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Introduction

Quantum finite W-algebras were first studied by B. Kostant at the end of the '70s. They are associative
algebras built from a reductive or semisimple complex Lie algebra g and a nilpotent element f € g through
a procedure of Hamiltonian reduction.

Kostant ([[Ko78]) only worked on W-algebras for principal nilpotent elements, but his work was generalized
shortly after by D. Lynch ([Ly79]) to nilpotent elements with even Dynkin gradings. More recent and general
results are due for instance to A. Premet ([Pr02], [Pr07]) or W. Gan and V. Ginzburg ([GG02]).

The same procedure of Hamiltonian reduction can be applied in the different context of Poisson algebras
and Poisson vertex algebra to give rise to other two family of W-algebras, classical finite and classical affine
respectively. A fourth family, the quantum affine W-algebra can on the other hand only be defined through
a cohomological approach.

These four families, introduced and studied separately, and with different purposes, are connected by
procedures that we call affinization, quantization, classical limit and Zhu functor. For instance, the classical
cases can be obtained as classical limits of the corresponding quantum W -algebras. Keeping this complete
picture in mind drives us to compare differences and similarities and to develop, as much as possible, a
symmetric theory in each one of these cases. This goal also motivated the work of my thesis.

My first approach with W-algebras goes back to my master’s thesis. Back then, with [Wall] as a
guiding reference, I learned about (quantum finite) W-algebras, their properties and their representation
theory. It is remarkable for instance that various equivalent ([DCSHIK]) definitions for the same W-algebra
W (g, f) can be given, but the quantum finite W-algebras ultimately depend only on the nilpotent orbits in
g. This is obtained through the results of J. Brundan and S. Goodwin, showing that W-algebras associated
with different gradings but the same nilpotent f are isomorphic ([BG05]), and through results of Gan and
Ginzburg showing the independece of W (g, f) from the choice of the isotropic subspace [ (|[GG02]).

On the representation side, two beautiful theorems relate the representation of quantum finite W-algebras
and other known objects: the first one with a subcategory of U(g)-modules called Whittaker modules ([Sk02]),
and the second with the affine degenerate Hecke algebra, in a generalizaton of the well-known Schur-Weyl
duality ([BK08Db]). The last one only holds for g = gl .

From the very beginning though, the issue of describing this associative algebra structure in full detail was
clear. We can easily describe two particular cases, the WW-algebra associated with the zero nilpotent element
and the W-algebra associated with the principal nilpotent element. In fact, it follows from the definition that
W(g,0) = U(g), while, by a result of Kostant-Kazhdan, W (g, f) is isomorphic to the center of U(g) when f
is principal nilpotent.

As we know, the nilpotent elements of gl are uniquely determined by partition of N, namely by the
sizes of the Jordan blocks of the nilpotent: the element 0 corresponds to the partition (1V), and the principal
nilpotent f corresponds to the partition (N). In-between these extreme nilpotent cases lie all other W-
algebras, whose structure is oftentimes obscure. With some restrictions on the partitions, similar results also
hold for the other classical algebras, spspy, s0on and soon ;1.

It is starting from these premises that at the beginning of my PhD program, the common goal that
my advisor Alberto De Sole and I had in mind was to shed some light on the structure of quantum finite
W-algebras, especially trying to get a better picture of generators and relations.

This was also motivated by the results of A. De Sole, V. Kac and D. Valeri in the context of classical
affine W-algebras; we made various attempts to obtain explicit formulas for the generators mirroring the
construction in [DSKV14], where the authors exploited the theory of Poisson vertex algebras to explicitly
compute generators and their commutation relations for the classical affine W-algebras attached to minimal



and short nilpotent elements.

When this approach showed its limits, we focused our attention on the relationship between quantum finite
W-algebras and Yangians. This relationship in the case of g = gl and a rectangular nilpotent element had
been highlighted by many authors, as for instance Drinfeld [Dr88] or Ragoucy and Sorba [RS99]. However,
the most significant contribution comes from the work of J. Brundan and A. Kleshchev, who in a series
of papers ([BKO05]-[BK08a]) deeply study quantum finite W-algebras for gl and establish an isomorphism
between a certain subquotient of a Yangian Y, and the W-algebra W (gly, f). This subquotient is called
truncated shifted Yangian, and it depends on combinatorial parameters attached to the W-algebra, namely
a good %Z— grading and the partition corresponding to the nilpotent element f.

We then noticed a major resemblance between the defining relation for a Yangian and the defining relation
of a pseudodifferential operator of Adler type, which in the most recent works of A. De Sole, V. Kac and
D. Valeri aided the development of a new method for constructing integrable Hamiltonian hierarchies of Lax
type equations. As an application, by showing that all classical affine W-algebras carry such a hierarchy,
they were able to explicitly construct generators and to compute their A-brackets.

Therefore, in analogy with the results obtained in the classical affine case, we construct an r; X r; matrix
of Yangian type, where r; is the number of maximal parts of the partition corresponding to f, encoding the
generators and relations of the W-algebra.

In the case when I' is a Dynkin grading and [ = 0, such matrix L(z) was defined in [DSKV16¢|, and it
was there proved that it encodes the whole structure of the W-algebra. It is here defined in all generality in
Definition 2.2.1.

Instead, we here describe it in an example. In the case of gl; with partition (2,1), and the even %Z—grading
whose associated pyramid is right-aligned we have for instance

z+en €21 €31
L(z) == 1 z+ ez —2 0 =
€13 €23 z+ es3

-1
1 0 Z+ €29 — 2
T (z ten 631) <e13 z+ e33> < €23 ) '

where e;; is the elementary matrix having 1 in position (¢,j) and 0 elsewhere. In this special case of a
right-aligned pyramid, we can prove that the entries of the matrix L(z) satisfy a certain recursive relation
(Theorem 2.2.2).

By a result of Premet ([Pr02]), there exists a choice of generators for W (g, f) which depend on the
centralizer g/ of f such that they are compatible with the Kazhdan filtration on W (g, f).

In [DSKV16¢] the authors construct a matrix W (z), whose entries are polynomials with Premet’s gener-
ators, and conjecture that the matrix L(z) can be obtained as a generalized quasideterminant of W(z). Note
that the entries of L(z) are formal Laurent series in 27!, and are not suitable to give a finite set of generators
for W (g, f), while the entries of W(z) are polynomials in z. The description of the generators given by
Brundan and Kleshchev is also not the most suitable for the conjecture. The analogue of this conjecture has
a positive answer for any nilpotent in the classical affine case ([DSKV16b]). For the quantum finite case, the
conjecture is tested in [DSKV16¢] for the special cases of rectangular and minimal nilpotent elements.

The main result of this thesis is the proof this conjecture, working under the broader assumption of a
generic good %Z—grading for f and an arbitrary isotropic subspace [ C g 1

When the %Z—grading is even, we define the r x r matrix W (z), where r is the number of parts of the
partition, through a recursive formula (Definition 3.2.1). For instance, in the case of N = 3 with partition
(2,1) and grading as above, W (z) is the 2 x 2 matrix with entries

Wii(2) = =22 — z(e11 + €22 — 2) +ea1 — e11(ega — 2) + ezre13
Wia(z) = ez

Wai(z) = e23 — e13(e2z — 2) + eszeis

Was(2) = z + e33

It is by studying both the recursion for L(z) and the recursion for W(z) that we are able to prove the
conjecture in the case of an aligned pyramid. In fact, the recursive formula defining W(z) partially agrees,



but doesn’t completely coincide, with the recursive relation that we have proved for L(z). However, for a
particular quasideterminant of the matrix W (z) the same recursion of the matrix L(z) holds, proving the
conjecture. In the case of N = 3 and (2, 1) as above, a simple computation shows that

L(z) = (W Wiz(2)
ng(z) WQQ(Z)

+ezie13 —ezi(z + 633)71(623 —eiz(ean — 2) + eszers).

) =22 —2(e11 +ear —2) +ear —eqi(ean — 2)

The generalization of these results to arbitrary good %Z—gradings is not straightforward, because these
recursive constructions are not always possible. The same definition of W(z) loses meaning when the grading
is not even.

However, we use general results about the structure of a W-algebra to overcome this obstacle. Given an
arbitrary good grading I', by repeatedly changing the isotropic subspace [, we build a chain of adjacent good
gradings for f connecting I" to the grading whose associated pyramid is right-aligned. We then use results of
[BGO5] and [GGO2] to describe associative algebra isomorphisms between the W-algebras associated to the
different gradings of the chain, and finally prove the conjecture.

Similarly, by an analysis of the recursion we prove that the generators on the right-aligned case are in
Premet’s form, and through a similar machinery we can extend this result in all generality.

The outline of the thesis is as follows:

In Chapter 1 we begin with a reminder of some basic notions that we will use throughout the work, and we
fix the notation. Besides the concept of good %Z—gradings and pyramids, for which we analyze the procedure
of column removal that will be crucial further on, we define our main object, the quantum finite W -algebra
W (g, f), and recall the useful Kazhdan filtration and Rees algebra. Finally, after a review of the theory
of quasideterminants we introduce the concept of an operator of Yangian type, which already appeared in
[DSKV16¢] and [DSKV17b].

In Chapter 2 we put the bases of our construction. First, we define a matrix T'(z) which will be of help
in the proof of some properties later on, and most importantly sets a bridge between our construction and
the one of Brundan and Kleshchev ([BK05]-[BK08a]). This relationship will be analyzed at the end of the
chapter. Then, starting from the same combinatorial data associated with a W -algebra, we will construct a
matrix L(z) which we will then prove to be of Yangian type for the W-algebra (Theorems 3.3.1 and 3.3.2).

In Chapter 3 we introduce De Sole, Kac and Valeri’s conjecture (Conjecture 3.1.1) for a finite set of
generators for a W-algebra in the case of a Dynkin %Z—grading and [ = 0. We then recursively define a
matrix with polynomial entries that is a suitable candidate to prove the conjecture. Under some restrictions,
we are able to prove that the coefficients of the matrix W (z) lie in the W-algebra.

In Chapter 4 we begin by proving the core of Conjecture 3.1.1, namely the relationship between a W-
algebra and the operator of Yangian type L(z) associated with the same data, in the particular case when the
pyramid attached to the %Z—is aligned (Theorem 4.1.1). The rest of the chapter is dedicated to extend these
results to the general case; this is aided by an analysis of the properties of adjacent gradings and isotropic
subspaces. A first attempt allows us, still under some restrictions, to prove an analogue recursive definition of
the matrix W (z), that however doesn’t completely solve our problem. In the end, we will build a machinery
that will allow us, starting from the results in Proposition 3.3.1 and Theorem 4.1.1 to finally give a positive
answer to this conjecture for a general pair of good %Z—grading for g and an isotropic [ non-necessarily zero.



Chapter 1

Basic notions and definitions

1.1 Setup and notation

Throughout the thesis, we let g = gl and (z|y) = tr(ay), where zy denotes the usual matrix multiplication.
Most results can be stated and proved for arbitrary reductive g, but we will be interested in the case g = gly.
1.1.1 Good ;Z-gradings and pyramids

A 1Z-grading T for g is a decomposition g = @]E%Z g; such that [g;, g,] C gi4; for every i, j € Z. We shall

denote, for j € 1Z, g>; = D> 0k 955 = Djsj Ok 8<j = DB 96 and g9<; = Dy 9
Moreover, for each j € %Z, let us denote by

Tt g > g, (1.1.1)
the projection with respect to the direct sum decomposition given by I'. We will use the shorthands
T> 970855, T<j 8 770<i, T>j:070>, 7T<5:07>0<5-

Definition 1.1.1. We say that a %Z—grading :g= GBjG%Z g; is even if g; = 0 for all j € % + Z. We say
that a %Z—grading I" is odd if it is not even.

Example 1.1.1. Let 0 # f € g be a nilpotent element. By the Jacobson-Morozov Theorem we know that
there exists an slo-triple (e, h, f) associated to it such that f is the nilnegative element, e is the nilpositive

element and h is a semisimple element. By the representation theory of sly, the eigenspace decomposition of
g relative to the adjoint action of x = %h gives a %Z—grading for g. We call this a Dynkin grading.

Definition 1.1.2. Let f € g be a nilpotent element. A good %Z—gmding for f is a %Z—grading of g,
I:g= @jelz g; such that the following holds:

(i) feg-u;

(ii) ad f:g; — g;—1 is injective for j > %;
(iii) ad f:g; — gj—1 is surjective for j < %
We moreover ask that the center of g is contained in gg.

In particular, if I" is a good %Z—grading for f, then adf : g — g1 is a bijection. It can be proved
[Wall, Lemma 8] that properties (i¢) and (iii) are equivalent for every %Z—grading of g.
Example 1.1.2. A Dynkin ;Z-grading is always a good 3Z-grading, since properties (i) — (i) derive from
the definition of sls-triple and from the theory of maximal weight of sl, applied to g, seen as a slo-module
under the adjoint action.



Proposition 1.1.1. [Wal1, Lemma 4, Proposition 5] The following properties hold for every good %Z—gmdmg
I':g= @J.G%Zgj:

(a) There exists a semisimple element hy € g such that T' coincides with the eigenspace decomposition relative
to the adjoint action of hr, namely g; = {x € g| [hr,z] = ja};

(b) ¢ C @D ,<09;, where gt is the centralizer of f in g;
(¢) (gilg;) =0 unless i + j = 0. Namely, g—; is the dual of g; with respect to the bilinear form (-|-);
(d) dim g = dim go + dim g1

Let A= (p1 > p2 > ... > p,) be a partition of N.

Definition 1.1.3. A pyramid p of size N associated with the partition A = (p1 > p2 > ... > p,.) (namely, of
shape A) is a collection of 1 x 1 boxes arranged in r rows with centers (i, j) € %Z X Zq such that

(i) For the bottom row, j = 1. The rows are then ordered increasingly from bottom to top: j =1,...,r;
(ii) Row j consists of p; boxes;

(iii) For each row, the z-coordinates of the centers of the boxes form an arithmetic progression with common

difference 1: f;, f; +1,...,1;, where f; (resp. ;) is the x-coordinate of the center of the leftmost (resp.
rightmost) box of row j;

(iv) The bottom row is symmetric with respect to the y-axis: ’”T_l =l =—f1;
v) It graphically satisfies the condition of pyramid, namely f;i1 > f;, l;11 <l; foreach j=1,...,r — 1.
J+ Jr ti+ J

To visualize this definition, here’s an example for a pyramid associated with the partition (6,4,2) of 12:

(f3,3) 33

(22 . o 22

¢y | oy | oo lay | oy

wjeo

Figure 1.1: A pyramid of size 12 and shape A = (6,4, 2)

We shall denote by t; <ty < ... <7 > ... > s9 > s the unimodal sequence of column lengths in p,
from left to right, the total number of columns being p;. We shall also denote by r; be the multiplicity of p;
in the partition; as a consequence, the bottom of the pyramid p will therefore be a rectangular block of size
p1 X r1 that will also be invariant under the change of good %Z—grading associated with the same partition
of N. It is also clear that r1 = min(¢y, s1), namely 71 is the height of the shortest column of p.

Definition 1.1.4. We say that a pyramid p is even if every box in the pyramid lies exactly on a box of the
underlying row, and that it is odd if there is at least a box lying in between two boxes of the underlying row.
We say that a pyramid p is symmetric if it is symmetric with respect to the y-axis.



Given a pyramid p, we shall introduce, for each 1 < ,5 < r, the following (semi)-integers:

(1.1.2)

difference of the number of boxes between row ¢ and row j on the RHS of p, ifi <j,
g
“ difference of the number of boxes between row ¢ and row j on the LHS of p, ifi > j,

where the RHS (resp. LHS) of p corresponds to the boxes whose center has a non-negative (resp. non-positive)
z-coordinate, and half boxes are counted. For the pyramid in Figure 1.1 above, the s;;’s are displayed in the
following matrix:

ot —m O
Njw O =
O NI= W

We have in particular,

s1; = difference of the number of boxes between row 1 and row ¢ on the RHS of p,

s;1 = difference of the number of boxes between row 1 and row i on the LHS of p.

Definition 1.1.5. Let 1 < i < r. We say that row i is integer if s;; € N, and that row i is semi-integer if
Si1 € % + N. Note that this is equivalent to checking the (semi-)integrity of s1; instead.

Let T be the following index set (of cardinality N)
T={(,heZ|1<i<r,1<h<p}. (1.1.3)

Let p be a pyramid of size N associated with the partition (p; > ps > ... > p,). We label the boxes with
elements (i, h) of T from bottom to top and from right to left (but any other bijective numbering with a set
of cardinality N will do). For N = 6 and partition (3,2,1), for instance, some of the possible (numbered)
pyramids are presented in Figure 1.2,

(31) (31) (31)
(22)|(21) (22)|(21) (22)|(21)
(13)|(12)(11) (13)|(12)|(11) (13)|(12)|(11)

10,1 @ 1,0, @ 0,1 e

Figure 1.2: Pyramids for N = 6 and partition (3,2, 1)

Elashvili and Kac in [EKO05] provide a classification of good %Z—gradings1 for the classical Lie algebras
aly, SPan, S0N. In particular, for the case of g = gl which is the one we are eventually interested in, the
following theorem holds.

Theorem 1.1.1. [EK05, Section 4] Let g = gl and let A = (p1 > p2 > ... > p,) be a partition of N. Then,
there exists a bijection between the set of pyramids of size N and shape X\, and the set of good %Z—gmdings
for a nilpotent element f € Oy, up to GLy-conjugation.

Here, J()) is the nilpotent N x N matrix in Jordan blocks form associated with the partition A. The
GLy action on a grading I' : g = @jeézga‘ is given by: A-T' = @jeéz Ag;A~!, for any A € GLy.

To understand this correspondence, let us fix some notation that we will use throughout the thesis.

Let V be the N-th dimensional vector space over C with basis

{ecm Yaner -

LActually, Elashvili and Kac work with good Z-gradings; however, the two objects are in bijection by use of a dila-

tion/contraction of factor %



Thus, the Lie algebra gly = gl(V') has a basis consisting of the elementary matrices

{enGp tam,Grer - (1.1.4)

Here and further, in order to avoid confusion, we denote by e(; n)(;,x) the elementary matrices viewed
as elements of the Lie algebra gly and by E(; j)(;x) the same elementary matrices (having 1 in position
((i,h), (j, k)) and O elsewhere) viewed as elements of MatyyC. Moreover, we can think of each matrix
€(i,n)(j,k) @ an arrow on the pyramid pointing from the box labeled (j, k) to the box labeled (i, ).

Given a pyramid p of size IV, we can associate to it the nilpotent element

F=TN) = > e@nsnin (1.1.5)
(i,h)eET
h<p;
and the semisimple endomorphism h, = Z(i,h)eT x(ih)e(,n(i,n), where x(ih) denotes the z-coordinate of the
center of the box labeled (i,h). Thus, from the pyramid p we we can define a %Z—grading for gl which is
given by the eigenspace decomposition of gly relative to the adjoint action of h,:

Lyio=D e g; ={z g [hy,2] = ja}. (1.1.6)
JjELZ
According to this definition,
dege(iny i) = x(ih) — z(jk) . (1.1.7)

We can prove that the §Z-grading from (1.1.6) actually is a good 3-grading for f; from Equation (1.1.5)
and Equation 1.1.7 we have for instance f € g_;. It is in fact clear that xz(i,h 4+ 1) = z(ih) — 1 for any
(i,h)eT.

The one-to-one correspondence from Theorem 1.1.1 therefore sends p +— T'p. See [EKO05, Section 4] or
[Wall, Theorem 40] on how to construct the inverse map, sending a given good %Z—grading I' for a nilpotent
f=J(\) (where A= (p1 > ... > p,) is a partition of N) to its associated pyramid p.

Some remarks about the grading defined in (1.1.6):

e By (1.1.2), 2(ih) = —(s1; + h) + 2, and Equation (1.1.7) becomes
dege(inyjk) = $15 = 51 T k= h. (1.1.8)

e Note that d = p; — 1 is the maximal degree of the grading, and it only depends on the given partition
of N;

e Note that p1 = s1; + p; + ;1 for every 1 < i < r. More generally, |p; — pj| = s4; + sj;. Moreover, for
any 1 <i<r, s;1,81; € Nif pis even; in general though s;1,s1; € %N;

e Let x := hy, € g be the semisimple element which determines the grading and let X be the corresponding
element in Maty x yC = End V. Then, the X-eigenspace decomposition of V is V = @ke%z V[k]. Note

that % is the largest xz-coordinate for the center of the boxes of the pyramid, hence it is the largest
X-eigenvalue for V. The corresponding ad X -eigenspace decomposition of End V is

EndV = @B (End V)[K].
keiz

Here, d is the largest eigenvalue for the ad X-action.

Note that under the bijection of Theorem 1.1.1, even (resp. odd) pyramids correspond to even (resp.
odd) %Z—gradings. Moreover, symmetric pyramids correspond to Dynkin %Z—gradings.
Another useful definition is the following:

Definition 1.1.6. A pyramid p is right-aligned if z(i,1) = g, for every 1 <1 < r. Similarly, a pyramid p is

left-aligned if z(j,p;) = f%, for every 1 < j < r. Note that both cases force p to be even. Moreover, s;; =0
(resp. s;1 = 0) for every 1 < ¢ < r when p is right-(resp. left-)aligned.



Remark 1.1.1. In [DSKV16¢] the authors consider the specific case of a symmetric pyramid for g = gl .
Thus, the a-coordinate of the center of the box labeled (i, h) is

z(ih) = %(pi‘i‘l—?h). (1.1.9)

Equation (1.1.9) can be obtained by (1.1.8) when the pyramid p is symmetric. Namely, when s;; = s1;
for every 1 < ¢ < r. In fact, for p symmetric

pr+1

__(51‘+h)+pi+31i+3i1+1 _Pit2s1i+1—2s1;,—2h  ~
2 ! B B

x(ih) = —(s1; + h) + 3 5 x(ih).

1.1.2 Isotropic subspaces, nilpotent subalgebras and other notable elements

Given the nilpotent element f € g, let (f|-) € g* be the dual of f with respect to the trace form (-|-). Let us
now define a bilinear form w on g 1

w:igy X gL — C
w(z,y) = (fllz, y]).
It is well known that the following properties hold for w:

(1.1.10)

Lemma 1.1.1. The bilinear form w on g1 1s antisymmetric and non-degenerate.

Proof. Antisymmetry is clear by the definition. The non-degeneracy of the trace form on g and the bijection
adys : g 1 =g together guarantee that w is non-degenerate. 0

Choose an isotropic subspace | C g 1 with respect to the bilinear form w. Let [ be a complementary
subspace to [ in g 1 namely g 1= [@ [, and let [+ denote its orthogonal complement with respect to the
bilinear form w, i.e. w(l, ) =0 and I* is the maximal subspace of g1 with such property. Note that [ C [+

by definition of isotropic subspace, and moreover [ = [ in the case that [ is Lagrangian.
Then m = [® g>1 and n = [+ @ g>; are nilpotent subalgebras of g such that m C n C g>1- Let

Tig—>g/mE1Dg<o (1.1.11)

be the induced quotient map. We shall denote by p := [ ® g<o this complementary subspace to m in g, and
by 7y : g — g/m = p the corresponding projection.
Let
1= U(g) b = (/1)) rem (1.1.12)

be a left ideal of U(g). Let M; := U(g)/Ii be the corresponding quotient. M is a cyclic U(g)-module
generated by 1y, the image of 1 € U(g) in the quotient U(g)/I;. Clearly, ul; = 0 in M if and only if u € I;.
After choosing a PBW basis for U(g) corresponding to the choice of an ordered basis {g<o, %, [, g>1} for
g, we can identify
U(g)/1i = Ulg<o) © F(E). (1.113)

where F(I°) denotes the generalized Weyl algebra of [° (see Definition 1.1.7 below). Under this identification,
we define

pu:U(g) — Ulg<o) ® F(I°) = U(g) /1 (L.114)
g3 ar pila) =mp(a)+ (fla).

the (canonical) quotient map with Ker py = I. Note that for [ = 0 we have that py coincides with the linear
map defined in [DSKV16¢, Section 3.2|. In this case, we shall simply denote p := po, I := Iy, M := M.

Definition 1.1.7. Let V a finite-dimensional vector space over C, endowed with a (not necessarily non-
degenerate) anti-symmetric bilinear form

w:VxV-—C.



We define the generalized Weyl algebra of V' with respect to the form w to be the quotient of the tensor
algebra of V', T'(V), by the two-sided ideal generated by the elements (v ® w — w ® v —w(v,w)), v, w € V:

F(V) = T(V)/<U QUW—-—wR®v— W(”, w)>v,wEV .

The following matrices will play an important role in our work:

E = Z e(j,k)(i,h)E(i,h)(j,k) € MatNxNU(g) R (1.1.15)
(i,h),(4,k)ET

the N x N matrix with entry e(; xyi.») € U(g) in position ((i,h), (j,k)). And

D= Z diny Ei,nyi,n) € MatnxnC, (1.1.16)
(i.h)ET

the N x N scalar matrix with entry d(;;) = —dim (me; )) in position ((z7 h), (4, h)) Note that for [ = 0,
then —d;,) € Z just counts the number of blocks of the pyramid entirely to the right of the box labeled by
(i, h).

Under the map p; we have p(E) = F' + mp E, where F' = 3 ; nye1 E(i h+1),n) 1S the matrix f viewed as

h<p;
an element of Mat y nC.

We will often use the shorthand € x)(i,x) for the sum e(; 1), n) +0¢i,n)(j,k)d(in), namely the ((z, h), (4, k))—th
coefficient of E + D.

1.1.3 Playing with pyramids: how to remove a column

By Theorem 1.1.1, a good %Z—grading I for a nilpotent element f € gly associated with a partition A = (p; >
... > py) is in one-to-one correspondence with a pyramid p of size N and shape A\. Removing the leftmost
(resp. rightmost) column of the pyramid p, when possible, we are left with a pyramid of size N — ¢; (resp.
N — s1), that we denote by p (resp. p’). Note that we are allowed to remove the leftmost (resp. rightmost)
column of a pyramid p, therefore obtaining still a regular pyramid, only in the case when no block lies not
even partially on the column we are about to remove. This is always the case for even pyramids. We are also
clearly requiring p; > 1, namely that the pyramid p doesn’t consist of a single column.

Example 1.1.3. Let p;, p2 and ps be as in Figures 1.3 -1.5:

(31) (31) (31)

(23)[(22)](21) (23)[(22)|(21) (23)[(22)](21)

(13)|(12))(11) (13)|(12)|(11) (13)|(12)|(11)
Figure 1.3: p; Figure 1.4: po Figure 1.5: p3

Then, we cannot remove the leftmost column in p;, while we are allowed to do so in ps (which is even).
Moreover, we can remove the leftmost column in p3, even though it is an odd pyramid but, after doing so,
we cannot also remove the central column.

We shall say that the pyramid p (resp. p’) exists, if it is possible to remove the leftmost (resp. rightmost)
column of p. The pyramids p and p’, when they exist, are numbered by the index sets

TP={(G,h)eZ:,|1<h<p;—1for1<i<t;, andl<h<p;fort;+1<i<r
>0

and
T”/:{(i,h)eZiO|1§h§pi—1f0r1§i§sl, andlﬁhﬁpiforsl—klgigr}
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respectively. Moreover, the partition (p1,...,p,) of N reduces to the partition

(pl - ]-7 s Dty — 17pt1+1" B 7p7“) = (pfv s 7p7?) (1117)

of N —t; and to the partition

(pl - ]-a <oy Psy — 17ps1+17 s 7pr) = (p"ll) PR 7p£ ) (1118)
of N — s1. We shall denote by f/p and fp/ respectively the associated nilpotent elements.
The 1Z-gradings I'” and I'”’ on the pyramids ‘p and p’ are given explicitly as in (1.1.8):
degye(in)Gm) = 51; = st +k—h, deg, ek = 51; — s +k—h,
where s/ﬁ = s1; and 5113; = 51, — 0j>g, for every 1 <i <r.
In Proposition 1.1.2, we describe the embeddings gly_,, < gly < gly_,, and prove some of their
properties. For instance, the grading defined in (1.1.8) will coincide with the induced %Z—grading for the

subalgebra gl (resp. gly_,, ) of gly. We will often use the shorthand g/” ‘= gn—t, and gp/ =gly_q,-
Remark 1.1.2. We will add apexes or subscripts to characterize Lie algebras, %Z—gradings, maps, subspaces,

matrices, etc ...associated to different pyramids or gradings. When nothing is specified, the Lie algebra,
grading, map, subspace, matrix, etc ...is associated to the whole pyramid p. In case we need to remove

A=K
/ /
more than one column from the pyramid, we will use ""~ p or ¥p as a shorthand for the pyramid with its
A=K
!/ !
first leftmost k columns removed, and p ~*~  or p¥ as a shorthand for the pyramid with its first rightmost %

columns removed.
Similarly, we use the notation g(*), g whenever we will need to distinguish between two different %Z—
gradings I'1, 'y for gly associated with the same partition (p1 > ps > ... > p,.).

