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The cost-effective production of chemicals in electrolytic cells and the conversion of

the radiation energy into electrical energy in photoelectrochemical cells (PECs) require

the use of electrodes with large surface area, which possess either electrocatalytic

or photoelectrocatalytic properties. In this context nanostructured semiconductors

are electrodic materials of great relevance because of the possibility of varying their

photoelectrocatalytic properties in a controlled fashion via doping, dye-sensitization or

modification of the conditions of deposition. Among semiconductors for electrolysers

and PECs the class of the transition metal oxides (TMOs) with a particular focus on

NiO interests for the chemical-physical inertness in ambient conditions and the intrinsic

electroactivity in the solid state. The latter aspect implies the existence of capacitive

properties in TMO and NiO electrodes which thus act as charge storage systems. After

a comparative analysis of the (photo)electrochemical properties of nanostructured TMO

electrodes in the configuration of thin film the use of NiO and analogs for the specific

applications of water photoelectrolysis and, secondly, photoelectrochemical conversion

of carbon dioxide will be discussed.

Keywords: solar energy conversion, photoelectrochemistry, photoelectrochemical cells, semiconductor

nanostructures, metal oxide nanostructures, nickel oxide nanoparticle

INTRODUCTION

Semiconductors (SCs) have been considered as electrode materials since the late fifties when a
photopotential (Vphoto) could be generated by an electrochemical cell employing either p- or
n-type Ge electrodes (Brattain and Garrett, 1955). In more recent years, SC electrodes in the
nanostructured version (Hagfeld and Grätzel, 1995) were considered because of the modification of
the scheme of energy levels at the SC/electrolyte interface in passing from the bulk/compact version
to the nanostructured one. In fact, nanostructured SCs present isolated energy levels in the intragap
region, which are associated to localized/confined states (Brus, 1986) and possess a relatively larger
density of surface states with respect to bulk states when compared to compact SCs (Hagfeld and
Grätzel, 1995). Moreover, the open morphology renders the nanostructured SCs particularly active
in the realization of those interfacial processes which require a large contact area due to the presence
of large voids on the surface. When the nanostructured SC possesses a wide bandgap of a given
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width hν1, (Gerischer et al., 1968) this is more prone to
an efficacious action of sensitization at lower optical energies
hν2 (with hν2 < hν1), upon anchoring of an opportune
sensitizer due to the very large surface concentration of active
sites on which sensitization takes place (Gibson et al., 2013;
Bonomo et al., 2016a). The interest about the nanostructured SC
sensitization has boosted tremendously after the advent of the
dye-sensitized solar cell (DSC), (O’Regan and Gratzel, 1991) i.e.,
a photoelectrochemical cell (PEC) the working principle of which
consists in the dye-mediated et between the wide bandgap SC in
the sensitized state and a redox couple with equilibrium energy
level E0,r positioned within the SC bandgap.

The considerable success of this approach (Ito et al.,
2008; Yella et al., 2011; Mathew et al., 2014; Kakiage et al.,
2015b) is witnessed by the quite high overall efficiencies of
light-to-current conversion (ηDSC), for which the present
record is ca. 14% (Kakiage et al., 2015a). DSCs present
high photoelectroactivity per unit area as imparted by the
mesoporous morphology of the surface of the sensitized
SC electrode. More recently, nanosized SCs electrodes
have been considered for the development of useful and
economically competitive photoelectrochemical reactors (or
photoelectrolysers; Brennaman et al., 2016) for the conversion
of the solar radiation into chemicals of high energetic value
(e.g., production of non-fossil fuels like molecular hydrogen
from solar water splitting; Li et al., 2012, 2015; Mayer et al.,
2013; Dotan et al., 2014; Antila et al., 2016; Hoogeveen et al.,
2016). Nanostructured SC electrodes have been also considered
for the realization of photoactivated electrochemical processes
with consumption of reactants having strong environmental
impact (e.g., the light-activated reduction of carbon dioxide
into fuels or synthons). For the great relevance of the three
main applications of electrical power production from the
conversion of sunlight, solar generation of H2 fuel from
water splitting, and solar-driven photoreduction of CO2

with photoelectrochemical devices utilizing nanostructured
SC electrodes as photoelectroactive components (either in
the bare or in the sensitized state), it appears important to
analyse and review the recent developments in the materials
science behind the design, production and characterization
of semiconducting electrodes with characteristic size of 10−9

m. In particular, the present contribution will focus on the
analysis of the electrochemical and photoelectrochemical
properties of nanostructured SCs made of transition metal
oxides (TMOs) with particular attention to NiO (He et al.,
1999; Cerc Korošec et al., 2003; Nakasa et al., 2005; Hongjun
et al., 2007; Awais et al., 2010, 2013b, 2014; Deng et al., 2012;
Powar et al., 2012; Pan et al., 2013; Qu et al., 2013; D’Amario
et al., 2014; Flynn et al., 2014; Huang et al., 2014; Wang et al.,
2014; Nail et al., 2015; Naponiello et al., 2015; Zannotti et al.,
2015; Battiato et al., 2016; Li X. et al., 2016; Wei et al., 2016;
Wood et al., 2016; Di Girolamo et al., 2018). A typical feature of
semiconducting TMOs in the configuration of nanostructured
thin films (thickness l < 50µm), is the possibility of varying
electrochemically/photoelectrochemically the redox states of
their constituting units, i.e., metal centers and/or oxygen anions
(Hagfeldt et al., 1994; Ma et al., 2014; Marrani et al., 2014). The

electronic properties of nanostructured SC-TMOs like bandgap
width, optical absorption, charge carrier concentration/mobility
and flatband potential can be then modulated opportunely
through electrochemically/photoelectrochemically driven
processes. In the following the aspects of the electrochemical and
photoelectrochemical properties of nanostructured SCs based on
NiO and their employment in photoelectrochemical devices of
practical interest will be considered.

