Uh and Y =
⋃
k∈K

Vk induces a morphism between pseudo-schemes. This is

explained in Remark 3.35, but we first need a preliminary result.

Lemma 3.34. Let ϕ : X → Y be a morphism between separated schemes over a field K. Given open

affines U and V of X and Y respectively, then the intersection U ∩ϕ−1(V ) is an open affine of X.
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3. Geometric examples: schemes and DG-schemes

Proof. First notice that the product X × Y is a separated scheme by hypothesis, so that the

morphism id×ϕ : X → X×Y is a closed immersion, being the projection X×Y → X a retraction.

Recall that if a morphism into a separated scheme admits a retraction then it is a closed immersion.

Now, take open affines U and V in X and Y respectively, and consider the following pullback

diagram

U ∩ ϕ−1(V ) //

��

X

id×ϕ
��

U × V // X × Y

of schemes. This shows that U ∩ϕ−1(V )→ U × V is a closed immersion too. In particular, it is an

affine morphism. The statement follows since U × V is affine, being U and V both affines.

Remark 3.35 (Morphisms of schemes as morphisms of pseudo-schemes). Let ϕ : X → Y be

a morphism of separated schemes over K. Then every choice of open affine coverings X =
⋃

h∈H′
Uh

and Y =
⋃
k∈K

Vk induces a morphism of pseudo-schemes as follows. First define

H = {(h, k) |ϕ(Uh) ∩ Vk 6= ∅} ⊆ H ′ ×K and W(h,k) = Uh ∩ ϕ−1(Vk).

Now notice that by Lemma 3.34 we have an affine open covering

X =
⋃

(h,k)∈H

W(h,k)

of X such that ϕ(W(h,k)) ⊆ Vk for every (h, k) ∈ H. Setting

M = CDGA≤0
K , I = P0(H), J = P0(K),

we can define Wα = W(h0,k0) ∩ · · · ∩W(hn,kn) for every α = {(h0, k0), . . . , (hn, kn)} ∈ I. Notice that

I and J are Reedy posets, see Example 3.2. Moreover, since X is assumed to be separated Wα is

an open affine for every α ∈ I. Therefore, X induces a pseudo-scheme A ∈ ΨSchI(M):

1. for every α ∈ I define Aα as the coordinate K -algebra of Wα concentrated in degree 0, i.e.

Wα = Spec(Aα),

2. the morphism Aα → Aβ is given by the open immersion Spec(Aβ) → Spec(Aα) for every

α ≤ β in I.

Similarly Y induces a pseudo-scheme B ∈ ΨSchJ(M). Our next goal is to understand how ϕ : X →
Y induces a morphism of pseudo-schemes B → A. First, define a morphism of Reedy posets as

f : I → J, {(h0, k0), . . . , (hn, kn)} 7→ {k0, . . . , kn}

so that f−1B ∈ ΨSchI(M). In order to define a morphism f−1B → A in ΨSchI(M) it is sufficient

to give a morphism f−1Bα = Bf(α) → Aα for every α ∈ I, and by definition these are given by the

restrictions ϕ
∣∣∣
Wα

: Wα = Spec(Aα)→ Spec(Bf(α)) = Vα for every α ∈ I.

Example 3.36. Recall that a scheme over K is a scheme X together with a morphism ϕ : X → Y ,

with Y = Spec(K ). Let us stress how Remark 3.35 works in this case. Take an open affine covering

{Uh}h∈H′ for X. Clearly the most natural choice for an open affine covering for Y is simply Y itself,

so that K = {k0} is a singleton. Therefore, we have H ∼= H ′ and Wα = Uα for every α ∈ I = P0(H).

Now, for every α ∈ I let Aα be the coordinate ring of Uα = Spec(Aα). Similarly, the pseudo-scheme

B associated to Y is just defined by Bk0 = K . Moreover, f : I → J is the constant map between the
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two Reedy posets, so that f−1B ∈ ΨSchI(M) is defined as f−1Bα = Bf(α) = K for every α ∈ I.

To conclude, observe that the morphism f−1B → A in MI is the collection {K→ Aα}α∈I , which is

given pointwise by the restriction ϕ : Uα → Spec(K ). Roughly speaking, the role of the morphism

B → A induced by ϕ : X → Spec(K ) is precisely to give a K -algebra structure to every Aα, so that

A becomes a well defined pseudo-scheme over CDGA≤0
K , indexed by I.

Example 3.37. Take a morphism ϕ : X → Y between affine K-schemes, say X = Spec(A) and

Y = Spec(B). We now want to understand how the procedure explained in Remark 3.35 works in

this case. Of course, we can choose X itself as an open affine covering for X, and the same for Y .

This means in particular that H ′ = {h0} and K = {k0} are reduced to one element. Therefore we

have H ∼= H ′ and W(h0,k0) = X = Uh0 , moreover I = P0(H) = H and J = P0(K) = K. Now,

the pseudo-scheme A associated to X is just defined by Ah0
= A. Similarly, the pseudo-scheme B

associated to Y is just defined by Bk0 = B. Moreover, f : I → J is the unique (bijective) map of

Reedy posets, so that f−1B ∈ ΨSchI(M) is defined as f−1Bh0
= Bf(h0) = B. To conclude, observe

that the morphism f−1B → A in MI is just a morphism of K -algebras B → A, which is given by

ϕ : Spec(A) = X → Y = Spec(B). Therefore, in the case of affine schemes, the morphism B → A

induced by ϕ : X → Y is precisely ϕ# : B → A.

3.3.2 DG-schemes

DG-schemes have been introduced by Maxim Kontsevich as a first approach to Derived Algebraic
Geometry in 1995, see [31]. A few years later the notion of DG-scheme was further developed by
Ionut Ciocan-Fontanine and Mikhail Kapranov; in particular they constructed the first examples
of derived moduli spaces using DG-schemes, see [10] and [11]. For the definition of DG-scheme (see
Definition 3.38) we followed [29].

Here our goal is to prove that DG-schemes are in fact examples of pseudo-schemes over the
deformation model category M = CDGA≤0

K , see Example 3.40.

Definition 3.38 (DG-scheme, [29]). A differential graded scheme (or DG-scheme) is a scheme

(X,OX) together with a sheaf O∗X of commutative differential graded OX -algebras concentrated in

non-positive degrees such that OX = O0
X , and OiX is a quasi-coherent sheaf on X for every i ≤ 0.

We shall denote the DG-scheme by (X,O∗X).

A DG-scheme over a field K is simply a DG-scheme (X,O∗X) such that (X,O0
X) is an ordinary

K -scheme. A DG-scheme (X,O∗X) is called separated if (X,O0
X) is so.

Definition 3.39. A morphism of DG-schemes is a pair (f, ϕ) : (X,O∗X)→ (Y,O∗Y ), where

1 f : X → Y is a morphism of schemes,

2 ϕ : f∗O∗Y → O∗X is a morphism of sheaves of DG-algebras.

The category of DG-schemes over a field K will be denoted by DGSchK . A morphism of DG-
schemes (f, ϕ) : (X,O∗X) → (Y,O∗Y ) is an isomorphism if both f : X → Y is an isomorphism of
schemes and ϕ : f∗O∗Y → O∗X is an isomorphism of sheaves of DG-algebras.

Example 3.40 (Affine DG-schemes). Every A ∈ CDGA≤0
K induces a DG-scheme (X,O∗X) over

K as follows. The scheme X is defined by X = Spec(A0), while OiX is defined to be the quasi-

coherent sheaf Ãi, being Ai an A0-module for every i ≤ 0. The differential on O∗X is induced by

the one of the commutative DG-algebra A. With an abuse of notation, we shall write (X,O∗X) =

Spec(A).
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DG-schemes obtained from commutative DG-algebras as explained in Example 3.40 are called
affine DG-schemes. The full subcategory of affine DG-schemes over a field K will be denoted by
DGAffK ⊆ DGSchK .

Remark 3.41 (DGAffK is the opposite category of CDGA≤0
K ). Take A,B ∈ CDGA≤0

K and con-

sider the associated DG-schemes (X,O∗X) = Spec(B) and (Y,O∗Y ) = Spec(A), see Example 3.40.

Moreover, take a morphism of DG-schemes (f, ϕ) : (X,O∗X)→ (Y,O∗Y ), see Definition 3.39. Notice

that to give f : Spec(B0) → Spec(A0) is the same as giving a map of K -algebras f# : A0 → B0.

Moreover, we have

f∗O∗Y (Spec(B0)) = f−1O∗Y (Spec(B0))⊗(f−1O0
Y (Spec(B0))) O

0
X(Spec(B0)) =

= colim
f(Spec(B0))⊆V

O∗Y (V )⊗(colimO0
Y (V )) B

0 =

= colim
f(Spec(B0))⊆V

(
O∗Y (V )⊗(O0

Y (V )) A
0
)
⊗A0 B0 .

Therefore, since we are dealing with affine schemes the data of

ϕ : f∗O∗Y → O∗X

is equivalent to give a map of DG-modules over B0

colim
f(Spec(B0))⊆V

(
O∗Y (V )⊗(O0

Y (V )) A
0
)
⊗A0 B0 → O∗X(Spec(B0)) = B

which in turn is equivalent to a morphism of DG-modules over A0

colim
f(Spec(B0))⊆V

(
O∗Y (V )⊗(O0

Y (V )) A
0
)
→ B

by adjunction. The morphism above is the same as the data of a map A→ B in CDGA≤0
K . Hence

affine DG-schemes over K form the opposite category of CDGA≤0
K .

Example 3.42 (DG-schemes as pseudo-schemes). Let (X,O∗X) be a separated DG-scheme

over K , see Definition 3.38. Then, every affine open cover U = {Uh}h∈H of (X,O0
X) induces a

pseudo-scheme as follows, see Definition 3.23. Setting M = CDGA≤0
K and I = P0(H) we can

define Uα = Uh0
∩ · · · ∩ Uhn for every α = {h0, . . . , hn} ∈ I. Notice that I is a Reedy poset as

explained in Example 3.2, and Uα is affine for every α ∈ I being (X,O0
X) separated by assumption.

We can now define the pseudo-scheme A ∈ ΨSchI(M) associated to the DG-scheme (X,O∗X) as

follows:

1 for every α ∈ I define Aα = O∗X(Uα) ∈ CDGA≤0
K ,

2 the morphism Aα → Aβ is given by the restriction map O∗X(Uα) → O∗X(Uβ) for every α ≤ β in

I.

In order to show that the object A ∈ (CDGA≤0
K )I defined above is in fact a pseudo-scheme, we

are only left with the proof that the map Aα → Aβ is a formally open immersion for every α ≤ β

in I. To this aim, first notice that Aβ = Aα ⊗A0
α
A0
β , since the sheaf Ãiβ is simply the restriction of

Ãiα for every i ≤ 0. Moreover, by Example 3.32 the map A0
α → A0

β is a formally open immersion

and so is its pushout Aα → Aβ = Aα ⊗A0
α
A0
β , see Lemma 1.41.

Remark 3.43. Let (X,O∗X) be a separated DG-scheme over K , see Definition 3.38. Then every

affine open cover U = {Uh}h∈H of (X,O0
X) induces a pseudo-scheme A ∈ (CDGA≤0

K )I where

I = P0(H), see Example 3.42. In particular, this implies that for every α ≤ β in I the codiagonal
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∇ : Aβ ⊗Aα Aβ → Aβ is a quasi-isomorphism in CDGA≤0
K , since every formally open immersion is

a W-immersion by Definition 1.39. It turns out that ∇ is in fact an isomorphism.

In order to prove the claim, observe that by Remark 3.41 it is equivalent to show that the natural

dotted morphism in the diagram

Spec(Aβ)

id

,,

id

))
(f,ψ)

))
Spec(Aβ)×Spec(Aα) Spec(Aβ)

��

// Spec(Aβ)

��
Spec(Aβ) // Spec(Aα)

is an isomorphism of DG-schemes. To this aim, first notice that this is true at the level of underlying

schemes, i.e. f is an isomorphism of schemes. In fact by Example 3.32 we have A0
β ⊗A0

α
A0
β

∼=−→ A0
β .

Now, for every p ∈ Spec(Aβ) consider the morphism

ψp : f∗
(
O∗β ×O∗α O

∗
β

)
p
→ O∗β,p

between the stalks at p, where O∗α and O∗β are defined to be the sheaves Ãα and Ãβ respectively.

Observe that O∗β is simply the restriction of O∗α to Spec(A0
β), so that O∗α,p = O∗β,p for every

p ∈ Spec(Aβ). In particular, O∗β,p ×O∗α,p O
∗
β,p
∼= O∗β,p. Therefore we have the following chain of

isomorphisms

f∗
(
O∗β ×O∗α O

∗
β

)
p
∼=
(
O∗β ×O∗α O

∗
β

)
f(p)
⊗(
O0
β×O0

α
O0
β

)
f(p)

O0
β,p
∼= O∗β,p ⊗O0

β,p
O0
β,p

for every p ∈ Spec(Aβ). Hence ψp is an isomorphism for every p ∈ Spec(Aβ) and the thesis follows.

3.4 The model category of pseudo-modules over a Palam-

odov pseudo-scheme

As already outlined at the beginning of this chapter, the aim of this section is to introduce the
category ΨMod(A) of pseudo-modules over a Palamodov pseudo-scheme A ∈ ΨSchI(M), see Defi-
nition 3.44. Moreover, we will be able to endow ΨMod(A) with a model structure, see Theorem 3.47.
This result plays a crucial role in the theory of the cotangent complex, since we are allowed to deal
with the derived category of quasi-coherent sheaves over a separated K -scheme in terms of the
homotopy category of pseudo-modules where it is easier to work, see Chapter 4.

Throughout all this section we shall work on the deformation model category M = CDGA≤0
K

of commutative differential graded algebras over a fixed field K , see Example 2.10.

Definition 3.44 (Pseudo-modules over a pseudo-scheme). Let I be a Reedy poset and consider

the deformation model category M = CDGA≤0
K . A pseudo-module F over a pseudo-scheme

A ∈ ΨSchI(M) (see Definition 3.23) consists of the following data:

1. an object Fα ∈ DGMod(Aα), for every α ∈ I,

2. a morphism fαβ : Fα ⊗Aα Aβ → Fβ in DGMod(Aβ), for every α ≤ β in I,

satisfying the cocycle condition fβγ ◦
(
fαβ ⊗Aβ Aγ

)
= fαγ , for every α ≤ β ≤ γ in I.

Definition 3.45 (Morphisms between pseudo-modules). Consider the deformation model category

M = CDGA≤0
K . A morphism of pseudo-modules ϕ : F → G over a Palamodov pseudo-scheme

A ∈ ΨSchI(M) consists of the following data:
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1. a morphism ϕα : Fα → Gα in DGMod(Aα), for every α ∈ I,

2. for every α ≤ β in I, the diagram

Fα ⊗Aα Aβ
ϕα //

fαβ

��

Gα ⊗Aα Aβ
gαβ

��
Fβ ϕβ

// Gβ

commutes in DGMod(Aβ).

We shall denote by ΨMod(A) the category of pseudo-modules over A. Moreover, we shall denote
by ΨMod≤0(A) the full subcategory of pseudo-modules concentrated in non-positive degrees. Our
next goal is to endow the category ΨMod(A) with a model structure. To this aim, we first prove
a preliminary result.

Lemma 3.46. Let I be a Reedy poset, consider M = CDGA≤0
K , and let A ∈ ΨSchI(M) be a

pseudo-scheme. Then for every morphism ϕ : F → G in ΨMod(A) the following conditions are

equivalent.

1. For every α ∈ I, the morphism ϕα : Fα → Gα is a weak equivalence in DGMod(Aα), and the

natural morphism

colim
γ<α

(
Gγ ⊗Aγ Aα

) ∐
colim
γ<α

(Fγ⊗AγAα)

Fα −→ Gα

is a cofibration in DGMod(Aα).

2. For every α ∈ I, the natural morphism

colim
γ<α

(
Gγ ⊗Aγ Aα

) ∐
colim
γ<α

(Fγ⊗AγAα)

Fα −→ Gα

is a trivial cofibration in DGMod(Aα).

Proof. Fix α ∈ I and consider the following diagram

colim
γ<α

(
Fγ ⊗Aγ Aα

)
//

��

Fα

��

ϕα

��

colim
γ<α

(
Gγ ⊗Aγ Aα

)
//

//

colim
γ<α

(
Gγ ⊗Aγ Aα

) ∐
colim
γ<α

(Fγ⊗AγAα)
Fα

ψ
))
Gα .

Now define Rα = {γ ∈ I | γ < α} and consider the category DGMod(Aα)Rα endowed with the

model structure (see Remark 3.5). Define two diagrams X,Y ∈ DGMod(Aα)Rα as

Xγ = Fγ ⊗Aγ Aα and Yγ = Gγ ⊗Aγ Aα for every γ ∈ Rα,

and notice that if either (1) or (2) holds the morphism X → Y induced by ϕ is a Reedy cofibration,

since colimits commute with coproducts. Moreover, by Remark 3.6 it follows that X → Y is a

Reedy weak equivalence if either (1) or (2) holds, so that the vertical morphisms in the diagram

above are trivial cofibrations in DGMod(Aα) by Remark 3.17. Therefore, ϕα is a weak equivalence

if and only if ψ is so, because of the 2 out of 3 axiom.
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3. The model category of pseudo-modules over a Palamodov pseudo-scheme

Theorem 3.47 (Model structure on pseudo-modules). Let M = CDGA≤0
K , and let A ∈

ΨSchI(M) be a pseudo-scheme. The category of pseudo-modules over A is endowed with a model

structure, where a morphism F → G in ΨMod(A) is

1. a weak equivalence if and only if the morphism Fα → Gα is a weak equivalence in DGMod(Aα)

for every α ∈ I,

2. a fibration if and only if the morphism Fα → Gα is a fibration in DGMod(Aα) for every

α ∈ I,

3. a cofibration if and only if the natural morphism

colim
γ<α

(
Gγ ⊗Aγ Aα

) ∐
colim
γ<α

(Fγ⊗AγAα)

Fα −→ Gα

is a cofibration in DGMod(Aα) for every α ∈ I.

Proof. It is sufficient to prove that ΨMod(A) with the classes defined in the statement satisfies the

axioms of a model category. First notice that the category ΨMod(A) is complete and cocomplete

since limits and colimits are taken pointwise. Moreover, the class of weak equivalences satisfies the

2 out of 3 axiom by definition.

The closure with respect to retracts holds since if F → G is a retract of F ′ → G′ in the category

of maps of ΨMod(A), then the natural morphism

colim
γ<α

(
Gγ ⊗Aγ Aα

) ∐
colim
γ<α

(Fγ⊗AγAα)

Fα −→ Gα

is a retract of the natural morphism

colim
γ<α

(
G′γ ⊗Aγ Aα

) ∐
colim
γ<α

(F ′γ⊗AγAα)

F ′α −→ G′α

in the category of maps of DGMod(Aα), for every α ∈ I.

In order to show that the lifting axiom holds, observe that a morphism F → G is a trivial

cofibration in ΨMod(A) if and only if for every α ∈ I the natural morphism

colim
γ<α

(
Gγ ⊗Aγ Aα

) ∐
colim
γ<α

(Fγ⊗AγAα)

Fα −→ Gα

is a trivial cofibration in DGMod(Aα), see Lemma 3.46. Therefore the required lifting can be

constructed inductively on the degree of α.

The factorization axiom can be proved inductively as follows. Take a morphism ϕ : F → G, we

need to define (functorial) factorizations F → Q → G in ΨMod(A) as a cofibration (respectively,

trivial cofibration) followed by a trivial fibration (respectively, fibration). Now, fix α ∈ I of degree

d and suppose ϕγ has been factored for all γ ∈ I of degree less that d. Consider a (functorial)

factorization of the natural morphism

colim
γ<α

(
Gγ ⊗Aγ Aα

) ∐
colim
γ<α

(Fγ⊗AγAα)

Fα −→ Qα −→ Gα

in DGMod(Aα) as a cofibration (respectively, trivial cofibration) followed by a trivial fibration

(respectively, fibration). Lemma 3.46 implies thatQ satisfies the required properties by construction.
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3. The model category of pseudo-modules over a Palamodov pseudo-scheme

Remark 3.48. The same proofs show that the statements of Lemma 3.46 and Theorem 3.47 hold

replacing ΨMod(A) by ΨMod≤0(A) and DGMod(Aα) by DGMod≤0(Aα).

We conclude this section by introducing the notion of quasi-coherent pseudo-modules over a
pseudo-scheme.

Definition 3.49 (Quasi-coherent pseudo-modules). Let M = CDGA≤0
K . A pseudo-module F over

a pseudo-scheme A ∈ ΨSchI(M), see Definition 3.44, is called quasi-coherent if the morphism

fαβ : Fα ⊗Aα Aβ → Fβ

is a weak equivalence in DGMod(Aβ) for every α ≤ β in I.

We shall denote by QCoh(A) ⊆ ΨMod(A) the full subcategory of quasi-coherent pseudo-
modules.

Example 3.50 (Quasi-coherent sheaves as quasi-coherent pseudo-modules). LetX be aK -

scheme with an affine open cover {Ui}i∈I , and let A ∈ ΨSchI(M) be the associated pseudo-scheme,

see Example 3.32. Every quasi-coherent sheaf over X induces in the obvious way a quasi-coherent

pseudo-module over A.

As we will see in Chapter 4, quasi-coherent pseudo-modules will play a crucial role in the theory
of the global cotangent complex.
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Chapter 4

THE COTANGENT COMPLEX

FOR PALAMODOV

PSEUDO-SCHEMES

This chapter is devoted to the study of the cotangent complex. In particular, given a Palamodov
pseudo-scheme B ∈ ΨSchI(M), see Definition 3.27, we consider the model category ΨMod(B) of
pseudo-modules over B, see Theorem 3.47. In the homotopy category of ΨMod(B) we construct
the cotangent complex LB of B, see Definition 4.34.

The main result of Section 4.1 will be Theorem 4.18, which plays a crucial role to prove that
the global cotangent complex LB lies in the homotopy category of quasi-coherent pseudo-modules
over B, see Theorem 4.35. Moreover, we shall prove in Theorem 4.36 that our definition of the
cotangent complex LB is consistent with the usual one whenever the pseudo-scheme B comes from
a finite-dimensional separated Noetherian K -scheme X. To this aim we first need to relate the
homotopy category of quasi-coherent pseudo-modules with the derived category of quasi-coherent
shaves on X. This motivated the study of the extended lower shriek functor (see Definition 4.22),
which led us to a Quillen adjunction

Υ! : ΨMod(B)→ DGMod(OX) : Υ∗

see Theorem 4.27, eventually obtaining in Section 4.3 the (restriction of the derived) functor

LΥ! : Ho(QCoh(B)) −→ D(QCoh(X))

between the homotopy category of quasi-coherent pseudo-modules over B and the usual derived
category of quasi-coherent sheaves on X, see Theorem 4.32.

In Section 4.5 we introduce the notion of derivations for pseudo-modules, so that in Section 4.6
we exploit the theory developed throughout this chapter to compute the cohomology of the DG-Lie
algebra of derivations associated to a cofibrant replacement of a scheme in terms of its cotangent
complex, see Theorem 4.64.