Proposition 1.1.2. Suppose that it is possible to remove the leftmost (resp. rightmost) column from the
pyramid p. Define Lie algebra maps

or:gly ¢y, — oly, or:8ly—s, = oly, (1.1.19)
(i) Gk) 7 EG@R) (k) - (i) (Gk) 77 E(h+8i<o;) Gobtd5<0y) 0
and extend them to associative algebra homomorphisms>
o1:Ulgly_y,) — Ulaly). or: Ulgly—s,) — Ulaly), (1.1.20)
€(i,h) (5,k) T €(6,h) (5,k) 5 C(in)(Gk) T ClihAdi<ay) Gk +05<0y) — O(0,h)(5.k) ST 5

Then, o; and o, are injective associative algebra homomorphisms and they induce well-defined quotient
maps o; and T, that are injective. Namely, we have the following commutative diagrams

Ulgly—r,)  ——>  Ulg)

p’[pl Jp‘ (1.1.21)
Ulgly—¢,)/ 1o = U(g)/ I

and
Ulgly_s,) — Ul(g)

”fl lp, (1.1.22)
U(g[N—sl)/I[P/ = Ul(g)/ 1t

2We are actually twisting the extension o : U(gly—s,) —> U(8In)s €i,n) (k) H €(i,h+8,c0) ) (k350 with the associative
algebra homomorphism 7 : U(gly) — U(gln), €(,n)(j,k) & €(,0)(G,k) — Oi,h) (k) S1-
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where m? = [P @ (9ly_t,)>, and m? =P @ (0ln_s, )<, Jor isotropic subspaces (? and *', and

>1’
I['P = U(gN—t1)<b - (f/plb»bem'l) 3 IIP’ = U(g[N—91)<b - (fpllb»bemp’ .

Note that if 'p (resp. p’) exists, then 91 coincides with the image of g/f (resp. gﬁl) under oy (resp. o).
2 2
We denote by [P (resp. ') the preimage of | in g¥ (resp. g ).
2 2

/

The commutativity of the diagrams can be restated as pyo oy = a7 0 p{’ and pyo o, =0, 0 pf/. Moreover,

whenever the composition makes sense® we have

goo,=0,00:U(gly_4,_s,) — Ulgly) . (1.1.23)
Finally, the algebra homomorphisms o; and o, commute with the projections:
Ulow;cpzﬂkoal:g/p—>gk, arow;f:wkoaT:gp,Hgk, (1.1.24)
for each k € %Z. Same holds for the projections msp, T<p, T>p and T<g.

Note that the non-triviality of the map o, : gly_,, — gly is due to the particular numbering that we
have chosen for the pyramids.

Proof. First observe that the map o, : U(gly_,,) — U(gly) obtained by the composition in (1.1.20) is an
associative algebra homomorphism, since

Or([€(ir.n) (r.ka) > Ein ha) (G2 k) ])
= 5(j17k1)(i27h2)e(i17h1+6i1Ssl)(j27k2+6j2§sl) - 6(j2ak2)(i17h1)e(i27h2+512§51)(j17k1+5_7‘1551)
= [Jr(e(i1,h1)(j1,k1))7 Jr(e(i2,h2)(j27k2))} :
Injectivity for both maps holds by the definition. Let us now consider the induced map ;. First of all, oy

sends Iy, = U(g?) (b — (f?]0))yems to Iy = U(g)(b — (f]b))pem since for y € U(g?) and b € mP the following
holds

ai(y(b— (f710))) = ou(y)(@(b) = (flou(b))) € U(g){b = (f1b))oem -
In fact, it is clear by 1.1.8 the %Z—grading on glp coincides with the one induced by the %Z-grading on g,
ie. oy(gf) = ox Nor(g?):

degp(Ul(e(i’h)(j,k))) =815 + k—s1;—h= deglp(e(iﬁh)(j’k)) .

A straightforward computation also shows that (f?|b) = (f|oy(b)) for every b € ¢gP. By the universal
property of the quotient, there exists a well-defined &; such that the Diagram 1.1.21 commutes. Since we

can decompose g'p = glgo $3) (['p)C @I glﬁl and g = g<o ® [° @ [ D g>1, and since the induced map 7; sends
glgo — g<0, ([/p)c N N glgl — g>1, the injectivity of 7, follows from the PBW Theorem, together

with the fact that (f7-) = (f]-)|5, g#)-
The proof in the case of &, runs analogously, keeping in mind that

’
: —_ P .
(1) 814 = 81, + 5i251+1a

(ii) If e(inyje) € mP, then ov(€in)(j,k)) = €(iht6ica,)Gokt+65<0,)

3Whenever we write a composition of the maps o; and o,., we are supposing that composition to make sense. Therefore, for
instance

oroor : Ulgly sy —gy) —2 Ulaly_s,) —2 Ulaly)
and . o
o100y U(gly 4y —4,) —> Ulsln_¢,) —> Ulgly) -
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(iii) Thanks to (i) we have
deg,, (v (e(i,n)(j.k))) = dCpe(ihts,c)) (k+8,20y) = S15 = $1i + K+ Fj<a, — h+ dics,
= 81+ 02541 — 81 — Oizsi 41+ h +0j<s, — b+ dics,
zsjf;—i—l—sf;—l—i—k—h:sf;—s]f;—kk—h

= deg, e(i,n) (k) -

Hence, ar(gi/) =grN ar(gpl);

(iV) If €(i,h)(j,k) € m”/, then
(P leq,m)Gk)) = 0ij0knr1 = 0ijOkrs, <. hsic., +1 = (flov(eqnim)) -

Now, Equation 1.1.23 is an immediate consequence of the definition of the maps, since for eg p)(;x) €
gly_¢, s, We have

g1 0 0'7-(6(i,h)(j,k)) = €(i,h+6i<s ) (G k+8<s,) = Or © Ul(e(i,h)(j,lc)) .

Finally, Equation 1.1.24 is a consequence of the fact that the grading on glp and gp' is the one induced by
the grading on g. O

Corollary 1.1.1. Suppose that it is possible to remove the leftmost (resp. rightmost) column from the
pyramid p. We can extend o; and o, to associative algebra homomorphisms to polynomials

or: Ulgly—4,)[2] — Ulgly)[2], or: Ulgly—s,)[z] — Ulgly)lz],
and formal Laurent series

o1 Ulgly—,)((z71) — Ulaly) (7)), or : Ulgly s, )((z71) — Ulaly) (7)),

by letting o; and o, act as the identity on z*1.

1.2 Definition of W -algebra

Consider the left ideal Iy = U(g){b— (f|b))pem, and the corresponding left U(g)-module M, = U(g) /I defined
in (1.1.12).

Lemma 1.2.1. For the left ideal Iy the following holds:
U(g)[\U(n) C Ii.

Proof. Clearly, U(g)I; C I;. We therefore need to prove that I;{U(n) C I. Let h = y(b — (f]b)) € I, where
y € U(g) and b € m. Given a € n we have

ha = y(b — (f1b)a = ya(b — (£1b)) + ylb,a]

Obviously, the first summand in the RHS lies in I;. The second summand also lies in I; because [b, a] C
[,[+] ® g~ s and, by definition of I+, (f|[l, [*]) = 0. O
=2

Lemma 1.2.1 can be restated saying that g acts on the module M| by left multiplication, while n acts on
it by both left and right multiplication. As a consequence, adn(l;) C 1.

Definition 1.2.1. The quantum finite W -algebra associated with g, f, I', [ is

W(g, f,T,1) := (U(g)/Ir)adn. (1.2.1)
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Proposition 1.2.1. W(g, f,T',1) has a natural structure of a unital associative algebra, induced by that of
U(g). Namely, fory,, g, € W(g, f,T',1) we have ¥y - Yy = 71 Y2.-

An alternative construction works as follows. Consider the subspace
W= {w e U(g) | [a,w] € I, for all a € n} C U(g). (1.2.2)
Lemma 1.2.2. (i) I; C W;
(ii) LW C I;
(iii) W is a subalgebra of U(g);
(iv) Iy is a proper two-sided ideal of w.

Proof. By Lemma 1.2.1, adn(I}) C I, proving (i). For (ii), let h = y(b— (f|b)) € I, as above, and let w € W.
Then,

hw = y(b — (f|b))w = yw(b — (f[b)) + y[b, w].
The first summand in the RHS clearly lies in € I, and the second summand also lies in Iy by definition of
W, since b € m C n. This proves part (ii). About part (ii7), for wy, we € W and a € n we have

[a, wiws]|1; = [a, wyJwal; + wla, waly.

By assumption, we have [a, wa] € I;. On the other hand, we also have [a,w;] € I; and then by part (i7),
[a, wi]wy € I;. Finally, for part (iv) recall that Iy is a left ideal of U(g) and hence of W; by part (i), I also
is a right ideal of W, proving (iv). O

Part (iv) of Lemma 1.2.2 in particular implies that the quotient W/I[ has a well-defined associative
algebra structure. We moreover have

W1 = (U(@/n)" " = wig.£.r..

Multiple formulations are actually possible for the definition of the quantum finite W algebra W (g, f, T, [);
Definition 1.2.1 corresponds to the so-called Whittaker model definition for a W-algebra.

Remark 1.2.1. When the %Z—grading is even, necessarily [ = [+ = 0 because g, =0 In this case, m = g>1,
whereas p = g<( is a subalgebra of g. By the PBW Theorem we can decompose U(g) = U(g<o) ® I and the
projection along this direct sum decomposition gives an isomorphism

U(g)/1 — Ulg<o)-
As a consequence, W (g, f,T',0) can be regarded as a subalgebra of U(g<o).

Regardless of the numerous choices that we had to make, the resulting W-algebras will be isomorphic.
By a result of Kostant all sls-triples containing the nilpotent element f are conjugate in g. It follows that the
W-algebra W (g, f,T',[) only depends on the adjoint nilpotent orbit of f. Moreover, by a result of Gan and
Ginzburg [GG02], W-algebras associated with different isotropic subspaces are isomorphic, and by a result
of Brundan and Goodwin [BGO05], the same holds for W-algebras associated to different good %Z—gradings
for f. Both the results in [GG02] and [BGO5] are useful for our purposes, and will be treated in more details
in Section 4.2.

Let us consider two particularly special cases:

Example 1.2.1. Let f = 0. Then, (f|-) = 0 and it is easily seen that g = gg, m = 0 = n; therefore I = 0
and W (g, f,T,1) = U(g).

Example 1.2.2. Let f be principal nilpotent. By a result of Kostant, the associated W-algebra is in this case
isomorphic to the center of the enveloping algebra U(g); W (g, f,T, 1) is therefore isomorphic to a polynomial
algebra in N indeterminates Clzy,...,zn].
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1.3 Kazhdan filtration

LetI': g = @jeéz g; be a good %Z—grading for f € g as before. Consider the Kazhdan filtration on U(g),
given by

FaU(g) = Z 91-Ay - G1-A,- (1.3.1)
A+ +As<A

It is an increasing associative algebra filtration, depending on the conformal weight A, given by A(x) =
1—j for z € g;:

FAlU(g) : FAzU(g) - FA1+A2U(g) 3
[FAIU(g) 7FA2U(9)] C FA1+A2*1U(9) .

Also let
atU(g) := P eral(e), eral(g) = Fal(e)/Fa_1U(g), (13.2)
A

be the associated graded algebra. It follows that grU(g) is a graded Poisson algebra, isomorphic to the sym-
metric algebra S(g), endowed with the Kirillov-Kostant Poisson bracket, and graded by the conformal weight.

Computing FyU(g) we get

RU@=C+ Y gia,+ >, 018010+ D, 01-8,01-2,00 a5+

A1 <0 A1+A2<0 A1+Ax+A3<0
=C+ E gj, + § 95,95, + E 919520955 + - -+
Jji>1 Ji1t+j2>2 J1+j2+73>3

Since g>1 C Ii, it follows that FyU(g) C C + I;. Moreover, since the element b — (f|b), b € [ & g>1, is
homogeneous with respect to this filtration, we get an induced Kazhdan filtration on the ideal I;:

Fali= FAU(g) N It = (Fa_ 1 U(@)) + (FAU(9))(b = (f1D))veqs + Y (Farj—1U(9))g; - (1.3.3)

Jj>1
We can therefore deduce the following properties:
(a.i) FAU(g) = Fal;, A <0
(a.13) FoU(g) = C @ Foly.

By the property (a.ii), Foly C FoU(g) is a two-sided ideal of codimension 1, and the corresponding
quotient map is the algebra homomorphism ¢y : FoU(g) — C given by the formula

> ar--ar) =Y (flar) - (flax). (13.4)

Therefore, we have an induced Kazhdan filtration at the quotient My = U(g)/I;: FaM; = FAU(g)/Fal,,
and FaM; = da oC1y for every A < 0.

The action of FoU(g) on Fo My = C1; is induced by the map (1.3.4), i.e. ul; = eg(u)1; for every u € FoU(g).

Finally, we have induced Kazhdan filtrations on the subspace WcuU (g) and on the quotient W/ I =
W{(g, f,T',[) C M such that

FAW =W N FaU(g),

. N (1.3.5)
FAW(Q, far7 [) = FAW/FAI[ = (W N FAU(Q))/FAI[ .

Note that, thanks to properties (a.i) — (a.ii), FaAW (g, f,T',l) = 0 for A < 0. Moreover, for the associated

graded the following inclusion of commutative algebras holds
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where gr I is the associated graded ideal of I, which we also see as the two-sided ideal S(g)(b — (f|b))pem of
S(9)-

Let us now define a refinement of this filtration that also takes into account the number of factors
appearing:
FanU(g) = FaU(g) N {conformal weight = A = at least n factors}. (1.3.7)

Then, Fa n+1U(g9) € FanU(g). Moreover, Fa oU(g) = FAU(g) and we shall set Fa o(g) := Fa_1U(g).
This is still an associative algebras filtration, since

FA1,7L1 U(g) : FA2,n2U(g) C FA1+A2,7L1+7L2U(9)

and
[FAh'le U(g)7 FA277L2U(9)} - FA1+A2—17TL1+7L2—1U(9) .

As for the classical Kazhdan filtration, we can extend this refined version to I, M| and W as

FA,nI[ = FAan(g) N I[
FanMi:= FanU(g)/Fanli
FA,nW = FAmU(g) N /W

We obtain for W (g, f,T,):
FA,nW<ga fv Fa [) = FAmW/FA,nI[ = (W N FA,nU(g))/FA;nI[-

Finally, let us consider the extension of the Kazhdan filtration of U(g) and W (g, f, T, [) obtained by letting
z have Kazhdan degree equal to 1. In other words, we let

Fan(U@]) =Y (Fa-kalU(9)(=2)",

k20 1.3.8
FA,H(W(g7faF7[)[Z]) = Z(FA—k,nW(g7f7Fv [))(_Z)k ( )
k>0

This filtration is obviously an associative algebra filtration:

Fayni (U9)[2]) - Fagma (U(9)[2]) C Fay+a0.m14n (U(9)[2]) (1.3.9)

and moreover
[Fasm, (U(9)[2]) Fagme (U(9)[2])] € Fay+a:-1m14n,-1(U(@)[2]) - (1.3.10)

The same holds for W (g, f,T, ).

1.4 Rees algebras and modules

Definition 1.4.1. The (completed) Rees algebra RU (g) associated with the Kazhdan filtration of Section 1.3
is the subalgebra of U(g)( (z_%)) consisting of the Laurent series in 2~ 2 with the property that the coefficient
of 2" lies in F_,U(g), for all n € $Z:

—

RU) =D . yeye? Fal(8) @), (14.1)

where the hat denote the completion of the usual Rees algebra in which only finite sums appear. This
completion is obtained by allowing series with infinitely many negative half-integer powers of z.

Note that

(i) FoU(g) C RU(g) is a subalgebra of the Rees algebra, but F,U(g) ¢ RU(g) for n > 0;
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(i) Since 1 € FoU(g) C F1U(g), we have that 272 is an element of the Rees algebra RU(g), which is
moreover central. Therefore, it defines an injective endomorphism of RU(g) (given by multiplication
by z_%) which commutes with multiplication by elements of RU(g). However, for any n > 0 we have

that z™ does not lie in RU(g).
Given the left ideal I and the U(g)-module M| we can define the following:

—

RI=YC = "FliC (=), RM=RU(g)/RI:,

left ideal and Rees module of RU(g) respectively. Note that RU(g)/RI; = CI; & R_M;, where R_M; =
an%z*”FnM[ C 272 My[[z~2]] is a submodule of RM; of codimension 1.

The algebra homomorphism (1.3.4) can be extended to a surjective linear map (see [DSKV16¢, Lemma
5.5] for a proof)

e:RU(g) — C,
CL(Z) = Z anz" — E(G,(Z)) = 60(0,0) = (f‘ao) . (142)

N>neiZ

The following proposition summarizes remarkable properties of the Rees module RM;, see [DSKV16¢,
Lemma 5.6, Proposition 5.7] for a proof.

Proposition 1.4.1. (i) RI;- RM; C 2~ *RM; and 23 RM; C R_M;;

(11) The action of RU(g) on the quotient module RM;/R_ M = C1; is induced by the map (1.4.2). Namely,
a(2)11 = e(a(z2))11 mod R_M; for every a(z) € RU(g);

(iii) An element a(z) € RU(g) acts as an invertible morphism of RM if and only if e(a(z)) # 0.

Proposition 1.4.1 gives us a characterization elements of RU(g) acting as invertible morphisms of RM;.
However, it may happen that the inverse of such an element a(z) € RM| does not exist in the Rees algebra
RU (g) because it might involve an infinite number of positive powers of z. A solution to this issue consists of
the definition of an extension RU(g) of RU(g) with the property that all elements a(z) € RU(g) such that
e(a(z)) # 0 are invertible in R U(g). The construction of R.U(g) goes through a limiting procedure for
which we address to [DSKV16¢, Section 5.4]; for our purposes we will however list some of its main properties.

Proposition 1.4.2 ([DSKV16c, Section 5.4]). There exists an algebra extension RooU(g) of the Rees algebra
RU(g), satisfying the following properties:

(a) The map (1.4.2) extends to an algebra homomorphism € : RoU(g) — C.

(b) The left action of RU(g) on the Rees module RM; extends to a left action of RoU(g) on RM, and
R_M 1is preserved by this action.

(¢) The action of RooU(g) on the quotient module RM/R_M; = C1; is induced by the map € in (a), i.e.
a(2)Iy = e(a(z))l; mod R_M; for every a(z) € RooU(g).

(d) For every a(z) € RooU(g) and every integer N > 0, there exist an(z) € RU(g) such that (a(z) —an(z))-
RM, C 2~ N-1'RM;

(e) For an element a(z) € ReoU(g), the following conditions are equivalent:
(i) a(z) is invertible in RooU(g);
(i) oz) acts as an invertible endomorphism of RM;;
(iti) e(a(z)) # 0.

(f) An operator A(z) € RooU(g) ® Hom(Vi, V2), where V1, Va are vector spaces, is invertible if and only if
€(A(z)) € Hom(Vq, Va) is invertible.
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Given the W-algebra W (g, f,T',[) we may also consider its Rees algebra, which is induced from M;:

—

RW(g.f.0,0) =) = "F,W(g f.T.1) C RM.

Note that RW (g, f,T,[) is a subalgebra of the algebra W (g, f,T, [)[[z_%]], and the following holds

Proposition 1.4.3 ([DSKV16¢, Proposition 5.14]). Let a(z) € RooU(g), g(2) € RU(g) and w(z) € RM; be
such that a(2)1; = g(2)1y = w(z). Then, the following conditions are equivalent:

(i) [a,a(2)]1i =0, for alla € g>1;

(ii) [a,g(2)]1 =0, for all a € 9>1;
(i11) w(z) € RW(g, f,T,1).

1.5 (Generalized) quasideterminants

Quasideterminants arise as an attempt to define a determinant for matrices with noncommutative entries,
attempt that also counts for instance quantum determinants, Capelli determinants, and the probably most
famous and widely used example of Dieudonné determinant.

They were introduced by Gelfand and Retakh in the early '90s (|[GRI1],[GR92],[GRI3]) for matrices over
noncommutative division rings, and they have proved to be extremely useful and versatile, finding applications
is many areas including noncommutative symmetric functions, noncommutative integrable systems, quantum
algebras and Yangians.

Since they are also a key tool in our construction, we review here the definition and some properties of
quasideterminants, addressing for instance to [GGRWO05] for an extended treatment of the subject.

Definition 1.5.1. Let A = (aij)f-\fj:l be an N x N matrix over a ring R with 1. Denote by A% the matrix

obtained from A by deleting the i-th row and j-th column. Suppose that the matrix A% is invertible. Then
the (ij)-th quasideterminant of A is defined by

|Alij = ai — ] (AY)"'¢ (1.5.1)

70

where rf denotes the row matrix obtained by the i-th row of A by deleting the j-th entry and cé denotes the
column matrix obtained by the j-th column of A by deleting the i-th entry.

Example 1.5.1. Let A be the 2 x 2 matrix

Then, provided that they exist, we have 4 possible quasideterminants:
|Al1 = a11 — a12a3; as1 |Al12 = a1z — a11a5, ags
|Al21 = as1 — ageary any |Al22 = asz — as1a3; a1z
Equivalently, the quasideterminant of A can be defined as follows:

Proposition 1.5.1. Suppose that the inverse matriz A exists, and that its (ji)-th entry (A=1);; is an in-
vertible element of the ring R. Then the (ij)-th quasideterminant of A is defined as

Alij = (A7) (1.5.2)
Proof. See [Mo07, Proposition 1.10.4] O

Remark 1.5.1. If the entries of the matrix A commute, from (1.5.2) we get [A;; = (—1)""7 224 where

det denotes the usual determinant for commutative algebras.
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Let Z, 7 C {1,..., N} subsets of the same cardinality M < N, and denote by Z¢, J¢ the complements
of Z and J in {1,..., N}. Definition 1.5.1 can be generalized as follows

Definition 1.5.2. The (Z, J)-th quasideterminant of A is defined as
|A‘Ij = AIJ — AIJC (Azcjc)ilAIcJ € Maty xR, (153)

provided that Azczec is invertible in Maty_pr)x(v—ar)R2. We denote by Azz the M x M submatrix of A
obtained by taking rows from the set I and columns from the set J (same holds for Azze, Azege, Azey).
Equivalently, ([DSKV16a, Proposition 4.2])

[Alzgs = (A7), (1.5.4)

provided that both A and (A~!) 77 are invertible (in Matyx xR and Mat yr« 2 R respectively).

One of the main properties of quasideterminants is that they satisfy the so-called hereditary property,
which can be stated as follows:

Proposition 1.5.2 (Hereditary Property). Let 7y C Z C {1,...,N} and 1 C J C {1,..., N} be subsets
of the same cardinality, |Z1| = |J1| and |Z| = |TJ|. Assume that both the (Z,J)-th quasideterminant and the
(Z1, Jh)-th quasideterminant of A exist. Then

|A|Ils71 = ||A‘I..7|I1J71 . (155)

Proof. By the Definition 1.5.1 of quasideterminant we have

HAlzzlz,0 = (A N gz2) ™) Daz) ™ = (A Yo an) = (A Naz) ' = Aln g, -
O

The notion of quasideterminant can be further generalized as follows: let A be an N x N matrix over a
ring R with 1, as before, and let I € Matyxy R, J € Mat ;xR for some M < N.

Definition 1.5.3. The (I, J)-th generalized quasideterminant of A is
|A|[] = (JA_lf)_l € Maty v R, (156)
provided both A and JA~!I are invertible (in Matyxn R and in Mat s« pr R respectively).

Definition 1.5.3 is a generalization of Definition 1.5.2 in the sense that given the subsets Z = {i1,...,im}
and J = {j1,...,Jm} of {1,..., N}, then the quasideterminant |A|z; defined in (1.5.4) coincides with the
quasideterminant |A|; s defined in (1.5.6), where I is the N x M matrix with entries 1 in position (i, k) for
1 <k < M and zero otherwise, and J is the M x N matrix with entries 1 in position (k,ji) for 1 < k < M
and zero otherwise. In fact we have

Agr = JAI,

which implies
Alry = (JAT D)™ = (A Y1) = |Alzs -

For the results in Section 2.2.1 it also useful to introduce the following definition of quasideterminant,
that clearly generalizes Definition 1.5.3. Let R be a unital associative algebra over C and let

X110_>U1&>V1£>W1—>0
Ty I, (1.5.7)
xX2:0—Us —= Vo —= Wy — 0

be two short exact sequences of R-modules. Let moreover A : V; — V5 be an R-module homomorphism.
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Definition 1.5.4. [DSKV17b, Section 2.2] The generalized quasideterminant of the R-module homomor-
phism A with respect to the maps Ws and IIy in (1.5.7) is the R-module homomorphism

[Alg, m, == (LA™ W)™ Wy — Us, (1.5.8)

provided that it exists, i.e. provided that A : V; — V5 is invertible and that I; A=Wy : Uy — W is
invertible.

By [DSKV17b, Proposition 2.4], we obtain a very useful formula for the generalized quasideterminant
(1.5.8). It in fact states that the generalized quasideterminant |A|w, 1, if it exists, coincides with the Dirac
reduction for the R-module homomorphism A : Vi — Vs (see [DSKV17b, Lemma 2.1] for the general
definition):

|Alg,m, = U5 (A — AU (T AT) T, DI Wy — Us. (1.5.9)

1.5.1 Operators of Yangian type

Definition 1.5.5. Let U be an associative algebra. We say that a matrix A(z) € Maty«nU((271)) is an
operator of Yangian type for the associative algebra U if, for every i,h € {1,..., M}, j,k € {1,...,N}, it
satisfies the following Yangian identity:

(z —w)[Aij(2), Ap(w)] = Apj(w)Aik(2) — Apj(2)Aig(w) . (1.5.10)

The name Yangian identity is due to the fact that in the case M = N Equation 1.5.10 coincides up to an
overall sign to the defining relation of the Yangian for gly (see [Dr86], or [Mo07] for a review on the topic).
Equation 1.5.10 also has a classical version, which holds in the context of Poisson algebras; the identity is
the same but the associative algebra commutator on the left hand side is replaced by the Poisson bracket.
In the context of Poisson vertex algebras a “chiralization” of the Posson algebras identity was introduced in
[DSKV15, DSKV16a, DSKV16b] and it goes under the name of Adler identity. The Adler identity serves as
the defining relation of the so-called operators of Adler type, which constitute the classical affine analogue
of the operators of Yangian type and whose properties in relation with the classical affine W-algebras have
inspired this work.

Example 1.5.2. Let U = U(gly) and let E be as in Equation (1.1.15). Then it is easily checked that the
N x N matrix A(z) = z1x + E is an operator of Yangian type for U(gly).

The following Proposition aims to prove that every generalized quasideterminant of an operator of Yangian
type is again of Yangian type.

Proposition 1.5.3. Let U be a unital associative algebra and suppose that A(z) € Matp«nU((271)) is an
operator of Yangian type.

(i) Let Z C U be the center of U, and let J € Matpyx i Z, I € MatyyxgZ. Then JA(2)I € MatpxoU((271))
is an operator of Yangian type.

(ii) Assume that M = N and that A(z) is invertible in MatyxnU((271)). Then the inverse matriz A(z)~*
is an operator of Yangian type with respect to the opposite product of the algebra U.