ELECTROCHEMICAL PROPERTIES OF
NANOSTRUCTURED NIO

Nanostructured SC electrodes made of TMOs with one (Rettie
et al., 2016) or more metal atoms (Rowley et al., 2014; Sullivan
et al., 2015; Jiang et al., 2016a) can be prepared and deposited
in many ways utilizing either a chemical approach (Boschloo
and Hagfeldt, 2001; Li et al., 2010; Venditti et al., 2014)
or physical methods for the attainment of electrodes in the
configuration of thin film (Passerini et al., 1993; Twomey et al.,
2008; Awais et al., 2010, 2013a; Gibson et al., 2013; McDonnell
et al., 2013; Bonomo et al., 2016a). These include sol-gel
procedures(Boschloo andHagfeldt, 2001; Li et al., 2010), template
chemistry, screen-printing (Twomey et al., 2008; Gibson et al.,
2013; Bonomo et al., 2016c), plasma assisted microwave sintering
(McCann et al., 2011; Awais et al., 2013a; McDonnell et al.,
2013), micropowder microblast, (Awais et al., 2013a; McDonnell
et al., 2013) magnetron sputtering (Passerini et al., 1993; Awais
et al., 2010; McCann et al., 2011; McDonnell et al., 2012) and
electrodeposition (Venditti et al., 2014) among others. The most
common examples of nanostructured photoelectroactive SCs of
n-type are TiO2 in the anatase form Wu et al. (2008), hexagonal
ZnO, (Rensmo et al., 1997; Keis et al., 2001, 2002; Boucharef
et al., 2010; Dupuy et al., 2010; Tian et al., 2011; Li M. et al.,
2016) Fe2O3 hematite, (Kay et al., 2006; Congiu et al., 2017)
WO3, (Masetti et al., 1995; Dini et al., 1996) VOx (Wang et al.,
2006; Sai Gautam et al., 2016) and Nb2O5 (Fiz et al., 2016).
Semiconducting TMOs of p-type (Bonomo and Dini, 2016)
include cubic NiO, (He et al., 1999; Cerc Korošec et al., 2003;
Nakasa et al., 2005; Hongjun et al., 2007; Powar et al., 2012;
Awais et al., 2013b, 2014; Pan et al., 2013; Qu et al., 2013;
Flynn et al., 2014; Nail et al., 2015; Naponiello et al., 2015;
Battiato et al., 2016; Li X. et al., 2016; Wood et al., 2016) Li-
doped NiO,(Wang et al., 2014; Wei et al., 2016) mixed Ni and
Mg oxides, (Deng et al., 2012; D’Amario et al., 2014; Huang
et al., 2014; Zannotti et al., 2015) Cu2O (Jiang et al., 2016b),
CuMO2 (Yu et al., 2014) and derivatives of LaOx (Renaud
et al., 2015). The methods of preparations of nanostructured
SCs can affect considerably the electrochemical properties of
the differently deposited materials despite the same nominal
chemical composition. At this regard, the most striking example
is given by nanostructured NiO, i.e., the most widely employed
metal oxide of p-type for advanced energy conversion/storage
applications, for which the comparative characterization of the
electrochemical and photoelectrochemical properties has shown
a clear evidence of the influence of the preparation/deposition
method on the charge transport/transfer properties of the
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resulting thin film NiO electrodes (Cerc Korošec et al., 2003;
Nakasa et al., 2005; Powar et al., 2012; Awais et al., 2013a,b,
2014, 2015a,b; Gibson et al., 2013; Qu et al., 2013; Naponiello
et al., 2015; Wood et al., 2016). Some semiconducting TMOs
are electroactive in the solid state. This is equivalent to say that
SC-TMOs can alter the oxidation state(s) of the constituting
metal centers and oxygen atoms by means of redox processes
that are electrochemically driven (Hagfeldt et al., 1994; Boschloo
and Hagfeldt, 2001; Awais et al., 2013b; Marrani et al., 2014).
Electroactivity thus represents an intrinsic property of SC-TMOs,
which implies the imparting of charge storage properties in these
systems (Estrada et al., 1988; Passerini et al., 1990; Decker et al.,
1992; Passerini and Scrosati, 1992; Kitao et al., 1994; Talledo
et al., 1994; Gökdemir et al., 2014; Lykissa et al., 2014; Wen
et al., 2014). The TMOs electroactivity is granted in those oxides
in which the metal atom can present more than one stable
redox state (Passerini and Scrosati, 1994; Bellakhal and Draou,
1997; Grugeon et al., 2001; Dong et al., 2003; Sudant et al.,
2004; Wang et al., 2005; Mjejri et al., 2014; Vernardou et al.,
2014) but it does not arise from nanostructured morphology
(Sun and Tolbert, 2004; Centi and Perathoner, 2009; Poppe
et al., 2014). Mesoporosity, in turn, would affect mainly the
surface concentration of defects, (Liu D. et al., 2011; Liu Y.
et al., 2011; Uchaker et al., 2015) the kinetics of metal oxide
electrochemistry, (Weng et al., 2013; Zhang et al., 2013) the
extent of exchangeable charge during electrochemical processes,
(Spahr et al., 1998, 1999; Dobley et al., 2001; Nordlinder et al.,
2006) and the rate of the eventual chemical dissolution processes
accompanying these redox reactions (Marrani et al., 2014).
Among TMOs of p-type, nickel oxide(s)(Dini et al., 2015a)
and vanadium oxide(s)(Coustier, 1999; Li et al., 2006; Choi
et al., 2009) the systems with the more complex electrochemical
behavior due to the existence of stable binary oxides with the
metal centers possessing more than two oxidation states. An
important feature of the electrochemical switching of TMOs
redox states is the reversibility (Passerini et al., 1990). Moreover,
the electrochemical switching of the redox states in TMOS can
lead to the formation of non-stoichiometric oxides due to the
co-existence of metal centers having different formal oxidation
numbers. A particularly interesting electrodic material that is
amenable to act as a photoelectrocatalytic agent in photoactivated
processes of reduction is NiO in the nanostructured form and
in the sensitized state (Dini et al., 2015a; vide infra). This is due
to the richness of the electrochemical and photoelectrochemical
behavior of nanostructured NiO as proved by its direct
participation in reversible processes of oxidation and reduction
of various nature.

Oxidation Processes
Nanostructured NiO thin films (l < 5µm) in non-aqueous
electrolytes and in anhydrous/anaerobic atmosphere generates
the voltammetric profile of Figure 1 (Awais et al., 2013b).
Nickel Oxide (NiO) is a green crystalline solid material with
ferromagnetic properties (Neel temperature is 523K) NiO have
unique electrical, magnetic and optical properties that make it
the main subject of a considerable number of scientific papers.
NiO is a wide band gap [3.6–4.0 eV(Wang et al., 2015)] p-type
semiconductor and it experimented an extreme photochemical,

FIGURE 1 | Cyclic voltammetry of NiO prepared via conventional sintering of

sprayed NiO nanoparticles (average diameter, ø: 50 nm). Electrolyte

composition: 0.7M LiClO4 in anhydrous propylene carbonate; counter

electrode: Li; reference electrode: Li+/Li; scan rate: 15mV s−1. NiO thickness:

0.3µm. Adapted from Awais et al. (2013b).

electrochemical and physical stability. Both optical and electronic
properties of NiO depends on its degree of defectivity. As amatter
of fact, NiO should be better described by the formula NiOx in
which x accounts for the presence of Ni(III) site in the matrix
of the nickel oxide. The latter became an interesting material of
research due to its low cost and excellent ion storage property. For
example, NiO nanostructures are p-type semiconductors with
peculiar magnetic and electric behavior depending on the particle
size. A comprehensive analyses of the different nanostructured
morphologies, in which NiO could be obtained, falls outside
the purpose of the present review work. Furthermore, a recent
review paper by Bonomo properly faced this topic (Bonomo,
2018).