4.1 The affine relative cotangent complex

In this section we develop the theory of the affine relative cotangent complex, see Definition 4.4.
Some of the results are well-known, such as the fundamental sequence of Kähler differentials (see
Proposition 4.9) and the fundamental triangle of the cotangent complex (see Theorem 4.11). Nev-
ertheless, in order to fix ideas and notations we decided to give proofs for all of them, trying to
keep attention to the notions introduced in the previous chapters.

We shall begin by recalling the characterizations ofW-cofibrations,W-immersions and formally
open immersions in CDGA≤0

K , see Remark 4.2 and Remark 4.3.
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4. The affine relative cotangent complex

Remark 4.1 (Kähler differentials). Recall that by Theorem 1.3, given B ∈ CDGA≤0
A there is a

Quillen adjunction

Ω−/A ⊗− B : CDGA≤0
A ↓ B � DGMod≤0(B) : −⊕B

and therefore the functor Ω−/A ⊗− B preserves the classes of cofibrations and trivial cofibrations,

and commutes with arbitrary small colimits.

As in the previous chapters, given a morphism f : A→ B in CDGA≤0
K we shall denote by

f∗ = −⊗A B : CDGA≤0
A → CDGA≤0

B

the graded tensor product.

Remark 4.2 (W-cofibrations and W-immersions in CDGA≤0
K ). Recall that by Corollary 1.22 the

following statements hold.

1 A morphism f : A → B in CDGA≤0
K is a W-cofibration if and only if the functor f∗ preserves

quasi-isomorphisms.

2 A morphism f : A → B in CDGA≤0
K is a W-immersion if and only if it is a W-cofibration and

the codiagonal ∇ : B ⊗A B → B is a quasi-isomorphism.

3 A quasi-isomorphism f : A→ B in CDGA≤0
K is aW-immersion if and only if it is aW-cofibration.

Remark 4.3 (Formally open immersions in CDGA≤0
K ). Recall that by Proposition 1.48, given a

W-immersion P
f−→ R in the category CDGA≤0

A there are three equivalent conditions:

1 f is a formally open immersion in CDGA≤0
A ,

2 the induced map ΩP/A ⊗P R→ ΩR/A is a trivial cofibration in DGMod≤0(R),

3 ΩP/A ⊗P R → ΩR/A is a cofibration in DGMod≤0(R) and ΩR/A ⊗P R → ΩR⊗PR/A is a trivial

cofibration in DGMod≤0(R⊗P R).

Definition 4.4 (The affine relative cotangent complex). To every B ∈ CDGA≤0
A it is associated

a well defined class

LB/A = ΩR/A ⊗R B ∈ D≤0(B)

where R → B is a cofibrant replacement in CDGA≤0
A . The class LB/A ∈ D≤0(B) is called the

affine relative cotangent complex of B over A.

Recall that given a Quillen adjunction F a G it is induced the left derived functor

LF : Ho(M)→ Ho(M′)

defined on each class [A] ∈ Ho(M) as

LF ([A]) = [F (Q)] ∈ Ho(M′)

for any cofibrant replacement Q
FW−−−→ A in M. Dually, the right derived functor

RG : Ho(M′)→ Ho(M)

is defined on each class [B] ∈ Ho(M′) as

RG([B]) = [G(P )] ∈ Ho(M)

for any fibrant replacement B
CW−−→ P in M′.
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4. The affine relative cotangent complex

Remark 4.5. Notice that for every B ∈ CDGA≤0
A , and for every cofibrant replacement A→ R→ B

we have

LB/A = ΩR/A ⊗R B = ΩR/A ⊗LR B

being ΩR/A cofibrant in DGMod≤0(R) thanks to Theorem 1.3, where − ⊗LR B denotes the left

derived functor of the (graded) tensor product.

Recall that a Quillen adjunction F : C � D : G is called a Quillen equivalence, see [26], if
one of the following equivalent conditions is satisfied:

1. the total left derived functor LG : Ho(C)→ Ho(D) is an equivalence of categories,

2. the total right derived functor RG : Ho(D)→ Ho(C) is an equivalence of categories,

3. for every cofibrant object M ∈ C and every fibrant object N ∈ D, a morphism M → G(N) is
a weak equivalence in C if and only if the adjoint morphism F (M)→ N is a weak equivalence
in D.

Now, notice that given a morphism f : C → D in CDGA≤0
K , it is induced an adjunction

f∗ = −⊗C D : DGMod≤0(C)→ DGMod≤0(D) : f∗

where the right adjoint f∗ takes every DG-module to itself, being the C-module structure induced
by f . It is clear that f∗ preserves weak equivalences and fibrations, so that f∗ a f∗ is in fact a
Quillen adjunction. Our next result shows that if f is a weak equivalence in CDGA≤0

K , then the
adjunction f∗ a f∗ is a Quillen equivalence. In particular, this means that if f : C → D is a weak
equivalence, an object M ∈ DGMod≤0(C) is acyclic if and only if M ⊗LC D = 0 in D≤0(C).

Lemma 4.6. Let f : C → D be a weak equivalence in CDGA≤0
K . Then the induced functor

f∗ = −⊗C D : DGMod≤0(C)→ DGMod≤0(D) : f∗

is a Quillen equivalence.

Proof. Consider a cofibrant objectM ∈ DGMod≤0(C) and a (fibrant)D-moduleN ∈ DGMod≤0(D).

Now recall that the functor

M ⊗C − : DGMod≤0(C)→ DGMod≤0(D)

preserves weak equivalences, being M cofibrant. Then M = M ⊗C C → M ⊗C D is a quasi-

isomorphism, so that a morphism M → f∗N is a weak equivalence in DGMod≤0(C) if and only

f∗M → N is a weak equivalence in DGMod≤0(D).

Remark 4.7. Clearly we may consider the above adjunction f∗ a f∗ on unbounded DG-modules,

and the same proof of Lemma 4.6 shows that

f∗ = −⊗C D : DGMod(C)→ DGMod(D) : f∗

is a Quillen equivalence.

Remark 4.8. Given B ∈ CDGA≤0
A and a cofibrant replacement A → R → B, by Lemma 4.6 we

have an equivalence

D≤0(R)
∼−→ D≤0(B)

which maps ΩR/A to LB/A.

The following is a standard result about Kähler differentials, which has an analogue for the
cotangent complex, see Theorem 4.11.
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4. The affine relative cotangent complex

Proposition 4.9 (The fundamental sequence of Kähler differentials). Let C → P → Q be

morphisms in CDGA≤0
K . Then there is an exact sequence

ΩP/C ⊗P Q→ ΩQ/C → ΩQ/P → 0

of differential graded Q-modules. Moreover, if P → Q is a cofibration

0→ ΩP/C ⊗P Q
f−→ ΩQ/C → ΩQ/P → 0

is a split exact sequence in DGMod≤0(Q), and f is a cofibration.

Proof. Recall that if P → Q is a cofibration then f is a cofibration (hence splitting and injective)

by Theorem 1.3. Then it is sufficient to show that the sequence

ΩP/C ⊗P Q
f−→ ΩQ/C

g−→ ΩQ/P → 0

is exact even if P → Q is not a cofibration. Equivalently, we can prove that the sequence of graded

Q-modules

0→ HomDGMod≤0(Q)(ΩQ/P ,M)
g∗−→ HomDGMod≤0(Q)(ΩQ/C ,M)

f∗−→ HomDGMod≤0(Q)(ΩP/C⊗PQ,M)

is exact for every M ∈ DGMod≤0(Q), being HomDGMod≤0(Q)(−,M) a contravariant right-exact

functor. Now recall that

HomDGMod≤0(Q)(ΩP/C ⊗P Q,M) ∼= HomDGMod≤0(P )(ΩP/C ,M)

so that it only remains to be shown that the induced sequence of graded Q-modules

0→ DerP (Q,M)
g∗−→ DerC(Q,M)

f∗−→ DerC(P,M)

is exact thinking of M as a differential graded P -module through the morphism P → Q. In the

sequence above, one can explicitly describe the morphisms f∗ and g∗ as follows:

DerP (Q,M)
g∗−→ DerC(Q,M)

δ 7→ δ

DerC(Q,M)
f∗−→ DerC(P,M)

δ 7→ δ ◦ α

where α : P → Q is the given cofibration. Then:

1. the morphism g∗ is simply the natural inclusion (hence injective),

2. the composition f∗ ◦ g∗ is identically zero since P -derivations are clearly in the kernel of f∗,

3. for every δ ∈ DerC(Q,M) such that f∗(δ) = 0 we have δ ◦ α = 0, so that δ ∈ DerP (Q,M)

which is the image of g∗ in DerC(Q,M).

Corollary 4.10 (The fundamental sequence for formally open immersions). Given a pair of mor-

phisms C → P → Q in CDGA≤0
K , if P → Q is a formally open immersion then there exists a split

exact sequence

0→ ΩP/C ⊗P Q
CW−−→ ΩQ/C → ΩQ/P → 0

of differential graded Q-modules. In particular, ΩQ/P is acyclic.

Proof. The statement follows immediately from Proposition 4.9 and Remark 4.3.
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4. The affine relative cotangent complex

We now prove a standard result which we shall refer to as the transitivity of the cotangent
complex. The distinguished triangle of Theorem 4.11 is called the fundamental triangle.

Theorem 4.11 (Transitivity of the cotangent complex). Let C → A → B be morphisms in

CDGA≤0
K . Then there exists a natural distinguished triangle

LA/C ⊗LA B → LB/C → LB/A → LA/C ⊗LA B[1]

in D≤0(B).

Proof. Consider a factorization C
C−→ P

FW−−−→ A of the morphism C → A as a cofibration followed

by a trivial fibration. Now take a factorization P
C−→ Q

FW−−−→ B of the composition morphism

P → A→ B. Consider the commutative diagram

P //

��

Q

��

��
A

,,

// A⊗P Q

##
B

in CDGA≤0
A where the dotted morphism is induced by the pushout. Since P → Q is a cofibration

we have that the morphism A → A ⊗P Q is a cofibration. Moreover, Q → A ⊗P Q is a weak

equivalence, being CDGA≤0
C a left-proper model category. Now recall that the morphism Q → B

is a trivial fibration, so that the dotted morphism A ⊗P Q → B is a trivial fibration. This proves

that A
C−→ A⊗P Q

FW−−−→ B is a cofibrant replacement of B in CDGA≤0
A . In particular

LB/A = Ω(A⊗PQ)/A ⊗(A⊗PQ) B

in D≤0(B).

Now, apply the functor − ⊗Q B to the exact sequence of Proposition 4.9. Observe that since

f : ΩP/C ⊗P Q→ ΩQ/C is a cofibration, the morphism f ⊗Q B is a cofibration (hence injective) so

that the tensored sequence remains exact. Recall that

ΩQ/P ⊗Q B = ΩQ/P ⊗Q (A⊗P Q)⊗(A⊗PQ) B = Ω(A⊗PQ)/A ⊗(A⊗PQ) B

to obtain the following short exact sequence of differential graded B-modules

0→ (ΩP/C ⊗P A)⊗A B → ΩQ/C ⊗Q B → Ω(A⊗PQ)/A ⊗(A⊗PQ) B → 0

which induces in D≤0(B) the required distinguished triangle.

Our next goal is to show that Kähler differentials are invariant under co-base change, in order
to extend the same property to the cotangent complex, see Proposition 4.13.

Proposition 4.12 (Co-base change for Kähler differentials). Let A′, B ∈ CDGA≤0
A , and consider

B′ = B ⊗A A′. Then there exists a natural isomorphism of differential graded B′-modules

ΩB′/A′ ∼= ΩB/A ⊗B B′.

Proof. Let M ∈ DGMod≤0(B′) be an arbitrarry B′-module. Then it is sufficient to show that there

is a natural isomorphism

Hom∗B′(ΩB′/A′ ,M)→ Hom∗B′(ΩB/A ⊗B B′,M).
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4. The affine relative cotangent complex

To this aim, observe that there is a canonical morphism

Hom∗B′(ΩB′/A′ ,M) ∼= Der∗A′(B
′,M)

−◦β−−−→ Der∗A(B,M) ∼= Hom∗B(ΩB/A,M) ∼= Hom∗B′(ΩB/A⊗BB′,M)

where β : B → B′ is the natural morphism. Now, every A-derivation ∂ ∈ Der∗A(B,M) uniquely

extends to an A′-derivation ∂′ : B′ →M defined as ∂′(b⊗ 1) = ∂(b), so that ∂′ ◦ β = ∂. Therefore,

− ◦ β : Der∗A′(B
′,M)→ Der∗A(B,M)

is an isomorphism and the statement follows.

Proposition 4.12 extends to the cotangent complex (see Proposition 4.13), but only under an

assumption of flatness. Recall that a morphism f : A → B in CDGA≤0
K is a W-cofibration if the

functor
f∗ = −⊗A B : CDGA≤0

A → CDGA≤0
B

preserves weak equivalences, see Remark 4.2. The class CofW of W-cofibrations is stable under
pushouts.

Proposition 4.13 (Co-base change for the cotangent complex). Let A′, B ∈ CDGA≤0
A be A-

algebras such that either A→ A′ or A→ B is a W-cofibration, and consider B′ = B ⊗A A′. Then

there exists a natural isomorphism in D≤0(B′)

LB/A ⊗LB B′
∼=−→ LB′/A′ .

Proof. It is clearly sufficient to consider the case where A → A′ is a W-cofibration. Consider the

following commutative diagram

A //

��

Q //

��

B

��
A′ // Q⊗A A′ // B′

where A→ Q→ B is a cofibrant replacement for B in CDGA≤0
A . Now recall that the graded tensor

product is right exact. Therefore the morphism Q⊗AA′ → B′ is a fibration in CDGA≤0
A′ since it is

obtained by applying the functor −⊗AA′ : DGMod≤0(A)→ DGMod≤0(A′) to the surjection Q→
B. Moreover, since Q→ Q⊗A A′ is a W-cofibration, then the morphism Q⊗A A′ → B′ = A′⊗A B
is a trivial fibration, so that

A′ → Q⊗A A′ → B ⊗A A′

is a cofibrant replacement for B′ in CDGA≤0
A′ . Therefore the chain of isomorphisms

LB′/A′ = Ω(Q⊗AA′)/A′ ⊗(Q⊗AA′) B
′ ∼= ΩQ/A ⊗Q (Q⊗A A′)⊗(Q⊗AA′) B

′ ∼= LB/A ⊗LB B′

holds in D≤0(B′) by Proposition 4.12, and the statement follows.

Our next goal is to prove another useful result for Kähler differentials, and its analogue for the
cotangent complex.

Proposition 4.14. Let A′, B ∈ CDGA≤0
A , and consider B′ = B⊗AA′. Then there exists a natural

isomorphism of differential graded B′-modules

ΩB′/A ∼=
(
ΩB/A ⊗B B′

)
⊕
(
ΩA′/A ⊗A′ B′

)
.
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4. The affine relative cotangent complex

Proof. By Theorem 1.3 the functor

Ω−/A ⊗− B′ : CDGA≤0
A ↓ B

′ → DGMod≤0(B′)

preserves colimits (hence pushouts). To conclude the proof it is then sufficient to observe that

0 = ΩA/A ⊗A B′ //

��

ΩB/A ⊗B B′

��
ΩA′/A ⊗A′ B′ // ΩB/A ⊗B B′ ⊕ ΩA′/A ⊗A′ B′

is a pushout square in DGMod≤0(B′).

Proposition 4.15. Let A′, B ∈ CDGA≤0
A such that either A→ A′ or A→ B is a W-cofibration,

and consider B′ = B ⊗A A′. Then there exists a natural isomorphism in D≤0(B′)

LB′/A ∼=
(
LB/A ⊗LB B′

)
⊕
(
LA′/A ⊗LA′ B′

)
.

Proof. It is clearly sufficient to consider the case when A → A′ is a W-cofibration. Take cofibrant

replacements A→ P → A′ and A→ Q→ B for A′ and B respectively. The idea of the proof relies

on the following diagram

A
C //

C
��

P
FW //

C
��

A′

C
��

Q
C //

FW
��

Q⊗A P
FW //

FW
��

Q⊗A A′

F
��

B
C // B ⊗A P

F // B′

where Q ⊗A P → Q ⊗A A′ and Q ⊗A P → B ⊗A P are trivial fibrations because CDGA≤0
A is a

deformation model category. Moreover, since the class CofW is closed under pushouts, the fibration

Q ⊗A A′ → B′ is in fact a trivial fibration, and so is B ⊗A P → B′. Then, by Proposition 4.14,

there is the following chain of isomorphisms

LB′/A = Ω(Q⊗AP )/A ⊗(Q⊗AP ) B
′ ∼=

∼=
[(

ΩQ/A ⊗Q (Q⊗A P )
)
⊕
(
ΩP/A ⊗P (Q⊗A P )

)]
⊗(Q⊗AP ) B

′ ∼=
∼=
(
ΩQ/A ⊗Q B ⊗B B′

)
⊕
(
ΩP/A ⊗P A′ ⊗A′ B′

) ∼=
∼=
(
LB/A ⊗LB B′

)
⊕
(
LA′/A ⊗LA′ B′

)
in D≤0(B′), whence the statement.

We now turn our attention to W-immersions. Recall that a morphism A → B in CDGA≤0
K is

a W-immersion if and only if it is a W-cofibration such that the natural map B ⊗A B → B is a
weak equivalence, see Remark 4.2. Our interest in such kind of morphisms comes from a geometric
situation. Consider an affine scheme Spec(A) over K , together with a Zariski open immersion
Spec(B)→ Spec(A). Then the morphism A→ B is flat in the usual algebraic sense, and the fiber
product Spec(B)×Spec(A) Spec(B) is clearly Spec(B) itself, and from an algebraic point of view this
means precisely that B ⊗A B → B is an isomorphism. If we think about the K -algebras A and B

as objects in CDGA≤0
K concentrated in degree 0, then the condition B⊗AB

∼=−→ B is equivalent to
require that the natural morphism B⊗AB → B is a weak equivalence. Moreover, by Theorem 1.56
the flatness condition is equivalent to require that A → B is a W-cofibration. Our aim is now to
give a different characterization of such morphisms.

Lemma 4.16. Let A→ B be aW-cofibration in CDGA≤0
K . The following conditions are equivalent:
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4. The affine relative cotangent complex

1. the natural morphism B ⊗A B → B is a weak equivalence,

2. the natural morphism B ⊗LA B → B is an isomorphism in Ho(CDGA≤0
K ),

3. the derived functor −⊗LA B : D≤0(B)→ D≤0(B) is the identity functor on D≤0(B),

4. A→ B is a W-immersion.

In particular, if the above conditions hold, then B ⊗LA B ∼= B ⊗A B ∼= B in D≤0(B).

Proof. We already proved that condition (1) is equivalent to condition (4), see Remark 4.2. There-

fore, we only need to show that conditions (1), (2) and (3) are equivalent to each other. We begin by

proving that the first condition is equivalent to the second one. Take a factorization A → R → B

as a cofibration followed by a trivial fibration. Consider the following commutative diagram in

CDGA≤0
K

A

��

// B

��
idB

  

R

��

// R⊗A B

�� ψ
''

B // B ⊗A B ϕ
// B

where R→ R⊗A B is a W-cofibration, being the class CofW stable under pushouts. In particular,

this shows that R ⊗A B → B ⊗A B is a weak equivalence, so that ϕ is a weak equivalence if and

only if ψ is so. To conclude, notice that B ⊗LA B → B is an isomorphism if and only if ψ is a weak

equivalence.

Observe that condition (3) clearly implies condition (2). Therefore, to conclude the proof it is

sufficient to show that the converse is true. Consider the following equalities of functors:

−⊗LB B = −⊗LB (B ⊗LA B) = −⊗LA B

where the left hand side clearly acts as the identity on D≤0(B). To prove the first equality consider

an arbitrary object M ∈ DGMod≤0(B) and a cofibrant replacement Q → M . Moreover, take a

factorization A→ R→ B as a cofibration followed by a trivial fibration. We proved that under our

assumptions R ⊗A B → B is a weak equivalence, so that B → R ⊗A B is a trivial cofibration. In

particular, Q⊗B B → Q⊗B (R ⊗A B) is a weak equivalence in DGMod≤0(B), being Q cofibrant.

Therefore the equalities

M ⊗LB B = Q⊗B B = Q⊗B (R⊗A B) = M ⊗LB (B ⊗LA B)

hold in D≤0(B), whence −⊗LB B = −⊗LB (B ⊗LA B).

Lemma 4.17. Let A→ B be a W-immersion in CDGA≤0
K . Then LB/A = 0 in D≤0(B).

Proof. By Lemma 4.16, the derived functor −⊗LAB : D≤0(B)→ D≤0(B) is just the identity functor,

and B ⊗LA B = B ⊗A B in D≤0(B). Therefore we have the following chain of equalities in D≤0(B):

LB/A = LB/A ⊗LB B = LB/A ⊗LB (B ⊗LA B) = LB/A ⊗LB (B ⊗A B).

Now recall that by Proposition 4.13 the co-base change

L(B⊗AB)/B = LB/A ⊗LB (B ⊗A B)
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holds in D≤0(B⊗AB), so that to conclude the proof it is sufficient to show that L(B⊗AB)/B = 0. To

this aim, consider a cofibrant replacement B → Q→ B ⊗A B in CDGA≤0
B . Notice that under our

hypothesis the morphism B → B⊗AB is a weak equivalence, so that B → Q is a trivial cofibration.

Therefore, Theorem 1.3 implies that the morphism

0 = ΩB/B ⊗B Q→ ΩQ/B

is a trivial cofibration. Hence ΩQ/B is acyclic, and by Lemma 4.6 we obtain

L(B⊗AB)/B = ΩQ/B ⊗Q (B ⊗A B) = 0

in D≤0(B ⊗A B), whence LB/A = 0 in D≤0(B) as required.

Theorem 4.18. Let C ∈ CDGA≤0
K and let A → B be a W-immersion in CDGA≤0

C . Moreover,

consider a commutative square

R //

��

A

��
S // B

in CDGA≤0
C where R and S are cofibrant replacements for A and B respectively. Then the induced

morphism

ΩR/C ⊗R B → ΩS/C ⊗S B

is a weak equivalence in DGMod≤0(B). Moreover, if R→ S is a cofibration in CDGA≤0
C then the

induced morphism is a trivial cofibration.

Proof. Consider the morphisms C → A → B in CDGA≤0
C . Then by Theorem 4.11 there is an

induced distinguished triangle in D≤0(B):

LA/C ⊗LA B
ϕ−→ LB/C → LB/A → LA/C ⊗LA B[1] .

By Lemma 4.17 it follows that ϕ is an isomorphism in D≤0(B). Moreover, by Theorem 1.3 ΩR/C

is cofibrant being R cofibrant in CDGA≤0
C , so that ΩR/C ⊗LR B = ΩR/C ⊗R B in D≤0(B). In

particular, this implies that

LA/C ⊗LA B = ΩR/C ⊗LR A⊗LA B = ΩR/C ⊗LR B = ΩR/C ⊗R B

and then the isomorphism ϕ is precisely induced by the natural morphism

ΩR/C ⊗R B → ΩS/C ⊗S B

which then turns out to be a weak equivalence in DGMod≤0(B) as required. The last part of the

statement follows by Theorem 1.3.