Proof. See [DSKV16¢, Proposition 2.9]. O
As a clear consequence of Proposition 1.5.3 we have

Theorem 1.5.1. Let U be a unital associative algebra and let Z C U be its center. Let A(z) € MatyxnU((271))
be an operator of Yangian type. Then, for every J € Matpy«nZ, I € MatyxpZ with M < N, the generalized
quasideterminant |A(z)|rs, provided that it exists, is an operator of Yangian type.
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Chapter 2

The building blocks: matrices T'(z) and
L(z)

As in Chapter 1, let f € gly be a nilpotent element corresponding to the partition A = (p1 > ... > p,) of
N. Moreover, let T': g = jeiz 9 be a good %Z—grading for f and let p be the associated pyramid of size
N and shape A. We also suppose that [ C g 1 is an isotropic subspace with respect to the bilinear form w as
in (1.1.10).

2.1 Definition of the matrix 7'(2)

The matrix T'(z) is the first step of our construction, and it will moreover constitute a bridge between our
construction and the one by Brundan and Kleshchev, that in [BK06] describe the structure of the W-algebra
for gl. We will analyze this connection in Section 2.3.

Let us introduce the following index subsets of T (cf. (1.1.3))

' ={Gh|1<i<ri<h<p}, T ={GH[1<j<r1<k<p}, ;
We also fix a bijection between the sets Z¢ and J°:
¢ — J°,
(2.1.2)
(i,h) = (i,h—1).
Definition 2.1.1. Define the matrix T'(z) € Mat,»,U(g)((271)) as the following quasideterminant:
T(Z) = |Z]1N+F+7TpE+D[|IJ~ (213)
Example 2.1.1. For p; = 1, Definition 2.1.1 simply becomes
T(z)=zIy+ E. (2.1.4)
Proposition 2.1.1. The following identity holds for T;;(z) € U(g)((z71)), 1 <4, <r:
~ l ~
Ti(2) = 860G 2 T EGn ) — ) _(=1) > (0(2,1)(i0,h0) % T Tp€(i0,ho) (i,1))
120 (i0,h0),--., (G, l) €T
(2.1.5)

X (6(io,h0+1)(i1,h1)z + 7Tpé(il,h1)(i0,ho+1)) T (6(iz—1,hz—1+1)(iz7hz)z + 7Tpé(iz,hl)(il—l,hl,—lJrl))

X (i, hi+1)(j.ps) 2+ Tp€(j.ps) (i bt 1)) -
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Proof. Let A := 21y + F + 7, E' + D,. By Definition 1.5.2, we have
T(Z) = |A‘Ij :AIJ —AIJc(Achc)ilAch. (216)
Note that for every (i, h), (j, k) € T, the ((i, h), (j, k))-th entry of A is
Am) Gk = @m0 % T Tl k) () T+ Om) Gok+1) -
In view of the bijection (2.1.2) we can write Azczc as
Azege= " Y BansnGm® + T8 anrn) + 66m 60) Bin G -
(i,h)(J,k)€T®

Choose the following ordering for the elements in 7:

(i,h) < (4, k) if z(ih) > x(jk), or if z(ih) = z(jk) and i < j. (2.1.7)

By definition of the map m, and Equation (1.1.8), mp€(; k)(i,n+1) = 0 if 2(jk) — x(ih) > 0. Note that this
is not a necessary condition in the case [ # 0. It follows that (Azezc) @ n);.k) = Oai,n) k) for (i,h) > (4,k).
Hence we can write Aze7e = 1y_,+ N, where N € Maty_, xnv—-U(g)[#] is a strictly upper triangular matrix.

Remark 2.1.1. Note that the ordering given in Equation 2.1.7 is equivalent to the numbering from 1 to N
of the boxes of the pyramid starting from the right bottom corner and moving bottom to top and right to
left.

-1

As a consequence, we can expand the inverse (Aze7¢)”' matrix as geometric power series and get, for

every (ia,ha), (ig,hg) € T€,

—1 l
(AICJC)(iaﬁha)(i@,hﬁ) = 5(iaaha)(i67hﬁ) + Z(il) Z 6(i07h0)(ia7ha)5(il7hl)(iﬁah5)
1>0 ($0,h0)...(i,hy ) €T (2.1.8)

X (5(io,ho+1)(i17hl)z + Wpé(il,hl)(io,ho-i-l)) e (5(izf1,hz71+1)(iuhl)z + ﬂ—p’é(ilvhl)(il—lth—l'i‘l)) .

Regarding the other submatrices of A we have, for (i,1) € Z, (4,p;) € J, (i, h), (4, k) € T

(Az7)(.0)Gps) = 061G % F €Gpy) (1)
(Azge) 1) Gm) = 06.0GRZ + TelGr ) » (2.1.9)
(Azeg) (i) Gipy) = 06i.n41)Gips)Z T To€(jipy) (5. 41) -

Combining (2.1.9) and (2.1.6), and by the bijection (2.1.2), we get for every 1 <1i,5 <,

T35(2) = 81 ()% + €y — 2 (=1)' > (0(,1)(i0,h0) Z T TpC(in.ho)(i1))
>0 (io,ho),...,(ihhz)ejc

X (O(ig,hot 1) (ir,h1) 2 T Tp€(ir hy)(ioshot 1) " (01 ka1 +1) (k) 2+ Tp€(iy b)) (i1 hi—1+1))
X (Oih+1)(Gips) 2 T Tp€(Gp5) (i hat1)) -

O

Remark 2.1.2. By Equation (2.1.8), Proposition 2.1.1 also proves that the quasideterminant T'(z) exists in
the algebra Mat,...U(g)((z71)).

As a corollary, we obtain

Corollary 2.1.1. Gathering the powers of z in the RHS of (2.1.5), a straightforward computation shows
that

Tij(z) = —(=2)"éij — Z(—Z)k Z(—l)s Z Z O(in,ho)(i1)
e T T (2.1.10)

X 5(is7h.s+n,s)(j7pj)7rpe(il7h1)(i07h0+no)ﬂpe(i2,h2)(i1,h1+1+n1) T TpClig,hg)(is—1,hs—14+0s>14+ns—1) *
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The presence of the projections m, makes sure that T;;(z) has polynomial form. In fact, since p C g<1,

1
we must have deg e, h,)(i,_1,hi_1+6io1+ni_1) <= 5 JOT ANY €33, n) (e hi146i514n_1), L <t <8, such that

Tp€(iy,he)(it—1,he—1+8e>1+ne—1) 7é 0.
As a consequence, we obtain the following upper bound on k: k < % —x(j,pj) + x(i,1) (which reduces to

k <1—a(j,pj) +a(i,1) in the case of an even 3Z-grading T').
When p; > 1 and p exists we are able to describe the polynomials T;; € U(g)[z] recursively as follows.

Proposition 2.1.2. Let p; > 1. Suppose t1 < s1 and suppose moreover that we may remove the leftmost
column of p. Then the following recursive formula holds:

a(T5(2)) jzti+1

, ‘1 , ~ _ (2.1.11)
e w1 O (TEE)] = 0l(ThH(2))(0nz + EGpyyhpn) » J <t
h=1

Proof. Let us first suppose j > t; + 1, in this case p}’ = pj.
We define the r x r matrix T?(z) for the reduced pyramid p as in Equation (2.1.3). By Equation (2.1.5)
for T;%(2), we have

! ~ l -
T2 (2) = 00 Gp)? + Gy i) — Y _(—1) > (8(i,1) G0 ko) Z F Tp€(ig,ho) (i,1))
>0 (i0,10) .-+, (31,01 ) E(TP)°

X (8(ig,ho+1)(i1,h1) % + Tp€(iy by (iorho+1)) ** * (O(iy_ v by +1) (i1 h) # T Tp€(an k) (i1 b +1))
X (i t1)(Gips) # T To€(ips) (i hat1))
where
(TP ={(G k) eT|1<j<ti,1<k<p—1}U{(G,k) €T |t <j<r1<k<p;}.
By 1.1.24, 0y commutes with the projection m,. It is then sufficient to show that the sum in the RHS of

Equation (2.1.5) actually runs over (J?)¢ as well. Note that z(i, h) > —4 41 for (i,h) € (J7)¢ and that

a(i,h) = =%+ 1 for (i,h) € T~ (TP) = {(j,pr — 1) |1 < j < t:}.
Consider the last factor mye(; )i n+1) in (2.1.5). We claim that me(; )¢, n,41) = 0 for every (i, hy) €
T~ (IP)e. In fact, j > t; + 1 we have z(j,pj) > —2% +1 and for (i, hy) € J¢ ~ (TP)¢ we have

) . . d d d
deg e(jp,)(in,h+1) = z(j,pj) —x(it, ) + 1 =2(4,p;) + 5~ 1+1> ~5 +14+ 3 >1.

Therefore, (i;,h;) € (j/p)c-
Consider now mp €(i, n.)(in_1.h._1+1), for 1 < s < 1 and (i, hy) € (TP)°. For (is—1,hs—1) € T~ (TP)°
we have

. . . d
deg e(is,hs)(is,l,hs,1+1) = .13(15, hé) - x(ls—h hs—l) +1= .’13(15, hb) + 5 >1.

For 7y €(i, h.)(is_1,hs_1+1) tO be nonzero, we therefore have (is_1,hs_1) € (j/”)c foralll1 <s<lI. Asa
consequence,

Tij(2) = 81y ? + 01Gpnan) — Y (=1) > (0(i,1)(io,ho) 2 T Tp01(E(ig,ho) (0.1)))
>0 (io,ho),‘“,(il,hz)G(J/p)c

X (O(ig,hot1)(i1,h0) 2 T TpO1(€(iy k) (o, ho+1))) *** (O 1 ey +1) (i) 2+ TpO1(€iy ) (1 1 +1)))

X (Oi,hi+1)Gops) 2 T Tp01(E (1 ) (i it 1))) = 01(T35(2)) -
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Suppose now that j < ¢;. In this case p;P = p; —1 = p; — 1. Let us rewrite Equation (2.1.5) as
T;;(z) = A+ B + C, with

A=061)3Gp0)% T €GP0 1) = €Gp1)(01) 5

B=-) (-1 > (0(,1) (i0,h0)Z + Tp€(i0,h0)(5,1) ) (O(in,ho+1)(i1,h1) F Tp€(ix,h1)(io,ho+1))
>0 (i0,h0)seees (il—mffl—l)GJC
(it h)E(TP)°

X X (6(i1717h171+1)(il,hl)2 + ﬂ-pé(il;hl)(il—lvhl—l“'l))e(jvpl)(’il,hl‘f‘l) )

C=->Y (-1 > (0(i,1)(i0,h0) 2 F Tp€(ig,h0)(1,1)) (O(i0,ho+1)(i1,h1) Z T+ Tp€(ir k) (io,ho+1))
=0 (10,h0),-s(i1—1,hi—1) €T ®
ty
Ko X Z (5(iz—1,hz—1+1)(m’p1*1)z + ﬂ-pé(m,;ﬂlfl)(izq,hz—1+1))(5mjz + WPé(j’Pl)(mﬁpl)) :
m=1

Then we have

A =l p))Gpri—1)s €Gpr—1)61)] = [€G.p1) Gpr—1)0 06,1 Gopr —1)Z + T1(€¢pr—1)(5,1))] 5
whereas
B=- Z(_l)l Z (5(i71)(i07h0)z + 7-‘-F'é(ioﬁo)(ivl))(6(1‘0,’10-"-1)(1‘1,hl)z + 7Tpé(h,hl)(imho-i-l))

>0 (i0,h0)seees(i1—1,h1—1)ET
(i,h)€(T )

Koo X (5(iz—1,hz—1+1)(iz,h1)z + Wpé(il7hz)(iz—1,hz—1+1))[e(jspl)(jﬁnl*l)’ (6UZ + Wpo-l(é(j:pl)(ilyhl+1)))] )
since
€(p) i +1) = [€Gp1) (o1 —1)» 0352 + M08 pr 1) i1 b 1)) -

Moreover, as in the case j > t; + 1, (i;,hy) € (JP)° implies (is,hs) € (JP)° for all 0 < s < [ — 1.
Therefore,

B=- Z(_l)l Z [e(j,pl)(j,plq)’ (6(i,1)(i0,h0)2 + Wgoé(io,ho)(m))(5(¢o,ho+1)(z‘1,h1)z + Wioé(il,hl)(io,hoﬂ))

120 (i0,h0),--(f1—1,hi—1)E(TP)°

NETRY: (5(il,1,hl,1+1)(il,hl)2 + Wgoé(u,hl)(z’,,l,h,,1+1))(5ijz + 7TgoUl(é(j,pl)(il,hl+1)))]
since
[e(jvpl)(japl—l)VWPJl(é(ioyho)(iJ))] =0, for (iovho) € (jp)cv

[€Gp0)Gipr—1) TpO1 (i ho) (a1 her+1))] = 0, for (ig,hs) € (TP), 1<s<1—1.

/

As a consequence, A + B = [e(j p,)(jp—1): 01 (T35 (2))]-
Let us analyze C'. We can rewrite it as

t1
C==> (661 mpi—1)% + Tplimpr—1)(i.1)) OmiZ + Tp€(ip) (mopr))

m=1
l ~ ~
> (-1 > (0(3,1) (i0,h0)Z + Tp€(i0,h0)(5,1)) (O(io,ho+1)(i1,h1) % T Tp€(iy,h1) (i0,ho+1))
>1 (i0,h0),--s(G1—1,h1—1)ET©
t1
X e XY (B iy A1) (mpr =12 + TpE(mpy 1)1 41)) O 2 + Tpl(ipr) (o)) -
m=1

Let us consider first the term m,€(; . )(m,p,): for (i1-1,hi—1) € T~ (\7/1’)C we have

d d
deg 6(m7p1—1)(il,17hl,1+1) = —5 +1-— (—5 + 1) +1> 1,
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1

therefore it must be (i;_1, h—1) € (JP)¢. Then , as in the case j > t;41, we can conclude that (i, hy) € (T ?)°
for all 0 < s <[ — 1. We obtain,

ty
C == (56.1)mp1-1)2 + Tpl(mpr—1)(i.1)) OmsZ + T p1)(mpr))

+) (-1) > (8(i,1)(i0,h0) % T Tp€(i0,h0)(1,1)) (O(i0,ho+1) (i1, ) Z + Tp€(ix ha) (i, ho+1))
q=>0 (10,10)5-++5(ig,hq) E(TP)e
t1

X XY (8(ig byt D) (mapr—1) 7 F TpE(mpi—1)(igha+1)) (OmsZ + TpE(i py) (m.pa))

m=1

= Z OUT () G + T 1) mpn)) -

Combining A, B and C we get, for j < ti,

ty
Ti5(2) = le(p)(pr—1): 01 Z ))Ohiz + €(p) () »

as claimed. ]

Proposition 2.1.3. Let p; > 1. Suppose s1 < t1 and suppose moreover that we may remove the rightmost
column of p. Then the following recursive formula holds:

’

o-(TF (2)), 1>51+1

ij
Ti(2) = , : , 2.1.12
() [0:(T}; (2)) 5 ei,2)(0.1)] Z (Oniz + em1y))or(Th;(2)), i< s1. ( )

Proof. Starting from Equation (2.1.5), the proof is analogous to the proof of Proposition 2.1.2. Here, we
define the r x r matrix T? (z) for the reduced pyramid p’ as in Equation (2.1.3). O

We now address the issue of the recursions introduced in Propositions 2.1.2 and 2.1.3 to be well-defined.
Namely, we want to check that in the case that it is possible to remove both the leftmost and the rightmost
column of p and moreover t; = sy, the choice of the recursion is irrelevant.

Proposition 2.1.4. Let p; > 1 and t; = s1. Suppose moreover that it is possible to remove both the leftmost
and the rightmost column of p. Then applying the recursions in the two different orders gives the same result.
We are supposing o, 0 oy, op0 0, : U(gly_y, _5,) — U(g).

Proof. For p; = 2 (p is therefore a rectangle and t; = s; = ), the claim is obvious, since by application of
the left recursion we obtain

ty

Tyi(2) = le.2)G.0): 0132 + €G] — DGz + emnn) 0niz + €2y h.2))

" h=1
= e — O 0inz + enn ) 0z + egayng) — dnitr)
h=1
while by application of the right recursion
T3j(2) = 6152 + €(j,14+6; <0, ) (i, 14+61<; )+ €002 Z (Oniz + €n,1)(1,1)) (OniZ + €(j1+8; <0 ) (h1+6n<a,) — OnjS1)

51

= ey — O 0niz + e(n1)i) (Ons2 + €(2yn2) — Onjs1)
h=1

and the two expressions clearly coincide.
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Suppose now p; > 2. Applying first the right recursion (Proposition 2.1.3) and then the left recursion
(Proposition 2.1.2) we get

o (T (2))), i>s 1>t 41
[€(.p1) (Gopr — 1)7UT(UI(T ( ] — Et 1o (o(Ty (Z)))((Stjz + €Gp1) (1)) 5 12>2s1+1,5 <1
o0 (0T (2))): e - Zhﬁm%emmMW((,@»7 i< jzt+1
(e Gapr—1)s o (0T (2))] = 4ty on (o (T; (2)))(%2 + €0, p1)(hop1))s €i,2)(6,1)]

~ L= Oniz + e 1)<i,1>)([6<a,p1><g,p1 b or(@(T ()]

- Zt 1 JT(Ul( ht ( )))(5tjz + e(j,Pl)(t,Pl))) ) [ S S1, .7 S tl .

On the other hand, applying first the left recursion and then the right recursion we get

10,(TE (2), i 41>t +1
(010 (T3 (2)), eqi2) i, 1)] D1 (Oniz + e, e 1))0l0r(Thj (2)), i<s1,j>ti+1
le €(4,p1)(G,p1— 1)70lar( ( D] — Zt 1 o10-(T ( ))(0s52 + €(j,pr)(t ,pl)) 12>2s1+1, <1

Tij(2) = [€(p1)Gipr—1)» ([Uz%(ﬂ? (2)): e 2y — >t (Oniz + €(h,1) (4, 1))‘TZUT(ThJ( )))]

11

-2y (loon (TF (), o)

= S Gz + €601 (T (2)) ) (Bt + iy o) issnjst
The result follows because o; o 0. = 0. 0 g, even for the non-obvious case when j < t; and i < s;. O

2.2 Definition of the matrix L(z)

We will now introduce the second main object of our construction, the matrix L(z), that will play a key
role in Conjecture 3.1.1. In the case of I" a Dynkin grading and [ = 0, the matrix L(z) has already been
introduced in [DSKV16¢].

Recall that 74 = min(¢1, s1) is the height of the maximal rectangular block at the bottom of p. Let us
introduce the matrices

1 1
Ii = By € Maty,, C, J1 =Y Ei(ip,) € Mat,, «nC, (2.2.1)
i=1 i=1
corresponding to the index subsets of T (of cardinality r7)
Li={G1|1<i<mn}, T =A(,pi) [1<i<r}. (22.2)
Definition 2.2.1. Define the matrix

L(2) = |21 + F + myE + Di|1, 5, € Mat,,»,, U(g)((z71)) . (2.2.3)

Proposition 2.2.1. The quasideterminant L(z) exists in the algebra Maty, ., U(g)((z71)). Namely, the
matriz 21y + F + my E 4+ Dy is invertible in the algebra Maty«nU(g)((z71)) and the matriz J,(z1y + F +
mpE + Dy)7 1y is invertible in the algebra Mat,, -, U(g)((z71)).

Proof. The proof is similar to the proof of [DSKV16¢, Proposition 4.1]. O
As a consequence of (the proof of) Proposition 2.2.1, we have:

Corollary 2.2.1. L(z) = (E” (2))ilj=1 s a matriz whose entries are formal Laurent series in 2~ of degree

p1. Moreover, by the hereditary property of quasideterminants (1.5.5),

L(z) = ||z21x + F + 7 E + Dil1slr0, = |T(2)I1,,, 5., (2.2.4)
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where I, J are the matrices

T

I= ZE(i,l)i € Matyn«,-C, J = Z Eiip;) € Mat,.«NC, (2.2.5)

i=1 i=1

corresponding to the subsets I, J in 2.1.1 (such that T'(z) = |21y + F+m,E+ Di|1;, according to Definition
1.5.8), and Iy, , J» are the matrices

Loy, = ((Sij) ie{l,...r} € Mat, ., C, Jrir = (5J) ie{l,...r} € Mat,, «»C. (2.2.6)
je{1,..., r1} je{1,..., ri}

corresponding to the subsets Lpp, = Tpyr = {1,...,m1} of {1,...,7} (cf. Section 1.5).

Suppose that p; > 1, namely that the pyramid p doesn’t consist of a single column, suppose that r; =
t; < 51 and that moreover it is possible to remove the leftmost column of p. We obtain a pyramid p of size
N — r1 which uniquely defines a good %Z—grading for the Lie algebra gly_, and the nilpotent element f/p
associated with the partition (p1 —1,...,py, =1, pr 41, -..,0r) of N. From these data we can define a matrix
Tlp(z) as in Definition 2.1.1 and a matrix le(z) as in Definition 2.2.3. Note that while Tlp(z) isstill ar xr
matrix, L?(z) = |T?(z) TppyJrye 18 @ T2 X T2 matrix, where 72 = min(tz, s1) > 71 is the second minimal column
height in p and I,..,, J,, are matrices as in (2.2.6) corresponding to the subsets Z,., = Jrr = {1,...,72}.

As we did for the matrix T(z) in Section 2.1, it is possible to construct L(z) recursively through the
matrix Elp(z).

Proposition 2.2.2. Let py > 1. Suppose r1 = t1 < s1 and suppose moreover that it is possible to remove
the leftmost column of p. Then the following recursive formula holds for every 1 <i,j5 <ry:

1

Lij(2) = [eGp) Gipr—1) O LY (2| 11y 11y ry )is)] — Z OL(([LP () 1yry Try g )in) (0502 + €(Gp1)(hpr)) - (2:2.7)
h=1

Note that the matrices Iy, , Jr,r, for the quasideterminant |L?(z)|;
to the subset {1,...,r} of {1,...,712}.

J.... are as in (2.2.6), corresponding

T2T1LYT1IT2

Proof. First of all note that by the hereditary property of quasideterminants (1.5.5),

~1 2 /
ILP () 1ryry Ty = WP 1y Tyl Ly Ty = TP () 10y - (2.2.8)

By (2.2.4), the definition of quasideterminant® and Proposition 2.1.2, we have

Lij(z) =T(z) = . Tal)(T(2)z,,e0,,,<) " DinThs(2)
hk>ri+1
=Ty()— Y. aTEE)((T?(2)z,,, cq.,,)) DenTii (2)
hk>ri+1

1

= [eGp) G -1 U TEE@)] = D or(TE (2))(6mjz + Eipy)(mapr))

m=1

— > alTEE) (0T (2)1,., e 5, 02) " knleGpn) G —1) 0L (TE(2))]
hk>r 41

T1

+ > AT (@TP (D)1 e g0, ) Dkn D 01T () Oz + € pr) (mapr))
h,k>ri+1 m=1

=A+B+C+D.

'In order to simplify the notation we number the rows and columns of the matrix (Tlp(z)zrr1 cjrlrc)’l from r1 +1 to r
instead of the natural numbering from 1 to r — ry.
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Then,

1

B+D==3 (aTlh (=)~ > ol (@uT? ()1, 0,0 Dn0UThn(2)) O + iy oman)

m=1 h,k>ri+1

- Z gi |Tp ‘171"1\77"17)”77/(67”]2_’_6(] p1)(m.p1))

- Z g1 |Lp Iryr Tﬂz)im(émjz + é(jml)(m,m))ﬂ

where for the last equality we have used Equation (2.2.8). Obviously, this holds provided that (oy(7?(z) Tppy @0y )"t =

al((T,p(z)zwlcjmrc)_l) in Mat, _, xr—r, U(g)[[z71]]- This is clear by the definition of o; (cf. (1.1.20)), since
the inverse of T'P(z)zmc J.c can be expanded as geometric power series (cf. (2.1.10)). Note that the ex-

istence of this inverse is also ensured by the existence of the generalized quasideterminant |TP(z)| Topy Joy s
thanks to the hereditary property (1.5.5).
On the other hand,

/

A+C = leGpGm-1 TEE) = Y alTRE) (0T (2)z,,,e7,,) " Dns or(T(2))]

hok>r 41
= > UrGm-1 TR (@(TP ()1, 0 5,,,0)) Dnlor(TF(2)
h,k>r1+1
= leGpn) -1 (TP 1y )il = Y [eGonGan—1) TR (@I (2)z,,, 0 5,,,))~rnlor(TF(2))
hok>r1+1
= (G011 L g 1e)is) = D G0 G -1 T () (OU(TP(2)1,0, 0 7,,,00)) ™ Dinlon(T5(2))
hk>r 41

where for the last equality we have used Equation (2.2.8).

By Lemma 2.2.1 below it is therefore sufficient to show that [e(j,pl)(j,prl)aUl(Ti/z(z))] = 0 for every
k > r1 + 1. Recalling Equation (2.1.5), the latter holds because we have

301) Gopr —1)s TpOL (€ i) 1,1))] = 0
(
(e
(

le(

[ €(ig,ho)(i1))] = 0,
[e(ypl )(Gp1—1)s TpOI\€(ig,hg)(ig—1,hq—1+1) )]
[

€(35,p1)(4,p1—1)> TpOl

€3,p1) (Gp1—1)1 TpIi{€( ’pk)(lhhl‘i’l))] 0,

where (i, hq) € JPe for all 0 < g<l. -

Lemma 2.2.1. [DSKVi6c, Lemma 2.8] Let U be a unital associative algebra and let A € MatnxnU be
invertible. For every a € U and i,j € {1,..., N}, we have

[a, (A™")i] = — (A" inla, Ap] (A7) -

1

G
M=

Remark 2.2.1. When the nilpotent element f is rectangular, namely when it is associated with the partition
(p1*) of N, then r = ro = r and Equation (2.2.7) reduces to

T1
Lij(2) = [eGpn) G —1) O LE )] = Y 0r(LE (2)) (6502 + EGpa)p)) -
h=1

Note that in this case the corresponding pyramid p is a rectangle of size p; x ry.
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Similarly, let 1 = s; < r; and suppose that it is possible to remove the rightmost column of p. We obtain
a pyramid p’ of size N — r; which uniquely defines a good %Z—grading for the Lie algebra gly_,, and the
nilpotent element fp, associated with the partition (py — 1,...,pr;, — 1,Pr 41,...,0-) of N. From this data
we can define a matrix 7% (z) as in Definition 2.1.1 and a matrix L” () as in Definition 2.2.3. Note that
while T%'(2) is still a 7 x r matrix, L? (z) = \Tpl(z)hwz Jrye 18 & Tg X T matrix, where 72 = min(t1, s2) > s1
is the second minimal column height in p and I,.,,, J,,, are matrices as in (2.2.6) corresponding to the subset

{1,...,7"2}.

Using the right recursion for T;;(z) we can prove a result analogous to the one of Proposition 2.2.2:

Proposition 2.2.3. Let p; > 1. Suppose r1 = s1 < r1 and suppose that it is possible to remove the rightmost
column of p. Then the following recursive formula holds for every 1 <i,j <ry:

S1

Lij(2) = 00 (L (2)] 1,0, 1y )id)s €2y 01)) — D (20hi + €n1y(0,1)0r ((ZP (21,0 g1y 1) -
h=1

2.2.1 Main properties of the matrix L(z)

Let L(z) = L(z) T € Mat,, xr, Mi((271)) be the image of L(z) in the quotient module M; (in other words,
L;j(z) coincides with the image of L;;(z) under the quotient map py : U(g) — U(g)/Ii = M\, cf. (1.1.14)).
We can prove the following;:

Theorem 2.2.1. The matriz L(z) lies in Mat,, «., W(g, f,T,)((z71)) .
Theorem 2.2.2. L(z) is an operator of Yangian type for the algebra W (g, f,T,1).

By Theorems 2.2.1 and 2.2.2, the matrix L(z) is the quantum analogue of the matrix pseudodifferential
operator of Adler type L(9) introduced in the classical affine case (see [DSKV16D]).