The oxidation processes verified at E > 2.5V vs. Li+/Li
(Figure 1) are ascribed to two redox reactions consisting formally
in the nickel based oxidations (Awais et al., 2013b)

NiO+mX−
→ Ni(II)1−mONi(III)m(X)m +m e− (1)

Ni(II)1−mONi(III)m(X)m +mX−
→ Ni(II)1−m

ONi(IV)m(X)2m +m e− (2)

in which X− is a singly charged anion that acts as charge-
compensating species. Equations 1 and 2 refer, respectively, to the
nickel based oxidations Ni(II)→ Ni(III) and Ni(III)→ Ni(IV),
with the first occurring at lower potential values (Marrani et al.,
2014). It is worth to mention that both the above-reported
equation shall remain valid both in an aqueous and organic
environment. The main difference consists in the nature of
the anions compensating the positive charges produced in NiO
matrix: in the former case it is a hydroxyl anion (i.e., OH-), in
the latter it is an anion present in the electrolyte (e.g., ClO4

− in a
LiClO4 ACN solution).

As a matter of fact, Ni(III) centers can be already present
in the pristine nanostructured oxide (Marrani et al., 2014;
Bonomo et al., 2016b) since the open circuit potential of
the cells with NiO working electrodes generally surpasses
the value of the potential onset for NiO oxidation (Eonset
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= 2.5V vs. Li+/Li, Figure 1; Awais et al., 2010; Naponiello
et al., 2015; Sheehan et al., 2015; Bonomo et al., 2016a).
The oxidation processes 1 and 2 manifest themselves through
two broad peaks with generally different amplitude. At the
microscopic level these oxidation processes are accompanied
by a variation of the NiO electrode mass for the transfer
of the charge-compensating anions X− (Equations 1 and 2)
from the electrolyte to the electrode. This kind of process is
generally accompanied by the production of mechanical stress
in the electrode (Dini and Decker, 1998). Upon continuous
electrochemical cycling the electrode tends to minimize such
a mechanical stress by modifying and re-arranging its surface
structure and morphology (Awais et al., 2015b; Bonomo et al.,
2018c). This structural evolution of the NiO electrode is
commonly accompanied by the progressive increase of the
amount of charge that NiO electrode is capable to exchange,
host and store during oxidation (Figure ESI1; Awais et al.,
2013b). Upon stabilization of the voltammogram, the system
undergoes a process of oxidation which is surface confined as
evinced by the linear the relationship between current peak and
scan rate (Figure ESI2; Sheehan et al., 2015). NiO electrodes
can sustain up to several hundreds of electrochemical cycles in
non-aqueous electrolyte thus proving an appreciable chemical
and physical stability (Novelli et al., 2015). Recently Bonomo
et al. reports on the ameliorated electrochemical stability in
aqueous environment (Bonomo et al., 2018b). In that paper,
the authors evidenced how the insufficient stability of NiO
is mainly due to the occurrence of degradation processes
catalyzed by the presence of chloride and perchlorate anions.
The presence of these two anions could be easily avoided in
photoelectrochemical devices by the control of the nature of
the supporting electrolyte. Furthermore, applied potential lower
than 0.8V vs. Ag/AgCl does not cause any degradation of the
electrode.

The nanostructured feature of the electroactive NiO electrode
manifests itself electrochemically through the observation of
the direct proportionality between exchanged current and NiO
electrode thickness during the oxidation processes of Equations
1 and 2 (Figure ESI3; Novelli et al., 2015). The correlation
between NiO film thickness and amount of exchanged charge
retains its validity when one refers to nanostructured NiO
samples that have been prepared with the same methodology
an d are electrochemically cycled under analogous experimental
conditions (Awais et al., 2011; Gibson et al., 2013). In fact, it
has been verified that NiO electrodes with the same nominal
thickness can vary considerably the amount of exchanged charge
during NiO oxidation if these films have been deposited with
different methods or prepared from different precursors (Gibson
et al., 2013; Naponiello, 2015; Bonomo et al., 2016a,b;Wood et al.,
2016). This is because the method of deposition/preparation can
severely affect the surface area, the surface chemical composition,
the electrical connectivity between the nanoconstituents of
NiO film, and the level of adhesion between the NiO deposit
and the conductive transparent substrate (Awais et al., 2013a,
2014; Gibson et al., 2013). Another factor that can modify the
shape of the voltammograms of NiO during electrochemical
oxidation is the composition of the electrolyte (Figure ESI4;

Novelli et al., 2015), which imposes the mechanisms of charge
compensation/mass transfer simultaneous to NiO oxidation:
the variability of ion sizes, ionic adsorption, and eventual
ion coupling on the surface of the nanostructured electrode
are all phenomena-characteristics that might vary considerably
the kinetics and thermodynamics of charge-mass transfer
processes at the NiO electrode/electrolyte interface (Gregg,
2004).