Corollary 4.19. Let C ∈ CDGA≤0
K and let R → S be a W-immersion in CDGA≤0

C between

cofibrant objects. Then the induced morphism

ΩR/C ⊗R S → ΩS/C

is a weak equivalence in DGMod≤0(B). Moreover, if R→ S is a cofibration in CDGA≤0
C then the

induced morphism is a trivial cofibration.
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Proof. Consider the following commutative square

R
idR //

��

R

��
S

idS // S

in CDGA≤0
C . By hypothesis R (respectively, S) can be considered as a cofibrant replacement for

R (respectively, S) itself. Therefore the statement follows by Theorem 4.18 choosing A = R and

B = S.

4.2 The extended lower-shriek functor

As already outlined at the very beginning of the chapter, the goal is to link the homotopy category
of quasi-coherent pseudo-modules over a pseudo-scheme A to the derived category of quasi-coherent
sheaves on a scheme X, whenever A is induced by X as explained in Example 3.32. This will be
explained in Section 4.3, see Theorem 4.32. Here, we begin by showing how the homotopy category
of pseudo-modules over A and the derived category of sheaves of OX -modules are related to each
other. To this aim, we first introduce the extended lower-shriek functor (see Definition 4.22) which
maps the category of pseudo-modules over A to the category of (cochain) complexes of sheaves of
OX -modules:

Υ! : ΨMod(A)→ DGMod(OX) .

Then we show that Υ! is in fact a left Quillen adjoint, so that its left derived functor is well-defined,
see Theorem 4.27. Since the homotopy category of DGMod(OX) with respect to the flat model
structure of Theorem 4.25 is the derived category of sheaves of OX -modules, we then obtain the
required functor:

LΥ! : Ho(ΨMod(A))→ Ho(DGMod(OX)).

Definition 4.20. Given a Reedy poset I, we define the category LI as:

1. Ob(LI) = {(β, γ) ∈ I × I |β ≤ γ},

2. there exists precisely one morphism (β, γ)→ (δ, η) if and only if β ≤ δ and η ≤ γ in I.

In particular, condition (2) of Definition 4.20 implies that for every β ≤ δ ≤ η ≤ γ the diagram

(β, γ) //

�� ##

(δ, γ)

��
(β, η) // (δ, η)

commutes in LI . We shall call a morphism (β, γ)→ (δ, γ) an horizontal morphism, and similarly
we call morphisms of the form (β, γ)→ (β, η) vertical morphisms.

Remark 4.21. It is possible to define the function

degLI : LI −→ Z

(β, γ) 7−→ degI(β)− degI(γ) .

Then horizontal morphisms increase the degree on LI , while vertical morphisms decrease the degree

on LI . This does not give to LI a structure of Reedy category, since the degree is not bounded from

below. Nevertheless, every morphism in LI uniquely factors as a vertical morphism followed by an

horizontal morphism.
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Given a separated Noetherian scheme X over K, consider the associated pseudo-scheme A ∈
ΨSchI(M) as explained in Example 3.32, where I denotes the nerve of the chosen affine covering
{Uh}h∈H . Moreover, define DGMod(OX) to be the category of complexes of OX -modules, and

consider the lower-shriek functor iXγ! : DGMod

(
OX
∣∣∣
Uγ

)
→ DGMod(OX) for every γ ∈ I. Now,

take a pseudo-module F on A, see Definition 3.44. We can define a functor

ΥF : LI → DGMod(OX)

as follows

1 ΥF (β, γ) = iXγ!

(
Fβ ⊗Aβ Aγ

)∼
for every (β, γ) ∈ LI , where

(
Fβ ⊗Aβ Aγ

)∼
denotes the complex

of sheaves on Spec(Aγ) associated to the differential graded Aγ-module Fβ ⊗Aβ Aγ .

2 ΥF maps each horizontal morphism (β, γ)→ (ε, γ) to the natural morphism of sheaves

iXγ!

(
Fβ ⊗Aβ Aγ

)∼ −→ iXγ! (Fε ⊗Aε Aγ)
∼
.

3 ΥF maps each vertical morphism (β, γ)→ (β, δ) to the morphism of sheaves

iXδ! ◦ iδγ!

(
Fβ ⊗Aβ Aγ

)∼ −→ iXδ!
(
Fβ ⊗Aβ Aδ

)∼
,

defined applying the standard lower-shriek functor iXδ! to the morphism

iδγ!(Fβ ⊗Aβ Aγ)∼ −→
(
Fβ ⊗Aβ Aδ

)∼
,

which in turn is the adjoint of the isomorphism(
Fβ ⊗Aβ Aγ

)∼ −→ ((
Fβ ⊗Aβ Aδ

)
⊗Aδ Aγ

)∼
.

Definition 4.22 (Extended lower-shriek functor). Let X be a separated Noetherian scheme over

K , and let A be the associated pseudo-scheme over CDGA≤0
K , see Example 3.32. The extended

lower-shriek functor Υ! is defined as

Υ! : ΨMod(A)→ DGMod(OX)

F 7→ colim
LI

ΥF

where ΨMod(A) denotes the category of pseudo-modules over A, see Definition 3.44.

Remark 4.23. Let X be a separated Noetherian scheme over K , and let A be the associated pseudo-

scheme over CDGA≤0
K with respect to the open affine covering {Uh}h∈H , see Example 3.32. Denote

by I the nerve of such covering. There exists a functor

Υ∗ : DGMod(OX)→ ΨMod(A)

F 7→
{
F
∣∣∣
Uα

}
α∈I

where ΨMod(A) denotes the category of pseudo-modules over A, see Definition 3.44.

Proposition 4.24. Let X be a separated Noetherian scheme over K and let A be the associated

pseudo-scheme over CDGA≤0
K , see Example 3.32. Then the functors

Υ! : ΨMod(A)→ DGMod(OX) : Υ∗

form an adjoint pair.
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4. The extended lower-shriek functor

Proof. We need to show that there exists a bi-natural bijection of sets

HomDGMod(OX)(Υ!F ,G) ∼= HomΨMod(A)(F ,Υ∗G)

for every F ∈ ΨMod(A) and every G ∈ DGMod(OX). By the universal property of the colimit, the

data of a morphism ϕ ∈ HomDGMod(OX)(Υ!F ,G) is equivalent to the following chain of one-to-one

correspondences

ϕ←→
{
iγ!

(
Fβ ⊗Aβ Aγ

)∼ → G}
(γ,β)∈LI

←→
{(
Fβ ⊗Aβ Aγ

)∼ → G∣∣∣
Uγ

}
(γ,β)∈LI

(∗)←→

(∗)←→
{
Fβ ⊗Aβ Aγ → G(Uγ)

}
(β,γ)∈LI

(∗∗)←→ {Fγ → G(Uγ)}γ∈I ∈ HomΨMod(A)(F ,Υ∗G)

where:

1 (∗) is a bijection since the morphisms of sheaves are all determined by localizations of the module

Fβ ⊗Aβ Aγ ,

2 (∗∗) is a bijection since for every (β, γ) ∈ LI we have a commutative diagram

Fβ ⊗Aβ Aγ
fβγ //

%%

Fγ

��
G(Uγ)

where the morphisms fβγ are given by the pseudo-module F .

Let X be a separated Noetherian scheme. Recall that a sheaf F of OX -modules is called flasque
if the restriction maps F(U) → F(V ) are surjective whenever V ⊆ U in X. In [27], M. Hovey
extends this terminology to complexes of OX -modules: an object F ∈ DGMod(OX) is called a
flasque complex if F j is a flasque sheaf for every j ∈ Z.

Theorem 4.25 (Hovey, [27], Theorem 5.2). Let X be a separated finite-dimensional Noetherian

scheme. Then the category DGMod(OX) is endowed with the flat model structure, where the

weak equivalences are the quasi-isomorphisms, and fibrations are epimorphisms with flasque kernel.

Lemma 4.26. Let ϕ : F → G be an epimorphism of sheaves of OX-modules with flasque kernel

over a separated Noetherian scheme X. Then ϕV : F(V )→ G(V ) is surjective for every open subset

V ⊆ X.

Proof. Let us begin by fixing an open subset V ⊆ X and a section s ∈ G(V ). Since ϕ is an

epimorphism, the induced morphism ϕp : Fp → Gp on the stalk is surjective for every p ∈ V . It

follows that for every p ∈ V there exist an open subset Vp ⊆ V and a section tp ∈ F(Vp) such that

ϕVp(tp) = s|Vp . Clearly {Vp}p∈V covers V . Now recall that X is a Noetherian topological space,

being a Noetherian scheme. In particular, V is quasi-compact so that there exists p1, . . . , pn ∈ V
such that

n⋃
j=1

Vpj = V

for some n ∈ N. Let us assume for the moment n = 2. Define t1 = tp1 and

k12 = t1|Vp1∩Vp2 − t
p2 |Vp1∩Vp2 .

By hypothesis, k12 lifts to a section k ∈ kerϕVp2 ⊆ F(Vp2). Now, define t2 = tp2 + k ∈ F(Vp2). It

follows the existence of a section t ∈ F(Vp1 ∪ Vp2) = F(V ) such that t|Vpj = tj ; j = 1, 2. Hence

ϕ(t) = s ∈ G(V ) as required. For n > 2 it is sufficient to proceed by induction on n and reproduce

the argument above.
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Theorem 4.27. Let X be a separated finite-dimensional Noetherian scheme over K and let A be

the associated pseudo-scheme, see Example 3.32. Then the functors

Υ! : ΨMod(A)� DGMod(OX) : Υ∗

are Quillen adjoint with respect to the model structure of Theorem 3.47 on ΨMod(A), and the flat

model structure of Theorem 4.25 on DGMod(OX).

Proof. The adjointness follows from Proposition 4.24, and the right adjoint Υ∗ preserves fibrations

by Lemma 4.26. Moreover, given a quasi-isomorphism ϕ : F → G of complexes of sheaves of OX -

modules, for every p ∈ X we have an isomorphism

H•(ϕp) : H• (Fp)→ H• (Gp)

and since H• (Fp) ∼= (H• (F))p we have an isomorphism of complexes of OX(V )-modules

H•(ϕ)V : H• (F) (V )→ H• (G) (V )

for every open subset V ⊆ X. Hence Υ∗ preserves trivial fibrations and the statement follows.

As an immediate consequence of Theorem 4.27, we have the existence of the total left derived
functor

LΥ! : Ho(ΨMod(A))→ Ho(DGMod(OX)).

4.3 From pseudo-modules to derived categories

The aim of this section is to show that the left derived functor of the extended lower-shriek (see
Theorem 4.27) maps classes of quasi-coherent pseudo-modules in classes of complexes of quasi-
coherent sheaves. Therefore, it is induced a functor

LΥ! : Ho(QCoh(A)) −→ D(QCoh(X))

see Theorem 4.32.
Throughout all this section we shall denote by M the deformation model category CDGA≤0

K ,
see Definition 2.9.

We begin by recalling that given a Reedy poset I, a pseudo-module F over a pseudo-scheme
A ∈ ΨSchI(M) is called quasi-coherent if the morphism

fαβ : Fα ⊗Aα Aβ → Fβ

is a weak equivalence in DGMod(Aβ) for every α ≤ β in I, see Definition 3.49. The full subcategory
of quasi-coherent pseudo-modules is denoted by QCoh(A) ⊆ ΨMod(A).

Lemma 4.28. Let N be a small direct category and let R be a ring. Consider the category

DGMod(R) of complexes of R-modules. Then for every functor F : N → DGMod(R) there exists

an isomorphism of R-modules

Hj

(
colim
β∈N

Fβ

)
∼= colim

β∈N
(Hj(Fβ))

for every j ∈ Z.
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Proof. For every β ∈ N consider the exact sequence

0→ ZjFβ → F jβ
djβ−→ Zj+1Fβ → Hj+1Fβ → 0.

Now observe that colimN is exact, being direct on a category of modules. This means that we have

an exact sequence

0→ colim
β∈N

(ZjFβ)→ colim
β∈N

(F jβ)
colim
β∈N

(djβ)

−−−−−−→ colim
β∈N

(Zj+1Fβ)→ colim
β∈N

(Hj+1Fβ)→ 0.

In particular,

colim
β∈N

ZjFβ ∼= ker

{
colim
β∈N

djβ

}
= Zj

(
colim
β∈N

Fβ

)
,

and then we obtain:

colim
β∈N

Hj+1Fβ ∼= coker

{
colim
β∈N

djβ

}
∼=

colim
β∈N

Zj+1Fβ

Bj+1

(
colim
β∈N

Fβ

) ∼= Zj+1

(
colim
β∈N

Fβ

)
Bj+1

(
colim
β∈N

Fβ

) = Hj+1

(
colim
β∈N

Fβ

)

Proposition 4.29. Let X be a separated finite-dimensional Noetherian scheme over K with an open

affine cover {Ui}i∈I , and let A ∈ ΨSchI(M) be the associated pseudo-scheme, see Example 3.32.

Consider a quasi-coherent pseudo-module F ∈ ΨMod(A), see Definition 3.49. Then for every α ∈ I
there exists a quasi isomorphism

F̃α → (Υ!F)
∣∣∣
Uα

in DGMod

(
OX
∣∣∣
Uα

)
, where Υ! denotes the extended lower-shriek functor, see Definition 4.22.

Proof. We show that the natural morphism

ϕ : F̃α →
(

colim
(β,γ)∈JN

iγ!(Fβ ⊗Xβ Xγ)∼
) ∣∣∣

Uα
= Υ!F

∣∣∣
Uα

is a quasi-isomorphism by showing that the induced morphism ϕp is so at each stalk, p ∈ Uα.

Consider the following chain of equalities(
(Υ!F)

∣∣∣
Uα

)
p

= colim
(β,γ)∈JN

(
iγ!(Fβ ⊗Xβ Xγ)∼

)
p

= colim
{(β,γ)∈JN | p∈Uγ}

(
(Fβ ⊗Xβ Xγ)∼

)
p

(∗)
=

(∗)
= colim

β∈N

(
(Fβ ⊗Xβ Xβ)∼

)
p

= colim
β∈N

(
F̃β

)
p

where the equality (∗) holds since for every β ≤ γ1 ≤ γ2 the vertical morphism induced on the stalk(
˜Fβ ⊗Xβ Xγ1

)
p
→
(

˜Fβ ⊗Xβ Xγ1

)
p

is an isomorphism. Now take j ∈ Z and notice that since N is

connected and whenever β1 ≤ β2 the natural morphism Hj(F̃β1)p → Hj(F̃β2)p is an isomorphism

by hypothesis, then

Hj(ϕp) : Hj(F̃α)p
∼=−→ colim

β∈N
Hj(F̃β)p ∼= [Lemma 4.28] ∼= Hj

(
colim
β∈N

(F̃β)

)
p

and the statement follows.
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Remark 4.30. Since the homotopy category of a model category only depends on the class of weak

equivalences, there are fully faithful inclusion functors

Ho(QCoh(A)) −→ Ho(ΨMod(A))

and

D(QCoh(X)) −→ Ho(DGMod(OX))

where Ho(QCoh(A)) and D(QCoh(X)) should be thought of as localizations of categories with

weak equivalences.

Theorem 4.31 (Bökstedt-Neeman, [5]). Let X be a separated quasi-compact scheme. Consider

the derived category D(QCoh(X)) of cochain complexes of quasi-coherent sheaves over X, and

let Dqc (OX) be the derived category of cochain complexes of arbitrary OX-modules over X, with

quasi-coherent cohomology. Then the natural functor

D(QCoh(X))→ Dqc (OX)

is an equivalence of categories.

Theorem 4.32. Let X be a separated finite-dimensional Noetherian scheme over K with an open

affine cover {Ui}i∈I , and let A ∈ ΨSchI(M) be the associated pseudo-scheme, see Example 3.32.

Then

LΥ! : Ho(ΨMod(A))→ Ho(DGMod(OX))

maps (classes of) quasi-coherent pseudo-modules in (classes of) complexes of quasi-coherent sheaves.

In particular, it is well defined the restriction functor

LΥ! : Ho(QCoh(A)) −→ D(QCoh(X))

[F ] 7−→ [LΥ!F ].

Proof. The statement immediately follows by Proposition 4.29 and Theorem 4.31.

4.3.1 A geometric application: The global relative cotangent complex

This subsection is devoted to the study of the global cotangent complex induced by a morphism
A→ B of pseudo-schemes A ∈ ΨSchJ(M) and B ∈ ΨSchI(M), see Definition 3.30. In particular,
after giving the definition of the global relative cotangent complex (see Definition 4.34) we shall
prove in Theorem 4.36 that it is consistent if A → B is induced by a morphism of separated
finite-dimensional Noetherian schemes over a field K, see Remark 3.35.

Again, in the following we shall sometimes denote simply by M the model category CDGA≤0
K .

Example 4.33. Let f : I → J be a morphism between Reedy posets, and consider A ∈ ΨSchJ(M)

and B ∈ ΨSchI(M) two pseudo-schemes indexed by J and I respectively. Moreover, take a mor-

phism of pseudo-schemes ϕ : f−1A→ B in ΨSchI(M), see Definition 3.30. Then to every cofibrant

replacement f−1A → R → B in ΨSchI(M) it is associated a pseudo-module LB/A ∈ ΨMod(B)

over B defined as follows:

1.
(
LB/A

)
α

= ΩRα/(f−1A)α ⊗Rα Bα = ΩRα/Af(α)
⊗Rα Bα ∈ DGMod(Bα) for every α ∈ I,

2. for every α ≤ β in I the morphism
(
LB/A

)
α
⊗Bα Bβ →

(
LB/A

)
β

in DGMod(Bβ) is simply

the natural composite morphism

ΩRα/Af(α)
⊗Rα Bβ → ΩRβ/Af(α)

⊗Rβ Bβ → ΩRβ/Af(β) ⊗Rβ Bβ

induced by Kähler differentials.
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Definition 4.34 (The global relative cotangent complex). Let f : I → J be a morphism between

Reedy posets, and consider A ∈ ΨSchJ(M) and B ∈ ΨSchI(M) two pseudo-schemes indexed by

J and I respectively. Moreover, take a morphism of pseudo-schemes ϕ : f−1A→ B in ΨSchI(M),

see Definition 3.30. The class

LB/A ∈ Ho(ΨMod(B))

defined by LB/A = [LB/A], see Example 4.33, is called the global cotangent complex associated

to the morphism ϕ.

Theorem 4.35. Let f : I → J be a morphism of Reedy posets, and consider A ∈ ΨSchJ(M) and

B ∈ ΨSchI(M) two pseudo-schemes indexed by J and I respectively. Moreover, take a morphism of

pseudo-schemes ϕ : f−1A → B in ΨSchI(M), see Definition 3.30. Then LB/A is a quasi-coherent

pseudo-module over B, see Example 4.33 and Definition 3.49. In particular, the class LB/A defined

in 4.34 lies in Ho(QCoh(B)).

Proof. We only need to show that for every α ≤ β the composite morphism

ΩRα/Af(α)
⊗Rα Bβ → ΩRβ/Af(α)

⊗Rβ Bβ → ΩRβ/Af(β) ⊗Rβ Bβ

induced by Kähler differentials is a weak equivalence. The first morphism is a weak equivalence

by Theorem 4.18. In order to show that also the second map is a weak equivalence, consider the

fundamental exact sequence of differential graded Rβ-modules associated to Af(α) → Af(β) → Rβ

0→ ΩAf(β)/Af(α)
⊗Af(β) Rβ → ΩRβ/Af(α)

→ ΩRβ/Af(β) → 0

given by Theorem 4.9. Now, by Definition 3.23 the map Af(α) → Af(β) is a formally open immersion,

see Definition 1.39. Therefore, by Proposition 1.48 the induced morphism

ΩAf(α)/K ⊗Af(α)
Af(β) → ΩAf(β)/K

is a trivial cofibration. By Theorem 4.9 it follows that ΩAf(β)/Af(α)
is acyclic, then so is the DG-

module ΩAf(β)/Af(α)
⊗Af(β) Rβ , being Af(β) → Rβ a cofibration. Now notice that ΩRβ/Af(α)

→
ΩRβ/Af(β) is a weak equivalence if and only if

ΩRβ/Af(α)
⊗Rβ Bβ → ΩRβ/Af(β) ⊗Rβ Bβ

is so by Lemma 4.6. The statement follows.

Theorem 4.36. Let X → Y be a morphism between separated schemes over K . Moreover, assume

X and Y to be finite-dimensional and Noetherian. Chosen affine open coverings for X and Y ,

consider the associated morphism of pseudo-schemes f−1A → B in ΨSchI(M), see Remark 3.35.

Then there exists an isomorphism

LΥ!LB/A ∼= LX/Y

in the derived category D(QCoh(X)) of quasi-coherent sheaves over X, where LX/Y denotes the

usual cotangent complex associated to the given morphism of schemes X → Y .

Proof. The statement immediately follows by Theorem 4.35, Theorem 4.32, and Proposition 4.29.
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4.4 The global Quillen adjunction

The aim of this section is to prove the global version of Theorem 1.3. Recall that the full subcategory
ΨMod≤0(B) ⊆ ΨMod(B) of pseudo-modules concentrated in non-positive degrees admits a model
structure where fibrations and weak equivalences are detected degreewise, see Remark 3.48. The
first step is to extend the pair of functors

Ω−/A ⊗− B : CDGA≤0
A ↓ B � DGMod≤0(B) : −⊕B

defined for any B ∈ CDGA≤0
A to a pair of functors

ΩI−/A ⊗− B : (CDGA≤0
K )IA ↓ B � ΨMod≤0(B) : −⊕IB

defined for a pseudo-scheme B ∈ (CDGA≤0
K )IA over an arbitrary Reedy poset I.

Definition 4.37. Let I be a Reedy poset and take a pseudo-scheme B ∈ (CDGA≤0
K )IA. Then it is

defined a functor
ΩI−/A ⊗− B : (CDGA≤0

K )IA ↓ B −→ ΨMod≤0(B)

C 7→ ΩIC/A ⊗C B

where the pseudo-module ΩIC/A ⊗C B ∈ ΨMod≤0(B), see Definition 3.44, is defined as

1.
(

ΩIC/A ⊗C B
)
α

= ΩCα/Aα ⊗Cα Bα for every α ∈ I,

2. for every α ≤ β in I the morphism
(

ΩIC/A ⊗C B
)
α
⊗BαBβ →

(
ΩIC/A ⊗C B

)
β

in DGMod≤0(Bβ)

is the natural composite morphism

ΩCα/Aα ⊗Cα Bβ → ΩCβ/Aα ⊗Cβ Bβ → ΩCβ/Aβ ⊗Cβ Bβ

induced by Kähler differentials.

For simplicity of notation we will often write Ω−/A ⊗− B instead of ΩI−/A ⊗− B if no confusion
occurs.

Remark 4.38 (Kähler differentials as an example of quasi-coherent pseudo-module). Let I be a

Reedy poset and take a pseudo-scheme B ∈ (CDGA≤0
K )IA. Then Proposition 1.48 shows that ΩIB/A

is a quasi-coherent pseudo-module in the sense of Definition 3.49. This motivated the definition of

formally open immersions, see Definition 1.39.