Analogous results have already been proved in [DSKV16¢, Theorems 4.2, 4.3] in the special case of
a Dynkin %Z—grading and the isotropic subspace [ = 0. With Theorems 2.2.1 and 2.2.2 we are able to
generalize these results for any good %Z—grading I' and for any isotropic subspace [. To this purpose, it is
more useful to adopt the same notation as in [DSKV17b]. It would be natural to extend this coordinate-free
approach to the previous sections, but so far we were unable to do so.

We still begin with a good %Z—grading forg, I': g = GBjG%Z g;, which is given by the adjoint action of
a certain element x, and a nilpotent element f € g_;. Chosen an isotropic subspace [ C g 1 define m, n in
Section 1.1.1, and let 7, : g — g/m be the quotient map. The definition of W-algebra is clearly unaltered.

Let V be a vector space of dimension N over C, and let ¢ : ¢ — End V' be a faithful representation of
g. In analogy in the notation of Section 1.1.1, which correspond to the choice V = CV and ¢ the standard
representation, we will denote with uppercase letters the images in End V' through ¢ of the corresponding
element in g: A = p(a) for each a € g. Thus, X = p(z) is a semisimple endomorphism of V| and the
corresponding X-eigenspace decomposition is V = @kG%ZV[k]. As in Section 1.1.1, % is the largest X-
eigenvalue for V and d is the largest adX-eigenvalue for EndV = EB,CE%Z(End V)[k]. We will use the

shorthands V[> k] = @;., V[j] and V[< k] =D, Vil
We shall denote, for k € 17, the maps
Uy V] =V, Iy : V- VI[k],
Vop: V[> K oV, Moy :V — V][> K, (2.2.9)
Uop:V[<k]l =V, Mep: V> VI<E.

Recall that vy = min(¢y, s1) is the minimal column length, which coincides with the height of the maximal
rectangular block at the bottom of the pyramid p. Each box of the pyramid corresponds to a basis element
of V, and the z-coordinates of the center of each box is the corresponding I'-degree. We can then decompose
V =V, @&Vs,,, where V,, is the subspace of V' generated by the basis elements corresponding to the boxes
of the pyramid in the maximal rectangular block at the bottom of p, and V5, is the subspace of V' generated

29



by the basis elements that correspond to the boxes of the pyramid above the maximal rectangular block. We
shall denote, for k € %Z,

VIl = VKNV,  V[klsr, = V[N Vs, . (2.2.10)
Combining (2.2.9) and (2.2.10), for k € 1Z we can define the maps

k

Uy s VI, = VK SV,

Uposry : VIEsr = VISV,
Iy

Oy : V- V[k] - V[k]rl ’

Mesr, 2V 2 VIE] > VIR,

We therefore have short exact sequences

7 o g4
><1:0—>V[>—§]@ [—g] —Eny ;%’le[—g] —0
d \2I/d II 3 o d d 2 (2'2'11)
5"7‘ <7,7‘
><2:0—>V[§L1 2y —>1V[<§]@V[§}>Tl—>0.

where \I/>_% L= \I’>_% + \IJ—%,>7‘1 and H<%,r1 = H<% +H%,>r1'

Moreover, let {u;};cr be a basis of g compatible with the ad z-eigenspace decomposition, i.e. I = LI
where {u; }icr, is a basis of gj. Let {u'};c; be the basis of g dual to {u;};c; with respect to the bilinear form
(-]-). We shall denote by U; = ¢(u;) and U? = ¢(u?) the corresponding elements in End V. In the setting
of Section 1.1.1, {u;}ier = {e(i,h)(j,k)}(i,h),(j,k)eT and {U;} = {E(i,h)(j,k)}(i,h),(]’,k)eT; in this case, the dual
element is just the transpose.

We shall also denote by I; and Ij- the indexing sets for the subspaces | and [ and, without loss of
generality, we may assume that I% = I; U Iie. In particular, {U;}ier, and {U;}ier,. are bases for o(f) and
©(1€) respectively.

With this notation, we can redefine the matrices E and Dy from Equations (1.1.15), (1.1.16) as

NG

E:=) wU' €g@EndV, (2.2.12)
iel
Dii=— Y U'U;€ (EndV)[0]. (2.2.13)
JELUIs,

Note that to simplify notation we are omitting the tensor product sign. Moreover,
F=o(f)=>Y (f|u)U' € (EndV)[-1]. (2.2.14)
iel

We shall denote by d(u;) the eigenvalue of adz on u;, namely we will have u; € I5(,,). For an index
i € Ilet §(i) := d(u;), and we shall use the following convention on summations, where F(i) denotes any

expression depending on i:
dYooOF@) =Y > F(). (2.2.15)
h<6(i) <k h<j<kicl;
With this notation, we shall write

2 By = z‘g(i)*lui, for each i€ 1.

Note that

WpE:Zﬂ'p(ui)Ui = Z w;U".

iel iGI[cUI<l
=2
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We will also make use of the following operators:

2TAE = Zz‘s(i)_luiUi, Ty AE = Z 201 U° (2.2.16)
icl i€lie U]y

both lying in RU(g) ® End V', where RU(g) is the Rees algebra of U(g) (1.4.1) defined in Section 1.4.
Finally, note that in the notation of Definition 1.5.4, the quasideterminant in Equation 2.2.3 becomes

~ _ d d

L(z) =|21y + F+m,E + D[|q;%’rln_%’r1 cU(g)((z™)) ® Hom(V [ — 5]“, V[Q]h)' (2.2.17)

With this notation, we can therefore restate Theorem 2.2.1 as follows, in analogy with [DSKV17b, The-
orem 4.9]:

Theorem 2.2.3. Let I' be a good %Z-gmding for f and let [ C g1 be an isotropic subspace. Then,

- d d
L(z) = |y + F+mpE+ Dilw, u, 1ieW(g,f,T, 0((=7")) ® Hom(V [ ~ i]rlav[i]ﬁ)'

The proof is similar to the proof of [DSKV17b, Theorem 4.9] where, however, thanks to the symmetry

properties of a Dynkin grading, V[ — g]n = V[ — g] and V[%]rl = V[%]. The exact sequences in (2.2.11)

and the morphisms ¥, and II, need to be modified accordingly:

Vo, +— Ta V[g]<—>V, ] U g, =T ;:V[>—;l}l<—>v,
Hfz’rlHﬂfng—»V[—ﬂ, H<%,T1HH<%:V—»V[<§]_

This is essentially due to the fact that the largest rectangular block at the bottom of the pyramid is
invariant with respect to any chosen good %Z—grading of g; it has size p; x r1, largest z-coordinate g and
smallest z-coordinate —g. Thus, the largest X-eigenvalues of V' is also independent of the good %Z-grading.

The main ingredient of the proof is Lemma 2.2.2 below, which will also be crucial in the proof of our

results in Chapter 4.

Lemma 2.2.2. The generalized quasideterminant |1y + 2 2El|y, 1 , ewists in the space RooU(g) ®
51— 5

Hom(V [ — %]TI’V[%]H)’ and the following identity holds in RM; @ Hom(V | — %]TI,V[%LI);

T[:27d71|ZﬂV+F+’R—pE+D[|\Iji 11‘[ 4 1. (2218)
271 g

1

1y + 2 2Ely, LIy
271 2

T1

Proof. This result generalizes [DSKV17b, Lemma 5.5]. The argument concerning the existence of the quaside-

terminant |1y +2"2E|y, 1 , follows the proof of [DSKV17h, Lemma 5.5] (see [DSKV17h, Lemmas 5.7
2T 5T

and 5.9] for all details), and since no significant change appears we will not report it.

However, significant differences appear in the proof of Equation 2.2.18, since we are now allowing the
isotropic subspace [ to be non-zero. For the sake of completeness, and to highlight the differences with the
case [ = 0, we present a proof of Equation (2.2.18).

Consider the semisimple endomorphism

X = Z Py € (EndV)[zi%],
keiz

where 1y := W;llx € EndV is the projection onto V[k] C V. It is an invertible element of the algebra

Clz*2] @ EndV C U(g)((z~2)) ® End V. Its adjoint action on EndV is given by z=XAzX = 2% A for
A € (End V)[].
By definition of this adjoint action, we have

2 XEN = E wiz XUX = E WUt = 21 7AE.
iel il
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We can also easily deduce the following identities
Z*XWpEzX = szlfAE , 2 XFX = 2F,
2 X1y 2X =1y , 2 X DX = Dy,
from which we obtain the following identity:
2ly + F4+mE+ Dy =271y + F+ 12 2E+ 27'Dy) 27X (2.2.19)
By (1.5.8), taking the (\I/% H_%7T1)—quasideterminant of both sides of (2.2.19) we get,

717

|zly + F+mpE+Dilo, m ,
271 T2
= (M_g,, 2 1y + F +mpz 2E + Z’ID[)A?’A?X‘I’%,M)71
- B _ -1
_ zl+d(H,g,m(1V+F+ﬂpz AE+271D)) 1\11%,m)

= zl+d|]lv + F + ﬂpZ_AE + Z_lD[|\1;i 1,1'[
d

(2.2.20)

d )
-9

since I_y , 2X =27#1_4 . and =¥ Wy =273W, . In view of (2.2.20), Equation (2.2.18) becomes

|]lv+Z_AE|\yd I 4 T[: |lv+F+7TpZ_AE+Z_1D[|\yd O 4 T[. (2221)
PRSI Sia PRSI RIa
To complete the proof of Lemma 2.2.2 it is therefore sufficient to prove Equation (2.2.21).
Let us compute the quasideterminants in the LHS and the RHS of Equation (2.2.21) using Formula (1.5.9)

for the quasideterminants with the short exact sequences x1, x2 in (2.2.11). For the LHS, we have
|I[v + Z_AE|‘1;d o, = \11;1 (]lv + P )
20T T2 PR .
Sy EN g (g, (42 2By ) Ty (1 4+ 2758) )T

g.m1 BEEE

(2.2.22)

By hypothesis, the expression in the RHS is well-defined, i.e. the operator in parenthesis induces a well-
defined map from V[ — %]m to V[%]Tl. Hence, we can replace \Ilglr1 and TI"Y  in the RHS with Ila ., and
2> 2 ’

ri
V_g4 ,, respectively (cf. (2.2.11)). Note also that

»T'1

—-A —1—-d
H%,Tl lvqj*%,m = O, H%J,IZ E\Iffg,rl =z H%HE\Pf%yh .
Hence, we can rewrite (2.2.22) as
—_A —1—d —A
‘]lv—‘rz E|\I’%ar1’r{7%,r1 =21 H%,nE\Df%,n —Hg7rl(]lv—|-2 E)\IJ>7%)T1 (2223)
—A -1 N e
X (H<%,T1(]lv+2 E)\I]>—%,r1) H<%7T1(]lv+2 E)\If_%m1 .

Similarly, we use formula (1.5.9) to compute the quasideterminant in the RHS of (2.2.21). We have

1y + F+mz 2E + 2 Dilw, g
2° 2’

1

=My, (Iy+Ftmz 2E+27 D)V _y . —Tla (L +F4mpz" 20 + 27 D)W, _a

x(H<g7h(11V+F+7r,,z*AE+z*1D[)\IJ>_%m)*1H<%7h(11V+F+WS%2*AE+2*1D[)\1:_%7T1 (2.2.24)
—1—d —-A

=2z H%,rlqufi,rl_Hd 1(]lv-|-z E)\I/>7%7T1

— — -1 — —
X (Mea Ly +F4mpz 2E+z7 D)W, g ) g, (Ly+2 2Btz ' DYV_y

—371 —2,r’

27

where we used, for the second equality, the obvious identities

Mg, yW_ g, =0, Mg F=FV¥_4 =0,

Mg, Di=0, Dy, =0,

My, mpz 2BV g, =2y, EV_4,

Mg, mpz 2B =14, 2 2E, mpz 2BV_ g4, =22EV 4 .
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In view of (2.2.23) and (2.2.24), Equation (2.2.21) reduces to the following equation

—A -1 —A -
(H<%)T1(]1v+z E)\I/>7%’T1) H<%,r1(]lV+Z E)\Ilfg,nl[ (2225)
_ _ -1 _ _ - -4
= (Weg,, (W +F4mpz 2 E+27 D)W, g ) Ty, (Iy+2” 2E+27 ' D)Wy Tr,
which we are left to prove.
To simplify notation, we introduce the operators A, B € RU(g) ® Hom (V[ > —4] & V[ — ¢ >T1,V[ <
g} @ V[g} >r1) and v,w € RU(g) ® Hom (V[ - g]n, V[ < g} @ V[g} >r1), defined as follows
A=T_g, Iy +F+mpz 2B+ 2 'D)V, _a, ,
Bi=T_a, (lv+z 2E)W, 4, —A
-A i -1
= Z (Z Ui — (f|ul)) H<%,T1U \Il>*%,7“1 -z H<%,T1D[\II>*%-,T1 ’ (2226)
iE[ZlLJI]
V= H<%’T1(ILV +22E+ z_lD[)\IL%m1 ,
wi=M_ g, (ly +2 2E) 0 g, —v=—2""T_g, DV 4, .
Using notation (2.2.26), Equation (2.2.25) can be rewritten as follows
1 - 1= d d d
(A+B) v+ w)li= A"l € RMi@Hom (V[ - 5] ,V[>-J]leV[-7]. ). (2.2.27)
For every ¢ € I>1 U I, we shall denote
. —A A71 - d d d
Xii= (" %ui = (flu) A7l € RMi@ Hom (V[ - 5], V[>-S]eV[-3]., ). (2.2.28)
We also let X; =0 for i € I<o U Ie.
Lemma 2.2.3. For every i € Iy U I; we have,
Xit="t ) AT UL U, g, X
1<8()<8(i)+5
Ujel;
-1 -1 j
—F Z AT g, e ([UJ7U1'D‘1’>—%W1XJ' (2.2.29)

8(7)=8(i)+3
=2 Mg, Up(Psg, A0 =0 g T

3571

+ ZﬁQA*1H<%,T1 [D[7 Ui](\I/>_%7T1A*11} - \I’—%JH)T[ .

Remark 2.2.2. Let [ C g1 be an isotropic subspace, and let [* C g1 be the subspace dual to [ with respect
to the bilinear form (-|-). We shall denote by (I1)¢ C g 1 and (I")° C g_1 a choice of complementary subspaces
to [+ and [* respectively.

The bijection ad f : g1 — g1 provides direct sum decompositions

:[f7q@[f7[c]v g :[fv[J_]@[fv([L)c}'

1 1
2 2

By this direct sum decomposition, and by isotropicity of [, I* = [f, (I*)¢] because [+ is the maximal
subspace with the property (f|[l,[*]) = 0. As a consequence, we may identify ([*)¢ = [f,[*]. On the other
hand, by non-degeneracy of the bilinear form w we have (I°|[f, [*]) # 0. Hence, [f,[*] C (I°)* and the equality
holds by the following dimension argument:

dim (I°)* = dim [° = dim g3 — dim [ = dim g_; — dim [* = dim (I)° = dim [f,[*].

Therefore, (1)* = (I")¢ = [f, [*].
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Let {U'}ier, and {U'};c1,. be bases for the subspaces o(I*) and o((I€)*) of End V respectively. We shall
denote by

1 1
H[* : EndV[ - 5] — SO([*), H([c)* : EndV[ - 5] — 90(([0)*) s

the projections with respect to the direct sum decomposition End V[ — 1] = ¢((I°)*) @ ¢(I*). Note that
H([c)* = ]IV[—%] — I~

Proof of Lemma 2.2.3. Recall that (2~ %u; — (f|u;))T; = 0 in RM; for every i € I>1 U I;. Hence,

=—-A" [ ’LL“ A]A_1UT[ + A_I[Z_A’U/i, ’U]T[
- Z A” [ Buj, 2 uj]H<i r Uj‘I’>_g - AT,
jEI<0|—’I[c 2 2 (2230)
+ ZA By, 2By T U0 dﬂT[.
JeI

By the definition of conformal weight, we have

—A 1

[z_Aui,z uj} =z~ _A[ui,uj].

Lemma 2.2.4. We have the following identities
S bl U7 = Y 07,0
Jjel jeJ

and

o fuw) U= Y w0 U] - > e (U7, U4)) (2.2.31)

j€l<oUIe 5(j)<a(i)+4 5()=5(i)+4

Proof. Both identities follow by the completeness relations

M M
Z(wk\u)uk =u, Z(w\uk)wk =w forallue U, we W, (2.2.32)
k=1 k=1

where {u;}2L, and {w*}} | are dual bases of a pair of M-dimensional vector spaces U and W respectively,
the pairing being with respect to a non-degenerate bilinear form (-|) (namely, (w*|up) = 6 for any 1 <
h,k < M).

However, the RHS of Equation (2.2.31) is due to the fact that {U?};¢y,. is a basis for ¢((I°)*), and not
for the whole End V[ — %] In fact,

Z [%ﬁ%‘] Ul = Z [ui,uj] U’ + Z[Wﬂi; Z Z uz,u] \u ukUj

j€l<oUle Jj€l<o j€le J€I<o k<8(4)
+ Z Z ul,uj |u ukUj = Z UJ[U 7Ui] Z UjH([c)*([U ,UiD
GE€Ie k=5(i)+3 3(3)<8(i) 5()=8(1)+3
= Z u;[U7, U] — Z w1 ([U7, U3)]) .
6(5)<8(i)+3 8(5)=08(i)+3
O
Hence, (2.2.30) gives
Xi=—2" ) AT Ry, [V U], g AT
8(j)<é(i)+5
+Zil Z Ail(ziAu]')H<%m1H[*([Uj,Ui])\If>_%7T1A71’UT[ (2233)
5(j)=8(4)+3%
+27 Y AT R, (U7, U] g T
jel
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Since, by assumption, ¢ € I>; U I, we have ImU; C V[ > f%} (<) V[ — %]
consequence, we have the following identities (cf. (2.2.9))

o and V[%]Tl C kerU;. As a

Ui = \P>_%’T1H>_%7T1Ui and Ul = Ui\I/<%’T,1H<d . (2234)

571

We can therefore rewrite (2.2.33) as follows

— -1 -1/,—A j
X,=-z Z A7 (= uj)H<%,T1U]\I/>_%7T1H
5(i)<8(i)+4
+27h Y AT ) g, Ui g T TP g AT T
s()<6()+4
+Z_1 Z A_l(Z_AUj)H<%7T1H[*([UJ,Ui])\l’>_%
5(7)=6()+3
-1 —1/.—-A j T
+2 Y AT ) DI, g TT U T

—1. 7
>—%7T1UZW>—%7T1A Ul[

AT (2.2.35)

4 —dn
jer
—2Y AT R U g T DO T
J <3, ? <3,m1<3,"1 —35,57T1 L
jel

Recalling the definitions (2.2.26) of A and v, we have the following identities:
hd Z (ZiAuj)H<%,r1Uj\Il>—%,r1

= A+ > (=% = (flug) g, U, =T g (Ly 427" D)W, g,

1<6(5)<8(i)+ 5
Ujel;

_A :

.Z(Z uj)H<%,T1UJlI/>—%J’1

Jjel

_A ; _
=A+ Z (27", _(f|uj))n<%,r1U]\Ij>—%,r1 _H<%,T1(]1V+Z 1D[)\Ij>—%,r1 )
jeIle_IjEII

° Z(zfAuj)H<%’rlUJ\D_%7ﬁ =v— H<%7r1(]].v + ZﬁlD[)\II—%,m .

Jjel

Hence, the first term in the RHS of (2.2.35) can be rewritten as

—1 —1 j —1 -1, 7
—z Yo AT U, g Xy -2 g U g AT,
1<8(5)<o(i)+3
e (2.2.36)
+2 AT g, (Ly + 27 DYUY g, AT T

the second term in the RHS of (2.2.35) becomes

+2t Y ATy U, e X2 AT Ty U 0T

1<8(5)<o(i)+5
Dsli+ (2.2.37)

7271A71H<%7 Uz(]].v +271D[)\I/>_g Aill}l[,

T1

the fourth term in the RHS of (2.2.35) becomes

2L g Ui g, Ti— 2 P AT g (v + 27 D)UY g, T, (2.2.38)

2571 55T

and the last term in the RHS of (2.2.35) becomes

1. (2.2.39)

_ z—lA—1H<%’T1Ui\I/<%’TIUT[ + z—lA—1H<g,r1 U(ly +27'D)¥

d
—3.71
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For the third term we need a different approach. Since 6(j) = 6(i) + 3 > 1, it becomes

Z*l Z A*1H<%7T1H[*([Uj7UZ'])\I/>_%7T1XJ-
8(j)=6(i)+3
+27151‘EI[ Z A71H<%7 ([U U]) (f|’U,J) Ul[ (2240)
8(j)=0(i)+1
=zt Z A_1H<%,T1H[*([ijUi])\I/>—g7r1Xj .
8()=0(i)+4
The last equality is due to the following identity, by duality of the bases {u;}, {u/} and the invariance of
the trace form:

Sier, Y Me([U7,U)(fluy) = Sier, > Y (U, Ul|U)U(fluy)

5(4)=6(i)+3% 5(j)=1keEI,
= bier, > Y (W |[us, we JUF(flug) = Sier, D UR(flui,ur]) =0,
JEI kel kel

where (f|[ui,ug]) = 0 because of the isotropicity of [. Combining (2.2.36)-(2.2.39) and (2.2.40), we get
(2.2.29). 0

Lemma 2.2.5. The unique solution of Equation (2.2.29) is (for i € I>1 UIy):
X, =—z11I Ui (¥

d
>—35,71

Proof. First, we prove that (2.2.41) solves Equation (2.2.29). Note that the first term in the LHS of (2.2.29)
equals, by (2.2.41), the first term in the RHS of (2.2.29). We hence need to prove that the second terms in
the LHS and RHS of (2.2.29) coincide:

A=y T (2.2.41)

d
>—35,T1

-2y AT [ U e T U (U g AT =g T

5,1 > 5, >—3,T1 — 3,71
1<8(5)<8(8)+5
Ujel;
-2 -1 j -1 T 2.2.42
+z Z A H<%7T1H[*([Uj’Ui])\P>—g7T1H>—%,T1Uj(\I/>—%,T1A ’U_\I/—%:Tl)ll ( )

8(5)=8(i)+3

_ Z_QA_1H<%,T1 [D[,Ui]<\lf>7%)”14 v—W_ g rl)l[‘

Recalling the first equation of (2.2.34), Equation (2.2.42) is established once we prove the following
identity:

> WU - ) e ([U7,U)U; = =Dy, Uy (2:2.43)
1<6(5)<6(i)+3 5(5)=6(i)+%
ujel;

By the definition (2.2.13) of the shift matrix D; and the Leibniz rule, we have
—[DLU) = Y (07,00 + U0, U3) + > (07,0300, + U2 (U, U3)) - (2.2.44)
JE€EI> jelh
On the other hand, by the duality of the bases {U,}, {U?} and the invariance of the trace form, we have

S UL U =YY (U5, UURUIT,

jEI>y jEIsy keI

2.2.45
- Z Z (U;|[U*, ) U Uy, = Z [U*, U;)U, . ( )
§(k)>6(i)+1 j€I 8(k)>6(i)+1
and _
S UL U =30 (U UUMUIU, = = >0 (U4|[U%, U)UI U,
€I jel kel Jel kel (2.2.46)

=— > (UK U]U.

5(k)=6(i)+1
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Combining (2.2.44), (2.2.45) and (2.2.46), we get Equation (2.2.43).
The uniqueness of the solution of Equation (2.2.29) is clear. Indeed, Equation (2.2.29) has the matrix
form (1 + z_lM)X = Y, where X is the column vector (Xi)i€121u][, with entries in the vector space

V =RM®@Hom (V [f %]7_1 , V[ > fg] eV [f %] >7'1)’ Y is the analogous column vector defined by the RHS of
(2.2.29), and M is some matrix with entries in RU(g)@Hom (V[ > —g]eV[-g]_ . V[>—g]eV[-4]_ ).

which is an algebra acting on the vector space V. But then the matrix 142z~ M can be inverted by geometric
series expansion. O

Before continuing, we shall give an example of how the matrix D; changes in accordance with the choice
of a different [ for the same pyramid p and the same grading.

Example 2.2.1. Let p be the pyramid of size N = 6 and shape A = (3,2, 1) as follows:

(31)

(22)((21)

(13)|(12)|(11)

Then, for [ = 0 we have

Dy = — Z U'U; = —E(9)(1,2) — 4E(1,3)(1,3) — 2E2,2)2,2) — E3,1)3,1) -

JEI>1

For [; = Ce(2,1)(1,2) + Ce(2,2)(1,3) + Ce(z,1)(2,2) we have

Dy = - Z U'U; = —2E(1.2)1.2) — 5E1,3)1,3) — 3B 22 — Eane1) »

jeI[1L|121

whereas for [2 = Ce(gjl)(lg) + C€(272)(173) + C6(271)(371) we have

D,=- Y  UUj=-2Eq1202 —5E13013 — 2Be2@2 — 2EE1)6.1) -

JEI L UI>,

In all cases, it is easily seen that they provide solutions to the corresponding Equation (2.2.43).

Corollary 2.2.2. We have
BA I = wl;. (2.2.47)

Proof. By the definitions (2.2.26) of B, the definition (2.2.28) of X; and its formula (2.2.41), we have

BA W= Y Mg, U,y X;—z g, DV, g4 A ‘0l

2571 —27
’iGIZlLlfl

—1 j ~1 T -1,7
= Z H<g7T1UZ\I/>*%,T1H>*%>T1Ui(\II>*%,T1A U_\I]*%ﬁ)l[_z H<g77‘1D[\1]>7%,7‘1A vl
iEIZIUI[
=2""M_g, Di(¥ AT -0 _y VT -2 T g, DIV ANl
- <grmPN\F>—dr —2r ) z <gr ¥ >—dr vl
= —Z71H<g7T1D[\I’_%7T1T[ = UJT[7
(2.2.48)
where, for the third equality, we used (2.2.34) and the definition (2.2.13) of the shift matrix Dj. O

The operators A, B in (2.2.26) lie in RU(g) ® Hom (V[ > —g] @V[— %} >T1,V[ < %] EBV[%]>T1), and, by
the definition of B and the definition of the homomorphism € : RU(g) — F, we have ¢(B) = 0 (where € here is
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acting on the first factor of the tensor product RU(g) @ Hom (V[ > —4] @ V|- 4] - Vi< glaV]¢] >T1)).
It then follows by Proposition 1.4.2 (f) that

I]'V[<%]T1 + BA71
is an invertible element of R, U(g) ® End (V[ < %} ® V[%} >r1). Moreover, by Corollary 2.2.2, we have
(1 +BA Yol = (v+w)l.

We then have:
AWl = A1+ BA ™Y Y1+ BA Yl = (A+ B) (v +w)l,.

Note that in the notation of Chapter 1 and Section 2.2, we can restate Lemma 2.2.2 as

Lemma 2.2.6. [DSKVi6c, Lemma 6.1] The generalized quasideterminant |1y + 2~ 2E|, 5, exists in the
space Mat,, «r, RooU(g), and the following identity holds in Mat,, ., RM;:

1y + ZﬁAE|IlJ1T[ = Zﬁd71|z]l]\] +F+mE + D[l[ljli[ . (2.2.49)

Proof of Theorem 2.2.3. After all the techniques we have developed, we can now prove Theorem 2.2.3 in a

similar manner as the analogous result for classical affine W-algebras, presented in [DSKV17a, Section 4].