NiO electrochemical oxidation is not sensitive to light
irradiation as demonstrated by the invariability of the
voltammogram in passing from the dark condition to the
illuminated one with a white light lamp as source of luminous
radiation (Novelli et al., 2015). Therefore, the oxidation of
nanostructured NiO is a redox process which does not get
activated photoelectrochemically despite the fact that NiO has
a broad featureless absorption and possesses electrochromic
activity in the visible range (Boschloo and Hagfeldt, 2001;
Granqvist, 2012). The electrochemical oxidation of NiO can
be sensitive to the luminous radiation if the oxide is dye-
sensitized (Figure ESI5; Gibson et al., 2013; Awais et al.,
2014, 2015a,b). The resulting effect is the increase of the
photoconductivity of the modified electrode obtained by the
combination dye-sensitizer/NiO with the redox processes that
are based exclusively on the electroactivity of NiO substrate.
In absence of illumination dye-sensitization of nanostructured
NiO generally provokes an effect of surface passivation as far as
the process of NiO oxidation is concerned with the observation
of a diminution of the electrical current associated to the
NiO-based redox reaction (Gibson et al., 2013; Awais et al.,
2014). The extent of current diminution depends on the nature
of the colorant and on the conditions of sensitization (Sheehan
et al., 2015). With the exception of squaraine-sensitized NiO
(Naponiello et al., 2015; Sheehan et al., 2015; Bonomo et al.,
2016a), the voltammogram of which displays also redox peaks
characteristic of the anchored squaraine (Figure ESI6), it is
found generally that the most common colorants of NiO do
not display electroactivity within the potential range of NiO
oxidation (Bonomo et al., 2018a). Alike NiO in the bare state
(Figure ESI1), the electrochemical oxidation of NiO sensitized
with erythrosine b, N719, black dye, or P1 (Gibson et al., 2013;
Awais et al., 2014) involves an initial process of electrode
activation (Figure ESI7, left frame), and shows a linear variation
of the current peaks with the scan rate (Figure ESI7, right
frame). A useful parameter for the analysis of the interfacial
properties of dye-sensitized NiO electrodes is the open circuit
potential (OCP) of the cell with NiO working electrodes. The
comparison of the OCP values nanostructured NiO in the
pristine and sensitized states shows that the presence of the
dye tends generally to lower the OCP with respect to bare NiO
electrode (Table 1; Morandeira et al., 2005, 2008; Hongjun
et al., 2007; Awais et al., 2013b, 2015a,b; Gibson et al., 2013;
Naponiello et al., 2015; Sheehan et al., 2015; Bonomo et al.,
2016c). The change of OCP provoked by the dye-sensitizer
is indicative of the variations of the electrical potential at the
NiO electrode/electrolyte interface and the lowering of OCP
in passing from the bare to sensitized state is a straightforward
consequence of the diminution of positive charge (or increase
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TABLE 1 | Values of open circuit potential of the cells with screen-printed NiO in

the bare or sensitized state as working electrode.

NiO sample Dye-sensitizer Open circuit potential/V vs. Ag/AgCl

1 - 0.113

1 Erythrosine b* −0.144

1 Erythrosine b** 0.028

1 Cumarin 343 0.280

1 Cumarin 153 0.150

1 Fast Green −0.055

1 P1 0.140

2 – 0.360

2 VG1 0.150

2 VG10 −0.210

2 VG11 −0.187

2 DS35 0.005

2 DS44 −0.160

2 DS46 −0.243

3 – 0.340

3 VG11 0.142

3 DS46 0.110

3 Fast Green 0.040

Electrolyte: 0.2M LiClO4 in 3-methoxy-propionitrile. Sample 1 refers to NiO deposits

screen printed from slurries with 1mL of HCl. Samples 2 and 3 refer to NiO deposits

screen printed form slurries with 1mL and 5mL of CH3CO2H, respectively.

*NiO sample immersed in the sensitizing solution for 2 h ** NiO sample immersed in the

sensitizing solution for 16 h.

of negative charge) on the surface of the sensitized electrode
with respect to its pristine state. Therefore, sensitization is
accompanied by a concomitant process of charge transfer
between the dye and the electrode. Sensitization certainly
alters the surface density of the charge and, at the microscopic
level, the observed diminution of OCP can correspond to
the neutralization of the positively charged surface sites of
pristine NiO as determined with XPS (Bonomo et al., 2017).
Another plausible mechanism of OCP diminution following
dye-sensitization is the coverage of the positive charges exposed
on NiO surface by the chemisorbed dye-sensitizer which would
act thus like a depolarizer or electrical insulator. Sensitization
also modifies the tendency of the ions of a given electrolyte to
adsorb on the electrode surface. Consequently, the decrease of
OCP can originate also from the fact that the sensitizer favors
somehow the adsorption of negative ions from the electrolyte
on the surface of sensitized NiO with respect to the situation
generated by the bare electrode of NiO (Bonomo et al., 2018a).
Finally, another mechanism at the basis of OCP diminution
could be the loss of a positive charge by the sensitizer once it gets
adsorbed onto NiO surface (example of sensitizer deprotonation
upon anchoring).

It has been found that sensitized NiO under illumination
(Figure ESI8) follows a kinetics of oxidation which is analogous
to what has been observed for the same process occurring at the
pristine oxide (Figure ESI2, left plot) and at its dye-sensitized
version in dark conditions (Figure ESI7, right plot; Awais et al.,
2013b).

The linear dependence of the current peaks on scan rate
(Figure ESI8) is the further confirmation that the processes of
NiO oxidation in Equations 1 and 2 are kinetically limited by
the step of charge transfer at the electrode/electrolyte interface
(Gregg, 2004) no matter whether NiO is sensitized or not
(Boschloo and Hagfeldt, 2001; Novelli et al., 2015). When
an aqueous electrolyte is used (Boschloo and Hagfeldt, 2001;
Gibson et al., 2013) the process of oxidation of nanostructured
NiO presents again the linearity of the current intensity peaks
with the scan rate (Boschloo and Hagfeldt, 2001; Marrani
et al., 2014), and the direct proportionality of the amount of
exchanged charge with film thickness (Gibson et al., 2013).
Also in aqueous electrolytes the shape of the voltammogram
depends on the methods of preparation and deposition of
nanostructured NiO (Gibson et al., 2013; Wood et al.,
2016).

The peculiarity of the electrochemistry of nanostructured NiO
electrodes in water based electrolytes is the verification of the
oxide dissolution upon repetitive cycling (Marrani et al., 2014).
The reactions that lead to the chemical dissolution of NiO during
its electrochemical oxidation are:

NiIIO(OH)n(H2O)p → NiIINiIIIO(OH)n+1(H2O)p−1+e−+H+

(3)
for the oxidative process associated to the current peak I (see
indexing of the oxidation peaks in Figure 4a of Boschloo and
Hagfeldt (2001), and

NiIINiIIIO(OH)n+1(H2O)p−1 → NiIINiIVO(OH)n+2(H2O)p−2

+e− +H+ (4)

for the oxidation process associated to peak II (see indexing of the
oxidation peaks in Figure 4a of Boschloo and Hagfeldt (2001). In
Equations 3 and 4 the metal oxide is formulated as a hydrated
system upon contact of the oxide with the aqueous electrolyte.
As previously outlined, the Ni centers that undergo oxidation
according to Equations 3 and 4 are localized on the surface of the
oxide. Chemical dissolution of the electrode would be partially
due to the progressive transformation of the insoluble oxide(s)
into water-soluble soluble hydroxide(s).