Definition 4.39. Let I be a Reedy poset (see Definition 3.1) and take a pseudo-scheme B ∈
(CDGA≤0

K )IA. Then it is defined a functor

−⊕I B : ΨMod≤0(B) −→ (CDGA≤0
K )IA ↓ B

M 7→M ⊕I B

as follows:

1. (M ⊕I B)α = Mα ⊕Bα for every α ∈ I,

2. for every α ≤ β in I the morphism Mα ⊕ Bα → Mβ ⊕ Bβ is the composite morphism in the

bottom row of the commutative diagram

Aα //

��

Aα //

��

Aβ

��
Mα ⊕Bα // Mβ ⊕Bα // Mβ ⊕Bβ

in CDGA≤0
K , where the morphism Mα⊕Bα →Mβ⊕Bα in CDGA≤0

Aα
is obtained by applying

the functor −⊕Bα to the map Mα →Mβ in DGMod≤0(Bα), which in turn is the adjoint of

the morphism Mα ⊗Bα Bβ →Mβ in DGMod≤0(Bβ).
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Our next goal is to observe how Theorem 1.3 implies that the functors

(ΩI−/A ⊗− B) a (−⊕B)

form an adjoint pair.

Proposition 4.40. Let I be a Reedy poset. Then, given a pseudo-scheme B ∈ (CDGA≤0
K )IA, the

functors

ΩI−/A ⊗− B : (CDGA≤0
K )IA ↓ B � ΨMod≤0(B) : −⊕IB

form an adjoint pair.

Proof. We shall exhibit a bi-natural bijection of sets

Hom
(CDGA

≤0
K )IA↓B

(
R,M ⊕I B

) ∼= HomΨMod≤0(B)

(
ΩIR/A ⊗R B,M

)
for every R ∈ (CDGA≤0

K )IA ↓ B and every M ∈ ΨMod≤0(B).

First, observe that to give a morphism ϕ ∈ Hom
(CDGA

≤0
K )IA↓B

(
R,M ⊕I B

)
is equivalent to the

data of {ϕα} ∈
∏
α∈I

Hom
CDGA

≤0
Aα
↓Bα (Rα,Mα ⊕Bα) such that the diagram

Rα
ϕα //

��

Mα ⊕Bα

��
Rβ

ϕβ // Mβ ⊕Bβ

commutes in CDGA≤0
K for every α ≤ β in I.

Similarly, to give a morphism ψ ∈ HomΨMod≤0(B)

(
ΩIR/A ⊗R B,M

)
is the same as to give a

collection {ψα} ∈
∏
α∈I

HomDGMod≤0(Bα)

(
ΩIRα/Aα ⊗Rα Bα,Mα

)
such that the diagram

ΩRα/Aα ⊗Rα Bβ
ψα⊗BαBβ //

��

Mα ⊗Bα Bβ

��
ΩRβ/Aβ ⊗Rβ Bβ

ψβ // Mβ

commutes in DGMod≤0(Bβ) for every α ≤ β in I. Notice that by adjunction the commutativity of

the diagram above is equivalent to the commutativity of the diagram

ΩRα/Aα ⊗Rα Bα
ψα //

��

Mα

��
ΩRβ/Aβ ⊗Rβ Bβ

ψβ // Mβ

in DGMod≤0(Bα). The statement follows by Theorem 1.3.

The last step is to prove the global Quillen adjunction, generalizing Theorem 1.3. Recall that
for every Reedy poset I, given a pseudo-scheme B ∈ (CDGA≤0

K )IA, the category ΨMod≤0(B) of
pseudo-modules over B admits a model structure, see Theorem 3.47 and Remark 3.48.

Theorem 4.41 (Global Quillen adjunction). Let I be a Reedy poset. Then, given a pseudo-scheme

B ∈ (CDGA≤0
K )IA, the pair of functors

ΩI−/A ⊗− B : (CDGA≤0
K )IA ↓ B � ΨMod≤0(B) : −⊕IB

is a Quillen adjunction. In particular, ΩI−/A ⊗− B commutes with small colimits and preserves

cofibrations, trivial cofibrations and weak equivalences between Reedy cofibrant objects.
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Proof. By Proposition 4.40 it is sufficient to observe that the right adjoint−⊕IB preserves fibrations

and trivial fibrations, and this immediately follows recalling that in both model structures on

ΨMod≤0(B) and (CDGA≤0
K )IA ↓ B these classes are defined pointwise.

Corollary 4.42. Let I be a Reedy poset, and consider a morphism A→ B in (CDGA≤0
K )I . Then

for every cofibrant replacement A→ R→ B the pseudo module

ΩIR/A ⊗R B ∈ ΨMod≤0(B)

is cofibrant with respect to the model structure of Theorem 3.47.

Proof. This is an immediate consequence of Theorem 4.41.

4.5 Derivations over Reedy posets

This section contains basic definitions and preliminary results that will be used in Section 4.6. In
particular, we introduce the complex of derivations for pseudo-modules, see Definition 4.45.

Definition 4.43 (Total-Hom complex over a Reedy poset). Let I be a Reedy poset and consider

two pseudo-modules M,N ∈ ΨMod(B) over an object B ∈ (CDGA≤0
K )I , see Definition 3.44. The

B-linear Total-Hom complex is defined as

Hom∗B(M,N) =

{ϕα} ∈
∏
α∈I

Hom∗Bα(Mα, Nα)
∣∣∣
Mβ ⊗Bβ Bγ

ϕβ⊗BβBγ
��

// Mγ

ϕγ

��
Nβ ⊗Bβ Bγ // Nγ

commutes for every β ≤ γ in I

 .

Remark 4.44. Let I be a Reedy poset and consider two pseudo-modules M,N ∈ ΨMod(B) over

an object B ∈ (CDGA≤0
K )I . The Total-Hom complex Hom∗B(M,N) naturally carries a structure

of DG-module over limI B ∈ CDGA≤0
K . In fact, for every α ∈ I the complex Hom∗Bα(Mα, Nα) can

be seen as an object in DGMod(limI B) through the map limI B → Bα, and the subcomplex

Hom∗B(M,N) ⊆
∏
α∈I

Hom∗Bα(Mα, Nα)

is stable under the action of limI B.

We now turn our attention to the study of derivations over a Reedy poset.

Definition 4.45 (Derivations over a Reedy poset). Let I be a Reedy poset and consider a

pseudo-module M ∈ ΨMod(A) over an object A ∈ (CDGA≤0
K )IP . The space of P -linear derivations

is defined as

Der∗P (A,M) =

{ϕα} ∈
∏
α∈I

Der∗Pα(Aα,Mα)
∣∣∣
Aβ

ϕβ

��

// Aγ

ϕγ

��
Mβ

// Mγ

commutes for every β ≤ γ in I


where Mβ →Mγ is the morphism in DGMod(Aβ) adjoint to Mβ⊗Aβ Aγ

mβγ−−−→Mγ . Similarly, given

a morphism A
f−→ B in (CDGA≤0

K )IP we define

Der∗P (A,B; f) =

{ϕα} ∈
∏
α∈I

Der∗Pα(Aα, Bα; fα)
∣∣∣
Aβ

ϕγ

��

// Aγ

ϕβ

��
Bβ // Bγ

commutes for every β ≤ γ in I

 .

The elements of Der∗P (A,B; f) are called f -derivations.
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Remark 4.46. Notice that given a Reedy poset I and a pseudo-module M ∈ ΨMod(A) over an

object A ∈ (CDGA≤0
K )IP , the space of P -linear derivations Der∗P (A,M) is endowed with a structure

of DG-module over limI A ∈ CDGA≤0
K . In fact, for every α ∈ I the complex Der∗Pα(Aα,Mα) can

be seen as an object in DGMod(limI A) through the map limI A → Aα, and the subcomplex

Der∗P (A,M) ⊆
∏
α∈I

Der∗Pα(Aα,Mα) is stable under the action of limI A. Similarly, given a morphism

A
f−→ B in (CDGA≤0

K )IP the space of f -derivations is an object in DGMod(limI A).

Theorem 4.47 (Existence of Kähler differentials over a Reedy poset). Let I be a Reedy

poset and let B ∈ (CDGA≤0
K )IA. Then there exists a pseudo-module ΩIB/A ∈ ΨMod(B) together

with a closed derivation of degree 0, δ ∈ Z0(Der∗A(B,ΩIB/A)), such that for every other pseudo-

module M ∈ ΨMod(B) the natural morphism

− ◦ δ : Hom∗B(ΩIB/A,M)→ Der∗A(B,M)

is a natural isomorphism in DGMod(limI B).

Proof. The pseudo-module ΩIB/A is obtained applying the functor

ΩI−/A ⊗− B : (CDGA≤0
A )I ↓ B → ΨMod(B)

to B
id−→ B (see Definition 4.37). Then the statement follows by Theorem 1.2.

Let I be a Reedy poset, B ∈ (CDGA≤0
K )I and let f : M → N be a morphism in ΨMod(B).

The cocone of f is defined by the following

δjα : cocone(f)jα = M j
α ⊕N j−1

α → cocone(f)j+1
α = M j+1

α ⊕N j
α

(m,n) 7→ (dMm, f(m)− dNn)

for every α ∈ I and every j ∈ Z. Moreover, for every α ≤ β in I there is an obvious map

cocone(f)α ⊗Bα Bβ = cocone(fα)⊗Bα Bβ ∼= cocone (f ⊗Bα Bβ)→ cocone(fβ) = cocone(f)β

induced by the morphisms Mα⊗BαBβ →Mβ and Nα⊗BαBβ → Nβ . Hence cocone(f) ∈ ΨMod(B).
Similarly we can define the cone of a morphism of pseudo-modules. Let I be a Reedy poset, let

B ∈ (CDGA≤0
K )I and consider a morphism ϕ : M → N in ΨMod(B). We define the cone of ϕ as

cone(ϕ)jα = M j+1
α ⊕N j

α, djcone(ϕ) : cone(ϕ)jα → cone(ϕ)j+1
α

(m,n) 7→
(
−dj+1

M m,ϕj+1(m) + djNn
)

for every j ∈ Z and every α ∈ I. Now, for every α ≤ β in I there is a map

cone(ϕ)α → cone(ϕ)β

induced by the morphisms Mα ⊗Bα Bβ → Mβ and Nα ⊗Bα Bβ → Nβ as above. Hence cone(ϕ) ∈
ΨMod(B).

Definition 4.48. Let I be a Reedy poset, B ∈ (CDGA≤0
K )I and let f, g : M → N be morphisms

in ΨMod(B). We shall say that f is homotopic to g if there exists h ∈ Hom−1
B (M,N) such that

f − g = h ◦ dM + dN ◦ h.

The homotopy relation will be denoted by f ∼ g.

Remark 4.49. Let I be a Reedy poset, B ∈ (CDGA≤0
K )I and let f : M → N [n] be a morphism in

ΨMod(B) for some n ∈ N. If f ∼ 0, then [f ] = [0] ∈ Hn(Hom∗B(M,N)).
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4. Derivations over Reedy posets

The following result gives sufficient conditions for a morphism between pseudo-modules to be
homotopic to zero.

Lemma 4.50. Let I be a Reedy poset, B ∈ (CDGA≤0
K )I and consider a cofibrant object M ∈

ΨMod(B).

1. If the map 0 → M is a trivial cofibration in ΨMod(B), then every morphism M → N in

ΨMod(B) is homotopic to 0: M → N .

2. Given N ∈ ΨMod(B) such that 0→ N is a weak equivalence, then every morphism M → N

in ΨMod(B) is homotopic to 0: M → N .

Proof. Take a morphism ϕ : M → N in ΨMod(B). In both cases (1) and (2) the diagram of solid

arrows

cocone(idN )

π

��
M

(ϕ,h)
99

ϕ
// N

admits the dotted lifting (ϕ, h) : M → cocone(idN ) in ΨMod(B), for some h ∈ Hom−1
B (M,N). By

definition, (ϕ, h) is a morphism of pseudo-modules if and only if

ϕ = h ◦ dM + dN ◦ h

whence the statement.

The following is another technical result, which will be useful for our applications.

Lemma 4.51. Let I be a Reedy poset, B ∈ (CDGA≤0
K )I and consider two pseudo-modules M,N ∈

ΨMod(B). Then

Homi
B(M,N)→ Z0

(
Hom∗B(M, cone(idN [i]))

)
f 7→ (δf, f)

is a bijection for every i ∈ Z.

Proof. First notice that an element (g, f) ∈ Hom∗B
(
M, cone(idN [i])

)
is simply the data of a mor-

phism g ∈ Hom∗B(M,N [i+1]) and f ∈ Hom∗B(M,N [i]). By definition, (g, f) ∈ Z0
(
Hom∗B(M, cone(idN [i]))

)
if and only if the conditions

• gj+1 ◦ djM = (−1)idj+i+1
N ◦ gj

• f j+1 ◦ djM − (−1)idj+iN ◦ f j = gj

hold for every j ∈ Z. The second condition above is equivalent to require that δf = g, so that the

first one follows. This proves that an element (g, f) ∈ Hom∗B
(
M, cone(idN [i])

)
is a 0-cocycle if and

only if g = δf .

Lemma 4.52. Let I be a Reedy poset, B ∈ (CDGAK )I and consider a pseudo-module T ∈
ΨMod(B). Then the functor

Hom∗B(−, T ) : ΨMod(B)→ DGMod (limIB)

maps cofibrations to fibrations.
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Proof. Let f : M → N be a cofibration in ΨMod(B). We need to show that the morphism

f∗ : Hom∗B(M,T )→ Hom∗B(N,T )

is degreewise surjective in DGMod(limI B). To this aim, take h ∈ Homi
B(M,T ) and observe that

by Lemma 4.51 it corresponds to a morphism ψ ∈ Z0
(
Hom∗B(M, cone(idT [i]))

)
. Now the diagram

of solid arrows in ΨMod(B)

M
ψ//

f

��

cone(idT [i])

N
ψ̃

99

admits the dotted lifting ψ̃ ∈ Z0
(
Hom∗B(M, cone(idT [i]))

)
, which in turn by Lemma 4.51 corre-

sponds to a morphism h̃ ∈ Homi
B(N,T ) such that f∗(h̃) = h as required.

Proposition 4.53. Let I be a Reedy poset, B ∈ (CDGA≤0
K )I and consider a pseudo-module

T ∈ ΨMod(B). Then the functor

Hom∗B(−, T ) : ΨMod(B)→ DGMod (limIB)

maps weak equivalences between cofibrant objects to weak equivalences.

Proof. We first deal with the case of a trivial cofibration f : M → N in ΨMod(B). We have an

exact sequence

0→ K → Hom∗B(N,T )
f∗−→ Hom∗B(M,T )→ 0

in DGMod(limI B). Notice that by Lemma 4.52 f∗ is surjective since f is a cofibration. We shall

prove that H∗(K) = 0. Define J = N
f(M) , so that

K =
{
g ∈ Hom∗B(N,T )

∣∣∣ f(M) ⊆ ker{g}
}

= Hom∗B(J, T ).

Observe that J is cofibrant and acyclic in ΨMod(B), being f a trivial cofibration. Now, an element

h ∈ Zn (Hom∗B(J, T )) is a morphism of pseudo-modules h : J → T [n]. By Lemma 4.50 it follows

that h is homotopic to 0. Therefore

[h] = [0] ∈ Hn (Hom∗B(J, T ))

and H∗(f) is an isomorphism as required. The statement follows by Ken Brown’s Lemma.

The following result resumes Lemma 4.52 and Proposition 4.53. Recall that by Definition 3.24
the algebra of global sections of B ∈ (CDGA≤0

K )I is defined to be Γ(B) = limI(B).

Corollary 4.54. Let I be a Reedy poset, let B ∈ (CDGA≤0
K )I and consider a pseudo-module

T ∈ ΨMod(B). Then the functor

Hom∗B(−, T ) : ΨMod(B)→ DGMod(Γ(B))op

is a left Quillen functor, where the right adjoint is defined as

X 7→
{

Hom∗Γ(B)(X,Tα)
}
α∈I

.

Proof. The statement immediately follows from Lemma 4.52 and Proposition 4.53.
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Proposition 4.55. Let I be a Reedy poset and consider a weak equivalence between cofibrant objects

i : A→ B in (CDGA≤0
K )IP . Then for every pseudo-module M ∈ ΨMod(B) the morphism

i∗ : Der∗P (B,M)→ Der∗P (A,M)

is a weak equivalence in DGMod(limI A). Moreover, if there exists a morphism p : B → A in

(CDGA≤0
K )IP such that pi = idA, then i∗ is a trivial fibration.

Proof. Notice that the map i∗ factors as

Der∗P (B,M) ∼= Hom∗B(ΩIB/P ,M)→ Hom∗A(ΩIA/P ,M) ∼= Der∗P (A,M)

so that the first part of the statement follows by Proposition 4.53. To conclude, observe that if there

exists p as above then i∗p∗ = idDer∗P (A,M). Hence i∗ is degreewise surjective.

Corollary 4.56. Let I be a Reedy poset and consider a weak equivalence between cofibrant objects

i : S → R in (CDGA≤0
K )IP . Then for every weak equivalence p : R → S in (CDGA≤0

K )IP , the

induced morphism

i∗ : Der∗P (R,S; p)→ Der∗P (S, S; pi)

is a weak equivalence in DGMod(limI S). Moreover, if pi = idS, then i∗ is a trivial fibration.

Proof. Denote by Sp ∈ ΨMod(R) the pseudo-module S where the structure is induced via p.

Similarly, denote by Spi ∈ ΨMod(S) the pseudo-module S where the structure is induced via the

map pi. Now, notice that the morphism i∗ factors as

Der∗P (R,S; p) = Der∗P (R,Sp) ∼=
∼= Hom∗R(ΩIR/P , Sp) −→ Hom∗R(ΩS/P ⊗S R,Sp) = Hom∗S(ΩIS/P , Spi)

∼=
∼= Der∗P (S, Spi) = Der∗P (S, S; pi)

so that the first part of the statement follows by Theorem 4.41 and Proposition 4.53. To conclude,

observe that if pi = idS then i∗p∗ = idDer∗P (S,S). Hence i∗ is degreewise surjective.

Lemma 4.57. Let I be a Reedy poset, B ∈ (CDGAK )I and T ∈ ΨMod(B) a cofibrant pseudo-

module. Then the functor

Hom∗B(T,−) : ΨMod(B)→ DGMod (limIB)

preserves fibrations.

Proof. We first deal with the case of an acyclic and cofibrant pseudo-module T ∈ ΨMod(B). Let

f : M → N be a fibration in ΨMod(B) and consider the induced map

f∗ : Hom∗B(T,M)→ Hom∗B(T,N)

in DGMod(limI B). Take h ∈ Homn
B(T,N) and consider dh ∈ Homn+1

B (T,N) which is in fact

a morphism dh : T → N [n + 1] in ΨMod(B). By our assumption on T , there exists a lifting

g ∈ Zn+1 (Hom∗B(T,M)) such that f∗(g) = dh. By Lemma 4.50 the map g is homotopic to 0, so

that [g] = [0] ∈ Hn+1(Hom∗B(T,M)). Therefore there exists g̃ ∈ Homn
B(T,M) such that dg̃ = g.

Now, since

d(fg̃ − h) = dfg̃ − dh = fdg̃ − dh = f∗(g)− dh = 0

we have that (fg̃ − h) ∈ Zn(Hom∗B(T,N)), and then there exists a morphism h̃ : T → M [n] in

ΨMod(B) such that f∗(h̃) = fg̃ − h. It follows that h = f∗(g̃ − h̃) as required. In order to prove
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the statement in the general case, let T ∈ ΨMod(B) be a cofibrant pseudo-module and consider a

factorization

T
p−→ T → 0

as a cofibration followed by a trivial fibration. In particular, T is cofibrant and acyclic. Now, consider

the following commutative diagram

Hom∗B(T ,M)

p∗

��

f∗ // Hom∗B(T ,N)

p∗

��
Hom∗B(T,M)

f∗ // Hom∗B(T,N)

in DGMod(limI B). The vertical arrows are fibrations by Lemma 4.52, being p : T → T a cofibration.

Moreover, we have just shown that the upper arrow is a fibration since T is both cofibrant and

acyclic. It immediately follows the surjectivity of f∗ : Hom∗B(T,M)→ Hom∗B(T,N) as required.

Proposition 4.58. Let I be a Reedy poset, B ∈ (CDGAK )I and consider a cofibrant pseudo-

module T ∈ ΨMod(B). Then the functor

Hom∗B(T,−) : ΨMod(B)→ DGMod (limIB)

preserves weak equivalences and trivial fibrations.

Proof. We first deal with the case of a trivial fibration f : M → N in ΨMod(B). By Lemma 4.57

we have an exact sequence

0→ K → Hom∗B(T,M)
f∗−→ Hom∗B(T,N)→ 0

in DGMod(limI B). Denote J = ker f , so that

K = {g ∈ Hom∗B(T,M) | g(T ) ⊆ J} = Hom∗B(T, J).

Now, an element h ∈ Zn(Hom∗B(T, J)) is precisely a morphism h : T → J [n] in ΨMod(B). Observe

that J is acyclic being f a trivial fibration, so that h is homotopic to the zero map by Lemma 4.50.

Hence [h] = [0] ∈ Hn(Hom∗B(T, J)). Now, by Ken Brown’s Lemma it follows that the functor

Hom∗B(T,−) preserves weak equivalences, and then Lemma 4.57 implies the thesis.

The following result resumes Lemma 4.57 and Proposition 4.58. Recall that by Definition 3.24
the algebra of global sections of B ∈ (CDGA≤0

K )I is defined to be Γ(B) = limI(B).

Corollary 4.59. Let I be a Reedy poset, B ∈ (CDGAK )I and consider a cofibrant pseudo-module

T ∈ ΨMod(B). Then the functor

Hom∗B(T,−) : ΨMod(B)→ DGMod(Γ(B))

is a right Quillen functor, where the left adjoint is defined as

X 7→
{

Hom∗Γ(B)(Tα, X)
}
α∈I

.

Proof. The statement immediately follows from Lemma 4.57 and Proposition 4.58.

Corollary 4.60. Let I be a Reedy poset. Given a cofibrant replacement R
p−→ S in (CDGA≤0

K )IP ,

the morphism

p∗ : Der∗P (R,R; f)→ Der∗P (R,S; pf)

is a trivial fibration in DGMod(limI R).
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Proof. Denote by Rf ∈ ΨMod(R) the pseudo-module R with the structure induced via the map

f . Similarly, denote by Spf ∈ ΨMod(R) the pseudo-module S with the structure induced via the

map pf . Then observe that p∗ is the composition

Der∗P (R,R; f) = Der∗P (R,Rf ) ∼= Hom∗R(ΩIR/P , Rf )→ Hom∗R(ΩIR/P , Spf ) ∼= Der∗P (R,Spf ) =

= Der∗P (R,S; pf)

which is a trivial fibration by Corollary 4.42 and Proposition 4.58.

Corollary 4.61. Let I be a Reedy poset, and let f : M → N be a weak equivalence (respectively, a

trivial fibration) of pseudo-modules over a cofibrant object R ∈ (CDGA≤0
K )IP . Then

f∗ : Der∗P (R,M)→ Der∗P (R,N)

is a weak equivalence (respectively, a trivial fibration) in DGMod(limI R).