By Lemma 2.2.2, the operator |1y + 2 “FE|y, m , is an invertible element of RoU(g) ® Hom (V| —
RS S RAaT

g} LV [%] ), and Equation (2.2.18) holds. Hence, in view of Proposition 1.4.3, Theorem 2.2.3 holds provided
that "

[a, [Ty + z—AE|¢%WH_%“}T[ =0 forall aen. (2.2.50)

By the invertibility of |1y + 2 ®FE|y, m , in order to prove Equation (2.2.50) it suffices to prove
g1 g
that .
[a, (|1y + 2 2Elw, LT ) ]=0. (2.2.51)
g

-4

By Definition 1.5.4 for the generalized quasideterminant, we have

[, (v + 272 Bla, ,Hf%)*] =Ty, [a,(1y +272E)7 10,

2

@ (2.2.52)
= _Hfg,ﬁ (]lv + Z_AE)_l [a, Z_AE} (]lv + Z_AE)_l\I/%’Tl .
Recalling the definition (2.2.16) of the operator 22 E, we have
[a,z‘AE] = Zz‘s(i)_l[a,ui}Ui = Z 2201 ([a, w;]|uk )u, U
icl i,kel
= Z 2R =3@=1 [k a))u Ut = 2~ Z 22 =Ly, [U*, o(a)] (2.2.53)
ikel kel

eOEAE, p(a)] = 2Ly + 272 B, p(a)].

Using (2.2.53), we can rewrite the RHS of (2.2.52) as

— 20Ty (Ly +272E) Iy + 27 2B, p(@))(lv + 272 E) W,

71

=2y p(a)(ly +272E) "Wy 42Oy (Ly +272E)  p(a) Vs

—3271 5,717

(2.2.54)

Since, by assumption, a € n C g>1, we have ¢(a) € (EndV)[> 1], and therefore Hf%ng@(a) =0,
@(a)\P%ﬂnl = 0. Hence, the RHS of (2.2.54) vanishes, proving (2.2.51). O

The proof of Theorem 2.2.2 is the same as in [DSKV16c, Theorem 4.3]. It is based on Lemma 2.2.2,
Theorem 2.2.3 and the properties of generalized quasideterminants.
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2.3 Relation with the results in [BK06, BK08a]

In [BK06, BK08a] Brundan and Kleshchev provide a presentation for the W-algebra W (g, f,T',0) associated
with a nilpotent element f and an even iZ-grading I'. Let (pi* > ... > pi*) be a partition of N, with
r =711+ ...+ 1. They define a surjective filtered algebra homomorphism between the shifted Yangian for
gl,., Y.(0) and the W-algebra W(gly, f,T',0). See [Mo07] for an extended treatment of Yangians and their
properties.

Definition 2.3.1. The Yangian for gl,, is a unital associative C-algebra Y,, := Y (gl,,) with countably many

generators Ti(jr) and defining relations

min(r,s)—1
s a r+s—a—1 r+s—a—1 a
a=0

[T(T)

ij
where 1 <4, 5, h, k <nand r, s > 0. We set Ti(jo) = 0;5.

Introducing the formal generating series T;;(z) = >, Tijr)z” € Y,[[z7Y]] we can rewrite Equation

(2.3.1) as
(z = w)[T3;(2), Th(w)] = Thj (2)Tir(w) = Thj(w)Thi(2) - (2.32)

Note that Equation (2.3.2) is, up to an overall sign, equal to Identity (1.5.10). It is also convenient
to introduce the matrix T(z) = (T;(2))}j=; € Matyx, Yn[[z7"]]; this provides us with the so-called RTT
presentation of the Yangian Y,,. In [BK05] Brundan and Kleshchev introduce presentations for Y,, which are
parametrized by tuples of positive integers summing to n, the parabolic presentations.

In fact, given a tuple (v1,...,vy,) of non-negative integers summing to n, we can factor the matrix T'(z)
via Gauss factorization as

T(z) = E(2)D(2)F(2) (2.3.3)
for unique block matrices
D1 (Z) 0 0
0 DQ(Z) 0
D(Z) = . . ’
0 0 oo Dp(2)
2.3.4
I, 0 .. 0 Lo Eiw(z) ... Eun(2) (2.3.4)
Fgl(z) I,, [N 0 0 IV PPN EQ"L(Z)
F(z)=| ", . | B@=| S
le(z) Fmg(z) e ]Vm 0 0 e IVm

where Do (2) = (Dasij(2))1<ij<vas Eab(2) = (Babsij(2))1<i<va1<i<m, and Fra(2) = (Fraiij (2))1<i<m1<5<va
are vV, X Vg, Vg X 1y and vy, X v, matrices respectively. Define also the v, x v, matrix D,(2) = (Dayi;(2))1<i,j<va

by Dg(u) = —Dq(u)~!. The entries of these matrices define power series
Da;ij(2) = ZDELZ‘)]‘Z4 ) Eapij(z) = ZE%?UZ*T J

r>0 r>1
Dasij(2) =y DGz, Foasij(z) = ) Frayy? "

r>0 r>1

The following holds:
Theorem 2.3.1. [BK05, Theorem A] The algebra Y, is generated by the elements
(D) DSV casm, 12t <, 20,
{E£T3+1;ij}1§a<mv 1<i<v,, 1<j<vg41,7>1 5 (2.3.5)

(r)
{Fai1, a5} 1<a<m, 1<i<va 11, 1< <va, 215

subject to the relations (1.1) — (1.14) in [BK05].
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Note that by Equation (2.3.3) we obtain, for every 1 <1i,j <m,

m

Ti(z2)= Y Ei(2)Dr(2)Fi;(2).

k=max(%,j)

Remark 2.3.1. We highlight the following remarkable cases: for v = (n) we obtain the RTT presentation
for Y,,, while for v = (1™) we obtain a variation of Drinfeld’s presentation for Y;, introduced in [Dr88].

After writing T'(z) in block form as
Th(z) .. Ti(2)
Ta(z) o Thm(2)

where T, (2) is a V4 X 1, matrix, we can describe explicitly the matrices D, (2), Eqp(2), Fpa(z) from (2.3.4)
in terms of quasideterminants as follows:

Too(2) | Toapa(z) o T5(2)
Do(z) = Tay—ﬁ-l.,a(z Tau—i-l,z'z—i-l(z) Tau+1.m(z) 7 (2.3.7)
Thue)  Than() - Tin()
an(2) | Topya(z) - Ton(2)
Eap(z) = Tbuﬂ.b(Z) Té/ﬂb.ﬂ(z) Tbuﬂ,m(z) Dy(2)7", (2.3.8)
T Topa®) o Tanl?)
Toa(2)|  Thpya(z) - Ty(2)
7. (2) TV

b+1b+1(z) Tb”+1,m(z) (2.3.9)

Fba(z) _ Db(z)fl b+1.a

We are using following notation for the quasideterminant: suppose that A, B, C and D are m x n, m X q,

q X mn, ¢ X ¢ matrices respectively, with entries in an a ring R. Assuming that the matrix D is invertible, then

g’ .— A— BD"'C. (2.3.10)

Brundan and Kleshchev in [BK06] introduce particular subalgebras of Y, called shifted Yangians, that
depend on the choice of a shift matrix o.

Definition 2.3.2. A matrix ¢ = (sij);szl € Mat,xnZy is a shift matriz if s;; = s, + si; whenever
li —j| = 1li — k[ + |k — j].

Let v = (v1,...,Vm) be a tuple of nonnegative integers summing to n that is admissible for o, meaning
that s;; =0forall v +...+v4-1+1 <14, <wv1+...4+1v, and 1 < a < m. Then the (parabolic presentation
for the) shifted Yangian is defined as follows:

Definition 2.3.3. The shifted Yangian associated to the shift matrix o is the algebra Y,,(o) over C defined
by generators

(r) 1)
{Daiijs Dasigti<a<m, 1<ij<va, r>0 5
(r)
{ B at1:ij 1<a<m, 1<i<va, 1<) <vap1, 7>50,041 (1) 5 (2.3.11)

(r)
{F it a5ij  <a<m, 1<i<va i1, 1< <00, 50 41,0 (1) -

subject to the relations (3.3) — (3.14) in [BK06]. We use the shorthand $44(V) := Su 4. 4va.1+... 415 -
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Note that the usual (non parabolic) presentation for the shifted Yangian Y;,(o) is obtained for v = (1™),
that is always admissible. Also, there is a canonical homomorphism Y;,(¢) — Y,, mapping the generators

D((Lrl)J7 Et(lrz)z—i-l i) FLE:_)l azij Of Yn(o) to the elements of Y, with the same names. This homomorphism is

actually injective and its image is independent from the particular tuple v ([BK06, Section 3]). We can
therefore identify Y, (o) with a subalgebra of Y,,; these algebras clearly coincide for o = 0.
For an integer | > s; 5, + s,,1 called level, it is possible to define the following

Definition 2.3.4. The shifted Yangian of level I, denoted Y, ;(0), is the quotient of Y;,(o) by the two-sided
ideal generated by the elements {D'Er:;)ij}1§i,j§V1,TZl*ShL*Snl'

In the case o0 = 0, then Y, ;(0) =: Y,,; coincides with the Yangian of level ! introduced by Cherednik
[Ch8T].

Let o be the shift matrix o = (si;)j;—; given by the elements s;; as in (1.1.2), and let Y., (o) be the
quotient of Y;.(o) by the two-sided ideal generated by the elements {Df—s;)ij}lﬁi,jﬁm for k > p1 —s1,—Sp1 = pr.
In [BKO06], Brundan and Kleshchev describe an isomorphism of filtered? algebras between this truncated
shifted Yangian of level p; and the W-algebra W (g, f,T",0) in the case when I is an even %Z—grading:

K:Yrp (0) — W(g, f,T,0). (2.3.12)

To establish the isomorphism %, Brundan and Kleshchev describe a matrix PXT(z) = (Tij0)i,=; €
Mat, . U(g<o)[z~'] such that, for every 1 <i,j <r

min(p;,p;)+sij

k)
Tijo(z) = 6;5 + Z Tz(]())z k.
=1

Using the same setup and in particular the same basis for gl as in Section 1.1.1, the coefficients TZ(J 2) are
computed as follows:

k _s ~
Tio=>_(-1)" Do i) )Gk (2.3.13)
s=1 (’il,hl),...,(i.g,h.g)
(J1:k1)5--5 (s ks)
where (i17 h’l)7 R (isa hs)a (j17 kl)a ey (j57 ks) € T and
(1 ( (Zlvhl)_x(]lukl) +x(ZS,hs)—x(js,ks))+S:k,
(i) (im, hin) < 2(Jms k), Ym =1,

)
)
(iif)
)
)

.71 _.7’
(1V Jm+1 - 'Lm» Vm = ]- y S5
( m+1>hmyvm—1 —1

Remark 2.3.2. It is however important to remark that the Laurant polynomials Tjj,0(2) introduced in
[BKOG6, Section 9] are not exactly the same as in (2.3.13). This is due to the fact that in [BKO06] the authors
use a different combinatorial setup for the pyramid attached to a good %Z—grading T" and the numbering of
their boxes. Moreover, their construction is adapted to the W-algebra associated with the nilpotent element
€= D (i,h)eT €(i,h)(i,h+1), that in the case of an even grading is a subalgebra of U(g>o).
h<p;

Consis‘?ently, differences arise also in the parabolic presentations for the shifted Yangian Y, (¢) and for

the truncated shifted Yangian Y, ;(0); for instance, the Gauss factorization of T'(z) in [BK06] becomes

T(z) = F(2)D(z)E(z), where D(z), E(z), F(z) are matrices as in (2.3.4).

2The W-algebra is equipped with the Kazhdan filtration, while the truncated shifted Yangian is equipped with the canonical

filtration which is defined by declaring that the elements Dl(:z i Eg’l;)zj and Fb((:)u are all of degree r.
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Fixed a tuple (v1,...,vy,) summing to 7, by a process of Gauss factorization of BXT'(2) as in (2.3.3), we
obtain matrices

D(2) = (Dao(2))1<a<m = ((Da;ij(2))1<ij<va )1<a<m = ZDt(zkz)J 1<i,j§ya)1§a§m7

k>0
B(2) = (Bap(2)1<ap<m = (Babsij (2)1<i<v 1<apem = (Y Bz ™ 1<i§ua)1<a b<m (2.3.14)
1<5<m, = 22/ 1<abs

k _
F(2) = (Foa(2))1<ab<m = ((Frasij(2)) 1<i<uy, )1<ab<m = ((ZFlfa;)ijZ ") i<i<in ) 1<opem -
1<j<v, k>0 1<j<v, ==

These matrices can be described explicitly as in (2.3.7) - (2.3.9). Fixed an admissible tuple (v1,...,Vm)
summing to 7, and chosen [ and ¢ as before, the isomorphism « therefore sends the generators

{Da U}l<a<m 1<i,j<va, >0 5

(r)
{ a a+1;ij}1§a<m, 1<i<0a, 1<5<Vat1, 7>8a,at+1 (V) ) (2.3.15)

(r)
{1 asij 1<a<m, 1<i<va 41, 1<5 <0, 7504 1,0 (1)

of Yy, (o) to the elements of U(g<o) with the same name. These elements are proved to be invariant under
the adjoint action of the nilpotent subalgbra g>; of g, and hence belong to W (g, f,T',0).

To explain the connection with our work, remember that the polynomials 7T};(z) introduced in Definition
2.1.1 can be described by (2.1.5) or equivalently by (2.1.10).

Using Equation (2.1.10) in the case of an even %Z-grading it is easy to show that, up to a sign change
and a shift in the powers of z, the polynomials T;;(z) described there coincide with the elements with the
same name defined by Equation 2.3.13. In fact, from Equation (2.1.10) we obtain

sij+min(p;,p;)—1
T,

ij(2) = —(—=2)P1 055 + Z Ti(f)(—z)k, (2.3.16)

k=0
where s;; is as in (1.1.2). Moreover, the coefficient of (—z)* in Tj;(z) is, for every 0 < k < s;; +min(p;, p;) — 1,

—k+s;;+min(p;,p;)

k) s
Ti(j = Z (1) Z Z O(i0,ho) (i:1) O (i hatn) (o)

=1 (i0,ho) (s he1)ET° 20 (2.3.17)
(is,hs)ET no+...+ns==k

T<0€(i1,h1)(0,ho+10) T<O0C(in,ha)(i1,h14+14n1) " " T<OC(i5,hs)(is—1,hs—1+0s>1+ns—1)

We can reformulate (2.3.17) as

—k+s;;+min(p;,p;)

k s ~ ~
Ti(j )= - Z (-1 Z €(i1,h1)(1,k1) """ €(is,hs) (s ks) o (2.3.18)
s=1 (il,hl),...,(is,hs)
(jlvkl)v---v(j57ks)

where (i1, h1),. .., (is, hs), (J1,k1),---, (Js, ks) € T and

(1) z(im, hm) < &(Jm, km), Vm=1,.
(i) —(2(in, hn) = 2(ia, ka) + .+ 2(is, ho) f:v(js,ks)) + 5 = 535+ min(pi, p;) — ks
(iil) kmt1 > hm, Vm=1,. - 1;
(iv) j1 =1, is = J;
(V) Jmt1 =tm, Vm=1,...,s.
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Comparing (2.3.13) and (2.3.18) we clearly have

T = (“)FITo e and () Ty () = Ty (2). (23.19)
Taken the admissible shape v = (71, ...,7,), we can compute quasideterminants of 7'(z) and BX7T'(z) with

respect to the top leftmost 1 x r; block, namely
|T(z)|17""1 J"'l"' = E . . . ) ‘BKT(Z) I'rrl Jrrl'r' =

Y@ T () Tho() o Thol2)

By (2.3.19) and a straightforward computation we get [7'(2)|r,,, s, , = —(=2)P1 BT (2)|;
By (2.3.7) we also get |PXT(z)|1,, s,,, = Di(z2), whereas by Definition 2.2.3, |T(2)ls,,, s, = L(z).

Combining these results, we obtain

Try JrlT'

L(z) = —(=2)"* Dy (). (2.3.20)

This is significant not only because it provides another abstract connection between our results and the
work of Brundan and Kleshchev, but also because the commutation relations for D;(z) given in [BK0G,
Equation (3.3), Section 3] show that D;(z) itself is an operator of Yangian type. The same theorem [BK06,
Theorem 10.1] also proves the coefficients of D;(z) belong to W(g, f,T’,0). We have therefore obtained a
second and indirect proof for the properties of the matrix operator L(z) that we proved in Theorems 2.2.1
and 2.2.2.

As it was already highlighted in [DSKV17b, Remark 6.17]), note that as a consequence of Theorem 2.2.1 we
obtain an algebra homomorphism Y,, — W (g, f,T,0), sending the generator matrix T}, (2) € Y;, [[27}]] to
L(z) € Mat,, s, W(g, f,T,0)((271)). This homomorphism is the restriction of the surjective homomorphism
Y. (o) — W(g, f,[,0) (cf. (2.3.12)) to the subalgebra Y,, C Y;.(¢) corresponding to D;(z).
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Chapter 3

A finite set of generators for W(g, f,I', )

3.1 A conjecture on generators

Fix a subspace U C g complementary to [f, g] and compatible with the %Z—grading. For example, we could
take U = g°, the Slodowy slice.

Note that by the non-degeneracy of (-|-) the orthocomplement to [f,g] is gf. Hence, after identifying
g* = g, the direct sum decomposition dual to g = [f, g] ® U has the form

g:UJ- @gf’ (3.1.1)

where U+ is the orthocomplement to U with respect to the form (-|-). As a consequence of (3.1.1) we have
the decomposition in a direct sum of subspaces

S(g) = S(g’) @ S(g)U,

and we denote by
i’ 2 S(g) - S(g”) (3.1.2)

the surjective algebra homomorphism defined by 1/ (a) = 7/ (a) + (f|a), where 7/ : g — g7 is the projection
with kernel U+. Recall that we can identify gr I; C grU(g) with the two-sided ideal S(g)(b — (f|b))pem Of
grU(g) = S(g). By assumption the subspace U is compatible with the grading, therefore since g/ C g<o, we
have 7/(g~1) = 0, and it follows that gr I; C Kernf. Let us denote by the same letter n/ be the unique
algebra ho?ngomorphism such that the following diagram commutes:

S(g) —L— S(g")
i ,/}ﬂ (3.1.3)
S@)/erh

In [Pr02], Premet gives a description of a PBW basis for W(g, f,T',1), with [ C g1 Lagrangian and I the
Dynkin grading associated with f:

Theorem 3.1.1. [Pr02, Theorem 4.6] There exists a (non-unique) linear map

w:g’ — W(g, f,T,1) (3.1.4)

such that w(z) € FAW(g, f,T,1) and nf(gra(w(x)) = =z, for every x € 9{7& Moreover, if {z;}{_,,t =

dim g7, is an ordered basis of g’ consisting of adx-eigenvectors x; € g{_Ai, then the monomials

form a basis of FAW (g, f,T,1), A > 0.
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For an analogous of Theorem 3.1.1 in the classical case, see [DSKV 14, Theorem 2.4]; it is in fact proved
that the classical affine W-algebra is an algebra of differential polynomials, parametrized by g/.
For our purposes, given a pyramid p, we fix U to be the following subspace of g:

U = Spanc{e|itr)iip) | 1 <4, <70 <k <min(p;,p;) —1}. (3.1.5)

It is proved as in [DSKV16b] that for this choice of U, the equality g = [f, g] © U holds. For the choice of U
as in (3.1.5), it is easy to compute that its orthocomplement U+ is the following subspace:

Ul:SpanC{e(jyk)(iyh)|1§i,j§r,1§k§pj—l,1§h§pi}

(3.1.6)
® Spanciepyn | 1 <i<j<r,pj+1<h<p}.
We also fix the basis of g/ that is dual to the basis of U in (3.1.5). This is given by the set
where
k
Jige = Z €(i,ps+h—k)(j,h+1) * (3.1.8)
h=0

In [DSKV16¢]| the following conjecture is introduced with the purpose of giving a (finite) free set of
generators for W (g, f,T',0) (where I is the Dynkin grading),

{Wij;k = w(fji;k) | 1 S Z7j é T,O é ]C S mln(pl,p]) — 1} (319)

which satisfies the conditions of Theorem 3.1.1. Note that, since the collection of elements f;;,, as in (3.1.7)
constitutes a basis of g/, the assignment

Fiik = w(fjin) = Wigike
is sufficient to uniquely determine a linear map w : g/ — W (g, f,T',0).

Conjecture 3.1.1. [DSKV16c, Conjecture 8.2] There exists a unique set of generators Wij = w( fjik),
1<i,j5<r,and 0 <k < min(p;,p;) — 1, of W(g, f,T',0), for which the following identity holds

L(z)1= |21y + F + WS%E + Dl 1=|—(—2)P1, + W) 1, 700 s (3.1.10)
where
min(p;,pj)—1
k=0
and

()

Moreover, I, Jr are as in (2.2.6) corresponding to the subsets T = J = {1,...,r1}. In this case, the
linear map w : gf — W (g, f,T',0) defined by (3.1.9) satisfies all the conditions of Premet’s Theorem 3.1.1.

Note that Conjecture 3.1.1 is the finite counterpart of an analogue result that holds for the classical affine
W-algebra case (see [DSKV16Dh]).
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3.2 Definition of the matrix W (z)

We shall therefore define a suitable matrix W(z) € Mat, W (g, f,T',0)[z] that, as we will later show, provides
a solution to Conjecture 3.1.1. Unfortunately, we cannot give a compact formulation via a quasideterminant
as in Definitions 2.1.1 and 2.2.1. Here the definition is recursive, and it depends on the number of columns
of the pyramid p. The recursive nature of this definition, however, allows us to determine completely the
matrix W (z) only in the case of an even 3Z-grading, namely an even pyramid p.

Definition 3.2.1. Let I" be an even good %Z—grading for a nilpotent element f associated with the partition
(p1 > p2>...>p.). If pp =1, namely if the pyramid p consists of a single column, define

Wi (Z) = 6Z]Z + e(j’l)(i’l) . (321)

Ifpi > 1, welet W;;(2) = Wij (2)11, where Wm(z) € U(g)[z] and 1| is the image of 1 in the quotient U(g) /I
(in other words, W;;(z) coincides with the image of Wi]‘(z) under the quotient map p; : U(g) — Ul(g)/Ii,
cf. (1.1.14)). Denote, as in Section 1.1.3, by p (resp. p’) the pyramid obtained from p by removing the
leftmost (resp. rightmost) column. Assume by induction that the matrix /I/Iv//p(z) € Mat,, U(g?)[z] (resp.
WP (2) € Mat,x, U(gF)[z]) has been defined. Then, we define W (z) via the following recursive formulas,
where we have to possible ways to proceed, depending on which is the shortest column of p.

If t; < s1, namely if the leftmost column of the pyramid is the shortest, define

a(W5(2), jzt+1
ty
Wi (2) G Gapr—1)> L WE ()] =Y 0r(Wih (2))(6h + Eiopr) (hpr)) (3.2.9)
K h=1 e
+ Z a(Wi ()W, 1) s J<ti.
h=t1+1
Whereas if s1 < t1, namely if the rightmost column of the pyramid is the shortest, define
o (WP (2)) i>s 41
s1
__ o (WP (2 €2 (i1)] — Oinz + € ) (WP (2
W(e) = [0 (W35 (2)), €,2) 1) hz::l( w2+ €mnyn))or(Whi(2)) (3.2.3)
+ Z UT(WﬁL;ph,fl)UT(WSj('z))7 i S S1-
h=s1+1
Note that we denote by W,;I};phil (resp. Wf,;phil) the coefficient of the maximum power of (—z) in

7

W,f}(z) (resp. th/(z))

We shall denote by left recursion the recursion defined by Equation (3.2.2), and by right recursion the
recursion defined by Equation (3.2.3).

Example 3.2.1. Let p; = 2 and suppose t; < s1. In view of Definition 1.1.6, p is in this case aligned to the
right. Then,

0% + €(j,1)(i,1) » j>ti+1
N —6i52% — di<i, (BG.2)2) T €G.6)Z FeGEn T Y, EhEHEGD (D)
Wii(z) = h>t1+1
i “
= e .)EG2)(h2) j<ti.
h=1
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Example 3.2.2. Let p; = 3 and suppose that p is right-aligned (it implies ¢; < to < r = s1). Then,

dijz + ey, Jj=>ta+1
—0ij2% — Bi<t, (E(j,2)1.2) T €1 D)Z T €201 T Lnta41 ERDEDEG (1)
-3 €(h,1)(i,1)€(4,2)(h,2) 5 t1+1<5 <t
€3y (i) — Doy Btz + €(u1)(5,1)) €(5.3)(1,2)
= =3 (emayin) — ity (Baz + enyiin)) Oenz + Enaye2))
+ Zt2t2+1(6it2 + e,1)(i,1))eh,1)(t,1))) (OnsZ + €(5,3)(h,3))
3 ey — ot Bz + ey (1) (012 + Eh2)(t.2))
+ D ity 41 0z + e 1)) en,1ye.1))) (€2 (h2) + €1y (h,1))
+ Yzt 1 (Gniz + enyan)(€Gann = Lot e () EG2)w2)
D tta 41 CE1) (1) EGD) (1)) J<ty.

Remark 3.2.1. When the pyramid p reduces to a rectangle, namely when the partition is (p1, ...,p1) = (p1*),
the matrices T'(z) and W(z) coincide. This is easily checked proceeding by induction on the number of columns
of the pyramid p, the base case p; = 1 being obvious by comparing (2.1.4) and (3.2.1). The inductive step is
given by the fact that for a rectangular p, 71 = s; = r. As a consequence, the recursion in Equation (3.2.2)
(resp. (3.2.3)) coincides with the recursion in Equation (2.1.11) (resp. (2.1.12)).

Example 3.2.3 (Principal nilpotent). Let p = (N) be a partition of N > 1, namely the partition whose
associated nilpotent element f is principal nilpotent and has nilpotent Jordan block form consisting of a
single block

0O ... ... 0
1 : N—-1
f= . - ) :Z€h+1,h~
: . o h=1
0o ... 1 0

where for simplicity we are numbering the blocks (and the corresponding basis of gly) with the numbers
1,..., N from right to left. The associated pyramid is composed of a single row of length IV, the corresponding
grading is even and we can write deg e;; = j — . As a consequence, we can identify W (g, f,I',0) with a
subalgebra of U(g<o) (cf. Remark 1.2.1). From Remark 3.2.1, and by Definitions 2.1.1 and 2.2.1, we have

W(z) =T(z) = L(z) = |21y + F + m<oE + D|1~n € U(g<o)[2], (3.2.4)

where we simply write E = Zzszl e B and D = — Ziil(z — 1)E;;. Note that in this case the quasideter-
minant L(z) has polynomial form. We can expand the quasideterminant and get (cf. (2.1.5))

N—-2

W(z)=T(z) = L(z) =en1 — ) _ (-1 >

1=0 1<ho<...<hy<N—1 (3.2.5)

((5}10)12 + éh071)(6h17h0+12 + éhl,ho-i-l) T (5hl~,h171+1z + éhz,hl71+1)(5N7hz+1Z + éN,hz+1) )

where &;; = e;; — 0;;(¢ — 1). We can rewrite Equation (3.2.5) as
N—1

W(z2) = L(z) = =(=2)V + Y Wi(=2)", (3.2.6)
k=0

for unique elements Wy € W (g, f,T',0) (cf. Theorem 2.2.1). These results agree with Conjecture 3.1.1. The
elements Wy, can be computed as in (2.3.17):

N—k
s ~ ~ -
W =— E (-1) E E Oho,10h +ns, NT<0Chy ho-+no T<0Chs hy+14n1 ** * T<OChy b1 +8,51+ns1 -
s=1 1<hg,....,hs—1<N—1 n;>0

1<h.<N no+..+tns=k
(3.2.7)
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For instance, Wn_1 = €11 +... +enn — N(A;_l). Isolating, for each 0 < k < N — 1, the term in (3.2.7)
corresponding to s = 1 we obtain

k k
E T<OEN —k+no,14no = E EN—ktno,14n0 — Ok+1,NT0
n0=0 n0=0

confirming the conjectural dependence Wy, = w(fy), where f, € g/ is defined as in 3.1.8.

By Theorem 2.2.2, [L(z), L(w)] = 0, which implies that [Wj, Wj,] =0 for all 0 < h,k < N — 1. Therefore,
we can identify W (g, f,I',0) with the polynomial algebra C[Wy,...,Wx_1] (cf. Example 1.2.2). These
commutation relations also allow us to identify W (g, f,T',0) with the truncated Yangian Y7 x (cf. Equation
2.3.1 and Equation 2.3.12).