Oxidation of nanostructured NiO can impart electroctalytic
properties to NiO toward the oxidation of redox active species
(vide supra; Sheehan et al., 2015; Bonomo et al., 2016b). This
is the case of the conversion of I− to I−3 (the typical anodic
process of a DSC or one of its recombination reactions; Boschloo
and Hagfeldt, 2009) occurring at electrochemically oxidized
NiO (Bonomo et al., 2016b). The latter species assumes the
electrical potential and increases correspondingly its electrical
conductivity to accomplish the reaction of oxidation of I−

(Figure 2).
The current exchanged by oxidized NiO for the

transformation of iodide to tri-iodide is of an order of magnitude
larger than the current of NiO oxidation (Figure 2). Moreover,
it results that the potential threshold for the onset of iodide
oxidation is slightly larger than the potential of NiO oxidation
itself (Figure 2). This sequence of events is indicative of the
switching of the NiO electrode into an active state toward I−
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FIGURE 2 | Cyclic voltammetries of a NiO film (l: 4µm) at the scan rate of

10mV s−1 in two different electrolytes (red curve: 0.2M LiClO4 in acetonitrile;

blue curve: 0.2M LiI and 0.02M I2 in acetonitrile). Potential values are referred

to the redox couple Ag/AgCl. Top: voltammograms in the full scale of current;

bottom: zoom of the two voltammograms in correspondence of the onset of

NiO (red profile) and I− (blue profile) oxidations. Reproduced with permission

from Bonomo et al. (2016b).

oxidation through the electrochemical injection of holes in
NiO. For the disambiguation of the possible intervention of the
FTO susbtrate as actual electrodic material of I− oxidation in
case FTO is not covered uniformly by the layer of nanoporous
NiO, some authors have analyzed comparatively the redox
process of I− oxidation on bare FTO electrodes and on NiO-
covered FTO substrates (Sheehan et al., 2015; Bonomo et al.,
2016b) when NiO had nanoporous features. It was verified
that nanostructured NiO films in the oxidized state displayed
generally an electrocatalytic effect on I− oxidation with respect
to bare FTO substrate (Figure ESI10). This is because the onset
of potential of iodide oxidation was systematically lower on

nanoporous NiO electrodes deposited onto FTO substrates with
respect to the uncovered FTO substrate (Figure ESI10). In turn,
the method of preparation of the thin film of nanostructured
NiO had an influence on the resistance of et associated to the
oxidation 3I− → I−3 + 2 e− at the NiO electrode/electrolyte
interface. This was evinced by the different slopes of the
voltammetric curves generated with the diversely deposited
NiO electrodes (comparison of the voltammograms generated
by NiO in the two different plots of Figure ESI9). The film of
nanoporous NiO prepared via plasma-assisted rapid discharge
sintering (Awais et al., 2011) resulted electrochemically more
efficient since it presented a faster kinetic of et (Figure ESI9,
left plot) with respect to screen-printed NiO (Naponiello et al.,
2015; Bonomo et al., 2016c) as far as the oxidation process 3I−

→ I−3 + 2 e− is concerned (Figure ESI9, right plot). This is
ascribed to the better electrical connectivity between sintered
NiO nanoparticles and between the NiO film and the FTO
substrate in the samples obtained via plasma assisted sintering
(Awais et al., 2011, 2014; Gibson et al., 2013; Sheehan et al., 2015)
with respect to the screen-printed version of nanoporous NiO
electrodes (Bonomo et al., 2016b).

Reduction Processes
NiO electrodes can undergo solid-state reduction in a reversible
manner when are immersed in an electrolytes (Awais et al.,
2010, 2013a,b). Under these circumstances the electrochemical
reaction of cation intercalation occurs according to:(Passerini
et al., 1990; Decker et al., 1992; Owens et al., 1999; Wang and
Cao, 2006).

NiO+ xe− + xM+
→ MxNiO (5)

In Equation 5 M+ represents a singly charged cation of
small radius (usually Li+ or H+). The process of Equation 5
corresponds to the electrochemical n-doping of NiO. It has
been verified that electrochemical reduction of NiO affects
its electrical conductivity, optical absorption, ionic conduction
and magnetic properties (Passerini and Scrosati, 1994). Alike
solid-state oxidation (Figure ESI1), the solid-state reduction
of nanostructured NiO goes through a process of electrode
activation consisting in the progressive increase of the amount
of exchanged charge upon repetition of electrochemical cycles
(Figure ESI10). At a microscopic level such an electrochemical
activation of the reaction of NiO reduction corresponds to
the aperture/enlargement of channels of cation intercalation
within the oxide structure (Passerini et al., 1990; Decker et al.,
1992; Passerini and Scrosati, 1994). Different to oxidation, the
electrochemical reduction of NiO follows a kinetics which is
controlled by diffusion (Bard and Faulkner, 2001). This was
verified through the linear dependence of the height of the
reduction current peak on the square root of the scan rate
after stabilization of the voltammogram of NiO (Awais et al.,
2013a). Impedance spectra also indicated the presence of relevant
diffusive phenomena for NiO in passing from the neutral pristine
state to the fully reduced state through the observation of
more pronounced capacitive features in LixNiO at the lowest
frequencies of potential stimulus (Awais et al., 2010). The
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voltammogram originated by the electrochemical reduction of
NiO depends on the method of NiO preparation and deposition
(Figure ESI11; Decker et al., 1992; Awais et al., 2010, 2013a).

The most important difference between the electrochemical
behaviors of differently deposited NiO films is the degree of
reversibility with which the process of electrochemical reduction
occurs (Figure ESI11). This aspect depends on the separation
of the potential values at which the forward and reverse waves
of reduction present a peak of maximum current (Bard and
Faulkner, 2001). Since the electrochemical reduction consists
in a process of ion intercalation, the observed differences are
mostly associated to the differences in the crystal structures
and Van der Waals features of the electrode rather than
to the morphological characteristics of the oxide surface
(Whittingham, 1997, 2000). The most distinctive aspect of the
solid-state electrochemical reduction of nanostructured NiO is
the dependence of the latter process on illumination with visible
light (Awais et al., 2013a): when NiO electrode is irradiated
an increase of the current is observed with respect to dark
conditions (Figure ESI12). The nature of the electrochemical
process of reduction within the potential range 1.25 < E < 2.6V
vs. Li+/Li is not altered by the illumination since no potential
shifts and/or appearance/disappearance of electrochemical waves
is observed upon electrode irradiation within that potential range
of Figure ESI13. Therefore, the main effect of light irradiation
is of photoconductive nature and consists in the increase
of the electrical conductivity of illuminated NiO undergoing
electrochemical n-doping (Equation 5; Passerini and Scrosati,
1994).