Proof. It is sufficient to observe that f∗ is the composition

Der∗P (R,M) ∼= Hom∗R(ΩIR/P ,M)→ Hom∗R(ΩIR/P , N) ∼= Der∗P (R,N)

which is a weak equivalence (respectively, a trivial fibration) by Corollary 4.42 and Proposition 4.58.

4.6 Cohomology of derivations in terms of the cotangent

complex

The aim of this section is to compute the cohomology of the DG-Lie algebra of derivations as-
sociated to a cofibrant replacement of a separated scheme in terms of its cotangent complex, see
Theorem 4.64. Throughout all this section we shall denote by X a fixed separated scheme over a
field K of characteristic 0.

In the following we shall denote by D(OX) the standard derived category of sheaves of OX -
modules. Moreover, K(OX) denotes the standard homotopy category of sheaves of OX -modules:
objects in K(OX) are the same as DGMod(OX), while morphisms are taken up to the homotopy
equivalence defined by ∼h. By definition, ϕ ∼h ψ if and only if there exists

η ∈ Hom−1
OX (A,B)

such that ϕ−ψ = η ◦dA−dB ◦η. Recall that the derived category can be obtained by localising the
homotopy category to the class W of quasi-isomorphisms, i.e. D(OX) = K(OX)[W], see e.g. [15].

Let X be a separated finite-dimensional Noetherian scheme over K and let SX be the associated
pseudo-scheme, see Example 3.32. Recall that by Theorem 4.27, there is a Quillen adjunction

Υ! : ΨMod(SX)→ DGMod(OX) : Υ∗

with respect to the model structure of Theorem 3.47 on ΨMod(SX), and the flat model structure of
Theorem 4.25 on DGMod(OX). In order to prove the main result of this section (see Theorem 4.64)
we begin with two preliminary results.

Lemma 4.62. Let X be a separated finite-dimensional Noetherian scheme over K . Then there

exists an isomorphism

HomK(OX)(Υ!F ,OX [k]) ∼= HomD(OX)(Υ!F ,OX [k])

for every k ∈ Z and every cofibrant pseudo-module F ∈ ΨMod(SX), see Definition 3.44.
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4. Cohomology of derivations in terms of the cotangent complex

Proof. Let OX → J∗ be an injective resolution of OX . We have the following chain of isomorphisms.

HomK(OX)(Υ!F ,OX [k]) ∼= Hk
(
Hom∗OX (Υ!F ,OX)

) ∼= [ Theorem 4.27 ] ∼=
∼= Hk

(
Hom∗SX (F , SX)

) ∼= [ Proposition 4.58 ] ∼=
∼= Hk

(
Hom∗SX (F ,Υ∗J∗)

) ∼= [ Theorem 4.27 ] ∼=
∼= Hk

(
Hom∗OX (Υ!F , J∗)

) ∼=
∼= HomK(OX)(Υ!F , J∗[k]) ∼= [15] ∼=
∼= HomD(OX)(Υ!F , J∗[k]) ∼=
∼= HomD(OX)(Υ!F ,OX [k])

Lemma 4.63. Let K be a field of characteristic 0, let X be a separated finite-dimensional Noethe-

rian scheme over K and consider its cotangent complex LX as an object in the derived category

D(OX). Then there exists an isomorphism of sets

HomD(OX)(LX ,OX [k]) ∼= ExtkOX (LX ,OX) .

Proof. Take an injective resolution OX → J∗, with J∗ ∈ DGMod(OX). Recall that by definition

ExtkOX (LX ,OX) = Hk
(
Hom∗OX (LX , J∗)

)
, and notice that

Hk
(
Hom∗OX (LX , J∗)

) ∼= Z0
(
Hom∗OX (LX , J∗)[k])

)
�∼h = HomK(OX)(LX , J∗[k]) ∼=

∼= [15] ∼= HomD(OX)(LX , J∗[k]) ∼= HomD(OX)(LX ,OX [k])

whence the statement.

We are now ready to relate the cotangent complex LX of a separated K -scheme X with the

cohomology of the DG-Lie algebra of derivations associated to a cofibrant replacement R
FW−−−→ SX

of the pseudo-scheme associated to X.

Theorem 4.64. Let K be a field of characteristic 0, let X be a separated finite-dimensional Noethe-

rian scheme over K , and consider the associated pseudo-scheme SX ∈ ΨSchI(M), see Exam-

ple 3.32. Take a cofibrant replacement R
FW−−−→ SX in (CDGA≤0

K )I . Then for every k ∈ Z

Hk (Der∗K (R,R)) ∼= Hk
(
Hom∗SX (ΩR/K ⊗R SX , SX)

) ∼= ExtkOX (LX ,OX)

where LX denotes the cotangent complex of X, while Der∗K (R,R) is the DG-Lie algebra of deriva-

tions of R, see Definition 4.45.

Proof. We proceed by proving a series of isomorphisms. In the following, we shall sometimes think

of SX as a pseudo-module over R through the map R → SX . Fix k ∈ Z and consider the chain of

isomorphisms

Hk (Der∗K (R,R)) ∼= [Theorem 4.47] ∼= Hk
(

Hom∗R

(
ΩIR/K , R

))
∼= [Corollary 4.61] ∼=

∼= Hk
(

Hom∗R

(
ΩIR/K , SX

))
∼= Hk

(
Hom∗SX

(
ΩIR/K ⊗R SX , SX

))
where the last isomorphism has been obtained by observing that the standard base change for

DG-modules naturally extends to pseudo-modules. Now, by definition it follows that SX = Υ∗OX ;

therefore by the adjunction of Theorem 4.27 it follows that

Zk
(

Hom∗SX

(
ΩIR/K ⊗R SX , SX

))
∼= Zk

(
Hom∗OX

(
Υ!(Ω

I
R/K ⊗R SX),OX

))
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4. Cohomology of derivations in terms of the cotangent complex

so that by recalling the definition of the differential in the Total-Hom complex we obtain

Hk
(

Hom∗OX

(
Υ!(Ω

I
R/K ⊗R SX),OX

))
∼= Z0

(
Hom∗OX

(
Υ!(Ω

I
R/K ⊗R SX),OX [k]

))
�∼h

where OX [k] denotes the sheaf OX shifted in degree −k, and ϕ ∼h ψ if and only if there exists

η ∈ Hom−1
OX

(
Υ!(Ω

I
R/K ⊗R SX),OX

)
such that ϕ−ψ = η ◦d

Υ!

(
ΩI
R/K⊗RSX

)−dOX [k] ◦η = η ◦d
Υ!

(
ΩI
R/K⊗RSX

). Hence we proved that there

exists an isomorphism

Hk (Der∗K (R,R)) ∼= HomK(OX)

(
Υ!

(
ΩIR/K ⊗R SX

)
,OX [k]

)
where K(OX) denotes the standard homotopy category of sheaves of OX -modules.

Now, notice that R is cofibrant by hypothesis, so that ΩIR/K ⊗R SX is cofibrant in ΨMod(SX)

by Theorem 4.41, and therefore Υ!

(
ΩIR/K ⊗R SX

)
is cofibrant in DGMod(OX) being Υ! a left

Quillen functor by Theorem 4.27. Hence, by Lemma 4.62 we have an isomorphism

HomK(OX)

(
Υ!

(
ΩIR/K ⊗R SX

)
,OX [k]

)
∼= HomD(OX)

(
Υ!

(
ΩIR/K ⊗R SX

)
,OX [k]

)
where D(OX) denotes the standard derived category of sheaves of OX -modules. Moreover, by

Theorem 4.36 there exists an isomorphism

HomD(OX)

(
Υ!

(
ΩIR/K ⊗R SX

)
,OX [k]

)
∼= HomD(OX) (LX ,OX [k])

and by Lemma 4.63 we obtain

HomD(OX) (LX ,OX [k]) ∼= ExtkOX (LX ,OX)

whence the statement.
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Chapter 5

DEFORMATIONS OF SCHEMES

This chapter is devoted to the study of infinitesimal deformations of a separated K -scheme X. The
main idea is to think of X as a pseudo-scheme SX ∈ (CDGAK )I indexed by the nerve I of an
arbitrary affine open cover, see Example 3.32. The crucial (technical) point is that (CDGAK )I is a
deformation model category (see Definition 2.9) satisfying the axioms required by the Deformation
Theory on model categories developed in Chapter 3.

In particular, in Section 5.1 and Section 5.2 we prove that for every surjective map A → B in
ArtK the morphism c(A) → c(B) is a small extension (in the sense of Definition 2.2) satisfying
Axiom 2.21 and Axiom 2.26, while Section 5.4 deals with lifting results in (CDGAK )I expressed
in terms of smoothness of certain natural transformations.

In Section 5.3 we describe the differential graded Lie algebra controlling deformations of a cofi-
brant pseudo-scheme, and in Section 5.5 we show how this is linked with infinitesimal deformations
of a separated K -scheme. The main (geometric) result is Theorem 5.46, which will be discussed in
detail through the example of the cuspidal cubic in P2

C, see Section 5.5.1.

5.1 Lifting of idempotents over Reedy posets

The aim of this section is to prove the statement below, which requires several preliminary results.
The complete proof will be given in Theorem 5.11. Recall that by Definition 2.17, a morphism
e : A→ A in a category C is called idempotent if e ◦ e = e. Moreover, if C is a category with weak
equivalences, a morphism e : A → A is a trivial idempotent if e is both an idempotent and a weak
equivalence.

Theorem 5.1 (see Theorem 5.11). Let I be a Reedy poset and let A→ B be a surjective morphism

in ArtK . Moreover, consider a cofibration gA : PA → RA between flat objects in (CDGA≤0
A )I , and

denote by

gB : PB = PA ⊗A B → RA ⊗A B = RB

the pushout cofibration in (CDGA≤0
B )I . Let fB : RB → RB be an idempotent in (CDGA≤0

K )IPB ,

and assume that the reduction

f = fB ⊗B K : R = RB ⊗B K → RB ⊗B K = R

is a weak equivalence in (CDGA≤0
K )I . Then there exists a trivial idempotent fA : RA → RA in

(CDGA≤0
K )IPA lifting fB.

Remark 5.2. The result above can be rephrased in terms of smoothness of a certain natural trans-

formation, see Corollary 5.29. This will make clear that Theorem 5.11 is equivalent to the following

statement: for every surjective map A → B in ArtK the small extension c(A) → c(B) satisfies

Axiom 2.21, see Definition 2.2.

83



5. Lifting of idempotents over Reedy posets

Remark 5.3. Recall that by Remark 3.25 RA is a flat object in (CDGA≤0
A )I if and only if it is

pointwise flat, i.e. RA is flat in (CDGA≤0
A )I if and only if RA,α is flat in CDGA≤0

K for every α ∈ I.

Our first preliminary lemma can be rephrased saying that for every A ∈ ArtK the morphism
c(A)→ c(K ) belongs to (CDGA≤0

K )I (c(K )), see Definition 2.1.

Lemma 5.4. Let I be a Reedy poset, let A ∈ Art and consider a morphism f : P → M in

(CDGA≤0
A )I between flat objects. Then f is an isomorphism (respectively, weak equivalence) if and

only if its reduction P ⊗A K → M ⊗A K is an isomorphism (respectively, weak equivalence) in

(CDGA≤0
K )I .

Proof. We prove the statement assuming f to be a weak equivalence. The proof when f is an

isomorphism is similar. First notice that in a left-proper model category, weak equivalences between

flat objects are preserved by pushouts. Therefore the reduction P ⊗A K → M ⊗A K is a weak

equivalence too. For the converse, we proceed by induction on the length of the Artin ring. Take

A ∈ ArtK , choose an element t ∈ A annihilated by the maximal ideal mA and consider the induced

small extension

0→ K ·t−→ A→ B → 0.

We have a commutative diagram in
(

DGMod≤0(A)
)I

0 // P ⊗A K
·t //

��

P //

��

P ⊗A B //

��

0

0 // M ⊗A K
·t // M // P ⊗A B // 0

where P ⊗A B → M ⊗A B is a weak equivalence by induction and the rows are exact, being both

P and M A-flat. Therefore, for every j ∈ Z it is induced a commutative diagram

Hj−1(P ⊗A B) //

��

Hj(P ⊗A K ) //

��

Hj(P ) //

��

Hj(P ⊗A B) //

��

Hj+1(P ⊗A K )

��
Hj−1(M ⊗A B) // Hj(M ⊗A K ) // Hj(P ) // Hj(M ⊗A B) // Hj+1(M ⊗A K )

with exact rows. The statement now follows by the five lemma.

Remark 5.5. Lemma 5.4 implies that every surjective morphism A→ B in ArtK is a small extension

in the sense of Definition 2.2.

Recall that CGA≤0
K denotes the category of commutative graded algebras over K concentrated

in non-positive degrees.

Lemma 5.6. Let I be a Reedy poset and consider a commutative diagram of solid arrows

P
g //

i

��

E

p

��
C

f
//

>>

D

in (CDGA≤0
A )I . If i is a cofibration and p is surjective, then there exists the dotted lifting γ : C → E

in the category (CGA≤0
K )I .

Proof. Consider the killer algebra A[d−1] ∈ CDGA≤0
A defined as the polynomial algebra gener-

ated by a symbol d−1 of degree −1, equipped with the differential d(d−1) = 1. It is a contractible
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5. Lifting of idempotents over Reedy posets

A-module, the natural inclusion α : A→ A[d−1] is a morphism of DG-algebras and the natural pro-

jection β : A[d−1]→ A is a morphism of graded algebras; moreover βα is the identity on A. For no-

tational simplicity, we shall denote by A[d−1] itself the constant diagram c(A[d−1]) ∈ (CDGA≤0
A )I .

Now, the morphism

E qA A[d−1]
pqid−−−→ D qA[d−1]

is a trivial fibration and then there exists a commutative diagram

P
αg //

i

��

E qA A[d−1]

pqid

��
C

αf
//

ϕ
66

D qA A[d−1]

in (CDGA≤0
A )I . It is now sufficient to take γ = βϕ.

Proposition 5.7 is the “algebraic version” of Theorem 5.11, which is the main result of this
section.

Proposition 5.7 (Algebraic lifting of idempotents). Let I be a Reedy poset, i : A→ P a morphism

in (CGA≤0
K )I , and J ⊂ A a pointwise graded ideal satisfying J2

α = 0 for every α ∈ I. Moreover,

consider a morphism g : P → P in (CGA≤0
K )I such that gi = i. Denoting g : P/i(J)P → P/i(J)P

its factorization to the quotient, assume that g2 = g. Then there exists a morphism f : P → P in

(CGA≤0
K )I such that f2 = f , fi = i, and f = g, i.e. f ≡ g (mod i(J)P ).

Proof. First notice that the condition gi = i implies that g(i(J)P ) ⊂ i(J)g(P ) ⊂ i(J)P , so that

the induced morphism g is well defined. For notational convenience, in the rest of the proof we

shall write J in place of i(J), since no confusion occurs. Notice that for every x ∈ JP we have

g2(x) = g(x); in fact take α ∈ I and consider x = iα(a)p, with a ∈ Jα and p ∈ Pα, then

g2
α(iα(a)p)− gα(iα(a)p) = iα(a)(g2

α(p)− gα(p)) ∈ J2
αPα = 0 .

Now denote by φ = g2 − g : P → P . By hypothesis we have φi = 0, φ(P ) ⊆ JP , and gφ = φg.

Moreover, for every α ∈ I the morphism φα is a gα-derivation; in fact for every p, q ∈ Pα

φα(pq) = g2
α(p)g2

α(q)− gα(p)gα(q) = g2
α(p)φα(q) + φα(p)gα(q) = gα(p)φα(q) + φα(p)gα(q),

where the last equality follows since g2
α(p)φα(q) = gα(p)φα(q), being φα(p)φα(q) ∈ J2

αPα = 0.

Define ψ : P → JP as ψ = φ− gφ− φg, and notice that

1. ψ(J) = 0, ψi = 0,

2. ψ2 = 0 and g2ψ = gψ = ψg = ψg2,

3. ψα is a gα-derivation for every α ∈ I,

4. ψ − gψ − ψg = φ.

In particular

(g + ψ)2 − (g + ψ) = φ− ψ + gψ + ψg = 0 .

To obtain the statement it is then sufficient to define f = g + ψ = 3g2 − 2g3, which is a morphism

in (CGA≤0
K )I satisfying the required properties.

Remark 5.8. The previous result actually holds even if we replace CGA≤0
K with the category of

unitary graded commutative rings.
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5. Lifting of idempotents over Reedy posets

Lemma 5.9. Let I be a Reedy poset, let S
i−→ R

p−→ S be a retraction in (CDGA≤0
K )IP and denote

f = ip : R → R. Let α ∈ Der∗P (R,R; f) and β ∈ Der∗P (S, S) be P -linear derivations such that the

diagram

R
p //

α

��

S
i //

β

��

R

α

��
R

p // S
i // R

commutes. Then iβp ∈ Der∗(R,R; f) and, setting γ = α− 2iβp we have

γ − γf − fγ = α.

Conversely, given any γ ∈ Der∗P (R,R; f), the P -linear f -derivation α = γ − γf − fγ satisfies

α(ker(p)) ⊆ ker(p), α(i(S)) ⊆ i(S)

and factors through a derivation β : S → S as above.

Proof. Observe that iβp is an f -derivation being f = ip. Moreover, since pi = id we have

γ − γf − fγ = α− 2iβp− αip+ 2iβpip− ipα+ 2ipiβp =

= α− 2iβp+ 2iβp+ 2iβp− 2αip = α.

Conversely, take γ ∈ Der∗P (R,R; f) and define α = γ−γf − fγ. Now, observe that ker(p) = ker(f),

and since

fα(x) = fγ(x)− f2γ(x)− γf(x) = γf(x)

we have α(ker(p)) ⊆ ker(p). Similarly, since i(S) = f(R) the chain of equalities

αf = γf − γf2 − fγf = −fγf

implies that α(i(S)) ⊆ i(S). Notice that β = pαi = −pγi, so that αf = iβp. To conclude the proof

recall that the restriction of f to S is the identity, therefore β is a P -linear derivation.

Proposition 5.10. Let I be a Reedy poset, let R ∈ (CDGA≤0
K )IP be a cofibrant object and consider

a trivial idempotent f : R→ R in (CDGA≤0
K )IP . Then

D = {γ ∈ Der∗P (R,R; f) | γ = fγ + γf} ⊆ Der∗P (R,R; f)

is an acyclic subcomplex.

Proof. We can write f = ip for a retraction

S
i−→ R

p−→ S

between cofibrant objects in (CDGA≤0
K )IP . Since i and p are retracts of f , they are weak equiva-

lences; in particular p is a trivial fibration. By Lemma 5.9 there exists a short exact sequence

0→ D → Der∗P (R,R; f)
γ 7→(γf+fγ−γ,pγi)−−−−−−−−−−−−→ K → 0

in the category DGMod(limI R), where

K = {(α, β) ∈ Der∗P (R,R; f)×Der∗P (S, S) | βp = pα, iβ = αi} .

Since p is a trivial fibration and R is cofibrant, the map

p∗ : Der∗P (R,R; f)→ Der∗P (R,S; pf)

γ 7→ pγ
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5. Lifting of idempotents over Reedy posets

is a trivial fibration by Corollary 4.60. Moreover, since S is a retract of R, the map i is a weak

equivalence between cofibrant objects. Therefore, the morphism

i∗ : Der∗P (R,S; p)→ Der∗P (S, S; id)

γ 7→ γi

is a trivial fibration by Corollary 4.56. In order to prove the statement it is then sufficient to prove

that also the projection K → Der∗P (S, S) is a weak equivalece. Since every β ∈ Der∗P (S, S) lifts to

(iβp, β) ∈ K, we have a short exact sequence

0→ H → K → Der∗P (S, S)→ 0,

where

H = {α ∈ Der∗P (R,R; f) | αi = pα = 0} = {α ∈ Der∗P (R, ker{p}) | αi = 0} ,

where the (limI R)-module structure on ker{p} is induced via the morphism f . Therefore we have

a short exact sequence

0→ H → Der∗P (R, ker{p}) i∗−→ Der∗P (S, ker{p})→ 0

and by Proposition 4.55 the map i∗ is a trivial fibration. It follows that H is an acyclic complex,

so that the projection K → Der∗P (S, S) is a weak equivalence as required.

Theorem 5.11 (Lifting of trivial idempotents). Let I be a Reedy poset and let A → B be a

surjective morphism in ArtK . Moreover, consider a cofibration gA : PA → RA between flat objects

in (CDGA≤0
A )I , and denote by

gB : PB = PA qA B → RA qA B = RB

the pushout cofibration in (CDGA≤0
B )I . Let fB : RB → RB be an idempotent in (CDGA≤0

K )IPB ,

and assume that the reduction

f = fB qB K : R = RB qB K → RB qB K = R

is a weak equivalence in (CDGA≤0
K )I . Then there exists a trivial idempotent fA : RA → RA in

(CDGA≤0
K )IPA lifting fB.

Proof. It is not restrictive to assume the morphism A→ B comes from a small extension

0→ K ·t−→ A→ B → 0

in ArtK . Since gA is a cofibration, Lemma 5.6 lifts fB to a morphism of graded algebras r : RA → RA

commuting with gA, and by Proposition 5.7 we may assume r2 = r. Let P = PA qAK , and denote

by d ∈ Hom1
A(RA, RA) the differential of RA. Then

dr − rd = tψπ, for some ψ ∈ Der1
P (R,R; f)

where R
t−→ RA is the morphism induced by the small extension while RA

π−→ R is the natural

projection. It follows that ψ is a cocycle in the complex D of Proposition 5.10. In fact tf = rt and

πr = fπ, so that

t(dψ + ψd)π = d(dr − rd) + (dr − rd)d = 0,

t(fψ + ψf)π = rdr − r2d+ dr2 − rdr = dr − rd = tψπ.
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5. Lifting of factorizations over Reedy posets

Therefore there exists h ∈ Der0
P (R,R; f) such that

dh− hd = ψ, fh+ hf − h = 0.

Setting fA = r − thπ we have that fA is a morphism of graded algebras. Moreover

f2
A − fA = −t(hf + fh− h)π = 0, dfA − fAd = t(ψ − dh+ hd)π = 0.

Remark 5.12. By Lemma 5.4 every surjective morphism A → B in ArtK is a small extension in

the sense of Definition 2.2. Therefore, it makes sense to ask whether it satisfies Axiom 2.21 or not,

and it turns out that this is always the case. In Section 5.4 we shall rephrase Theorem 5.11 in order

to make this passage clear, see Corollary 5.29.

5.2 Lifting of factorizations over Reedy posets

As already outlined at the beginning of the chapter, the aim of this section is to show that for
every surjective map A→ B in ArtK the induced small extension (see Definition 2.2) c(A)→ c(B)

in the deformation model category (CDGA≤0
K )I satisfies Axiom 2.26. Actually we shall prove

stronger results (see Theorem 5.13 and Theorem 5.15), and the required statement will follow, see
Corollary 5.16.

Theorem 5.13. Let I be a Reedy poset, let A ∈ Art and consider a morphism f : P → M in

(CDGA≤0
A )I between flat objects. Then every factorization of the reduction of f

P = P ⊗A K
C−→ Q

FW−−−→M = M ⊗A K

lifts to a factorization

f : P
C−→ Q

FW−−−→M

with Q⊗A K = Q.