Note that the quasideterminant in Equation (3.2.4) coincides up to a sign (see Proposition 3.2.1 below)
with the row determinant of the same matrix zly + F 4+ m<oE + D:

z+ e €21 €31 ... EN1
1 e +z—1 ez ... eN2
W(z) = |21y + F + 1<oE + D|in = Frdet 0 1
0 1 evn+z—N+1

We have thus obtained the same explicit formula for the generators of the W-algebra for gl and a
principal nilpotent element that was presented as a special case by Brundan and Kleshchev in [BK06, Section
12]*.

A simple computation shows that

Proposition 3.2.1. Let R be a unital associative algebra and let A € Maty« n R be a matrix of the form

aj; a1 ... ai1N
1 az> ... asN

A:
0 1 aN N

Then,
(=N YAl n = rdet A= cdet A,

where rdet denotes the row determinant and cdet the column determinant of A.
Note that for a generic A € Mat y« y R the row determinant and the column determinant do not coincide.

Example 3.2.4 (Rectangular nilpotent). Let (p1,...,p1) = (p]') be a partition of N consisting of
r =T equal parts of size p;1 > 1. It corresponds to the so-called rectangular nilpotent element f =

1<i<r1 €(3,h+1 . The corresponding grading is even, with deg e(; »)(;.x) = k — h and the corresponding
1 +1)(4,h) (i,h)(4,k)

1<h <P1
pyramid consists of a rectangle of size p; x 7.

In this case it ease useful to identify
Matn« nC = Maty, xp, C ® Mat,, xr, C (3.2.8)
by mapping E(; p)(j,x) = Enk @ Ei;j. Under this identification we have

Iy —1, ®1,,

p1—1

FH4rmeoE — Z Epiip®1,, + Z Z e(j,k)(z’,h)Ehk ® Eij,
i,j=11<h<k<p1

1See Remark 2.3.2
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P1
D= - Z ri(h = 1) E nyin — — Zﬁ(h —DEp @1, .
(i,h)ET h=1

As for the principal nilpotent case, we can identify W (g, f,T',0) with a subalgebra of U(g<o) (cf. Remark
1.2.1). By Remark 3.2.1, together with Definitions 2.1.1 and 2.2.1, we have

p1—1

W(z)=T(z) = L(2) = |z(1,, ® 1,,) + Z Epip @1y, + Z > eGmin Bk © Eij
1,7=11<h<k<p;

p1
- Zrl(h —1)Epp @ 1py |10, € Maty, xr, U(g<o)2],
h=1

where I J; are as in (2.2.1).
Let é(jk)7(ih) = e(jk))(ih) — 6(i,h)(j,k)T1(h — 1) We have

p1—1

|2(1,, @ 1,,) + Z Erp1p @1 + Z Z (k) (i) Erk ® Eijl1, 5,
i,j=11<h<k<p

™1 71
= > e Fij - ( Y @z tegnen Caaen o Chm-nen) ®Eij>
ij=1 ij=1
0 dijz+ €322 - €(j,p1—1)(i,2) X
[ : .. .. : -
(11,31—1 o1, 30| : : . - Eij) (3.2.9)
ij=1 | 0z + €3 —1)(ipa—1)

0 0

€(5,p1)(4,2)

1 .
i,j=1 6(j7171~)(i7171—1)

0% + €(,jp1)(inp1)

By expanding the inverse matrix in the RHS of (3.2.9) in geometric power series, we have, for every
1 S i,j S 1,

p1—1 1

Wij(2) = Lij(2) = ey + D (1" Y >

11,e0is=11<h1 <---<hs<p1—1

i ~ (3.2.10)
(5(1'1’;11)(1”1)2 + e(ihhl)(i’l))(6(i27h2)(i1,h1+1)z + e(iz,hz)(i1,h1+1))
X X (B hy) (e hom1+1) 2 F €(ig he) (emr o1 4+1)) (G0 he+1) (Gip) 2 T €(Gp1) (i he+1)) -
Note that L;;(z) = T;;(z) = W;;(2) has polynomial form
p1—1
Lij(2) = —=(=2)""655 4+ > Wig(=2)*, (3.2.11)
k=0

for unique elements W;;., € W (g, f,T',0) (cf. Theorem 2.2.1). These results agree with Conjecture 3.1.1.
We can compute the coefficients W;;.;, as in (2.3.17). Isolating the term corresponding to s = 1 we obtain

k k
§ T<0€(j,p; +no—k)(i,14no) = E €(j,p;+m0—k) (i,14n0) — 050k p,—17110 = fjizk — 0ij0k p,—171M0
no=0 no=0

which agrees with Conjecture 3.1.1.
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Combining Theorem 2.2.2 and Equation (3.2.11) we can explicitly compute the commutation relations
among the generators Wijp, for 1 <¢,5 <r,0<k <p; — 1:

min(p;—1—7,s)

[Wij;ry th;s] = Z Whj;r+a71Wik;sfa - Whj;sfaWik;r+a+1 ) (3212)
a=0

where we set Wij.p, = 0i5.
In analogy with (3.2.8), we shall identify gl = gl,, ®gl, , by mapping € xy(i,n) > €kxn ® €j;. Then, by
(3.2.10), for every 1 < 4,j < rq,

zZ+ el €21 €31 ... €p1
1 622—|—Z—1 €32 €p,2

Wij(z)Ti'(z)Lij(Z)Tij< 0 1 : >,

0 L z+epp —p1+1] 4

where T;; : T(gl,,) — U(gly) is the map as in [BK06, Section 12] and T'(gl,, ) is the tensor algebra of g, .
As a consequence, the generators Wi,y coincide?, up to a sign, with the generators obtained at the end of
[BKO6, Section 12], in the special case of a rectangular nilpotent element f.

Example 3.2.5 (Short nilpotent). As a particular case of Example 3.2.4 we find the short nilpotent f,
whose associated partition is (2,...,2) = 2™ (this only holds for even N). The corresponding %Z—grading
reduces to g =g_1 D go D g1-
In this case,
Wz(Z) = Lij(Z) = _Z25ij — Wij;lz + Wij;O . (3213)

By Equation (2.3.17) we obtain the following formulas for the generators:

Wiji = €(j.2)(,2) + €(,1)(,1) — 0ijT1 5

(3.2.14)
Wijio = eG2)n) — O ehn)in (€G.2yme) — Onir)

h=1

for every 1 <4, < 1. By (3.1.8), fji1 = €(j,1)(i,1) T €(j,2)(i,2) and fji0 = €(j,2)(,1); therefore Wiz = w(fji;1)
and W0 = w(fji,0), as conjectured in Conjecture 3.1.1. By Theorem 2.2.2 and Equation (3.2.11) we can
compute the commutation relations between the generators. For any 1 < i, 5, h, k, < r; we obtain:

(Wij:00 Whisol = Whjia Wikso — WhjoWik (Wiji1, Whio]l = 0njWikso — 6 Whiso

(3.2.15)
(Wij:0, Whis1] = 0njWikso — 65 Whiso (Wiji1s Whis1] = 0 Wik — 0 Whijst -

As in Proposition 2.1.4, we are now addressing the issue of the matrix W(z) being well-defined.

Proposition 3.2.2. Let p; > 1 and t; = s1. Suppose moreover that it is possible to remove both the leftmost
and the rightmost column of p. Then, the matriz W (z) is well-defined. Namely, the result of the application of
recursion (3.2.2) followed by recursion (3.2.3) coincides with the result of the application of recursion (3.2.3)
followed by recursion (3.2.2).

Proof. When p; = 2, the pyramid reduces to a rectangle and the recursion defining the matrix W(Z) agrees
with the recursion defining the matrix 7'(z). The result therefore follows from Proposition 2.1.4.

Suppose now p; > 2. Since 0, 0 o7, gy 0 0y : U(g?) := Ugly_¢,—s,) — Ul(g), the claim follows almost
immediately as in Proposition 2.1.4 by writing down the explicit formulas in both cases. However, when both

2See Remark 2.3.2
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1,7 < t; = s the difference between the expression obtained applying recursion (3.2.2) followed by (3.2.3)
and the expression obtained applying recursion (3.2.3) followed by (3.2.2) is not trivial:

I T
= " leGan i1 0o (Wi, orar(WE () + > aion(Wh ()owon(WEL, 1), eaan).
t=t1+1 h=t1+1

(3.2.16)
We will therefore proceed with an analysis of this case. For p; = 3, aral(Wif;pFl) = groi(ew) 1)) =

— !

P

e G,2) and oo (Wyo
7Zero.

We can therefore suppose p; > 3. Consider the first summand in (3.2.16); if t5 < so we can apply the left
recursion a second time and obtain

) = owor(e(j1)(h,1)) = €(j,2)(h,1)- Both brackets in (3.2.16) are therefore clearly

oot (W, (2)). t>
UTU[(WZ%)/ (Z)) — [e(t p1—2)(t,p1—3)>» UrUl W’Ltp Z UrUl )(5kt2 + e(t p1—2)(k,p1— 2+6k<31))
~2 ’
+ Z UTUlQ(Wikp (2 ))UrUlQ(WikZ:s;pkﬂ) ) t1 <t<t,
k>ta+1
(3.2.17)

where for each 1 < ¢,5 < r we denote by W:jp,(z) € U(g’?)(z) the polynomials as in Definition 3.2.1,
where the pyramid corresponding to gzp/ is obtained from p by removing the two leftmost and the rightmost

columns. More generally, W;pk (2) € U(ghpk)(z) are the polynomials as in Definition 3.2.1, where the

pyramid corresponding to ghpk is obtained from p by removing the h leftmost and the &k rightmost columns.
The commutator of (3.2.17) with e(; ,)(jp,—1) is clearly (term by term) zero.

On the other hand, if t2 > s9, we can apply the right recursion a second time and obtain (by hypothesis,
i <51 < s2)

S2

—~ —~ 2 — 2

orai(WY (2)) = ovoi([or(WY (2), e 2)6,1)]) — Z 0,010k + €1y ,1)) oroor (Wi (2))
k=1
— 2
+ 3 oo (W, oo (W (2))
k>so+1
—~ 2 52 - —~ 2 — 2 —~ 2
= [ o2(WY (2),eu.3)0.2))) — Z(5¢kz+6(k,1+5k551)(i,2))0103(W1£ (2)) + Z 0107 (Wil —)o107 (Wi (2)).
k=1 k>s2+1

Note that if p; = 4

—~ 2 —~ 2

(0102 (Wit (2)); [e(.p) G —1)s €3y .2)]) = 0107 (Wit (2)), ijej )] = 0

because z(j4) = —% = —2 while (i2) = 4 — 1 = 1. In any other case [e(j p,)(j.p1—1)> €(i,3)(,2)] = 0

—~ —~

Thus, to compute [e(; p,)(jpr—1)> O—TGZ(Wif;pt—l)] we reduce to compute [€(; p,)(jpr—1)> Ulaf(W,ﬂ (2))], t >

t; + 1, and then take the coefficient of the correct power of (—z).
— 2
If ty < s3, we compute W.; (z) using the left recursion, and the result follows from (3.2.17). Otherwise,
we iterate this process k times, namely we keep applying the right recursion until either we reach a k such
that t2 < ssyr and we can finally apply the left recursion (then the result follows from (3.2.17) above),

or until we reach k such that k + 3 = p; — 2 (this is the case if ¢ = r and there is only one column of
. . — 3+k
maximal length). In this case, [€(jp,)(j,p1—1) Oro0e F(WS (2))] = le(ip))Gpr—1)> Tr0102 T (€ 1) (4,1))] =

5
[eGip) G -1 €t <pr-2) (< —1)] = o
A similar argument, swapping the roles of the right and left recursion, shows that [O’lO'r(Wh‘Z;_ph_l), e,2)3i,1)] =
0, proving Proposition 3.2.2.
O
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It is fundamental to observe that the associative algebra injections o; and o, although inducing well
defined quotient maps as illustrated by Diagrams 1.1.21 and 1.1.22, do not extend to maps between the

corresponding W-algebras: W(g'p, fP.IrP, ['p) RN Wi, f,T,0) I W(gpl, Y [”/). In Example 3.2.6, we
show an instance of this fact.

Example 3.2.6 (Counterexample). Let (3,2, 1) be a partition of N = 6, and suppose that the corresponding
pyramid p is right-aligned. By Definition 3.2.1 we can compute

Wﬂ (2) = eq2y21) — eanen (2 + €azya2)) — (2 + e@i)21))ea2)(22) + €(31)(21)€(11)(31) -
We can also directly compute
9;1 = Spanc{€(1,1)(1,2)»6(1,1)(2,2), €(2,1)(1,2)) €(2,1)(2,2) €(3,1)(1,2)> 6(3,1)(2,2)} .

Therefore it is a straightforward computation to check that p([gg17 Jl(W;q(z))]) = 0. However, once we

consider e(12)(13) € g>1 but not in Ul(glﬁl) we have

plleazyasy or(W () = eanyen) #0.
Proposition 3.2.3. For 1 <i,j <r the polynomial sz(z) € U(g)[z] has the following form:
min(p;,p;)—1

Wij(2) = =dis(—2)P + Z Wijie(—2)". (3.2.18)

Proof. The proof works by induction on the number of columns of the pyramid p. For the base case p; =1
the claim is obvious, since by Definition 3.2.1 we have
Wij(2) = dijz + ey = —(=2)' 65 + Wijio(=2)°.

For p; > 1 we need to make use of the recursive part of the definition of W (z). Suppose t; < s1, the
other case being analogous. Thus, for j > t; + 1 by the induction hypothesis we have

/,
min(p},p;)—1

Wii(2) = al(Wh(z)) = —(—2)Pid; + Y. oW )(—2)*
k=0
min(p;,p;)—1
= (=28 + Y. a(WE)(=2)" (3.2.19)
k=0

Last identity is due to the fact that if p;p = p; then p; = p1, and min(p;p,pj) = p; = min(p;,p;). Formula

(3.2.18) then holds with W” k= JI(WJ k)
For j < ty, by the (3.2.2) and from the induction hypothesis we get

p,/ip—l t min(pzp,pl—l)—l
Wi (2) = [eGpnGa -1 P at(WE)(=2)" = (*(*Z)pl*l&h + > Ul(Wih;k)(*Z)k> (Onjz + €(jpr) (hp1))
k=0 h=1 k=0

min(p, P pn)—1

n Z ( (—2)P 5y, + Z U[ Wink) )k>al(W/Z}ph71)

h=t1+1

p—l

- Z €(,p1)(d,p1— 1)70l(Wz], (= )k - (*Z)pléij + 5i§t1é(j,p1)(i,p1)(*Z)plil

STt

ty mln(p ,p1—1)—1

+ 01<W£k ) Z Z Ul(Wih;k)é(j,pl)(hm)(_Z)k
1 h=1

3

=~
Il
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min(p, 7ph) 1

— Ozt 101 (Wi ) (= Z Z a(Wih oWy, ) (=2)" (3.2.20)
h=t,+1
pi—0i<i; —1
= Z [€Gip1) Gopr—1) Ul(Wi?;k)](_z)k — (=2)" 05 + 5iSt1é(jypl)(ivpl)(_z)pl_l
k=0
pi—1 t; Pi—0i<e; —1
+ Z Ul zhk 1) Z ‘7l(I/Vih;k)é(j,pl)(th)(7’2)]C
h=1 k=0

T mln(Pi_5i§t1;Ph)_1

+ ) 3 a(Wh Do (Wh ) (=2)k.

h=t1+1 k=0

Thus, W”(z) has the required form since min(p;,p;) —1 = p; — 1 for j < t;. For the last equality we have
moreover used the following decomposition

p pifl
Z (Wih ) (=2) = 8z 40 Zoz ) (=) iz Y (W) (=2)"
k=t ~ Pz‘*l ., k=t
= 5i2t1+10—l(Wi‘z;pi—l)(_z)pi + Z Jl(Wiz;k—l)(_Z)k :
k=1
O
3.3 Main properties of the matrix W(z)
3.3.1 Invariance of the coefficients of W (z)
Theorem 3.3.1. Suppose that the pyramid p is aligned to the right. Then
W(z) € Mat,«.W (g, f,T,0)[z]. (3.3.1)

Namely, p([a,Wij(z)]) =0 in (U(g)/I)[2] for every a € g>1, 1 <i,j,<r.
Proof. We work by induction on the number of columns of p. The base case is p; = 1, where
W(Z) = ZILN +FE¢€ MatNXNU(g)[Z] = MatNXNW(gv f7 Fv 0)[’2]

because this case corresponds to the nilpotent element f = 0, when W (g, f,I',0) = U(g). Since we will use
a two step induction, let us now consider the case p; = 2. In this case, g>1 = g1 = Span{e(q,1)2) | 1 < a <
r,1 <b <t }. In this case, we can write W;;(z) explicitly as in Example 3.2.1: for j > t; + 1 we have

plleyw,2), Wii(2)]) = p(leqa,1)v.2), €1y 60)]) = —p(aie(j1)(b,2)) = —0aidjp =0, (3.3.2)
since 1 < b < t; while j > ¢; + 1. On the other hand, for j < ¢; we have

plea)(b,2), Wij(2)]) = =di<t; (0p5p(e(a,1)(i,2)) — dair(€(j1)(b,2)))% + P(Obj€(a,1)(i,1) — Oai€(j,2)(b,2))
—dai D, Plemne2eG0Y) ~ ezt +1(a 1) (.1)€G102)

h>t1+1
t1 t1
+ 6ai Z p(e(h,1)(6,2)€(5,2)(h,2)) — Obj Z P(€(h,1)(i,1)€(a,1)(h,2))
h=1 h=1
= —0i<t, (0bj0ai — 0aidjb)2 + 0bj€(a,1)(i,1) — 0ai€(j,2)(b,2) — ai Z pllernye2)segnmnl)  (3.3.3)

h>t1+1
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t1

— Gazt111005€(a,1)(1,1) + Sai(€(j.2)(b2) = O057) + Sai D P[e(h,1)(6:2)2)(h.2))) — Bascts bj€(an) (1)
h=1

= 0bj€(a,1)(i,1) — 0ai€(j,2)(6,2) T 0aiObj (1 — 1) = da>t, +10b5€(a,1)(i1)
+ 0ai(€(j,2)(b,2) = Ob57) + 0aidbjts — da<t, Obj€(a,1)(i1) =0 (3.3.4)

Next, suppose p; > 2 and suppose that the (3.3.1) holds for p; namely suppose that
0= p?([g2,, W (2)]) € (U(g7)/U(a")(b - (fplb)>beg'§1)[«2],

for every 1 < 14,5 <r.

We can decompose g>1 = Ul(g>1) S3) g>1, where g2, is the complementary subspace to al(glgl) in g>1
consisting of all elementary matrices e(; p)(;,r) such that z(jk) = —%. -

First, consider the commutator between Wm(z) and oy (g,gl); we shall distinguish two cases. If j > ¢; + 1,
then WZJ(Z) = JI(W;’;(Z)) and p([al(ggl), sz(z)]) = 0 because of the induction hypothesis (cf. (1.1.21)). If
j < t1, from (3.2.2) we have the following identity in (U(g)/Ii)[z]:

ty
p(le@ay iy Wis(2)]) = p[eaq) .0 (€61 Gapr—1), (W, )= > plle(aq k) 1 WE(2) (0ni2 + €(i.p1) (hpn)))
h=1
T
+ Z )by L WEE(WE )+ > plo W2 (2))[€aa) o) Uz(WhJ,phq)])

h=t1+1 h=t1+1

—~

= p([e(a,q)0.k): [€G.p1) G 1), L W5 (2))]])

for any e(q,q)(b,k) € al(glﬁl). This holds thanks to the fact that [e(,q)(b,k)s €(p1),(hp)] = 0 for (a,q), (b, k) €
TP, and by using the induction hypothesis. Moreover, to show that the third term in the RHS vanishes

we used the fact that by the induction hypothesis W;ij.ph_l € W’ (cf. equation (1.2.2)) and Il C W' is a
bilateral ideal. By the Jacobi identity,

— —

P[€(a,q) b, [€Gp1) Gipr —1), TTWE D) = p([e(a.q)6.0) €Gpr) Gupr —1))s L (W5 (2))])
+ o) o1 1)+ [a,a) b k) s TLWE ()]

where [e(ayq)(b,k),e(j7p1)(j7p1_1)] = —0(j,pr—1)(a,9)€(i,p1)(b,k) = O for degree reasons. Through the induction
hypothesis we can similarly check that

(GG —1)» €y oty 1 (WE(2))]] € U()(0 = (1b))begs, -

We shall now consider the elements of g2';. By Lemma 3.3.1 below, it is sufficient to consider elements
of the form e(q p, —1)(p,p,), With 1 < a <t and 1 < b < t;. In fact, foreach 1 < h < p; — 1, €(a,h)(bp1) =
[€(a,h)(@p1—1)s Eapr—1) o) | With €an)(api—1) € 01(82))-

Lemma 3.3.1. Let z,y € g>1 be such that [x,ﬁ;ij(z)], [y,ww(z)] € I[z], where I = U(g)(b — (f1b))vegs, -
Then, .
[[z,y], Wi;(2)] € I]2]. (3.3.5)

Proof. Use the Jacobi Identity on the commutator [[z,y], Wz](z)] O

We shall distinguish between three cases. Each time we will apply the recursion in (3.2.2) twice. First, if
j>2ta+1

—~2

e 1)) Wii (2)]) = p([€(aips—1) (b.p1)> 07 (Wi (2)]) = 0

because [€(q,p,—1)(b,p1)> 012(9219)] =0.
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Second, if t; + 1 < j <t the two applications of the recursion give

—_— — —~2
pleap—1), pl)aW“(Z)]) ZP([G(a p1=1)(b.p) SLWE D) = plleapy—1)bip1)s [€Gp1—1) G —2)» 07 (Wi (2))])
—~2 —~2
= plle@p-ne ,p1>7201 ) (6h% + €Gipr—1) (b)) + P(e(apn-1)bp)s D, T W (2)e?(W,E L))
h>to+1
ta
=—p(Y_ o7 (WP (2))(=0an(jops—1) (bpr)) = oF (WP (2))64; = 0.

h=1

Finally, if j < t; the application of the recursion gives us at first

ple(api—1) 1) Wii(2)]) = p([€(apr—1)(bp1)s [€Gp1) Gips — 1)aUz(Wp( 2))])

tl tl

= p([e(ap -0 w2 T Wi (2D Gns2 + EGpyhpn) = PO 0t(Wh (2)) €@ —1)bp1)» €Gipn) (hpn))
h=1 h=1
+ p( Z [e(a,pl—l)(b,pl)y Ul(WiZ})L(Z))]Ul(WhZ},ph—l)) + p( Z Ul(Wi:Z(Z))[e(a,pl—l)(b,p1)7 o—l(WhI;,ph—l)])
h2t14+1 h>t1+1
=A+B+C+D+E.
Remark 3.3.1. crl(Wh] pn—1) is the coefficient of (—2)Pr~1in O'Z(W;f} (2)). We can compute it explicitly:
—~2 b2 —~2
[e(jyprl)(mnlﬂ)7 U?(Whip )] +o; (thph 2) ZUl2(thiphfl)e(j,plfl)(k,plfl)
k=1
— 2 —2 9 —~2
a(W)l 1) = + D oWl o (Wi, 1) h>ty+1
k>to+1 .
EGpi—1)(hpn—1) T OT (W5 o), Hh+1<h<ty
~ —~—2
EGpi—1)(han—1) T OT (W5 5), h<t.

After a second application of the recursion we obtain the following;:

ng
A= [e( a,p1—1)(b,p1— 2)701 Zal e(a pr—1)(s,p1—1)0b; Jr‘TZ (Wia (Z))e(j,pl)(b,pl)a

B = —a}(W,2(2))0;2 — of (W”( ))e(g,m)(bpl)JrUz (W, (2))85(N — 1) — 5b701 (W, ()t

a

—~2

C= _5aSt15bj ([e(a,p1—1)(a,p1—2)’ U?(Wiap(z))] - UIQ(W (Z))(Z - N+t + 7' Z Ul2(Wilp(z))e(a,m—1)(l,p1—1)

+ Y WL N WL, )

[>ta+1
[2)
—~2 -2
D=—-8; Y ot(W,l(2) ==t —tr1)ol(W,7(2)),
h=t1+1
ta
—~2 =52
B = ~duzt, 4100 ([%,m Dam-20F W ()] = oF (WL ()= = N 11+ 82) = 3 0P (W (2))eam -1 -1
=1
—~2 —2
£ 3 PR, ) 4y S oFW @)W, ).
I>ta+1 I2t2+1

These terms almost completely cancel out, it only remains to prove the following identity:

—~2
[e(aypl—l)(b7p1—2)7J?(Wibp(z))] [e(a,pl 1)(a,p1—2)5 91 (W p( )]

or, equivalently,

Ry Py

[e(a,m)(b,pl—l)aUl(Wig(Z))] = [e(a,pl)(a,pl—l)vUl(Wiz(z))]' (3.3.6)
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It is sufficient to show that the LHS does not depend on b, 1 < b < t5. Applying the recursion for
o(Wi(2)) we get

—~ —2
[e(apn) (b1 —1)s TL Wi (2))] = [€(apr) (b —1)s [0~ 1) (5.1 ~2)> 97 (Wi (2))]]

—~2

= > Wl (2)e(apn) b —1)s € —1) (1 1)
h=1 » t »
= [e(ap) (b —2)> T WL ()] = D 02 (WP (2))€(apn) (hpr 1) -
h=1

Note that the second term does not depend on b. Iterating, we get

—~k 1 ~k+1

[€(arpr)bipr—8) s T (Wi ()] = [e(apn)bpr—k—1): 01 T (W, P(2))] + something not depending on b.
Keep iterating until p; — k — 1 = 1. At this point we obtain UlkH(W;Hp(z)) = Ufl_l(nglp(z)) =

Oivz + €(b,1)(i,1)- Hence
~ k41
[e(apn) i —k-1, 07 Wiy P(2)] = e(apyiny

that does not depend on b either. O

Theorem 3.3.2. Suppose that the pyramid p is aligned to the left. Then
W(z) € Mat,«.W (g, f,T,0)[z]. (3.3.7)

Namely, p([a,ﬁ;ij(z)]) =0 in (U(g)/I)[2] for every a € g>1, 1 <i,j,<r.

Proof. We proceed by induction on the number of columns of p, analogously to the proof of Theorem 3.3.1,
paying however attention to the fact that o, is not the identity map anymore.
In the base case, when p; = 1, we have

W(z) =21y + FE € MatyxnU(g)[2] = MatnxnW (g, f,T,0)][z]

because this case corresponds to the nilpotent element f = 0, when W(g, f,I',0) = U(g). Since we will use a
two step induction, let us now consider the case p; = 2. In this case, g>1 = g1 = Span{e(ayl)(bvu(gbgﬁ) [1<
a <s1,1<b<r} Inthis case, for i > s; + 1 we have

plea1)b1+8,<.)» Wij (2)]) = plle(a,1)b146,<.,) €G1+8;<. ) (1)) = P(Obj€(a,1)(i,1) — ai€(j146,<.,)(b1+6p<.,))

= dpjp(ea,)(i,y) =0,

(3.3.8)
since 1 < a < s while i > s; + 1. On the other hand, for i < s; by (3.2.3) we have
—_— 51
Wij(2) = €146, )(i1) — Z(5ihz + €h,1)(1,1)) (Onsz + €(j146;<.,)(h,2)
h=1
+ Z e(hvl)(iﬂ)(dhjz + é(j71+5,~gsl)(ha1))
h>s1+1 (3.3.9)

= 0352 = 20j<5, (€(3.2)6,2) T €G,1)01) F €115, ) (1)

s1
= )G T D (.28, ) (D)
h=1 h>s1+1
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and therefore

ple(a,1)(b1+8,<., ) Wij(2)]) = —20<s, p(0bj€(a,1)(i,2) — 0ai€(j,1)(b,1+60<.,)) T ObjP(€(a,1)(i,1))

S1

— 0aip(€(j,146,<. ) (b 1+6,<.,)) T Z 6aiP(€(h, 1) (b,1+61< 0, ) €(G 1465 <a) ) (h2)) — Z ObiP(€(h,1)(i,1)€(a1)(h,2))
h=1 h=1

+ ) (e i2)EGas,c. ) D Obip(e(h1)i2)€(a 1) (h1)
h>s1+1 h>s1+1

= —20;<s, (Obj0ai — 0aidb;) + Obj€(a,1)(5,1) — Gai€(j, 148,20, ) (b1 +5p<sy) T OaiOb<ss (€(145,<.,)(b2) — OjbS1)
+ 6aidbis1 — Opje(anyin) + D Sai(€(is,,,)0.0) — Objs1) = 0.
b>s1+1
(3.3.10)
Next, suppose p; > 1 and suppose that equation (3.3.7) holds for p’, namely

0= (8%, 72 (2)) € U@ ) /U6 )b~ (17 1) g 2]
for every 1 <1i,j5 <r.
We can decompose g>1 = 0,(g2,) & gL, where gL, is the complementary subspace to o,.(g2;) in g>1
> > > P >
5.
First, consider the commutator between Wi;(2) and o,.(g%,). If i > 51 41, from (3.2.3) and the induction
hypothesis (cf. (1.1.22)) we have the following identity in (U(g)/I\)|]:

consisting of all complementary matrices e(; n)(j k) such that z(ih) =

’

([0 (0%1), Wis (2)]) = p[oe (621, o (WP (2))]) = o (0 (8%, WP (2)])) = 0.