An important issue related to the process of reduction of
mesoporous NiO films is the eventual involvement of a redox
process based on the transparent conductive substrate on which
NiO is deposited (Awais et al., 2013b, 2015b). A careful control
of the values of applied potential that lead to NiO reduction is
then necessary in order to avoid the concomitant reduction of
the transparent metallic substrate usually made of ITO or FTO
(Awais et al., 2013b, 2015b). In fact, upon stabilization of the
voltammogram of bare ITO substrate this supporting metallic
conductor undergoes lithium uptake (Cogan et al., 1985; Bressers,
1998; Awais et al., 2013b) within the potential range of NiO
electroactivity (Figure ESI13). The reduction of underlying ITO
is characterized by the linear dependence of the current peak
with the scan rate (Figure ESI13; Awais et al., 2013b) whereas,
NiO would display a linear dependence of the current peak of
reduction on the square root of the scan rate (Awais et al., 2013a).
Such a difference indicates that the reduction of uncovered ITO
is kinetically limited by a process of charge transfer localized at
ITO surface whereas the reduction of NiO is diffusion controlled.
In presence of a non-homogenous layer of NiO the occurrence
of ITO reduction (Figure ESI14; Armstrong et al., 1976; Stotter
et al., 2005) leads to the complete suppression of the redox
activity of NiO with the disappearance of the typical reversible
oxidation and reduction waves of NiO and the observation
of the sole process of ITO reduction (Figure ESI14; Awais
et al., 2013b). The employment of FTO as supporting substrate
of nanostructured NiO for the realization of NiO reduction
(Equation 5) is certainly more advantageous with respect to ITO.

This is because FTO presents electrochemical inertness within
the potential range of NiO reduction, and undergoes a process of
solid state reduction at more cathodic polarizations with respect
to NiO and ITO (Awais et al., 2015a).

APPLICATIONS OF NANOSTRUCTURED
NIO ELECTRODES IN
PHOTOELECTROCHEMISTRY

Light-Driven Electrochemical Production
of H2 From Water Splitting
Non-fossil fuel H2 is formed electrochemically as product of
reduction of the H+ cation on selected electrodic materials
(Holladay et al., 2009) during the electrolytic process of water
splitting. The conduction of the same reduction process of
H2 formation in photoelectrocatalytic conditions (Walter et al.,
2010) requires the absorption of light at the photocathode
as initial step of activation. Absorption of light generates a
separation of charges at the photocathode and the successive
reduction of the hydrogen cation will occur provided that
the cathode is made of a p-type SC. The excess of minority
carriers created at the interface that separates the excited p-SC
from the electrolyte will be responsible of the photoactivated
reduction of hydrogen cations. The p-SC can possess intrinsic
photoelectrocatalytic activity toward H+ reduction (Lewerenz
et al., 2008; Kargar et al., 2014; Luo et al., 2016; Yang et al.,
2016; Zhang et al., 2017). Alternatively, the p-SC can achieve
such a capability through sensitization with dyes that impart
photocatalytic activity to the p-SC electrode when the dyes are
immobilized on the surface of the p-SC (Tong et al., 2012).
In the latter case the p-type semiconductor would act as an
electron relay toward H+, which operates as an heterogeneous
catalyst (Muñoz and Lewerenz, 2010; Lewerenz et al., 2011).
Reference (Muñoz and Lewerenz, 2010) reports a review of
p-type semiconducting electrodes for the photoelectrochemical
generation of H2 when solar radiation is the source of
luminous energy (Lewis, 2016). Among nanostructured p-SC
for photoelectrochemical generation of H2 in light-driven water
splitting (Gür et al., 2014; Li et al., 2015), NiO in the sensitized
state represents the most studied example (Castillo et al., 2015;
Dong et al., 2015;Meng et al., 2015;Wood et al., 2016). This is due
to the well-established properties as photocathodic material of p-
DSCs (Dini et al., 2015a; Bonomo and Dini, 2016; Dini, 2016).
For the photoelectrocatalytic generation of H2 nanostructured
NiO cathode can be configured in two main ways: (i) through
sensitization with a molecular light absorber which upon
optical excitation transfers an electron to a moiety acting as
electrocatalytic center for H2 formation (Ji et al., 2013; Click
et al., 2016;Willkomm et al., 2016); (ii) through sensitization with
quantum dots (QDs) made of a semiconducting material with
a lower VB edge with respect to nanostructured NiO substrate,
with the QDs transferring the optical excitation to a molecular
co-catalyst capable of reducing H+ for successive H2 formation
(Meng et al., 2015; Ruberu et al., 2015). These modified NiO
electrodes produce H2 at rates in the order of 10−7 mole per
hour and display faradic efficiencies that approximate 100% in
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conditions of simulated solar irradiation (Ji et al., 2013; Castillo
et al., 2015; Dong et al., 2015; Meng et al., 2015; Ruberu et al.,
2015; Click et al., 2016; Juodkazyté et al., 2016; Wood et al.,
2016). Therefore, the quasi totality of the photogenerated current
is exploited for the reduction of H+ and side reactions are
practically absent. Table 2 reports a list of relevant characteristics
of the photoelectrolysis cells which employ nanostructured TMO
cathodes (Liao and Carter, 2013) for H2 production (Cao et al.,
2011; Ji et al., 2013; Rodenas et al., 2013; Liu et al., 2017). The
photocathodes are usually decorated with catalysts constituted
of supramolecular assemblies the photocatalytic activity of which
has been previously verified in homogeneous conditions, i.e., in
the non-immobilized state (Rau et al., 2006; Soman et al., 2012;
Halpin et al., 2013; Dini et al., 2015b; Pfeffer et al., 2015).

A schematic depiction of the working principle operating in
the photoelectrolysis cells based on sensitized nanostructured
electrodes for the production of solar fuel is shown in Figure 3

when the cathode is made of NiO and the co-catalyst operates in
homogeneous conditions (Li et al., 2012).

A further evolution in the design of the photocathode for solar
driven H2 generation is represented by nanostructured TMOs
of p-type, which are decorated with a supramolecular assembly

TABLE 2 | Semiconducting cathodes based on nanostructured NiO and

photoelectrocatalytic agents employed in the potentiostatic generation of H2

under simulated solar irradiation.

Cathode Sensitizer Catalyst Faradic

efficiency/%

References

NiO PMI-6T-TPA - 97 Tong et al., 2012

NiO CdSe QDs Co-based 81 Meng et al., 2015

NiO CdSe QDs MoS2 100 Dong et al., 2015

NiO BH4 MoXSY 60 Click et al., 2016

NiO O22 Co-based 68 Ji et al., 2013

NiO CdSe Co(bdf)2 100 Ruberu et al., 2015

NiO C343 Fe-based 50 Antila et al., 2016

FIGURE 3 | Light-driven production of H2 from a PEC of electrolysis, which

employs P1-sensitized NiO as photocathode and the co-catalyst Co1 [a Co(II)

complex] dissolved in aqueous electrolyte. H2 is photogenerated in solution

when P1-NiO cathode is illuminated and kept polarized at −0.4 V vs. Ag/AgCl.