Proof. We have a commutative diagram

P
g //

��

f

##
Q×M M

��

FW // M

��
P

C // Q
FW // M

in (CDGA≤0
A )I . Taking a factorization of g we get

D

FW
��

FW

��
P

g //

��

C
11

Q×M M

��

FW // M

��
P

C // Q
FW // M

Notice that the composite map D → Q is surjective. Now D and M are A-flat and therefore the

morphism D = D ⊗A K →M is a weak equivalence, and since it factors through D → Q
FW−−−→M ,
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5. Lifting of factorizations over Reedy posets

the surjective map p : D → Q is a trivial fibration. It follows the existence of a section s : Q → D

commuting with the maps P → D and P → Q. Since P → D is a cofibration, by Theorem 5.11 the

idempotent e = sp : D → D lifts to an idempotent of e : D → D. Setting Q = {x ∈ D | e(x) = x},
by Proposition 2.20 we have that Q ⊗A K = Q and P → Q is a cofibration because it is a retract

of P → D.

Corollary 5.14. Let I be a Reedy poset, let A ∈ Art and consider a morphism f : P → M in

(CDGA≤0
A )I between flat objects. Then f is a cofibration if and only if its reduction P ⊗A K →

M ⊗A K is a cofibration in (CDGA≤0
K )I .

Proof. If P ⊗A K → M ⊗A K is a cofibration, by Theorem 5.13 there exists a factorization P
C−→

Q
FW−−−→ M such that Q ⊗A K = M ⊗A K . Since Q and M are A-flat the morphism Q → M is

an isomorphism by Lemma 5.4. The converse holds since the class of cofibrations is closed under

pushouts.

Theorem 5.15. Let I be a Reedy poset, let A ∈ Art and consider a morphism f : P → M in

(CDGA≤0
A )I between flat objects. Then every factorization of the reduction of f

P = P ⊗A K
CW−−→ Q

F−→M = M ⊗A K

lifts to a factorization

f : P
CW−−→ Q

F−→M

with Q⊗A K = Q.

Proof. The proof is essentially the same as in Theorem 5.13. We have a commutative diagram

P
g //

F
��

f

##
Q×M M

F
��

F // M

F
��

P
CW // Q

F // M

in (CDGA≤0
A )I . Taking a factorization of g we get

D

F
��

F

��
P

g //

F
��

CW
11

Q×M M

F
��

F // M

F
��

P
CW // Q

F // M

Notice that the composite map D → Q is surjective in negative degrees and hence a fibration. Now

D and P are A-flat and therefore the morphism P → D = D ⊗A K is a trivial cofibration by

Lemma 5.4. Moreover, since P → Q factors through P → D, the surjective map p : D → Q is a

trivial fibration. It follows the existence of a section s : Q → D commuting with the maps P → D

and P → Q. Since P → D is a cofibration, by Theorem 5.11 the idempotent e = sp : D → D lifts

to an idempotent of e : D → D. Setting Q = {x ∈ D | e(x) = x}, by Proposition 2.20 we have that

Q⊗A K = Q and P → Q is a cofibration because it is a retract of P → D.
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5. Deformations of cofibrant pseudo-schemes

Corollary 5.16 (CW-pushout of deformations). Let I be a Reedy poset, let A ∈ ArtK and consider

a flat object P ∈ (CDGA≤0
A )I . For every trivial cofibration f : P = P ⊗A K → Q in (CDGA≤0

K )I

there exist a flat object Q ∈ (CDGA≤0
A )I such that Q ⊗A K = Q and a lifting of f to a trivial

cofibration f : P → Q.

Proof. It is sufficient to apply Theorem 5.15 to the factorization P
CW−−→ Q

F−→ 0.

Remark 5.17. As we shall prove in Proposition 5.30, Corollary 5.16 implies that if we choose the

deformation model category M = (CDGA≤0
K )I , see Definition 2.9, then for every A ∈ ArtK the

morphism (A→ K ) ∈M(K ) satisfies Axiom 2.26.

Corollary 5.18 (CW-pullback of deformations). Let I be a Reedy poset, let A ∈ ArtK and con-

sider a cofibrant object Q ∈ (CDGA≤0
A )I . For every trivial cofibration f : P → Q = Q ⊗A K in

(CDGA≤0
K )I there exist a flat object P ∈ (CDGA≤0

A )I such that P ⊗A K = P and a lifting of f

to a trivial cofibration f : P → Q.

Proof. Since P is fibrant the diagram of solid arrows

P

f
��

id // P

��
Q //

p

@@

0

admits the dotted lifting p : Q→ P in (CDGA≤0
K )I . In particular, P is the fixed locus of the trivial

idempotent e = f ◦ p : Q→ Q. By Theorem 5.11 there exists a trivial idempotent e : Q→ Q whose

fixed locus P = {x ∈ Q | e(x) = x} satisfies P ⊗A K = P , see Proposition 2.20. The lifting of f is

given by Theorem 5.15.

5.3 Deformations of cofibrant pseudo-schemes

This section describes the differential graded Lie algebra controlling strict deformations of a cofi-
brant pseudo-scheme, see Definition 2.23. This result, which will be proven in Theorem 5.24, repre-
sents the first step in order to control deformations of separated K -schemes, see Section 5.5. Notice
that every strict deformation of a cofibrant pseudo-scheme is in fact a cofibrant pseudo-scheme, see
Proposition 5.23.

For the notion of functor of Artin rings we refer to [34, Definition 3.1], which is slightly
different from the original one given in [44].

Definition 5.19. Let I be a Reedy poset. To every pseudo-scheme R ∈ (CDGA≤0
K )I it is associated

a functor of Artin rings

DR : ArtK → Set

defined by

DR(A) =

{
morphisms RA → R in (CDGA≤0

A )I such that RA is flat,

and the reduction RA ⊗A K → R is an isomorphism

}
�∼=

for every A ∈ ArtK . Two infinitesimal deformations RA → R and R′A → R are isomorphic if

and only if there exists an isomorphism RA
∼=−→ R′A in (CDGA≤0

A )I such that the diagram

RA
∼= //

  

R′A

~~
R
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5. Deformations of cofibrant pseudo-schemes

commutes.

Remark 5.20. Notice that Definition 5.19 can be seen as a particular case of Definition 2.23. In fact,

given R ∈ (CDGA≤0
K )I an infinitesimal deformation RA → R is precisely a strict deformation

c(A) //

��

RA

��
c(K ) // R

of the (unique) morphism c(K )→ R over the small extension c(A)→ c(K ) in the sense of Defini-

tion 2.23.

The aim of this section is to study the deformation functor DR : ArtK → Set associated to a
cofibrant pseudo-scheme R ∈ (CDGA≤0

K )I . In particular, we shall prove in Proposition 5.23 that

whenever R is a cofibrant pseudo-scheme in (CDGA≤0
K )I , then for every strict deformation

c(A) //

��

RA

��
c(K ) // R

of R over the small extension c(A) → c(K ) the object RA ∈ (CDGA≤0
A )I is in fact a cofibrant

pseudo-scheme.

Lemma 5.21. Let I be a Reedy poset, A ∈ ArtK and consider a (trivial) fibration p : S → R in

(CDGA≤0
A )I . Then for every surjective morphism A→ B in ArtK the natural morphism

S → R×R⊗AB (S ⊗A B)

is a (trivial) fibration.

Proof. Denote by J the kernel of A → B. Fix α ∈ I and i ≤ 0. If Siα → Riα is surjective the

following commutative diagram

Siα ⊗A J //

��

Siα //

��

Siα ⊗A B //

��

0

��
Riα ⊗A J //

��

Riα // Riα ⊗A B // 0

0

has exact rows and columns. By diagram chasing, it immediately follows the surjectivity of

Siα → Riα ×Riα⊗AB (Siα ⊗A B).

If moreover p is a weak equivalence, then

R×R⊗AB (S ⊗A B)→ R

is so, since trivial fibrations are stable under pullbacks. The statement follows by the 2 out of 3

axiom.

Proposition 5.22. Let I be a Reedy poset, A ∈ ArtK and consider an object RA ∈ (CDGA≤0
A )I .

Denote by R = RA ⊗A K its reduction in (CDGAK )I . Then the following are equivalent:
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5. Deformations of cofibrant pseudo-schemes

1. RA is cofibrant,

2. R is cofibrant and RA is flat,

3. R is cofibrant and RA is isomorphic to R⊗K A as diagrams of graded A-algebras.

Proof. We prove the statement in three steps.

(1)⇒ (2) Every cofibration is flat, and cofibrations are stable under pushouts. Hence (1) implies (2).

(2)⇔ (3) Since I is a Reedy poset and the notion of flatness only depends on fibrations and weak

equivalences, the flatness of RA can be checked pointwise. Moreover, since A ∈ ArtK the

DG-algebra Rα ⊗K A is A-flat for every α ∈ I. Hence (2) implies (3). Conversely, since R is

cofibrant, by Lemma 5.6 the commutative diagram of solid arrows

K //

��

RA

π

��
R

id //

h

==

R

admits the dotted lifting h : P → R, which is a morphism of diagrams of graded K -algebras.

By scalar extension, this gives a morphism h̃ : P ⊗K A→ RA of graded A-algebras. We shall

prove that h̃ is an isomorphism by induction on the length of A. To this aim, given a small

extension

0→ K ·t−→ A→ B → 0

in ArtK we consider the following commutative diagram of functors of graded A-modules

0 //

��

R

id

��

// R⊗K A

h̃
��

// R⊗K B

∼=
��

// 0

��
0 // R // RA // RA ⊗A B // 0

where the rows are exact, being RA an A-flat object. The statement follows by the five lemma.

(3)⇒ (1) Take a factorization A → SA
p−→ RA as a cofibration followed by a trivial fibration. Define

S = SA⊗AK and observe that SA is isomorphic to S⊗K A as a functor of graded A-algebras.

We shall prove by induction on the length of A that A→ RA is a retract of A→ SA. To this

aim, consider a small extension

0→ K ·t−→ A→ B → 0

in ArtK . Since both RA and SA are A-flat, we obtain two exact sequences of functors of

differential graded A-modules

0→ R
·t−→ RA → RA ⊗A B → 0, 0→ S

·t−→ SA → SA ⊗A B → 0,

and by induction there exists a retraction

B
id //

��

B
id //

��

B

��
RA ⊗A B

f // SA ⊗A B
p // RA ⊗A B.

Since p is a trivial fibration, there exists a short exact sequence

0→ ker{S → R} ·t−→ SA → RA ×RA⊗AB (SA ⊗A B)→ 0
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5. Deformations of cofibrant pseudo-schemes

and f is uniquely determined by its restriction to R. By Lemma 5.21 it follows that ker{S →
R} is acyclic, and by Lemma 5.6 the diagram above lifts to a commutative diagram of functors

of graded A-algebras

A
id //

��

A
id //

��

A

��
RA

f ′ // SA
p // RA.

Define ψ = dSAf
′−f ′dRA : RA → SA and notice that its image is contained in t ·SA ∼= S, and

pψ = 0 being pf ′ a morphism of functors of DG-algebras. Moreover, ψ(R⊗K mA) = 0 and

ψ ∈ Z1 (Der∗K (R, t ker{S → R})) ,

where the pseudo-module structure of tSA over R is well defined being t annihilated by the

maximal ideal mA. By Corollary 4.61, since R is cofibrant and t ker{S → R} is an acyclic

pseudo-module, [ψ] = [0] ∈ H1 (Der∗K (R, t ker{S → R})) . Therefore ψ = dtSAη − ηdR for

some η ∈ Der0
K (R, t ker{S → R}), and the morphism f = f ′+ η gives the required retraction.

Proposition 5.23 (Closure of cofibrant pseudo-schemes under strict deformations). Let I

be a Reedy poset and denote by M the deformation model category CDGA≤0
K . Consider a cofibrant

pseudo-scheme R ∈ ΨSchI(M) together with a strict deformation

c(A) //

��

RA

��
c(K ) // R

of the morphism c(K )→ R over the small extension c(A)→ c(K ) in the sense of Definition 2.23.

Then RA is a cofibrant pseudo-scheme.

Proof. First notice that by Proposition 5.22, RA is cofibrant in (CDGA≤0
A )I being R = RA ⊗A K

cofibrant in CDGA≤0
K . Recall that CDGA≤0

K is a deformation model category, see Example 2.10.

Now, by Definition 3.23 we need to show that the map

RA,α → RA,β

is a formally open immersion for every α ≤ β in I. To this aim, we begin by showing that

RA,α → RA,β is a W-immersion. To begin with, observe that since the category is left-proper every

cofibration is a W-cofibration. Moreover, applying the functor − ⊗A K : CDGA≤0
A → CDGA≤0

K
to the map

RA,β ⊗RA,α RA,β → RA,β

we obtain the codiagonal

Rβ ⊗Rα Rβ → Rβ

which is a weak equivalence by hypothesis. By Lemma 5.4 the map RA,β ⊗RA,α RA,β → RA,β

is a weak equivalence too. Hence RA,α → RA,β is a W-immersion by Remark 4.2. Now, since

RA,α → RA,β is a cofibration between cofibrant objects, by Corollary 4.19 it follows immediately

that the morphism

ΩRA,α/A ⊗RA,α RA,β −→ ΩRA,β/A

is a trivial cofibration in DGMod≤0(RA,β) whenever α ≤ β in I. Now the statement follows by

Remark 4.3.
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5. On the smoothness of certain natural transformations

Let I be a Reedy poset. Recall that to every R ∈ (CDGA≤0
K )I it is associated a differential

graded Lie algebra Der∗K (R,R) as explained in Definition 4.45, which in turn induces a deformation
functor DefDer∗K (R,R) : ArtK → Set. In the following result we denote by MCDer∗K (R,R)(A) the set
of Maurer-Cartan elements, i.e.

MCDer∗K (R,R)(A) =

{
η ∈ Der1

K (R,R)⊗K mA | dη +
1

2
[η, η] = 0

}
.

Theorem 5.24 (Deformations of cofibrant pseudo-schemes over Reedy posets). Let I be

a Reedy poset and let R ∈ (CDGAK )I be a cofibrant pseudo-scheme. Then there exists a natural

isomorphism of functors

ψ1 : DefDer∗K (R,R) → DR

induced by ψ1(ξA) = (R⊗K A, dR + ξA) for every ξA ∈ MCDer∗K (R,R)(A).

Proof. Take A ∈ ArtK and notice that by Proposition 5.22 a deformation RA → R in DefR(A) is

equivalent to a deformation dR + ξA of the differential dR ∈ Der1
K (R,R); i.e. to an element ξA ∈

Der1
K (R,R)⊗K mA such that (dR + ξA)2 = 0. Moreover, the integrability condition (dR + ξA)2 = 0

can be written in terms of the Lie structure of Der∗K (R,R)⊗K mA:

0 = (dR + ξA)2 = dRξA + ξAdR + ξAξA = δA(ξA) +
1

2
[ξA, ξA]A

where δA and [−,−]A denote the differential and the bracket of the DG-Lie algebra Der∗K (R,R)⊗K

mA respectively.

The statement follows observing that the gauge equivalence corresponds to isomorphisms of com-

plexes whose reduction to the residue field is the identity on R. In fact, given such an isomorphism

ϕA : RA → R′A we can write ϕA = id +ηA for some ηA ∈ Hom0
K (R,R) ⊗K mA. Now, since K has

characteristic 0, we can take the logarithm to obtain ϕA = eθA for some θA ∈ Der0
K (R,R)⊗K mA,

see [35].

5.4 On the smoothness of certain natural transformations

Recall that a natural transformation η : F → G between functors of Artin rings is called smooth
if for every surjective morphism A→ B in ArtK , the induced morphism

F (A)→ F (B)×G(B) G(A)

is surjective in Set.
In the following we will deal with proper classes and not only with sets. This motivates Defini-

tion 5.25 and Definition 5.26.

Definition 5.25. Let K be a field. A functor in classes of Artin rings consists of a class F (A)

for every A ∈ ArtK together with a map fAB : F (A)→ F (B) for every morphism A→ B in ArtK

satisfying the condition F (K ) = {∗}.

Definition 5.25 is inspired by the notion of functor of Artin rings, see [34, Definition 3.1].

Definition 5.26. A natural transformation η : F → G between functors in classes of Artin rings

is a collection of maps {η(A) : F (A)→ G(A)}A∈ArtK such that the diagram

F (A)
η(A) //

fAB

��

G(A)

gAB

��
F (B)

η(B)
// G(B)
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5. On the smoothness of certain natural transformations

commutes for every map A → B in ArtK . A natural transformation η : F → G is called smooth

if for every surjective morphism A→ B in ArtK , the induced map

F (A)→ F (B)×G(B) G(A)

is surjective.

Example 5.27. We present two functors in classes of Artin rings (see Definition 5.25) defined as

follows:

F (A) =

{
cofibrations PA → QA in (CDGA≤0

A )I such that PA is A-flat,

together with a trivial idempotent e : QA → QA in (CDGA≤0
K )IPA

}
�∼=

F (A) =
{

cofibrations PA → QA in (CDGA≤0
A )I such that PA is A-flat

}
�∼=.

We shall denote by ηF : F → F the natural transformation which simply forgets the trivial idem-

potent.

The first goal of this section is to restate Theorem 5.11 in terms of the functors in classes of
Artin rings defined in Example 5.27.

Theorem 5.28 (Smoothness of trivial idempotents). Let I be a Reedy poset. The natural trans-

formation η : F → F between functors in classes of Artin rings defined in Example 5.27 is smooth,

see Definition 5.26.

Proof. The statement is equivalent to the one of Theorem 5.11.

Corollary 5.29 (Axiom 2.21 over Reedy posets). Let I be a Reedy poset. Every surjective mor-

phism A → B in ArtK induces a small extension c(A) → c(B) in (CDGA≤0
K )I in the sense of

Definition 2.2, which satisfies Axiom 2.21.

Proof. First notice that A → B is a small extension in (CDGA≤0
K )I by Lemma 5.4. Then the

statement follows from Theorem 5.28.

Our aim is now to explain Remark 5.17, in which we claimed that Corollary 5.16 implies that
every surjective map A→ B in ArtK satisfies the CW-lifting axiom, see Axiom 2.26.

Proposition 5.30 (Axiom 2.26 over Reedy posets). Let I be a Reedy poset and consider the

deformation model category (CDGA≤0
K )I . Given a A ∈ ArtK , the induced morphism c(A)→ c(K )

in (CDGA≤0
K )I between constant diagrams concentrated in degree 0 satisfies Axiom 2.26.

Proof. For simplicity of notation we denote by M the deformation model category (CDGA≤0
K )I .

Notice that by Lemma 5.4 the morphism c(A) → c(K ) is a small extension in the sense of Defini-

tion 2.2. Therefore we can define

G(A) = {trivial cofibrations PA → QA in MA such that A→ PA is flat}�∼=.

G(A) = {flat morphisms A→ PA in M}�∼=.

Similarly, we can define

G(K ) = {trivial cofibrations P → Q in M such that K → P is flat}�∼=.

G(K ) = {flat morphisms K → P in M}�∼=.
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Notice that there are maps G(K) → G(K) and G(A) → G(A) which simply forgets the trivial

cofibration. Moreover, there exist morphisms G(A) → G(K) and G(A) → G(K) induced by the

functor − qA K : MA → MK . Now observe that the natural map G(A) → G(K ) ×G(K ) G(K ) is

surjective if and only if every diagram of solid arrows

PA

��

h // QA

��
P

CW // Q

admits the dotted lifting h : PA → QA in MA, and moreover h is a trivial cofibration. This is

precisely the statement of Corollary 5.16 and therefore c(A) → c(K ) satisfies Axiom 2.26 by defi-

nition.

Remark 5.31. In particular, given a Reedy poset I, Corollary 5.29 implies that in the deformation

model category (CDGA≤0
K )I it makes sense to consider deformations of a morphism f : c(B)→ X

over every surjection A→ B in ArtK , see Definition 2.3, where c(B) denotes the constant diagram

of B. In particular, for every A ∈ ArtK we can consider deformations of a cofibrant object X ∈
(CDGA≤0

K )I over A, i.e. deformations of the (unique) morphism f : c(K ) → X in (CDGA≤0
K )I

over c(A)→ c(K ). Moreover, there exist bijections

DefX(A) ∼= [Lemma 2.6] ∼= cDefX(A) ∼=
∼= [Lemma 2.8] ∼= cf DefX(A) ∼=
∼= [Theorem 2.28] ∼= cf DX(A)

in Set, since by Corollary 5.29 the map c(A)→ c(K ) satisfies Axiom 2.21 and by Proposition 5.30

it satisfies Axiom 2.26.

Our aim is now to prove the smoothness of a certain natural transformation, which will be
crucial in the proof of Theorem 5.45.

Let I be a Reedy poset. Moreover, let N ∈ (CDGA≤0
K )I and consider a cofibrant replacement

R → N . Then it is defined a functor in classes of Artin rings {G(A)}A∈ArtK , see Definition 5.25,

where G(A) is the class (up to isomorphisms) of commutative diagrams in (CDGA≤0
A )I

QA
ψA //

FW
��

RA

FW
��

MA
ϕA //

--

NA

qqN

with QA, RA ∈ DR(A), MA, NA ∈ DN (A), such that ψA and ϕA lift idR and idN respectively.
Similarly, we can define the functor in classes of Artin rings {G(A)}A∈ArtK , see Definition 5.25,

where G(A) is the class (up to isomorphisms) of commutative diagrams in (CDGA≤0
A )I

QA

FW
��

RA

FW
��

MA
ϕA //

--

NA

qqN

with QA, RA ∈ DR(A), MA, NA ∈ DN (A), such that ϕA lifts idN .
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5. Deformations of separated schemes

Notice that there exists an obvious natural transformation ηG : G → G between functors in
classes of Artin rings, see Definition 5.26, which forgets the isomorphism ψA for every A ∈ ArtK .

Theorem 5.32. Let I be a Reedy poset. Moreover, let N ∈ (CDGA≤0
K )I and consider a cofibrant

replacement R → N .The natural transformation ηG : G → G between functors in classes of Artin

rings defined above is smooth, see Definition 5.26.

Proof. Take a surjective morphism A→ B in ArtK and consider the following commutative diagram

of solid arrows

QA

��

//

ψA

$$

MA

ϕA

��

QA ⊗A B

ψB

--

RA

%%

FW

%%
πA

$$
PA FW //

��

NA

��
RA ⊗A B

FW // NA ⊗A B

where PA = RA×(NA⊗AB)NA in (CDGA≤0
A )I . Now recall that since R is cofibrant, QA is cofibrant

by Proposition 5.22. By the universal property of PA there exists the dotted morphism πA : RA →
PA, which is a weak equivalence by the two out of three axiom and also a fibration being clearly

surjective. Therefore, the unique morphism QA → PA given by the universal property of PA factors

through πA. This proves the existence of the dotted morphism ψA : QA → RA fitting the diagram,

which is an isomorphism by Lemma 5.4.

5.5 Deformations of separated schemes

The aim of this section is to study infinitesimal deformations of a separated scheme X over a field K
of characteristic 0. Since Spec(A) consists of a point for every A ∈ ArtK , the deformation problem
associated to X is equivalent to the one associated to its structure sheaf. Therefore we give the
following notion of infinitesimal deformations of the scheme X.