On the other hand, if i < sy, we have

(o (%)), Wij () = p([o4(a%,): [0 (W (), €261 ]])
(o (8%,), Z Sinz + euyan))or(WE (D)) + pllor(@2y), D on(Wh, )on(WE(2))])
h=1 h>s1+1

= pl[ow (W5 (2)), [0 (921, e 2y60)]) + 2l (82,), 00 (W (2))]; ei2)6.00)

where for the last equality we have used the induction hypothesis. However, for degree reasons we necessarily
have

[0 (€(a,q)v,k))s €(i,2)(i,1)] = 0,
for every e(q,q)(b,k) € ggl. Finally, [ar(ggl),ar(Wg (2))] € U(on(g?))(b—(f7 |b)>be @) from the induction

hypothesis and since [e(;, 2)(@1),0,.(9’;1)} = 0, by the Leibniz rule we have [[0’,-(921) ( ( Nl ey, €
U(g){or(b) = (f[b))beqs: -

We shall now check what happens to the commutator with elements of g>1 Again, by Lemma 3.3.1 it
is sufficient to consider elements of the form €(a,1)(b,1+8p<2, ) with 1 < a < s1, 1 < b < s9 (namely, with
z(a,1) = g and z(b,1) = % — 1), since for each ey 1)(c,k) € 9121 with 2 + dc.<s;, < k < pe (namely, with
z(c,k) < 4 — 1) we have

E(a1)(ek) = [€(a,1)(b,1480<0,)r €GB 148p<0,) (1h)]

and €(b,1+30h<a; ) (csk) € ‘77"(9%1)-
As in Theorem 3.3.1 we will need to apply the (right) recursion twice. First, let us suppose i > s9 + 1;
then

[e(a,1)(b1+6p<0,)» Wi (2)] = [€(a,1) (b1 46420, ): O T(Wp (2))]=0.
Remark 3.3.2. Be careful with the recursive formula for WZ (2),1 <74 <sq:

S2

—~ —~ 2

—~ 2 —~ 2 2
Wi (2) = [o.(W} (2)), eqi2)(1)] — Z(5z’hz +emy i) o (Wi, (2) + Z or (W 1o (Wi (2))
h=1 h>sa+1
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In fact, after applying o, it gives

’

W (2))

]

DI

h>sa+1

we’

ij

ar = [03 (

o2 (WP (2)).

zh \Ph— 1)

(2))s €(1,2481<.0 ) (i1 +61<0;)) —

52

~ 2
D Gz + €(nrtsne. )i ra20)) 0 (W (2)

h=1 (3.3.11)

Using (3.3.11) and the induction hypothesis, we can conclude that p([€(a,1)(b,146,<.,): Wij (2)]) = 0 for any

s1+1<1< s9.

Finally, for i < s; we have

plea,1)m1+6<.,)> Wii (2)]) = ple(a,1)(b,148,<., ) [0 (

- Z p( 6(a 1)(b,148p<s, ) €(h,1)(¢,1)]0r(W;fj

WY (2)), e,2)@i,1))))

ij
S1

(2)) = 3 (Ginz + e 6.0)PE(a1) b1+ 80, ) O (W3 (2))])

h=1

/

—

+ Z pleqanyba460en ) Or(Wh o ODoe(WE @)+ D or(WE L, )p(e@)btsne., ) o (WE;(2)])
h>s1+1 h>s1+1
=A+B+C+D+E.

Note that in the case 1 < i < s7 it is

- — 2
€(h2)(i,2) + Gf(ym on—3) s h< s
— é(h’l,)\(f’%) * JZ(WW n-2) s1+1<h<s
O'r( iz;'t,pﬁ 71) - [UQ(Wlh »Ph— 1) 6(1 3) (i, 2)] to (W’LZ;L Bh— 2)

- Zk 1 ‘3(/c 1+6k<31)(z 2)0 (th op— 1)
+ D ksept1 Uz(th no1)0 (Wp )

ik pr—1 h>sy+1.
Applying the recursion (3.2.3) a second time we obtain the following

S2

—~ 2 —
TH (WL (2)) + 0ai D e(hitsnes, ) batoe) 00 (Wi (2))
h=1

B = 0,402 (W) (2))s1+ daidvscs ([02OVE) (2)); €.)0.2)] = 202 (W) (2

—~ 2
A= —bia[0F (WL (2)); €(a,3)(b.148020))] — Ea1)(h1)

2

Ze(h Lm0 (W (2))
h=1

h>sa+1
C = baizor (W, (2)) + e(anyinyor (W) (2))
D=0 Y 07 (Wh,, 1)or(WE(2) + Saidbzer11 ([03(

2

W (2), ewayon) — 202 (W (2))

h>so+1
52 —~ 2 ~ 2 ~ 2 ~ 2
=3 i 02T )+ 102 )+ X (Wi, 02T ().
h=1 h>so41
E=0.

These terms almost completely cancel out, it only remains to prove the following right-aligned analogue
of the identity (3.3.6):

o ( o (W2 (2)), ey o)]

This is proved in a similar fashion, using the fact that, for each 1 <k <p; — 1,

we

o foreach 1 < b < s9. (3.3.12)

(2)), e(@,2)b,1)] =

—~_ k+1

(W,

aj

— k+2

(wr

aj

k
r

[o (2)) e(apt ] = [ont? (2)), e(a,k+2)(b,1)] + something not depending on a.
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3.3.2 Dependence on the elements of the centralizer g/

Let f be a nilpotent element associated with the partition (p; > p2 > ... > p,). In Section 3.1 we have
introduced the following basis for gf:

where, as in (3.1.8),

k

fij;k = Z €(i,pi+h—k)(j,h+1) +
h=0

Let us assume that the grading I is even. We now want to prove that for the elements W, € W (g, f,T,0)
obtained as the coefficients of the polynomials W;;(z) from Definition 3.2.1 (cf. also Proposition 3.2.3), the
linear map w : gf — W (g, f,T,0) given by

Fiisk = Wijik s
satisfies the conditions of Premet’s Theorem 3.1.1.

Proposition 3.3.1 (Premet’s form). Let T' be an even good %Z—gmding for a nilpotent element f, and let
U C g be the complementary subspace to [f,g] as in (3.1.5).
Then, for every 1 <i,j <7 and fjix € 91-4,,, (namely, Njix = A(fjir)), we have

Wij§k € fji;k + FAji;kHQU(g) ; (3313)

where we are using the refinement of the Kazhdan filtation (1.3.7). As a consequence, Wij.x € Fa,,, W (g, f,T',0).
Moreover,

1 (gra,,. Wigw)) = Fiik (3.3.14)

where nf : S(g)/gr Iy — S(g) is the projection defined in Section 3.1 with kernel the subspace UL as in
(3.1.6).

Remark 3.3.3. We recall the following properties of the elements fj;5, 1 <4,j <r, 0 < k < min(p;,p;) — 1,
which clearly follow from their definition (3.1.8):

o deg (fjik) = s1i—s1; —pj +k+1;
® Aji;k = A(fji;k) =815 — S15 +Pj — k;
o fiin(—2)% € Fa,,+11(U(g)[2]), with respect to the extended Kazhdan filtration (1.3.8).

We want to rewrite equations (3.3.13) and (3.3.14) in terms of the extended Kazhdan filtration of equation
(1.3.8). In order to do so, we need the following preliminary results.

Lemma 3.3.2. Let t; < s1, and suppose that the pyramid 'p exists. Then, for every 1 < i,j <r, 0<k <
min(p;, p;) — 1 the following holds

a1(fjik) s >t 41
o P k=0
fiik = [6(37111)(]7111—1)7 Ul(fjlg;o)] ) ) . | (3.3.15)
(G0 Ge -1 (] +or(fig—1) s 1<k <min(pipr—1) =1, Jj <t
a1(fin-1)  €Gptim) k=p1—1
Proof. Using Formula (3.1.8) compute both LHS and RHS of Equation (3.3.15). O

Note that Lemma 3.3.2 holds not only for an even %Z-grading7 but in the more general case when it is
possible to remove the leftmost column of p, namely if p exists. The same is true for Lemma 3.3.3 below,
provided this time that it is possible to remove the rightmost column of p, namely if p’ exists.

We can analogously prove the following.
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Lemma 3.3.3. Let s1 < t1, and suppose that the pyramid p’ exists. Then, for every 1 <i,57 <7, 0 <k <
min(p;, p;) — 1 the following holds

or(ff:, k) 1>s1+1
fiik = o (45 ) CLE / k=0 , .
' [Ur(fj;,k) et)in] +or(fln_1), 1<k <min(pj,pr—1)—1, 1<s1.
or(ffie—1) T €606 » k=pi—1

We would like to comprise the results of Lemma 3.3.2 and Lemma 3.3.3 in a more compact form. This
will be done in Lemmas 3.3.4 and 3.3.5 below.

Definition 3.3.1. Define the polynomial

min(p;,p;)—1

Fi) = Y. fiw(=2)* € dl[2].

k=0

Let Aj; == A(f;i(2)) = A(fjix) + k = pj + s15 — s1; for any 0 < k < min(p;, p;) — 1. Then, in terms of
the extended Kazhdan filtration (1.3.8), we have fj;(z) € Fa,,(U(g )[ ])

Lemma 3.3.4. Lett; < s1, and suppose that the pyramid'p exists. Then, for every 1 < i,7 < r the following
recursion holds

Jl(f/'p'(z))7 ] >t1+1
[i1(2) = § [eGp) G —1), O Ff ()] = 0u(f}3(2))2 = izt 1100(f 1) (—2)P
+515t1 jml)(l,pl)(_z)pl_l ) Jj<ty.

Proof. The case j > t; + 1 is an immediate consequence of Lemma 3.3.2 and Definition 3.3.1, since

/, 7
min(pip 7pjp)— 1

alff) = 3 alfE)(=2)"

k=0

/

and min(pip,p;’»’) = min(p;-p,pj) = min(p;,p;), where the first equality is due to the fact that p;p = p; for
j > t1 + 1 and last one is due to the fact that p;p # p; means p; = p1, and in this case min(p; — 1,p;) =
min(p1, pj) = p;-

The case j < t; is also obtained from Lemma 3.3.2 and Definition 3.3.1, as follows

min(p;,p1—1)—1

£ii2) = leGoGm- N+ Y (eGom—1) (L)) + ou(fh 1)) (—2)F

k=1
+ 0i<ty (01(F By _2) + o)) (—2)7
min(p;,p1—1)—1 min(p;,p1)—1
= > letmum-n LD ST (R ) (=) Sict ey (—2)P T
k=0 / i (pe— L 1)1 / k=1
= [e(jvpl)(jﬁpl—lﬁJl(fﬁ(z))] + Z o jlz)';h)(_z)h+1 + 5i§tle(j»P1)(iaP1)(_Z)pl_l
h=0

p1—1

= [leGp)) G —1): O (f1(2))] = o1(f13(2))2 = dizty4100(f ., 1) (—2)P" 4 Gi<ts €ipr ) (i,p1) (—2)
Here, we have used the following facts, that can be easily checked:

(i) min(p;,p; — 1) — 1 = min(p/, p]) — 1;
(i) {1,...,min(p;,p1 — 1) =1} Udi<i, {p1 — 1} ={1,...,min(p;, p1) — 1};
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(iii) min(p; — 1 p7 -1)-1= min(p;p,p;p) —1if ¢ < ¢, whereas {0,...,min(p; — 1,p; — 1) — 1} =
{O,...,mln(pi ,pj)—l} ~{pi—1}ifi > 6 + 1.

An analogous proof holds for the following

Lemma 3.3.5. Let s1 < tq, and suppose that the pyramid p’ exists. Then, for every 1 < ¢,j < r the following
recursion holds

(1% (2)) i>s+1
fji(z) = [Ur(ffi (2))s 6(12)(1'1)] - Jr(ffi (2))z — 5j251+101(ff¢;pj_1)(—2)pj
+5j§51€(j1)(i1)(—2)p1_1 , 1< s7.

We are finally ready for the proof of Proposition 3.3.1.

Proof of Prop. 3.3.1. Let us first prove Equation (3.3.13). In terms of the extended Kazhdan filtration of
(1.3.8), proving (3.3.13) is equivalent to proving that (cf. (3.2.18))

W’LJ(Z> € _(_Z)pi(sij + sz( ) + FAJI, (U(g)[z]) ) (3316)

which we need to prove.
We proceed by induction on the number of columns of p. The base case p; = 1 is obvious, since
g/ = g = go, hence Aj;=1forall 1 <4,7,<r, and by definition we have

Wij(2) = 205 + e(iayan) = —(—2)dij + fi(2)

proving (3.3.16).

Next, suppose that p; > 1. Without loss of generality, we may assume that t; < s;, the case when
s1 < t; having a similar proof (which uses the results of Lemmas 3.3.3 and 3.3.5 instead). By the induction
hypotesis, we have

Wi(z) € ~(=2)" 855 + £1(2) + o ,(U"]ED

77’

where A;% = A( Ji: k) + k= p P+ s1; — s1;. Note that, since the grading on gp is compatible with that of g
(through' the map o;), the (extended) Kazhdan filtration of U(g’) is compatible with that of U(g):

01(Fan(U(@?)[2)) € Fan(U(0)[z).- (3.3.17)

By Equation (3.2.2), in the case j > t; + 1, by the recursive definition (3.2.2) of Ww(z) and the induction
hypothesis, we have

— —~ ’ ’

Wij(2) = ai(Wi5(2)) € =(=2)" 85 + o1(f(2)) + 0u(F g ,(U(@P)[2]) € =(=2)"7 83 + fr(2) + Fa. 2(U(8)[2])

Jji’

where for the last inclusion we have used Lemma (3.3.4), the inclusion (3.3.17), and the fact that p;l-’ = p;
(and therefore A;@ = Aj;) for j > t1 + 1. Hence, (3.3.16) holds in this case. On the other hand, for j < t;
by the recursive definition (3.2.2) of Wij (#) and from the induction hypothesis we have

ty
’ 7,

Wii(2) € [eGpn) G —1)s 0L (FE(2)) + 01(F o (U (a?)[2]))] + > (=2)P 6in(0niz + EGjpa)(hpn)

Jji’

h=0
- Z a1(f2(2)) + ou(F A 2(U(El/p)[z])))(f;hjzJr*‘z(j,m)(h,zm))
+ Z PR S + ou(f (= )) +ou(Eyrn 2(U(gl”)[Z])))(Uz(f;’;’uph_l)thfz(F " L(U(g")))) .

h 1’
>t 41 Ihipn =
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Note that we clearly have

AleGrm-0) =25 Alegpmhp)) =1, (33.19)

and )
AP = Api—1, forh<ty, (3.3.20)

while , ) ,
A}Z;Z = Ahi and A}Z:z + Ajph;ph—l = 815 — S14 +pj = A]‘i s for h Z tl +1. (3321)

Hence, by (3.3.17), (3.3.19), (3.3.20) and the property (1.3.10) of the (extended) Kazhdan filtration, we have

[e(j7p1)(j,p1—1)7 Ul(FA’P Q(U(g/p)[z]))] - [F2,1(U(g)[z])7 FAji*LQ(U(G)[Z})] - FAJHQ(U(g)['zD .

ji?

Moreover, by (3.3.19)-(3.3.21), the induction hypothesis and the property (1.3.9) of the (extended) Kazh-
dan filtration, we have

(1 (2) + 01E s H(UOP)ED)EGp00p) € Fan2(U(@)[=) = Fay 2(U(@)[2)), (3:3.22)

when h < t1, and

/ 1

(S5 + (P (U@ @Sy ) +0r(Fyn L UGEP)) € FaaU@)ED),  (3:3.23)

Jhipp —1°

when h > t; + 1.
Combining (3.3.18) with Lemma 3.3.4, (3.3.17), and (3.3.22)-(3.3.23), we can conclude that

Wij(2) € =(=2)P6i5 + fji(2) + Fa,, 2(U(9)[2]) -

jis

Thus, (3.3.16) holds also in the case when j < t;.

Next, let us prove equation (3.3.14). We may assume that t; < s1, the case s; < t; having a similar proof
(which uses Lemmas 3.3.3 and 3.3.5 instead). We proceed by induction on the number of columns of p, the
base case p; = 1 being immediate, since

Wijik = Wijio = ey = fjio -

Let us now consider the case when p; > 1. In terms of the extended Kazhdan filtration of (1.3.8), and
by equation (3.2.18), proving (3.3.14) is equivalent to proving that

Uf(ngji (Wl(z))) = —(=2)P70i; + fi(2), (3.3.24)

By the way the map 1/ : gr W (g, f,T',0) — S(g/) is defined (cf. Section 3.1), we can equivalently rewrite
(3.3.24) as

! (gra,, (Wij(2)) = —(=2)" 8 + fi(2), (3.3.25)

where the projection nf : grU(g) = S(g) — S(g/) is as in (3.1.2), which we need to prove.
First, note that for the choice of the subspace U~ as in (3.1.6), the following properties hold:

(i) a(UP) c UL
.. 1 l .
(i) le.pi)Gpr—1),0t(UP )] =0, for j <ty
(iil) oy ;]Zk) cUL, for1<j<tiand0<k< p;p —-1= min(p;p,p;ln) —1.
In fact, by (3.1.6), given a pyramid p, we have

/l . . ’ /
Ur :Spanc{e(j,k)(i’h)|1§z,]§r,1§k§pf—1,1§h§pip}

@Spanc{e(j ) 1§i<j§r,p;p+1§h§p;p}.

pP)(i,h) |
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, ’ L
Since pf < p;, for every 1 < i < r, and since p}’ = p; — 1 if and only if i < ¢1, it is clear that o, (UP") C U+,
/ L 1 /
proving (i). For (ii) observe that given e pypn) € UP , with 1 < k < p? —1 and 1 < h < p/, the
commutator
[€(.p1) (501~ 1) €(ak) (b.0)] = 0aiOk pr ~1€(j.p1) (b.1) = ObjOh,pr €(a.k) (pr —1)

Pl
clearly vanishes, since 6y, -1 = 0 and dp,,, = 0. Moreover, given e eU? withl1<b<a<rand

; (@,p2)(b,h)
pp +1 < h <pp, the commutator

8ai0 1

o7 pr—1€Gp) 1)~ ObjOnpr €

eGip)Gp—1), € (a,p?)(b, h)] a,p?)(G:p1—1)

also vanishes since dj, ,, = 0, and since for a = j < t; we must also have b < t; and therefore p; <h <p; —1
is not possible. Finally, for (iii), note that by equation (3.1.8), for 1 < j < t;, we have

k

a1(fhw) =01 elipm—14n—r)intD) -
h=0

Since p1 —1+h—k < p1 —1=p; — 1, we clearly have e(; ,, ~11n—k)(i,nt1) € U~ for each 0 < h < k, proving
(iii). Note that similar properties hold in the case when s; < t; and the pyramid p’ exists.
Next, let us start by considering the case j > t; 4+ 1. By the recursive definition of W;;(z), we get,

gra,, (Wi (2)) = gra,, ((WE(2))) = oi(gryn (Wr(2))), (3.3.26)

since Aj; = A;@ for j > t; + 1 and, moreover, 8rp,, 001 =0108r due to the fact that the grading on g'p

AT
3i
is compatible with that of g (and therefore the same holds for the corresponding Kazhdan filtrations).

By the induction hypothesis, we have

aran (W) = (=203 + £i(2) + Y] (2),

where Yg’(z) is an element of S(g/p)UlpJ_[z] with (extended) Kazhdan degree equal to A;ﬁ. Hence, by (3.3.26),
we have

0! (gra,, (Wi(2) = nf(al( » (Wi Wh(2)))) = —(=2)0i; + 0’ (o (FE(2) + Y2 (2)))
= (=285 + ' (o1 (" (f7 +Yp(2)))) = (=285 + ' (a1 (F2(2)))
=—(=2)" 513 + fJZ(Z)

The third equality is due to the fact that, thanks to property (i) of U+, when restricting to U (g/p) we have

nfoor=nfooon”. (3.3.27)

Moreover, in the fourth equality we used the induction hypothesis and in the fifth equality we used Lemma
3.3.4. Hence, equation (3.3.25) holds in the case when j > ¢; + 1.
Next, let us consider the case j < t;, By the recursive definition of W;;(z), we get

t1
—~ —

gra,, (Wii(2) = gra,, ([ (-1, ol (WE)]) = D gra,, (W2 () S0z + EGp) )

h=1
+ Z A, (Ul(WiZ(Z))Ul(Wh%;ph*l))
h>t1+1 . (3.3.28)
= [e(j,m)(j,plfl)aUl(grA’?i (sz(z)))} - Ul(grA;fi (Wiz(z)))(éjhz + €(p1)(hpr))
h=1
+ Z Gz 8T A m( ))) (gr N (Wh;l;;ph—l))

h>t1+1
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Here, we have used the properties (1.3.9) and (1.3.10) of the (extended) Kazhdan filtration, together with
(3319) and the facts that A}I;Z = Ahi—l for h < tl; while A}Z:Z = Ahi and Afzz]i—*—A;)h;ph,fl = Slj_51i+pj = Aji
for h >ty + 1.

By the induction hypothesis, for every 1 <4,j < r, we have

— /p / ,
grA;pi (W1§(Z)) = —(—Z)pj (Sij + fﬁ(z) + Y;;D(Z) s (3329)
and moreover, for A > t; + 1, we have

SN (Whpj;ph—l) - sz;upn—l + YhJ iph—17 (3.3.30)

7hph 1

where Yllf(z) is an element of S(g?)U /”L[z] with (extended) Kazhdan degree equal to A? i
,- Hence, by (3.3.28) we have

/
p .
and th;ph—l is an

element of S (g/p)U pt with Kazhdan degree equal to AJ hipn—

f(grA,l (Wis(2))) =0 (letaam)n—1y- 01 (82,45 (W5(2)))))
- Zn oi(grpn (Wh(2)) Eim2 + eipnnm))

+ Z gy (WhE)aulsry,  (Wh,, )

Al B (3.3.31)
=7 ([er i(FE(2) + Y2 (2)]) = 85 (—2)"* + i<, (—2)" e o
T NEGP)GP1=1) T i i i i<t (op1) p1)

t1
= 0 (0 (17(2) + YiE(2)) (507 + €p) (hpn))
h=1

- 5i2t1+1(_z)pial(fj/€;ph—l +Yt£/jp;ph—l) + Z nf(Jl (f}/i(z) + }/i/;z(z))o-l(f‘;zil;ph—l +Yh’§;ph—l))
h>t1+1

Here, for the second equality we have used the induction hypotheses (3.3.29) and (3.3.30). By Lemma 3.3.4
and equation (3.3.27), we can rewrite the RHS of (3.3.31) as

t1
/

=85 (=2 + F:(2) + 07 ([ G -1 (Yl (2)]) = S 0 (01 (F3(2)) e (o))

h=1

+ > (@) (£ 1)) (3.3.32)

h>t1+1

= —6;;(=2)P* + fii(2),

where for the last equality we have used properties (ii) and (iii) of UL. Hence, equation (3.3.25) holds also
in the case j < t1, thus completing the proof of Proposition 3.3.1. O

Remark 3.3.4. Given a pyramid p, the choice of a subspace U C g complementary to [f,g] (and therefore
of its orthocomplement U~) is not unique. We can for instance choose, as in [DSKV16b],

U = Spanc{ei)(ipi— | 1 <4,5 < 7,0 <k <min(p;,p;) — 1},
and its orthocomplement

U™ = Spanc{egun | 1<i,j <r,1<k<p;,2<h<p;}

@ Spancieg ey | 1<j<i<r,1<k<p;—pi}.

Although the properties (ii) and (iii) of U+ above fail for this choice of U, we can still prove Proposition
3.3.1, through some similar properties that do hold instead.
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3.3.3 Remarks on the recursion when the pyramid p is not left /right-aligned

Since Definition 3.2.1 makes sense for a generic even grading I', but Theorems 3.3.1 and 3.3.2 only work
when the associated pyramid is either left or right-aligned, we shall now address the issue of understanding
what happens when the pyramid p is still even but no longer left /right-aligned, and what are the limits of

our approach.

(i) The assumption of p being right-aligned in Theorem 3.3.1 (resp. left-aligned in Theorem 3.3.2) makes
computations significantly easier. It in fact allows us to apply the same recursion multiple times,
consequently obtaining nice formulas to work with. This is especially advantageous to show the vanishing
of some commutators, or to deal with iterating procedures as in the case of (3.3.6) (resp. (3.3.12) in
Theorem 3.3.2). In the case of a general even pyramid p this is no longer possible, making computations

definitely harder.

(ii) We therefore wonder whether it is possible to use the recursions arbitrarily, namely proceeding by
arbitrarily removing the leftmost or the rightmost column of the pyramid, despite of which one is the

shortest.

This is not possible.

Example 3.3.1 (Counterexample). Let (3,2,1) be a partition of 6 and suppose t; = 2,7 = 3,s1 = 1.

Namely, we are considering the following pyramid:

(31)

(22)((21)

(13)|(12)

(11)

Applying the recursions in the correct order (namely, the (3.2.3) first and then (3.2.2)), we get

Wn(z) =€(13)(11) — 6(12)(11)(2 + é(13)(13)) — €(21)(11)€(13)(22) T €(31)(11)€(12)(31)
— (z+eéanan)leasaz) — (2 +€u2)a2)(z + €us)as)) — €@n2)€a3)(22)
+e@nazeaz @) +eEna (eas) ) — eaz) e (2 + €as)yas))
— e(21)(31)€(13)(22) T (2 + €1)(31))e12)(31)) + (€(22)(13) + €(21)(12)) (€(13)(21)
—ea2)21) (2 + €a3)13)) — (2 + €n)e))eas)22) + eaneEneaz) ) -

Applying necessary changes to (3.2.2), in order for it to keep making sense, we get

(W (2), t

T [e(j,Plfslj)(j:M*l*Sl])7 o1 (WZ(Z))] - Z gy (W;;L(Z))(Cswz + é(j7171781j)(h7p1*81h)>

=

h
+ > a(Wi(2)or(Whp,-1(2)) s
h=t,1+1

and then proceeding by applying the recursions in the reverse order, we get

Wi1(2) =e@syan) — (2 + Ennyan))eas)yaz) + €@1)(12)€(13)(21) + €(31)(12)€(13)(31)
—(eazyan — (2 + éanan))(z + €az)a2) + e@1azeaz) 2
+ 6(31)(12)6(12)(31))(2 + é(13)(13)) - (6(21)(11) —(z+ 5(11)(11))6(21)(12)
+ e@na2) (2 + Eenen) + eenazeenen)eas) ez + (eenan
— (z+ €anan)eanae) +eenazesnen +eenaz) (2 + €@ne))ea) e -
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Then,

Wii(z) = Wi (z) + e22)(13) (e13)(21) — €12)21) (2 + E(13)(13)) — (2 + E(21)(21))€(13)(22) T+ €(31)(21)€(12)(31)) -
A direct computation shows that W11 (z)1o & W (g, f,T,0), since for instance for e(12)(22) € g>1 we have
pleqizy22), W11(2)]) = —eqs)(a1) + ezyen) (2 + €azyas) + (2 +E@uy21))eas)@2) — e@neneazen) # 0.