Reproduced with permission from Zannotti et al. (2015).

(Figure 4; Dini et al., 2015b). The latter species combines
a photosensitive moiety (PS) electronically conjugated to the
catalytic center (Cat) (Halpin et al., 2009, 2010). The whole
molecular assembly operates in the surface-immobilized state
(heterogeneous mode).

The approach described in Figure 4 is particularly attractive
since it avoids catalyst replenishment or its in-situ regeneration
in the liquid electrolyte. Therefore, the PEC design of Figure 4
can allow the realization of photoelectrolysis in the continuous-
flow mode (Homayoni et al., 2015) where only the electrolyte is
replenished and no expensive and/or time-consuming operations
of separation/purification are involved. The practical realization
of the PEC operating has been reported by Antila et al. (Figure 5)
when the molecular assemblies comprised a PS unit of coumarin
343 and a Cat unit of Fe-Fe biomimetic catalyst (Antila et al.,
2016).

In this configuration the PS and Cat units of the
photoelectrocatalyst interact electronically through space
and not conjugated moiety, e.g., a bridging ligand that connects
the two units, is involved. The resulting Faradaic efficiency of
this modified NiO electrode was about 50% (Antila et al., 2016).

Light-Driven Electrochemical Reduction of
CO2
For the mitigation of the environmental effects related to
the anthropogenic formation of CO2 several approaches have
been proposed (Aresta et al., 2014). These consist generally
in the transformation of CO2, i.e., an abundant and polluting
component of the terrestrial atmosphere, into useful products
through procedures that should be at very low environmental
impact during operation. The photoelectrochemical reduction
of CO2 on photoactive sensitized cathodes (Barton et al., 2008;
Xie et al., 2015) has been demonstrated and resulted particularly
attractive for a series of important reasons (Sakakura et al.,
2007) like the transformation of CO2 into fuels (CH4, CH3OH).
At a large scale the conduction of the latter process through
the photoelectrochemical approach would ideally diminish
the request of fossil fuels extracted from fields. It has been
recognized that the photoelectrochemical reduction of CO2

proceeds efficaciously through two paths (Herron et al., 2015)
(a) by means of the primary photoelectrochemical production
of H2 (a strong reductant) and its successive reaction with
CO2 to give selectively hydrogenated products with high energy
density or synthetic usefulness; (b) by means of the direct
photoelectrochemical reduction of CO2 (Aresta et al., 2014). In a
recent review (Bonomo and Dini, 2016) simple calculations and
basic considerations have shown that NIR and visible light do not
deliver an energy sufficiently high to initiate directly any kind
of reaction of CO2 which involves the initial rupture of a C =

O bond. This is because the minimum energy threshold for the
removal of one electron from CO2, i.e., the step that would start
the breaking of one of the two covalent CO bonds and allow any
further chemical transformation of CO2, is about 4 eV. Such a
value of energy corresponds to a radiation wavelength of about
300 nm, i.e., a value which falls typically in the UV range. On the
other hand, visible light can result useful in case of the process
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FIGURE 4 | Light-driven water photoelectrolysis with production of H2 at the NiO photocathode and O2 at the TiO2 photoanode. The scheme depicts a PEC in which

both oxide electrodes are sensitized with supramolecular assemblies with PS, i.e., the photosensitive moiety of the assembly, and Cat, i.e., the catalytic center of the

assembly, which execute a process of et upon light excitation of PS. Reproduced with permission from Halpin et al. (2009).

FIGURE 5 | Left: depiction of the photoelectroactive material consisting of p-type NiO nanoparticles decorated with the dye-sensitizer coumarin 343 (PS) and the

biomimetic Fe-Fe catalyst (Cat) directly anchored on NiO through the phosphonate group. Right: temporal profiles of the current density associated to H2 generation

as a function of the light-switching time when Fe-Fe Cat [1] is not included (black profile), and when is anchored (red profile). Reproduced with permission from Antila

et al. (2016).

of mono-addition of an electron in the LUMO of CO2 (which
would thus become CO−

2 ; Bonin et al., 2014b) provided that
an opportune electron donor is present at a tunneling distance
from neutral CO2. A p-SC [either in the pristine or dye/co-
catalyst modified state (Vesborg and Seger, 2016)] can achieve
the single electron addition to CO2 if p-SC is illuminated with
visible light. For the improvement of the kinetics of reduction at
a p-SC cathode one has to increase the energy of the electrons
till their promotion to the CB of the p-SC (Harris and Wilson,
1978). In doing so the electrons will be transferred to the oxidized
form of the redox couple at a diminished activation energy. The
energy of electrons at a p-SC electrode can be modulated by
means of the application of a cathodic external bias, a cathodic
electrical current and upon direct/indirect/mediated absorption
of the luminous radiation (Begum and Pickup, 2007; Angamuthu
et al., 2010; Kas et al., 2014). Under opportune conditions
of illumination the utilization of a sensitized p-SC electrode
for the photoelectrochemical reduction of CO2 (Windle et al.,
2015) avoids the use of a sacrificial agent (Bonin et al., 2014a)
since the photoelectrochemical process is conducted in the
heterogeneous modality with the electrons that are replenished

by the photocurrent passing in the cell. The photoelectrochemical
reduction of CO2 via a surface-immobilized molecular assembly
(Figures 6, 7) that accomplishes the dual function of light
absorption (through PS) and electron(s) transfer (et) to the
electrocatalytic moiety (Cat) interacting directly with CO2,
implies the realization of the following sequence of elementary
steps:(Kumar et al., 2012).

(a) Excited state formation of the PS moiety with consequent
charge separation;

(b) Intramolecular et from the excited PS moiety to Cat with the
latter coordinating CO2;

(c) Step of et from Cat (acting as electron relay) to CO2;
(d) Uptake of one or more electron from p-SC (acting

as regenerator of the assembly thanks to the passage
of an electrical current of electrolysis), for the
neutralization/regeneration of the PS moiety and/or
the Cat unit that resulted temporarily oxidized for the
occurrence of the previous steps (b) and (c).