Definition 5.33 (Geometric deformation functor for separated schemes). Let X be a separated

scheme over a field K of characteristic 0. The geometric deformation functor associated to X

is the functor of Artin rings

DefX : ArtK → Set

defined by

DefX(A) =

{
morphisms OA → OX of sheaves of flat A-algebras,

and the reduction OA ⊗A K → OX is an isomorphism

}
�∼=

for every A ∈ ArtK . Two infinitesimal deformations OA → OX and O′A → OX are isomorphic

if and only if there exists an isomorphism OA
∼=−→ O′A of sheaves of A-algebras such that the diagram

OA
∼= //

!!

O′A

}}
OX

commutes.
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5. Deformations of separated schemes

Remark 5.34. Consider a separated scheme X over a field K of characteristic 0. In order to study

the functor DefX introduced in Definition 5.33, we shall firstly associate to X a pseudo-scheme SX

following the procedure explained in Example 3.32. Then, using the general results of Deformation

Theory in model categories obtained in Chapter 2, we will describe the differential graded Lie

algebra controlling the infinitesimal deformations of X (see Theorem 5.46) and moreover we will

give several bijections between functors of Artin rings, see Theorem 5.49.

Take an open affine cover {Uj}j∈J of X and consider its nerve

I = {α = {j0, . . . , jk} |Uα = Uj0 ∩ · · · ∩ Ujk 6= ∅} .

Notice that I is a Reedy poset where

deg : I → N, deg({j0, . . . , jk}) = k

and α = {j0, . . . , jk} ≤ β = {i0, . . . , is} in I if and only if {j0, . . . , jk} ⊆ {i0, . . . , is} in Set.
Notice that in the above setup Uβ ⊆ Uα whenever α ≤ β, but the converse does not necessarily

hold as explained in Example 5.35.

Example 5.35. Consider an affine scheme X = Spec(A) and take the affine open cover given

by U = {U0 = X,U1 = X}. Then the nerve of U is the Reedy poset I associated to the following

diagram

α = {0}

))
γ = {0, 1}

β = {1}

55

where degI(α) = degI(β) = 0 and degI(γ) = 1. Moreover, the partial order relation is defined by

α ≤ γ and β ≤ γ .

Notice that Uα ⊆ Uβ even if α 6≤ β.

Remark 5.36. The diagram constructed in Example 5.35 suggests how to associate a quiver Q to a

Reedy poset. There are essentially two rules for this procedure:

1 the vertices of Q are the elements of I, vertices with the same degree are placed in the same

“column”,

2 there exists an arrow α→ β between two vertices α and β in Q if and only if α ≤ β.

We now come back to the geometric deformation problem of a separated K -scheme X, see
Definition 5.33. As explained above, to each open affine cover {Uj}j∈J of X it is associated the
nerve I, which turns out to be a Reedy poset. Recall that intersections of affines are affine, being
the scheme X separated. In particular, for every α ∈ I we have Uα = Spec(Aα) where the K -algebra
Aα is defined by Aα = OX(Uα). Moreover, whenever α ≤ β in I the inclusion Uβ ↪→ Uα corresponds
to a morphism aαβ : Aα → Aβ of K -algebras. Thus, to every pair (X, {Uj}j∈J) it is associated a
functor

SX : I → CDGA≤0
K

α 7→ Aα

where each Aα has to be thought as a DG-algebra concentrated in degree 0.

Remark 5.37. In the above setup, we already proved in Example 3.32 that SX is a pseudo-scheme

over the deformation model category CDGA≤0
K indexed by the Reedy poset I.
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5. Deformations of separated schemes

Remark 5.38. Notice that the association X 7→ SX is not functorial and not even unique. In fact,

the Reedy poset is defined to be the nerve of the open affine cover U . Nevertheless, once the cover U
is fixed the association (X,U) 7→ SX is uniquely defined. Moreover, given a morphism of separated

schemes X → Y together with two affine open covers U and V for X and Y respectively, then it is

induced a morphism between the associated pseudo-schemes (see Definition 3.30) as explained in

Remark 3.35. Keep attention to the fact that this procedure changes (in a unique way) the open

affine cover of X.

Our next goal is to show that there is a natural isomorphism of functors of Artin rings

DSX
∼= DefX : ArtK → Set

where the functor DSX associated to the pseudo-scheme SX has been introduced in Definition 5.19.
In order to prove this claim (see Theorem 5.42) recall that

DSX (A) =

{
morphisms SA → SX in (CDGA≤0

A )I such that SA is flat,
and the reduction SA ⊗A K → SX is an isomorphism

}
�∼=

for every A ∈ ArtK . Two strict deformations SA → SX and S′A → SX are isomorphic if and only

if there exists an isomorphism SA
∼=−→ S′A in (CDGA≤0

A )I such that the diagram

SA
∼= //

  

S′A

~~
SX

commutes. Now fix A ∈ ArtK and notice that Remark 5.20 implies that DSX (A) is precisely the
set of strict infinitesimal deformations in the sense of Definition 2.23.

Before proving Theorem 5.42 we need the following preliminary result.

Lemma 5.39. Let A ∈ ArtK and consider a morphism f : RA → QA between flat objects in

CDGA≤0
A . Denote by f : R→ Q the map obtained applying the functor −⊗A K to f , and define

ρ : RA → R , π : QA → Q

the reduction morphisms in CDGA≤0
A . Take a prime ideal p ∈ Q0 and consider the induced mor-

phisms between localizations

RA,σ−1(p)
fp−→ QA,π−1(p) , R

f
−1

(p)

fp−→ Qp

where σ = fρ = πf . If fp is an isomorphism, then so is fp.

Proof. We proceed by induction on the length of the Artin ring. Take a small extension

0→ K → A→ B → 0

and consider the following commutative diagram

R
f
−1

(p)
=
(
RA,σ−1(p)

)
⊗A K

fp //

��

Qp =
(
QA,π−1(p)

)
⊗A K

��
RA,σ−1(p)

fp //

��

QA,π−1(p)

��(
RA,σ−1(p)

)
⊗A B

fp⊗AB //
(
QA,π−1(p)

)
⊗A B
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of differential graded modules over A. Notice that by hypothesis both RA and QA are flat, so

that in particular the vertical rows are short exact sequences in DGMod(A). Moreover, fp is an

isomorphism by assumption, and fp ⊗A B is an isomorphism by induction. Hence the statement

follows by the five lemma.

Remark 5.40. In the setup of Lemma 5.39, since the kernel of the map π0 : Q0
A → Q0 is nilpotent

then every prime ideal of Q0
A is of the form π−1(p) for some prime ideal p ⊆ Q0. Geometrically,

this means that the underlying topological space of Spec(Q0
A) coincide with the one of Spec(Q0),

since Spec(A) is (topologically) a point.

Remark 5.41. Let X be a separated K -scheme together with an open affine cover U = {Uj}j∈J .

Consider the associated pseudo-scheme SX ∈ (CDGA≤0
K )I over the nerve I. Then for every A ∈

ArtK , every strict deformation SA → SX in DSX (A) is pointwise concentrated in degree 0, i.e.

SkA,α = 0 for every k < 0 and every α ∈ I. In order to prove the claim, fix A ∈ ArtK and consider

a small extension

0→ K → A→ B → 0

of Artin rings. Recall that by Remark 3.25, SA is a flat object in (CDGA≤0
A )I if and only if SA,α

is flat in CDGA≤0
K for every α ∈ I. Then the functor SA,α ⊗A − : DGMod(A) → DGMod(A) is

exact and therefore

0→ SA,α ⊗A K → SA,α → SA,α ⊗A B → 0

is a short exact sequence. Now, by definition the reduced morphism SA ⊗A K → SX is (pointwise)

an isomorphism, so that SA,α⊗AK = SX,α is concentrated in degree 0. It follows that the surjective

map SA,α → SA,α ⊗A B is in fact an isomorphism in negative degrees and the thesis follows by

induction on the length of A in ArtK .

Theorem 5.42. Let X be a separated scheme over a field K of characteristic 0. Choose an open

affine cover for X and consider the associated pseudo-scheme SX ∈ (CDGA≤0
K )I . Then there exists

a natural isomorphism

ψ2 : DSX → DefX

of functors of Artin rings.

Proof. In order to prove the statement our first step is to introduce a well defined morphism of sets

ψ2(A) : DSX (A)→ DefX(A) for every A ∈ ArtK . To this aim, fix A ∈ ArtK and consider a strict

deformation SA → SX in DSX (A). Recall that by Remark 5.41, SA,α is concentrated in degree 0

for every α ∈ I. Therefore to give a strict deformation SA → SX in DSX (A) is equivalent to the

following data:

1. a collection {SA,α}α∈I of flat A-algebras such that SA,α ⊗A K = SX,α for every α ∈ I,

2. a morphism sA,αβ : SA,α → SA,β for every α ≤ β in I satisfying

sA,βγ ◦ sA,αβ = sA,αγ

whenever α ≤ β ≤ γ in I.

Now notice that for every α ∈ I, since A ∈ ArtK is a local ring then OA,α = S̃A,α is a quasi-coherent

sheaf on Uα. Our goal is to show that the collection of sheaves {OA,α}α∈I glue to a sheaf OA on X

in order to define
ψ2(A) : DSX (A) −→ DefX(A)

(SA → SX) 7−→ (OA → OX) .
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The idea is that if such a sheaf OA exists, then the morphism OA → OX is given by

πα : OA(Uα) = SA,α −→ SX,α = OX(Uα)

for every α ∈ I. In order to prove that ψ2(A) is well defined we proceed in three steps.

1 For every α ∈ I it is defined a quasi-coherent sheaf OA,α = S̃A,α on Uα.

2 For every α ≤ β in I there exists an isomorphism of sheaves

fαβ : OA,α
∣∣∣
Uβ
→ OA,β

on Uβ . The claim immediately follows from Lemma 5.39; in fact for every prime ideal p ⊆ SX,α
we can consider the commutative diagram between localizations

(SA,α)
π−1
α

(
fαβ
−1

(p)
)

(πα)p

��

(fαβ)p // (SA,β)π−1
β (p)

(πβ)p

��
(SX,α)

fαβ
−1

(p)

(fαβ)p // (SX,β)p

where fαβ : OX,p → OX,p is clearly an isomorphism.

3 fαα = idOA,α for every α ∈ I, and moreover fαγ = fβγfαβ for every α ≤ β ≤ γ in I.

Therefore there exists a sheaf OA on X such that OA
∣∣∣
Uα

= OA,α for every α ∈ I, whence the thesis.

It remains to be proved that the maps of sets {ψ2(A) : DSX (A) −→ DefX(A)}A∈ArtK
induce a

natural isomorphism of functors of Artin rings ψ2 : DSX → DefX . The naturality is clear since for

every A→ B in ArtK the maps of sets

DSX (A)→ DSX (B) and DefX(A)→ DefX(B)

are both induced by the functor −⊗AB. Moreover, for every A ∈ ArtK the map ψ2(A) is bijective,

being its inverse ψ−1
2 (A) defined by

ψ−1
2 (A) : DefX(A) −→ DSX (A)

(OA → OX) 7−→ {SA,α = OA(Uα)→ OX(Uα) = SX,α}α∈I .

It is immediate to check that ψ−1
2 (A) respects the equivalence relations given by isomorphisms in

DefX(A) and DSX (A). The statement follows.

Remark 5.43. Let X be a separated K -scheme together with an open affine cover U = {Uj}j∈J .

Consider the associated pseudo-scheme SX ∈ (CDGA≤0
K )I over the nerve I. Now, take a cofibrant

replacement c(K )
C−→ R

FW−−−→ SX in (CDGA≤0
K )I . By Theorem 3.28 it follows that R is in fact

a pseudo-scheme over CDGA≤0
K indexed by I. Moreover, by Theorem 2.16 the trivial fibration

R
FW−−−→ SX induces a bijection

DefR(A)
'−→ DefSX (A)

for every A ∈ ArtK where DefR(A), respectively DefSX (A), is the set of deformations of the mor-

phism c(K )→ R, respectively c(A)→ SX , over the map c(A)→ c(K ) in the sense of Definition 2.3.

Remark 5.43 suggests that in order to study a deformation problem associated to the pseudo-
scheme SX it is convenient to study the same deformation problem associated to a cofibrant re-
placement R of SX . Our next goal is to relate strict deformations of SX with strict deformations
of R, see Theorem 5.45; we first need Remark 5.44.
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Remark 5.44. Let R ∈ (CDGA≤0
K )I be a pseudo-scheme indexed by I. Moreover, assume that

Hk (Rα) = 0 for every α ∈ I and every k < 0. Then for every A ∈ ArtK , every strict deformation

RA → R in DR(A) has (pointwise) cohomology concentrated in degree 0, i.e. Hk (RA,α) = 0 for

every k < 0 and every α ∈ I. In order to prove the claim, fix A ∈ ArtK and consider a small

extension

0→ K → A→ B → 0

of Artin rings. Recall that by Remark 3.25, RA is a flat object in (CDGA≤0
A )I if and only if RA,α

is flat in CDGA≤0
K for every α ∈ I. Then the functor RA,α ⊗A − : DGMod(A) → DGMod(A) is

exact and therefore

0→ RA,α ⊗A K → RA,α → RA,α ⊗A B → 0

is a short exact sequence of complexes of A-modules. Now, by definition the reduced morphism

RA⊗AK → R is (pointwise) an isomorphism, so that RA,α⊗AK = Rα has cohomology concentrated

in degree 0. Notice that the map Hk (RA,α)→ Hk (RA,α ⊗A B) = Hk (RA,α)⊗AB is surjective for

every k ≤ 0. Therefore, it follows by the long exact sequence on cohomology that

Hk (RA,α)→ Hk (RA,α ⊗A B) = Hk (RA,α)⊗A B

is in fact an isomorphism for every k < 0, and the thesis follows by induction on the length of A

in ArtK . Observe that the long exact sequence in cohomology together with the surjectivity of the

map H−1(RA,α)→ H−1(RA,α)⊗A B also give the existence of a short exact sequence

0→ H0(RA,α)⊗A K ∼= H0(Rα)→ H0(RA,α)→ H0(RA,α)⊗A B → 0

for every small extension 0→ K → A→ B → 0.

Theorem 5.45. Let X be a separated scheme over a field K of characteristic 0. Choose an open

affine cover for X and consider the associated pseudo-scheme SX ∈ (CDGA≤0
K )I , together with a

cofibrant replacement R→ SX in (CDGA≤0
K )I . Then there exists a natural isomorphism

ψ3 : DR → DSX

of functors of Artin rings.

Proof. First recall that by Theorem 3.28 it follows that R is a pseudo-scheme over CDGA≤0
K

indexed by I. Moreover, by Remark 5.41 it follows that every strict deformation SA → SX is

(pointwise) concentrated in degree 0. Now, since R→ SX is a weak equivalence we have

Hk(Rα) ∼=

0 if k < 0

SX,α if k = 0

for every α ∈ I; therefore by Remark 5.44 it follows that every strict deformation RA → R in

DR(A) has (pointwise) cohomology concentrated in degree 0. Hence we can define the map of sets

ψ3(A) as

ψ3(A) : DR(A) −→ DSX (A)

(RA → R) 7−→
(
H0(RA)→ H0(R) ∼= SX

)
for every A ∈ ArtK . We need to show that ψ3(A) is well defined: we have to prove that H0(RA)

is flat in (CDGA≤0
A )I . Recall that by Remark 3.25 the flatness of H0(RA) in (CDGA≤0

A )I is

equivalent to the flatness of RA,α in CDGA≤0
A for every α ∈ I. Fix α ∈ I, as we already observed

above RA,α has cohomology concentrated in degree 0, so that there exists an exact sequence

· · · → R−1
A,α

d−1

−−→ R0
A,α

π−→ H0(RA,α)→ 0
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of A-modules. Moreover, since RA,α is flat in CDGA≤0
A then each RjA,α is a flat A-module for

j ≤ 0, see Proposition 1.57. Applying the functor −⊗A K we obtain the following exact diagram

R−2
A,α ⊗A K

d−2 // R−1
A,α ⊗A K

d−1 //

µ ''

R0
A,α ⊗A K

π // H0(RA,α)⊗A K // 0

ker(π)⊗A K
ι

77

((
0

of A-modules. The next step is to show that ι is injective. Take x ∈ ker(π)⊗AK such that ι(x) = 0.

By the surjectivity of µ there exists x̃ ∈ R−1
A,α ⊗A K such that µ(x̃) = x, and by assumption

d−1(x̃) = 0. The row above is exact, so that x̃ lifts to R−2
A,α ⊗A K and since µ ◦ d−2 = 0 we get

x = 0 whence the injectivity of ι : ker(π) ⊗A K → R0
A,α ⊗A K . We now turn our attention to the

short exact sequence

0→ ker(π)
ι−→ R0

A,α
π−→ H0(RA,α)→ 0

of A-modules, for which we proved the flatness of R0
A,α and the injectivity of the reduction ι.

Therefore, applying the functor TorA1 (−,K ) we immediately obtain that TorA1
(
H0(RA,α),K

)
= 0.

By the standard local flatness criterion this is equivalent to the flatness of the A-module RA,α,

see [36, Theorem 22.3]. Hence ψ3(A) is well defined.

We are still left with the proof that the collection of maps {ψ3(A) : DR(A)→ DSX (A)}A∈ArtK

define a natural isomorphism of functors of Artin rings. The naturality is clear since for every

A→ B in ArtK the maps of sets

DR(A)→ DR(B) and DSX (A)→ DSX (B)

are both induced by the functor −⊗A B. Moreover, for every A ∈ ArtK we can define the inverse

ψ−1
3 (A) as follows. Take a strict deformation SA → SX in DSX (A). By Theorem 5.13 the diagram

of solid arrows

c(A)

��

C //
!!

RA

��

FW // SA

��
c(K )

C // R
FW // SX

admits the dotted morphisms, and moreover RA ⊗A K ∼= R. We now set

ψ−1
3 (A) : (SA → SX) 7−→ (RA → R)

but we still need to prove that ψ−1
3 (A) is well defined. Namely, given two strict deformations

SA → SX and S′A → SX in DSX together with an isomorphism of deformations given by the

following commutative diagram

SA
∼=
h

//

  

S′A

~~
SX

we have to show that the image of SA and S′A under the map ψ−1
3 (A) coincide. To this aim, take

cofibrant replacements

A
C−→ RA

FW−−−→ SA and A
C−→ R′A

FW−−−→ S′A
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in (CDGA≤0
A )I and notice that by Theorem 5.32 the isomorphism h : SA → S′A lifts to an isomor-

phism h̃ : RA → R′A such that the diagram

A

�� ��
RA

h̃

∼= //

��

R′A

��
SA

h

∼= // S′A

commutes in (CDGA≤0
A )I . Hence ψ−1

3 (A) is well defined and the statement follows.

We are now ready to prove the main application of the theory, namely we describe the DG-Lie
algebra controlling the geometric deformation problem associated to a separated K -scheme, see
Definition 5.33.

Theorem 5.46 (DG-Lie algebra controlling infinitesimal deformations of a scheme). Let

X be a separated scheme over a field K of characteristic 0. Choose an open affine cover for X

and let I be its nerve, see Example 3.32. Moreover, consider the associated pseudo-scheme SX ∈
(CDGA≤0

K )I , together with a cofibrant replacement R→ SX in (CDGA≤0
K )I . Then there exists a

natural isomorphism

ψ : DefDer∗K (R,R) → DefX

of functors of Artin rings.

Proof. The natural isomorphism ψ is defined to be the composition

ψ : DefDer∗K (R,R)
ψ1−−→ DR

ψ3−−→ DSX
ψ2−−→ DefX

where ψ1 is the natural isomorphism defined in Theorem 5.24, ψ3 is the natural isomorphism defined

in Theorem 5.42, and ψ2 is the natural isomorphism defined in Theorem 5.45.

Remark 5.47. Recall that as an immediate consequence of Theorem 5.46 there exists an isomorphism

of K -vector spaces T 1 DefX = H1 (Der∗K (R,R)), and moreover there exists an obstruction theory

with values in H2 (Der∗K (R,R)). For concrete computations it is useful to recall Corollary 4.60,

which gives a quasi-isomorphism of complexes

Der∗K (R,R)→ Der∗K (R,SX).

This is due to the fact that the object SX ∈ (CDGA≤0
K )I is pointwise concentrated in degree 0, so

that it is easier to compute cohomology groups.

Remark 5.48. In the setting of Theorem 5.46, if X is assumed to be finite-dimensional and Noethe-

rian then Theorem 4.64 applies and the cohomology of the DG-Lie algebra Der∗K (R,R) is controlled

by the cotangent complex of X:

Hk (Der∗K (R,R)) ∼= Hk
(
Hom∗SX (ΩR/K ⊗R SX , SX)

) ∼= ExtkOX (LX ,OX)

for every k ∈ Z.

The following result summarizes most of the results obtained in this section.
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Theorem 5.49. Let X be a separated scheme over a field K of characteristic 0. Choose an open

affine cover for X and consider the associated pseudo-scheme SX ∈ (CDGA≤0
K )I , together with a

cofibrant replacement R → SX in (CDGA≤0
K )I . Then there is a chain of natural isomorphisms of

functors of Artin rings

DefSX
∼= DefR ∼= DR

∼= DSX
∼= DefX ∼= DefDer∗K (R,R)

where:

1 DefSX (A), respectively DefR(A), is the set of deformations associated to the map c(K ) → SX ,

respectively c(K )→ R, in the sense of Definition 2.3 for every A ∈ ArtK ;

2 DSX (A), respectively DR(A), is the set of strict deformations associated to the morphism c(K )→
SX , respectively c(K )→ R, in the sense of Definition 2.23 for every A ∈ ArtK ;

3 DefX is the geometric deformation functor introduced in Definition 5.33;

4 DefDer∗K (R,R) is the deformation functor associated to the DG-Lie algebra Der∗K (R,R) ∈ DGLAK .

Proof. The existence of the natural isomorphisms in the statement is proven in Remark 5.43, The-

orem 2.28, Theorem 5.45, Theorem 5.42 and Theorem 5.46 respectively.

5.5.1 Example: deformations of the projective cuspidal cubic in P2C
The aim of this section is to provide an explicit example in which Theorem 5.46 applies, so that
we explicitly describe the DG-Lie algebra controlling infinitesimal deformations of the projective
cuspidal cubic. In particular, we recover the well-known fact that the deformation functor DefX
associated to the projective cuspidal cubic is unobstructed, see Remark 5.51; we conclude the section
with an explicit computation of the tangent space of DefX , see Proposition 5.53.

In the complex projective space P2
C consider the cubic

X = {[x, y, z] ∈ P2
C |x3 − y2z = 0} ⊆ P2

C

and notice that X has a singularity in [0, 0, 1]. Then the deformation problem associated to X is
described by a functor of Artin rings DefX : ArtC → Set, see Definition 5.33. In order to understand
how Theorem 5.46 works, the first step is to choose an open affine cover of X:

U0 = X ∩ {y 6= 0} U1 = X ∩ {z 6= 0} .