The most interesting examples of nanostructured TMOs of p-
type for the efficacious photoelectrochemical reduction of CO2
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are the combination of Cu2O/CuO in the shape of nanorods
(Rajeshwar et al., 2013), and native SnOx onto Sn substrate
(Magesh et al., 2014). Both systems did not make use of any
auxiliary supramolecular assembly since they presented intrinsic
self-absorption in the NIR-visible range combined to optimal
charge transport properties (Hinogami et al., 1998). The Cu-
based mixed oxide could convert CO2 into methanol CH3OH
with 95% of faradic efficiency when it was kept polarized at
−0.20V vs. SHE under one sun of illumination. The use of
the photoelectrode Sn/SnOx led to the formation of formic acid
HCO2H as main product of photoelectrochemical reduction
of CO2 in potentiostatic conditions with a resulting faradic
efficiency of 27.5 % at + 0.70V vs. SHE. An example of
sensitized photocathode for CO2 electrochemical reduction is
the one obtained upon sensitization of nanostructured NiO
with a di-nuclear complex of Ru and Re known for having
photocatalytic properties (Braumüller et al., 2016; Nakada et al.,
2016). Such a system (Figure 6; Nakada et al., 2016) resulted
photoelectrochemically active toward the selective reduction of
CO2 to carbon monoxide CO at the potential of polarization
−1.2V vs. Ag/AgCl.

In the example of Figure 6, it remains still an open question
the definition of the actual role of the CO ligand coordinated
by Re(I) in the process of CO formation from CO2 (Takeda
and Ishitani, 2010). Moreover, the capability of NiO to transfer
electrons neatly toward the Re(I) center through a Ru(II)
bipyridyl complex is not so obvious given the scarce matching
of the energy levels between p-type NiO and N719 or Black Dye
(Nattestad et al., 2008; Novelli et al., 2015; Sheehan et al., 2015),
i.e., two complexes that are structurally very similar to the light
absorbing unit of the RuRe complex in Figure 6. The structure
of the RuRe assembly could be at the basis of the relatively
low turnover number (TON) of 32 found by that authors. In
fact, the equivalent amount of sensitizer typically chemisorbed
on the surface of nanostructured NiO (Powar et al., 2012)
would give a much higher efficiency of CO2 photoconversion
when employed in the non-immobilized state (Takeda and
Ishitani, 2010). Another photoelectrocatalytic system based on

FIGURE 6 | Definition of a photocathode based on nanostructured NiO for the

selective photoelectrochemical reduction of CO2 to CO. The photocathode is

sensitized by a di-nuclear complex of Ru and Re having the dual function of

absorbing visible light and transferring electrons to CO2. Reproduced with

permission from Takeda and Ishitani (2010).

dye-sensitized nanostructured NiO for the photoelectrochemical
reduction of CO2 is the one proposed as a proof of concept by
Bachmeier et al. (2014) (Figure 7).

The photoelectrocatalytic cathode of Figure 7 is constituted
by the P1-sensitized skeleton of nanostructured NiO. In this
configuration the NiO is also modified by the enzyme carbon
monoxide dehidrogenase I that adsorbs spontaneously on NiO
surface and acts as catalytic unit in the transformation of
CO2 into CO. Alike the photoelectrocatalytic system depicted
in Figure 6, the enzyme-modified NiO electrode for the
photoreduction of CO2 (Figure 7; Bachmeier et al., 2014)
operates with the PS and Cat units accomplishing the et process
through space and not through bonds.

CONCLUDING REMARKS

This review has given an overview on the electrochemical
and photoelectrochemical behavior of semiconducting electrodes
made of nanostructured transition metal oxides (TMOs) like
NiO in the configuration of thin films. The interest in NiO
resides primarily in the chemical-physical stability which is
imparted by bonds having mixed covalent and ionic character.
Such a combination of characters generates an electronic
structure characterized by the presence of energy bands and
partially delocalized states at the valence level with impartment
of semiconducting properties. TMO based semiconductors
like NiO are photoactive since such electrode materials can
transfer electrons in the desired direction provided that a
radiation of opportune energy is absorbed by the TMOs for
the primary realization of the hole-electron separation. Unlike
the semiconductors based on Si, NiO undergoes reversible
electrochemical redox processes in the solid state (either in the

FIGURE 7 | Scheme of the photoelectrocatalytic action exerted by a

dye-sensitized NiO cathode decorated with the enzyme carbon monoxide

dehidrogenase I toward the reduction of CO2 to CO. The light absorbing unit

is P1 (in red). Reproduced with permission from Bachmeier et al. (2014).
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dark or illuminated states), and as such represent electroactive
species. The occurrence of a NiO-based redox process leads to
the doping of the oxide and it is accompanied by charge storage.
The latter process is also of great utility for the development
of batteries and primary sources of electrical energy based on
NiO electrodes. Nanostructuring of NiO is an efficacious tool
for modulating of the electrochemical properties, the optical
absorption and the characteristics of charge transport. Therefore,
the preparation of nanosized NiO gives further opportunities
for employing NiO as photoelectroactive materials for the
finalities of solar energy conversion (with the development of
dye-sensitized solar cells, DSCs), solar fuels generation during
water photoelectrolysis, and the photoelectrochemical reduction
of CO2. In DSCs TMOs have demonstrated to be already a
quite mature choice having offered overall conversion efficiencies
of 14, 2.55, and 1.70%, respectively, in the DSCs of n-type,
p-type, and tandem type. Many factors other than the nature
of TMOs affect the performances of DSCs, but room for the
improvement of the synthetic and deposition procedures of
TMOs is still ample for the amelioration of the performances
of these devices. For the development of photoelectrochemical
cells for H2 photogeneration, water photosplitting and CO2

reduction, the approach is the same of the DSCs (Grätzel
cells) with the adoption of dye-sensitized nanostructured NiO
of p-type as photoelectroactive component. Different to DSC,
it has been early recognized that the sole light-absorbing
unit in the immobilized state is not sufficient to accomplish
the photoelectrochemical reduction of H+ for the successive
formation of H2 during water splitting (or the reduction of CO2)
due to the complexity and the number of chemical reactions that
follow the starting electrochemical step of electron transfer. For
this reason, the successive development of catalytic units was
necessary for the full realization of the wanted photoreduction
process at modified NiO. At the present stage the progress on the
photoelectrolysis cells for the realization of photoelectrocatalytic
reduction processes depends mainly on the nature of the dye-
sensitizer and the catalytic units combined in the multifunctional
supramolecular assembly PS-Cat (either bridged or separated)

rather than on semiconducting NiO cathode., The special
attention given by the present review to the analysis of the
electrochemical and photoelectrochemical properties of p-type
NiO is due to the variety of the (photo)electrochemical processes
occurring in NiO electrodes, and the complexity of the kinetics
of NiO redox processes. Both characteristics certainly render this
system a paradigmatic example for the class of semiconducting
TMO electrodes.
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