Notice that

U0
∼= Spec

(
C[x, z]

(z − x3)

)
∼=
[
x 7→ w
z 7→ w3

]
∼= Spec(C[w])

U1
∼= Spec

(
C[x, y]

x3 − y2

)
U0 ∩ U1

∼= Spec

(
C[t, w]

(tw − 1)

)
where the open immersions of the span U0 ← U0 ∩ U1 → U1 are explicitly given in terms of
C-algebras by the morphisms of the cospan:

C[w]

w 7→ w **

C[x,y]
(x3−y2)

x 7→ t2

y 7→ t3
ttC[t,w]

(tw−1)
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Define I to be the nerve of the chosen affine cover, i.e. I = {0, 1, 01} with deg(0) = deg(1) = 0 and
deg(01) = 1. We denote by SX ∈ ΨSchI(M) the Palamodov pseudo-scheme associated to X, see
Example 3.32, which can be represented by the cospan above. Namely,

SX,0 = C[w] , SX,1 =
C[x, z]

(x3 − y2)
, SX,01 =

C[t, w]

(tw − 1)
.

Our next goal is to explicitly describe a cofibrant replacement π : R
FW−−−→ SX in (CDGA≤0

C )I . To
this aim we need the following preliminary results.

Proposition 5.50. The natural inclusion of C-algebras

ι :
C[t, w]

(tw − 1)
−→ C[x, y, h, t, w]

(tw − 1, x3 − y2, hx− 1, tx− y)
∼=

C[x, y, h, t, w]

(tw − 1, x− t2, y − t3, hx− 1)

is an isomorphism. In particular tw− 1, x3− y2, hx− 1, tx− y is a regular sequence since it defines

an affine subscheme of dimension 1.

Proof. We first prove that

C[x, y, h, t, w]

(tw − 1, x3 − y2, hx− 1, tx− y)
∼=

C[x, y, h, t, w]

(tw − 1, x− t2, y − t3, hx− 1)
.

In the ring C[x, y, h, t, w] consider the ideals defined by

I = (x3 − y2, tx− y, hx− 1, tw − 1) , J = (x− t2, y − t3, hx− 1, tw − 1) .

We begin by showing that I ⊆ J . Notice that

x3 − y2 = (x− t2)(x2 + xt2 + t4)− (y − t3)(y + t3) ∈ J,

tx− y = t(x− t2)− (y − t3) ∈ J

whence the thesis. For the converse it is sufficient to observe that

t2x2 − x3 = (tx− y)(tx+ y) + (y2 − x3) ∈ I, h2x2(t2 − x) ∈ I,

x− t2 = (hx− 1)(hx+ 1)(t2 − x)− h2x2(t2 − x) ∈ I,

y − t3 = t(x− t2)− (tx− y) ∈ I

so that J ⊆ I.

Now notice that modulo the ideal I = J = (tw − 1, x− t2, y − t3, hx− 1) we have

x ≡ t2, y ≡ t3, h ≡ w2,

so that the morphism ι is surjective. Moreover, ι admits the left inverse defined by

x 7→ t2, y 7→ t3, h 7→ w2, t 7→ t, w 7→ w

and therefore it is injective. The statement follows.

Proposition 5.50 implies that the Koszul complex of the sequence tw− 1, x3 − y2, hx− 1, tx− y
is exact. In particular, we have the following cofibrant resolutions in CDGA≤0

C .

1 π0 : R0 = C[w]
id−→ SX,0 = C[w].

2 π1 : R1 = C[x, y, e1]→ SX,1 = C[x,y]
(x3−y2) , where the deg{e1} = −1 and the differential is defined by

de1 = x3 − y2 .
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3 π01 : R01 = C[x, y, h, t, w, e1, e2, e3, e4]→ SX,01 = C[t,w]
(tw−1) , where

deg{e1} = deg{e2} = deg{e3} = deg{e4} = −1

and

de1 = x3−y2, de2 = hx−1, de3 = tx−y, de4 = tw−1, π01(x) = t2, π01(y) = t3, π01(h) = w2 .

Observe that the natural morphism

C[x, y, e1]⊗C C[w] = C[x, y, w, e1]→ C[x, y, h, t, w, e1, e2, e3, e4]

is a semifree extension (hence a cofibration) in CDGA≤0
C , see Definition 1.64 and Remark 1.65.

It follows by Remark 3.6 that R ∈ (CDGA≤0
C )I is Reedy cofibrant; therefore π : R → SX is a

cofibrant replacement as required. Notice that since SX ∈ ΨSchI(M), then Remark 3.28 implies
that R ∈ ΨSchI(M).

Theorem 5.46 implies the DG-Lie algebra Der∗C(R,R) controls infinitesimal deformations of X;
i.e. there exists a natural isomorphism of functors of Artin rings

DefDer∗C(R,R)
∼= DefX .

Remark 5.51 (Smoothness of DefX). Recall that by Remark 5.47 there exists an obstruction theory

for DefX with values in H2 (Der∗C(R,R)). Moreover,

H2 (Der∗K (R,R)) ∼= [Corollary 4.60] ∼= H2 (Der∗K (R,SX)) .

Therefore, since SX ∈ (CDGA≤0
K )I is concentrated in degree 0 and R is concentrated in degrees −1

and 0, we obtain Der2
K (R,SX) = 0. In particular, H2 (Der∗K (R,R)) = 0, so that DefX is smooth.

In order to compute the tangent space for DefX we first prove the following (well-known) result.

Lemma 5.52. Let K be a field of characteristic 0, let f(x1, . . . , xn) ∈ K [x1, . . . , xn] and consider

the affine scheme Y = Spec
(
K [x1, . . . , xn]�(f)

)
. Then there exists an isomorphism of K -vector

spaces

T 1 DefY =
K [x1, . . . , xn](
f, ∂f∂x1

, . . . , ∂f∂xn

) ,
and Y is unobstructed.

Proof. Define R ∈ CDGA≤0
K to be the DG-algebra

· · · → 0→ K [x1, . . . , xn]s
s7→f−−−→ K [x1, . . . , xn]→ 0→ · · ·

concentrated in degrees −1 and 0. Clearly the projection

· · · // 0 //

��

K [x1, . . . , xn]s //

��

K [x1, . . . , xn] //

��

0 //

��

· · ·

· · · // 0 // 0 // K [x1, . . . , xn]�(f)
// 0 // · · ·

is a quasi-isomorphism in CDGA≤0
K , so that R

π−→ SY is a cofibrant replacement.

Now, notice that there exist isomorphisms of K -vector spaces

T 1 DefY ∼= H1 (Der∗K (R,R)) ∼= [Corollary 4.60] ∼= H1 (Der∗K (R,SY ))

and

H2 (Der∗K (R,R)) ∼= [Corollary 4.60] ∼= H2 (Der∗K (R,SY )) .
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Moreover, since SY ∈ (CDGA≤0
K )I is concentrated in degree 0 and R is concentrated in degrees

−1 and 0, we obtain Der2
K (R,SY ) = 0. In particular, by Theorem 5.46 there exists an obstruction

theory with values in H2 (Der∗K (R,R)) = 0, so that DefY is smooth.

In order to compute H1 (Der∗K (R,SY )) we need to point out whether a derivation g factors

through h in the following diagram

· · · // 0 //

$$��

K [x1, . . . , xn]s //

g

((��

K [x1, . . . , xn] //

%%

h
��

0 //

��

· · ·

· · · // 0 // 0 // K [x1, . . . , xn]�(f)
// 0 // · · ·

To this aim, observe that to give g is equivalent to assign g(s) ∈ K [x1, . . . , xn]�(f). Furthermore,

since h is a K -derivation we have

h(xjk) = jxj−1
k h(xk)

for every j ≥ 1 and for every k ∈ {1, . . . , n}. Therefore, by induction on k, it is immediate to prove

that

h(dRs) = h(f) =

n∑
k=1

∂f

∂xk
h(xk) ∈ K [x1, . . . , xn]�(f).

This proves that g ∈ Z1(Der∗K (R,SY )) is exact if and only if there exists h ∈ Der0
K (R,SY ) such

that g(s) =
∑n
k=1

∂f
∂xk

h(xk) in K [x1, . . . , xn]�(f), whence the statement.

Proposition 5.53 (Computation of T 1 DefX). In the complex projective space P2
C consider the

cubic

X = {[x, y, z] ∈ P2
C |x3 − y2z = 0} ⊆ P2

C

together with its deformation functor DefX : ArtC → Set, see Definition 5.33. Then there exists an

isomorphism of C-vector spaces

T 1 DefX ∼= C2 .

Proof. Let I be the nerve of the affine open cover

U0 = X ∩ {y 6= 0} U1 = X ∩ {z 6= 0} ,

and let SX ∈ ΨSchI(M) be the Palamodov pseudo-scheme associated to X, see Example 3.32.

Moreover, consider the cofibrant replacement R
π−→ SX in (CDGA≤0

C )I defined above. By Theo-

rem 5.46 and Remark 5.47 there exists an isomorphism of C-vector spaces

T 1 DefX ∼= H1(Der∗C(R,R))

and by Corollary 4.60 the induced map

H1(Der∗C(R,R))→ H1(Der∗C(R,SX))

is an isomorphism. Therefore we are only left with the computation of H1(Der∗C(R,SX)).

First notice that since π0 : R0 → SX,0 is a map between DG-algebras concentrated in degree 0,

then ψ ∈ Der1
C(R,SX) consists of

ψ01 ∈ Der1
C(R01, SX,01) and ψ1 ∈ Der1

C(R1, SX,1)

satisfying the relation

a ψ01(e1) = s0,01(ψ1(e1))
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In fact, the same argument used in the proof of Lemma 5.52 shows that the ψ1 is uniquely determined

by its value on e1.

Secondly, observe that ϕ ∈ Der0
C(R,SX) consists of

ϕ0 ∈ Der0
C(R0, SX,0) , ϕ01 ∈ Der0

C(R01, SX,01) and ϕ1 ∈ Der0
C(R1, SX,1)

satisfying the relations

b ϕ01(w) = s0,01(ϕ0(w)) = ϕ0(w) in C[t,w]
(tw−1) ,

c ϕ01(x) = s1,01(ϕ1(x)) in C[t,w]
(tw−1) ,

d ϕ01(y) = s1,01(ϕ1(y)) in C[t,w]
(tw−1) .

Again, the same argument used in the proof of Lemma 5.52 shows that ϕ1 is uniquely determined

by its value on x and y, while ϕ0 is uniquely determined by ϕ0(w).

For every i = 1, . . . , 4 define fi = dei. Hence, ψ ∈ Der1
C(R,SX) is exact if and only if there exists

ϕ ∈ Der0
C(R,SX) such that the following conditions hold:

1 ψ01(ei) = ϕ01(dei) = ϕ01(fi) = ∂fi
∂x ϕ01(x) + ∂fi

∂y ϕ01(y) + ∂fi
∂h ϕ01(h) + ∂fi

∂t ϕ01(t) + ∂fi
∂wϕ0(w)

for every i = 1, . . . , 4,

2 ψ1(e1) = ϕ1(de1) = ϕ1(f1) = ∂f1
∂x ϕ1(x) + ∂f1

∂y ϕ1(y).

Notice that condition b has been already considered in condition 1. Therefore, in order to obtain

the statement we only need to understand conditions a, c, d, 1, and 2. To begin with, observe that

condition c, d and 2 are equivalent to assume (up to polynomial combination of ∂f1
∂x and ∂f1

∂y ) that

ψ1(e1) = α+ βx for some α, β ∈ C because

C[x, y](
x3 − y2, ∂f1∂x = 3x2, ∂f1∂y = −2y

) ∼= C⊕ Cx

is an isomorphism of C-vector spaces. In particular, condition a becomes ψ01(e1) = α+βt2, so that

condition 1 can be rephrased as the following conditions:

α+ βt2 = ψ01(e1) = ϕ01(de1) = ϕ01(f1) =
∂f1

∂h
ϕ01(h) +

∂f1

∂t
ϕ01(t) +

∂f1

∂w
ϕ0(w) = 0

ψ01(ei) =
∂fi
∂x

ϕ01(x) +
∂fi
∂y

ϕ01(y) +
∂fi
∂h

ϕ01(h) +
∂fi
∂t
ϕ01(t) +

∂fi
∂w

ϕ0(w) i = 2, 3, 4.

Now observe that the last equation above can be always satisfied by an element ϕ ∈ Der0
C(R,SX)

since
C[t, w](

tw − 1, π01
∂f2
∂x , π01

∂f2
∂y , π01

∂f2
∂h , π01

∂f2
∂t , π01

∂f2
∂w

) ∼= C[t, w]

(tw − 1, π01(h), π01(x))
∼=

∼=
C[t, w]

(tw − 1, w2, t2)
∼= 0

C[t, w](
tw − 1, π01

∂f3
∂x , π01

∂f3
∂y , π01

∂f3
∂h , π01

∂f3
∂t , π01

∂f3
∂w

) ∼= C[t, w]

(tw − 1, π01(t), π01(−1), π01(x))
∼=

∼=
C[t, w]

(tw − 1, t,−1, t2)
∼= 0

C[t, w](
tw − 1, π01

∂f4
∂x , π01

∂f4
∂y , π01

∂f4
∂h , π01

∂f4
∂t , π01

∂f4
∂w

) ∼= C[t, w]

(tw − 1, π01(w), π01(−1), π01(t))
∼=

∼=
C[t, w]

(tw − 1, w,−1, t)
∼= 0
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are isomorphisms of C-vector spaces.

We can summarize all the discussion above by saying that:

“the cohomology class [ψ] ∈ H1 (Der∗C(R,SX)) only depends on the value ψ1(e1) = α + βx, and

moreover [ψ] = [0] if and only if ψ1(e1) = 0”.

In particular, this proves that there exists an isomorphism of C-vector spaces

H1 (Der∗C(R,SX)) ∼= C2 ,

whence the statement.
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Appendix A

Introduction to model categories

This Appendix aims to briefly recall the basic notions of the theory of model Categories. The main
references are [25] and [26].

Model categories have been introduced by Daniel Quillen in [41]. Nowadays, model categories
play a foundational role in homotopy theory. The reason why they are so important is that in
several areas of mathematics it often arises the problem to “invert” certain morphisms (called
weak equivalences) which are not isomorphisms. Certainly one can always formally invert weak
equivalences, but this formal procedure leads to a quotient category where morphisms do not admit
a useful description, and it is hard to deal with them. In order to avoid this technical difficulty, weak
equivalences should be thought as part of a model structure. If this is the case, then morphisms in
the quotient category between A and B turn out to be simply homotopy classes of maps from a
cofibrant replacement of A to a fibrant replacement of B.

Definition A.1. A model structure on a category C is three subcategories of C called weak

equivalences, cofibrations, and fibrations satisfying the following properties:

• (2-out-of-3) If f and g are morphisms of C such that gf is defined and two of f , g and gf are

weak equivalences, then so is the third.

• (Retracts) Given a commutative diagram

A //

f

��

idA

''
A′ //

g

��

A

f

��
B //

idB

77B′ // B

in C, if g is a weak equivalence (respectively: cofibration, fibration) then so is f .

• (Lifting) Consider a commutative square of solid arrows

A //

f

��

B

g

��
C //

h

>>

D

in C where f is a cofibration and g is a fibration. If either f or g is a weak equivalence, then

there exists the dashed lifting h : C → B. We shall say that f has the left lifting property

with respect to g and similarly that g has the right lifting property with respect to f .
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• (Factorization) Define a map to be a trivial cofibration if it is both a cofibration and a weak

equivalence. Similarly, define a map to be a trivial fibration if it is both a fibration and a weak

equivalence. Then any morphism f : A→ B in C admits functorial factorizations

A
α(f)
//

f

''
A′

β(f)
// B A

γ(f)
//

f

''
B′

δ(f)
// B

where α(f) is a cofibration, β(f) is a trivial fibration, γ(f) is a trivial cofibration, and δ(f)

is a fibration.

Definition A.2. A model category is a category M with all small limits and colimits together

with a model structure.

Remark A.3. We adopted the definition of model category given in [26, Definition 1.1.3], which is

slightly different from the original one given in [41].

Notice that every model category M has an initial object (the colimit of the empty diagram)
and a terminal object (the limit of the empty diagram). An object A ∈M is called cofibrant if the
initial map 0→ A is a cofibration; it is called fibrant if the final morphism A→ 1 is a fibration. A
cofibrant replacement of an object A in C is a factorization of the initial morphism 0→ B′ → A
as a cofibration followed by a trivial fibration.

Remark A.4. In a model category M a map is a cofibration (respectively: trivial cofibration) if and

only if it has the left lifting property with respect to all trivial fibrations (respectively: fibrations).

Dually, a map is a fibration (respectively: trivial fibration) if and only if it has the right lifting

property with respect to all trivial cofibrations (respectively: cofibrations). As a consequence, cofi-

brations and trivial cofibrations are closed under pushouts. Dually, fibrations and trivial fibrations

are closed under pullbacks.

Remark A.5 (Ken Brown’s Lemma). Let M be a model category and let C be a category with

a subcategory of weak equivalences satisfying the 2 out of 3 axiom. Assume F : M → C to be

a functor which takes trivial cofibrations between cofibrant objects to weak equivalences. Then F

takes all weak equivalences between cofibrant objects to weak equivalences. Dually, if F takes trivial

fibrations between fibrant objects to weak equivalences, then F takes all weak equivalences between

fibrant objects to weak equivalences.

For the proofs of Remark A.4 and Remark A.5 we refer to [26]. As already outlined above,
the main advantage of the theory of model categories is the description of the homotopy category.
This is denoted by Ho(M) and it is defined to be the localization M[W−1]. In general, the formal
localization procedure do not give back a category; in fact morphisms between two fixed objects
may not be a set. However, if the subcategoryW is part of a model structure than the fundamental
theorem of model categories ensures that Ho(M) is in fact a category, without moving to a higher
universe. The key idea is that if we denote by Mcf the full subcategory of objects that are both
fibrant and cofibrant, then the inclusion functor Mcf → M induces an equivalence of categories
Ho(Mcf ) ' Ho(M). Our next goal is to recall the construction of Ho(Mcf ), for the proofs we refer
to [26].

From now on we shall adopt the labelsW, C, F on maps to denote weak equivalences, cofibrations
and fibrations respectively.

Let f, g : B → X be two morphisms in M. We shall say that f and g are left homotopic,

written f 'l g, if there exists a factorization B q B C−→ B
W−→ B of the fold map ∇ : B q B → B
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together with a map H : B → X such that the diagram

B

""

i0

&&

f

%%
B qB // B H // X

B

<<

i1

88

g

99

commutes in M. Dually, we shall say that f and g are right homotopic, written f 'r g, if there

exists a factorization X
W−→ X

F−→ X × X of the diagonal map ∆: X → X × X together with a
map K : B → X such that the diagram

X

X ×X

cc

{{

Xoo

p0

oo

p1

oo

BKoo

f
rr

g

llX

commutes in M.
We say that f and g are homotopic, written f ' g, if they are both left and right homotopic.

Moreover, f is called a homotopy equivalence if there exists a map h : X → B such that hf ' idB
and fh ' idX . This gives an equivalence relation on the morphisms of Mcf which is compatible

with composition; hence the category Mcf�' is well defined.

Remark A.6 (Fundamental theorem of model categories). Let M be a model category. Then

a morphism in Mcf is a weak equivalence if and only if it is a homotopy equivalence. Therefore

Mcf�' = Ho(Mcf ) = Ho(M) .

In particular, Ho(M) is a category without passing to a higher universe.

Moreover, for any pair of objects A,B ∈ Ho(M) there is a natural isomorphism

HomHo(M)(A,B) ∼= HomM(A′, B′)�'

where A′ and B′ are fibrant-cofibrant replacements of A and B respectively.

Finally, a map is a weak equivalence in M if and only if it is an isomorphism in Ho(M).

A very useful tool in the theory of model categories is represented by Quillen adjunctions.
Suppose M and M′ are model categories, and let F : M� : G be an adjunction. Then F is called
left Quillen functor if it preserves cofibrations and trivial cofibrations; similarly G is called right
Quillen functor if it preserves fibrations and trivial fibrations. In this case, F a G is called Quillen
pair.

Notice that a left adjoint F : M→M′ is a left Quillen functor if and only if its right adjoint is
a right Quillen functor.

Remark A.7. By Ken Brown’s Lemma it immediately follows that a left Quillen functor preserves

weak equivalences between cofibrant objects. Dually, a right Quillen functor preserves weak equiv-

alences between fibrant objects.

The relevance of Quillen pairs in homotopy theory is due to the fact that they induce total
derived functors between homotopy categories

LF : Ho(M)� Ho(M′) : RG

113



APPENDIX A. INTRODUCTION TO MODEL CATEGORIES

defined by
LF (A) = F (A′) R(B) = R(B′)

for every object A ∈ M and B ∈ M′, where A′ → A (respectively: B → B′) is any cofibrant
replacement of A in M (respectively: is any fibrant replacement of A in M′).
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2, pp. 43-69, 1988.
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[32] J. Lurie: Formal moduli problems. Preprint available online on the author’s web page:
http://www.math.harvard.edu/∼lurie/

[33] M. Manetti: Lectures on deformations on complex manifolds. Rendiconti di Matematica 24,
1-183, 2004.

[34] M. Manetti: Differential graded Lie algebras and formal deformation theory. Algebraic Geom-
etry: Seattle 2005. Proc. Sympos. Pure Math. 80, 785-810, 2009.

[35] M. Manetti: Extended deformation functors. Internat. Math. Res. Notices 14, 719-756, 2002.

[36] H. Matsumura: Commutative ring theory. Cambridge University Press, 1986.

[37] V. P. Palamodov: Deformations of complex spaces. Usp. Mat. Nauk 31, Nr. 3 129-194, 1976.
English translation: Russian Math. Surveys 31, 129-197, 1976.

[38] V. P. Palamodov: Deformation of Complex Spaces. In S. G. Gindikin and G. M. Khenkin
(Eds.), Several Complex Variables IV, Encyclopaedia of Mathematical Sciences 10, 105-194,
Springer-Verlag, Berlin, Heidelberg, New York, 1990.

[39] M. J. Pflaum: Deformation Theory. Encyclopaedia in Mathematical Physics (Eds. J.-P. Fran-
coise, G.L. Naber, and T.S. Tsou), Elsevier, 2006.

[40] J. Pridham: Unifying derived deformation theories. Adv. Math. 224, 772-826, 2010.

[41] D. Quillen: Homotopical algebra, Lecture Notes in Mathematics, vol. 43, Springer-Verlag, New
York, 1967.

116



BIBLIOGRAPHY BIBLIOGRAPHY

[42] D. Quillen: On the (co-)homology commutative rings. Applications of Categorical Algebra
(Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I.,
pp. 65-87, 1970.

[43] D. Quillen: Rational homotopy theory. Ann. of Math. (2) 90, 205-295, 1969.

[44] M. Schlessinger: Functors of Artin rings. Trans. Amer. Math. Soc. 130, 208-222, 1968.

[45] M. Schlessinger, J. Stasheff: The Lie algebra structure of tangent cohomology and deformation
theory. J. Pure Appl. Algebra, vol. 38, no. 2?3, pp. 313-322, 1985.

[46] S. Schwede, B. Shipley: Algebras and modules in monoidal model categories. Proc. London
Math. Soc. (3) 80, 491-511, 2000.
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