(iii) We have however some positive results. When p; = 3 and the pyramid p is even but not aligned, we
can prove by direct computation that W;;(z) € W(g, f,T’,0) using the recursions from Definition 3.2.1
in the right order. We just need to write down the explicit expression for W;;(z) in the four possible
cases (matching j < t1, j > t;+1 with ¢ < s1,4 > s1+ 1) and then apply the map p to the commutator
with elements of g;:

€(a,14+8,<4,)(b,3)> 1<a<r,1<b<ty,

€b1)(a140,<)r L1 Sa<r 1<b< sy,

(iv) When p; > 3, we have analogously tried a direct approach, which combines the left and right recursion in
the correct order (assuming first that the shortest column is the leftmost). It is possible in some special
cases, depending on the range of the first index i, to produce a proof similar to the one of Theorem
3.3.1. However, even in these cases we have the issues with the analogue of the identity (3.3.6).

3.4 A complete example

Let us now illustrate all the concepts and properties introduced so far through the example of W (gly, f, T, 1)
when N = 3 with partition (2,1), namely when the f is a minimal nilpotent element. Associated with this
partition we have three possible pyramids/gradings:

(21) (21) (21)
(12)((11) (12)((11) (12)[(11)

Figure 3.1: T Figure 3.2: T’y Figure 3.3: T's

The matrices encoding the different gradings I'; = Z(i,h),(j,k)eT (degrie(jk)(i’h))E(iyh)(J—’k) are

0 -1 -1 0 -1 —3 0 -1 0
=1 0 0], =1 0 1|, I's=[(1 0 1],
1 0 0 3 -5 0 0 -1 0

Figure 3.4: Matrices encoding the gradings I';, i = 1,2, 3.
while the corresponding shift matrices D; = Z(i neT d(i,n)Eginyi,n) are

D=0 -1 0], Do={0 -1 0
0 0 -1 0 0 0 0 0 0

The nilpotent element associated with (2,1) is f = e(1,2y(1,1) and we can compute explicitly its centralizer

g/ = Spang(e(.2)(1.1), €1.1)(11) + €(1.2)(1.2)5 €(1.2)(2,1)) €(2.1)(1.1) €(2,1)(2.1))

(3.4.1)
Spanc(fi1;0, fi1;1, f12;0, fo1:0, f22;0) -

cf.(3:.1.8)
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According to the three different gradings we have (choosing [ = 0 for I'y)

- Z+e1)(1,1) €(1,2)(1,1) €(2,1)(1,1)
Z]lg + F + 7TS10E + Dl = 1 z+ 6(172)(1,2) -1 6(2,1)(112) s
0 €(1,2)(2,1) z+e@eney — 1
zZ+e,1)(1,1) €(1,2)(1,1) €(2,1)(1,1)
g+ F + 7, 1B+ D2 = 1 z+eaza2 — 1 eenae ;
€(1,1)(2,1) €(1,2)(2,1) zZ+e@2,1)(2,1)
Z+e1)(1,1) €(1,2)(1,1) €(2,1)(1,1)
Z]l3—|—F+7T< E+Ds= 1 zZ+en2(1,2) — 0
€(1,1)(2,1) €(1,2)(2,1) zZ+e@21)(2,1)

We compute the quasideterminants Ly (z) = |z13 + F + 7T E + Dgli2 1, , where 1, is the image of
1 € U(g) in the quotient U(g)/U(g){b — (f\b))begrk and obtain:
>1

—1
Ll(z) = 6(1,2)(1,1)TF1 - (Z +e,1)1,1) 6(2,1)(1,1)) (é o 22383 . 1) (Z + 28282 B 1) T1“1
=ewanln, — (z+eqya)(z+eqae — Din,
= (eenan — (= +eanan)eenan) = +eenen — D eazenir,
= Wii(2) = Wh(2)(Wh(2) Wi (2),
La(z2) = 1p, — 1 cema ) (#+eapay — 1)1
A8 = copantn = (F e eenoy) (6(1,1><2,1) Z+6<2,1><2,1>) < €1.2)2.1) ) e

= el — (2 +eanan)z +eqzae — Dir, = ((2 +eqnan)eenae) — eena)

((Z +e@1)21)) — €)@ )6(2 11, 2)) (6(1,1)(2,1)(2 +ea2a2 — 1) - 6(1,2)(2,1))TF2
= Wu(Z) - le(z)(Wm(Z)) W21(Z) )
and

-1
T 0 Z+€(12)(12)—2>
Ls(z)=¢ Ir, — (z +e e R 1
3(2) (1,2)(1,1) 4T3 ( (1,1)(1,1) €21, 1)) ( e 2+ eene, 1)> ( €1,2)(2.1) I's

= 6(1,2)(1,1)TF3 —(z+eqnan)(z+eaa2 — 2)1p,
—e@2,1)1,1)(z + 6(2,1)(2,1))_1( (1 2)2,1) — e,1)(2,1) (2 F e a2 — 2))1F3
= W131(Z) - W132(Z) (W232(Z)) W21(Z)7
where W (z) = WZ’; (2)1p,, with 1 < 4,4, < 2, are the generators for the corresponding W-algebras W (g, f, Tk, 0)
below. For W (g, f,T'1,0):
( ) =-7 - 2(6(1,1)(1,1) + €(1,2)(1,2) — 1) +eq,2)a,1) — e(1,1)(1,1)(6(1,2)(1,2) - 1) + €(2,1)(1,2)€(1,2)(2,1)
(2) = e@n1,n) —eananeen2) +eena(eenen —1)
Wi1(2) = e(1,2)(2,1)
(2)

=z+eeaiy(z — 1.
(3.4.2)
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For W(g7 fa FQ; 0)

Wii(z) = =2 = zleanan + a2 + eena2eanen — 1)
+eazan ~eananleaya — 1)+ 6(271)(172)W221(Z) + sz(z)e(l,l)(m) - 6(2,1)(1,2)W222;06(1,1)(2,1)
sz(z) = €(2,1)(1,1) — €(1,1)(1,1)€(2,1)(1,2) + 6(2,1)(1,2)W222-,o
W31(2) = e2)2,1) — canen (e n — D+ Waeea e
Wi(z) = 2+ e@1)@1) — €anEneen) = 2 + Wi

(3.4.3)
And finally, for W (g, f,T'3,0):

Wi (2) = =% = z(e,y@) + e @2 — 2) + e — e (e e —2) + een e
7173

Wl

z €(1,2)(2,1) — €(1,1)(2, 1)(6(1 2)(1,2) — 2) + €(2,1)(2,1)€(1,1)(2,1)

1(2) =
5(2) = €(2,1)(1,1)
W3y (2) =
(Z) Z+e(2,1)(2,1) -
(3.4.4)

In bold we have shown the dependence of the generators on the element of the centralizer g/ in (3.4.1).
The generators for W (g, f,I'1,0) (resp. for W(g, f,I's,0)) can be equivalently computed using the recursion
(3.2.3) (resp. using the recursion (3.2.2)). However, we would need to show directly that the polynomials
ij(z) belong to W (g, f,T'2,0). In [DSKV16¢, Section 9.3] explicit formulas are described for the generators
of the W-algebras for a generic minimal nilpotent f and a Dynkin grading. This agrees with Conjecture
3.1.1.

Note moreover that from Figure 3.4 above it is clear that for the choice of I} = Ce(y 1)(2,1) and [3 =
Ce(z,1y(1,2) we have W(g, f,T'2,l1) = W(g, f,T'1,0) and W (g, f,T'2,13) = W(g, f,I'3,0). This is an instance of
a more general result, which we will explain in Chapter 4 (see Lemma 4.2.2).

A straightforward computation shows that under the maps

Lo, - W(gv fv ]-—‘27 0) — W(g7 fv F27 [1) = W(Q? f? Fl? 0)
Po,13 - W(g7 f7 F27 O) — W(ga fa F27 [3) = W(ga fv F37 0)
the following holds

po,i, Wiia) = Wiy, pois(Wia) = Winy,
Po, [1(W 11; 0) = W111;0 ) Po, 15 (W 0) Wi31;0 )
PO,ll(sz;o) = W112;0 ) po,is (W- 0) ngz;o )
Po, 11(W21 0) = W211;0 ) Po, i (W o) W231;0 )
Po, [1(W222 0) = W212;0 ) po, [3(W22 0) W232;0 .

As a consequence, po 1, (L2(2)) = L1(z) and po,i,(L2(2)) = Ls(z). Again, this is an instance of a more
general result that we will introduce in Chapter 4 (see Theorem 4.4.2).

Finally, we can compute commutators between the generators directly using (3.4.2) - (3.4.3). For k =1,2,3
we obtain:

(Waz.0, Wiayo] = Wiz,

[(Waz.0, War,0] = —Waro,

(Wig,0, Wai,0] = —Wit,0 — Wag,o Wi + Wag,oWaay
(Wi2.0, Wii1] = Wigy

[W12.0, Wi1.0] = —Wi20Wi1,1 + Wi, 0Waao

(Wa10, Wir1] = —Waryo,

[Wa1.0, Wit,0] = —Waz.0War,0 + W11 Waiyo -
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Chapter 4

About Conjecture 3.1.1

4.1 The case of a left /right aligned pyramid

Theorem 4.1.1. Suppose that the pyramid p is either left or right-aligned. Then, for the matriz W(z) €
Mat,«, W (g, f,T,0)[2] the quasideterminant |W (2)ls,,. J,, ., where Loy, Jpy are as in (2.2.6), exists and the
following identity holds:

(W5, 0., = L(2) € Matr, xr, W(g, £,T,0)((z71)- (4.1.1)
Proof. First observe that since W(z) € Mat,.», W(g, f,T',0)[z] (Theorems 3.3.1 and 3.3.2), we have

W, 10, = W), 1., 1t

Thus, in order to prove equation (4.1.1), it is sufficient to prove that
|W(z)|lr'r‘1JT17' = E(Z) € MatTl XTIU(g)((Z_l)) . (412)

First, let us prove that the quasideterminant |W(z) exists. By Definition 1.5.2, it is sufficient to

Ly T
prove that the matrix W(z)zmc T, - 18 invertible, where Z,,, and J,, are the index sets corresponding to

the matrices I, and J,,,. By Proposition 3.2.3, we have

min(p;,p;)—1

W(2)z1,, 0 00,c = —(—2) Loy, + ( > Wij;k(_z)k) o (4.1.3)
k=0 r1<i,j<r
where (—z)71,_,, is the r — r1 X r — r; matrix
(_Z)ﬁg]le
(=2)1y—y, = . (4.1.4)

(—2)P15,

=T

corresponding to the partition ¢ = (p1 > ... > p,) = (p|* > ... > P.*) (note that 71 = r1). Then, (—2)71,_,,
is clearly invertible with inverse (—z)~91,_,, € Mat,_, r_r, ((C[z_l]) and we can rewrite

min(p;,p;)—1

Wz eqe = =2 (Lo = (2 Wan(=2)™) ).
r1<i,j<r
k=0
Note that the matrix (Z;ﬁn:i%(pi’pj%l Wij:k(—z)_pi“‘k) lies in Mat,_p, »—r, (U(g)[z7"]). Therefore,
i r1<i,j<r
1, — (ZZ:B(pi’pj)_l Wij;k(fz)*pﬁk) is invertible in Mat,_,, »—r, (U(g)[[z7']]), and its inverse
r1<i,j<r
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can be computed by geometric series expansion. Thus, W(z)zmc Ty e 18 invertible and the quasideterminant
|W(z)|1w1 Ty, €Xists.

Next, let us prove equation (4.1.2). We may assume that r; = ¢; < s;. We proceed by induction on
the number of columns. For the base case p; = 1, we have \,V[v/(z)\fm Jrir = W(z) = 21y + E = L(z) (cf.
Equation (2.2.3)), hence Equation (4.1.2) clearly holds. For the case when p; > 1 we will then prove that
(|W(z)|1m,1 Jr)igs 1 <4, < rq, satisfies a recursive formula that coincides with the one proved for Lij(z) in
Proposition 2.2.2. Namely, we shall prove that, for every 1 < 1,5 < ry, we have

71

(W (D)1, 50 )id = G0 Gapr—1)> LUV P (D)1 gy Vi) = D oW P (@)1, a1y )in (Oni 2 + EGpa)hupa))-

h=1
(4.1.5)
Note that, by the hereditary property of quasideterminants, we have
WP 1, g0 = WP 1y drg Ly Ty o (4.1.6)

where [W7(2)] TppyJrye 18 the correct quasideterminant to consider when we restrict from p to the pyramid
with its leftmost column removed ‘p, and ro = to > ¢; is the height of the second shortest column of p. Hence,
substituting (4.1.6) in (4.1.5), it is clear that (4.1.5) actually is a recursive formula, and that it moreover
coincides with the recursive formula for E(z) in Proposition 2.2.2. Finally note that the same argument
used for the quasideterminant |W(z)| Loy, J
exists.

Now, let us prove the recursive formula (4.1.5). By definition of quasideterminant! and by (3.2.3) we have

., can be used to show that the quasideterminant W' (2)| Lrpy Joyr

i
(W () 1ry ey )id = Wi(2) = D Wial2) (W, e q,,,2(2)asWai(2)
a,f=r1+1
=Wi;(z)— Y. a(Wie (N (W, ez «(2) asWs;(2)
a,B=r1+1
i
= G G—1), (W, Z ) (Ghiz + EGpnynpn) +  a(Wih(2)a(Wh —(2))
h=1 h=ri+1

T

- az<VV’£’;<z>><(az<W% W(z)))*lm([eu,pl)(j,pl-n,oz(Wé}(zm

o B ri1+1
r

—_— Ry

—Zal D5z + Epimpn) + . AW ENa(WE, 1(2))
h=ry+1

—~

= leGonGam-1 T WEED)] = > aWEEN (W s () asleGpn -1, a1 (W (2))]

a,B=r1+1
r

T1
S (aWEEN+ Y Al WEE @ T, g D) Do) Ons + i)
h=1 a,B=r1+1
(4.1.7)
where the last equality is due to the fact that ((01(Wz,, ¢z, ,(2))) " )ap - 01(Wpn(2)) = dan, and therefore
for every r1 + 1 < h < r we have

T

a(WhNaWE, ()~ Y a(WhE)(a1(Wz,,, g, (2) Dapar(Wh (2)ou(WE . (2) =0.
a,B=r1+1

'In order to simplify the notation we number the rows and columns of the matrix (W/P(z)zrrlcjrlrc)*l from 71 + 1 to r
instead of the natural numbering from 1 to r — ry.
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By definition of generalized quasideterminant, the RHS of (4.1.7) becomes

71

GG -1 LW P (D)1, 0 )id] = D o1 (WP(2) 1,0 gy )in(Onj2 + EGipy) (hpr))
h=1

+ Y [eGpnGm-1 aWL @) (@WE o g (2) Daslor(Whi(2).
a,f=r1+1

—~

We are therefore left to show that [e(; 1 )(jp1—1)» 01 (Win(2))] = [(jp1)(Gipr—1)» ((UZ(WI{TlCJW‘ITc(z)))_l)alg] =
0. It is sufficient to prove that

oG -1 1 (Wb ()] =0, fora>r+1,1<i<r. (4.1.8)
We proceed by induction on the number of columns of p, the base case being p; = 2. In this case,
WP (2) = Giaz + €(a1)1)

and [€(jp,) (j.p1~1)> €(a.1)(i.1)) = daj€(j.p1) (1) = 0-
If p; > 2, by the recursive formula we get

_ . F (W2 (2), o>ty
Wi (2) = (Wi (2)) = [e(a,pl—l)(aml—?)ﬂ U?(Wuf(i))] - Zzzgf(Wi:(z))(éhaz + €(ap1—1)(hp1—1))
+ Z’;‘L:tg U?(sz(z))o—%(WhZ,ph—l(Z))7 tl + 1 S « S t2 .
(4.1.9)
Clearly, the commutator of (4.1.9) with e(; p,)(j,p,—1) is also zero.

Combining (4.1.5) and (4.1.6) and comparing with (2.2.7), the claim follows.
The proof is analogous in the case s < t1, using recursion (3.2.3) instead. O

Remark 4.1.1. Note that with some additional computation it is possible to prove Theorem 4.1.1 even in
the more general case of the pyramid p being even but not aligned. However, we are interested so far only
in the left/right aligned cases, namely the only ones for which we can directly prove that the matrix W(z)
from Definition 3.2.1 has coefficients in the W-algebra.

Remark 4.1.2. Write W(z) in block form
(), W) Wi 2)

o= (T Yl )
where Wi (z), Wa(z), Ws(z), Wy(z) are block matrices of sizes r; x 11, r1 X (r —r1), (r —r1) X r; and

(r—r1) x (r — r1) respectively, while —(—2)?1,_,, is as in (4.1.4).
As a consequence of Theorem (4.1.1),

(4.1.10)

L(z) = ( WQ(Z)) = —(=2)P 1, + Wi(2) = Wo(2)(—(=2) 91,y + Wy(2)) ' W3(2), (4.1.11)
Wi(2)  Wa(2)

as in Conjecture [DSKV16¢, Conjecture 8.2].

4.2 Properties of gradings and Lagrangian subspaces, and the cor-
responding WW-algebras

Definition 3.2.1 allows us to recursively construct the matrix W (z) only in the case of an even %Z—grading.
Moreover, we can only prove that its entries W;;(z) have coefficients in the W-algebra in the particular case
of a left or right aligned pyramid (cf. Theorems 3.3.1 and 3.3.2). Therefore, for a left or right aligned grading,
combining Proposition 3.3.1 and Theorem 4.1.1, we can prove Conjecture 3.1.1. We would like to extend
these results to an arbitrary good %Z—grading7 whose associated pyramid is not necessarily aligned. Even
more, we would like to allow the grading to be odd, as it is for instance often the case with a Dynkin grading.

A key ingredient for this purpose is the result about the isomorphism of W-algebras associated with
different isotropic subspaces described in [GG02]:
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Theorem 4.2.1. [G'G02, Theorem 4.1] Let 11, Iy C g1 be isotropic subspaces with respect to the bilinear form
w. Suppose moreover that [y C . We have the natural linear map between quotients

i 2 U(g)/U(g)(b = (fIb)venwosr — U()/U(8)(b = (fl0))betomas,
T[l — T[Q. (421)

Then, the restriction of the map py, 1, to the corresponding W -algebras is an isomorphism of Kazhdan
filtered algebras

Pt W(g f,T, ) — W(g, f,T, l). (4.2.2)

Thus, for every I C g1 isotropic we have an isomorphism po : W (g, f,T,0) — W(g, f,T,1) of filtered
algebras.

As a consequence, given arbitrary isotropic subspaces [, [ such that neither [ C I nor [, C [, we have
an isomorphism of filtered algebras

0,1, © (pO,[1)71 : W(gv fv Fa [1) ;) W(ga fa Fv [2) . (423)

Another key ingredient is the notion of adjacent %Z—gradings for g, introduced by Brundan and Goodwin
in [BGO5]:

Definition 4.2.1. [BGO5] Let I'y : g = @ze Zgl ) and Ty @ge Zgj ) be good IZ gradings for f. We
say that they are adjacent if
1 2
i= P o )ﬁg§ ), (4.2.4)
i-L<j<i+}

Clearly, if (4.2.4) holds then
s= D oVng?,

j—3<i<i+s
also holds. Equivalently, (4.2.4) implies that, for each i € $Z, we can decompose g =@, i<1 ggl) N 9(2)
We also remark that the definition in [BG05] is slightly different, since we needed to adapt it to our definition
of good %Z—gradings.
Adjacent good %Z—gradings I'1,T'5 have the nice following property

Lemma 4.2.1. [BG05, Lemma 26] Let Ty : g = @ie%zggl) and Ty : g = @36 Zg?) be adjacent good

%Z—gmdings for f. Then, there exist Lagrangian subspaces Iy C g(%l) and [2 - gl) (both with respect to the

form w) such that
L& @g(l) — L& @QQ) (4.2.5)

i>1 j>1

Proof. We shall include the proof because it describes how to construct such a pair of Lagrangian subspaces.
First, let us decompose

0} = ((esinaf) @ e (2))> L@ nal),

where with g = A L B we mean that g = A ® B and moreover B = A, the orthogonal complement being

with respect to the bilinear form w. Therefore, the restriction of w to g(l) (f) is non-degenerate. After
2

choosing a Lagrangian subspace [ C g(;) N g ; , in view of the definition of adjacency,
2 2

L:=I[d (g( ) 9(2)) C g(ll), lh:=I[d (gg N g(;)) - g(;)

N

is a pair of Lagrangian subspaces such that (4.2.5) holds. O
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The Lagrangianity condition is necessary in order to obtain, as a consequence, that the corresponding

W-algebras coincide. In fact, let my :=1[; & gg% =L gg =: my, then by Lagrangianity, in the notation of

Section 1.1.2, n{ = m; = ny = my, and therefore

W(g. £.01.0) = (V@U@0 (FDhem ) = (T@/T@0— (FBem) - = Wlg..T2.1).

However, when one of the %Z—gradings is even, then the corresponding %—Space is g1 = 0 and consequently

m = g>; = n. We thus obtain the following generalized version of Lemma 4.2.1:

Lemma 4.2.2. Let 'y : g = @ie%zggl) and Ty 1 g = Gajeéz g§-2) be adjacent good lZ gradings for f.

Suppose moreover that I's is even. Then there exists a Lagrangian subspace |3 C gl) (with respect to the

form w) such that
hoPo =P (4.2.6)
i>1 j>1

Proof. The argument is the same of Lemma 4.2.1, although because of I'y being even we have

As a consequence, we obtain the following equality:

W(g7.fal_‘la[1) = W(gvf7F27O) :
O

Lemma 4.2.3. Let 'y : g = @le Zgl ) and Iy:g= EBJG Zgj ) be adjacent good LZ-gradings for f, and

let Iy C g(1 ), lo C g1 ® be q pair of Lagrangian subspaces as in (4.2.5). Suppose that 'p (resp. p’) exists for

both gmdmgs r, and I's. Then,

[/f (S) @g; 1 = [;p D @g; ’(2), (resp. [’f/ & @gi/’(l) = [12/ (&) @gjl’(z)) (4.2.7)

i>1 j>1 i>1 §>1

Proof. First, remember that [; = al([;-p) C oy(g7™) in the case p exists, and [; = or([f/) C o,.(g?"@) in the
case p’ exists. We shall illustrate the proof for g/p , the case of gp/ being analogous. Since the gradings on the
Lie algebras g? () are induced by the gradings on g(), we can write (after applying o;)

he@a!™)=ua@ " na@E»®)

i>1 i>1
[269@01(9;7’( 2@@ 2 Noi(g”?)),
ji>1 j>1

and we can moreover decompose g(g)l =0y (g;l( )) ® gz;ll’( 2 oy @
the matrices e(q p)(c,p;) € 9(21)1 such that 1 < ¢ < t:(ll) (t g ) being the helght of the leftmost column of p with

grading T'y).

where g3" is the vector subspace consisting of

Since we are assuming that [; & gg% =hLe gg, it is sufficient to show that

(1 (2
91;11( = 91;11( .

Let e(ap)(c,pr) € gill’( ) By adjacency of I'; and I's and by the hypothesis that p exists for both gradings,

then e(q,p)(c,p.) € g(Zi, and moreover force €, p)(c,p;) € 91;1{( ). The same clearly holds with the role of g(V)

and g(® reversed. The result then holds by injectivity of the map o;.
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As a consequence,
W(g/pvf/pvrlpv[Q) = W(glpaf,paFQPv[Q)' (428)
O

Remark 4.2.1. Let Ty : g = @ie%zggl) and 'y : g = @je Zgj ) be adjacent good 35 17-gradings for f. Then

only one of the following holds:
Tor:p) — a'l (Zh) . To/ipy zh (Zh)

x 2(ih) { Ly (in) + 1 V(i,h) € T, (4.2.9) x 2(ih) { Py (in) - L

We denote by #'(ih) the z-coordinate of the pair (i, h) with respect to the gradmg I';. In fact, suppose

on the contrary that there exist (i, k), (j, k) € T such that 2"2(ih) = 2" (ih) + § and 2™ (jk) = 2™ (jk) — 1.

Then, degr, (ei,n)(jk)) = degr, (e@,n)G.k)) —|— 1, contradicting the hypothesis of adjacency. Graphically, it

means that if I'; and I'y are adjacent good 3 17-gradings for f, then I'y can be obtained by I'; by moving of %

space some blocks of the pyramid either all to the right (when 2'2(ih) = "1 (ih) + §) or all to the left (when

2P2(ih) = 21 (ih) — 5).

V(i,h) e T.  (4.2.10)

We shall now introduce some special pairs of adjacent good %Z—gradings7 that are particularly useful for
our purposes.

Definition 4.2.2. Let 'y : g = @ie%zggl) and 'y : g = D1 129, (2) he good 17Z-gradings for f. We say that
I’y and T’y are strictly adjacent if they are adjacent (as in Deﬁmtlon 4.2.1), and moreover one of the following
holds

1
51 € 3 + N for all (i,h) € T such that 22 (ih) # 2" (ih) (4.2.11)

or

s1) € N for all (i,h) € T such that 22 (ih) # 2" (ih) (4.2.12)

where we denote by 51;;, 1 < j <r, the semi-integer s;; as in (1.1.2) with respect to the grading I';.
Graphically, the gradings I'y and I'y are strictly adjacent if they are adjacent and I's is obtained by I'y
moving only either (some of the) integer or semi-integer rows (cf. Definition 1.1.5).

Note that if I'y and T’y are strictly adjacent, they also are strictly adjacent when we reverse the roles of
I'; and I'; in the definition.

Example 4.2.1. Let I'y : g = EBze Zgl ) and T» i g = @]e Zgj ) be adjacent good 1Z-gradings for f. If
one of the gradings, say I's, is even then they clearly are strlctly adjacent.

Lemma 4.2.4. Let Ty : g = @ZE Zgl ) and Ty:g= ®]E ZgJ ) be strictly adjacent good 3 17-gradings for

IRSCOING)
. , 1
f- Then, we can choose a Lagrangian subspaces | = g3 ﬂg such that for the Lagrangian subspaces |y and

lo as in Lemma 4.2.1,
l @ggf =l @gg

and moreover they are of the following form:

1 1 .
[, = {e(i,h)(j,k) ‘ degri (e(i,h)(j,k)) = 57811—;’ S 5 +N}, 1=1,2 (4.2.13)
or 1
L= {ewmn Gk | degr, (e nGry) = 575% eN}, i=1,2 (4.2.14)

Note that in both cases, |; is an abelian (Lagrangian) subspace of gEi.
2
Before giving the proof of Lemma 4.2.4, we illustrate through an example the reason why we need to

add the hypothesis of the gradings I'y and I's being strictly adjacent. The advantage of having Lagrangian
subspaces as in Lemma 4.2.4 will be clear later.
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(41) (41)

(33)((32)](31) (3,3)(32)((31)
(24)((23)](22)|(21) (24)[(23)|(22)|(21)
(15)[(14)](13)[(12)](11) (15)[(14)|(13)[(12)|(11)
Figure 4.1: Ty Figure 4.2: T’y

Example 4.2.2. Let N = 13 with partition (5,4, 3,1), and let I'; and T's be the following good %Z—gradings
for f associated with this partition:

The %Z—gradings I’y and I'; are clearly adjacent but not strictly adjacent, because I's is obtained from I'y
by moving to the right row 2, which is integer, and row 3, which is semi-integer. Note

gI; N 9{2 = {e(3,1)(1,3)1 €(2,2)(5.1)» €(3,2)(1,4)+ €(3,3)(1,5) }

hence I1 =1& (ggl N 91;2) is neither of the form (4.2.13) nor of the form (4.2.14), because s1 = 2 € N while
sip=5el+N
Proof of Lemma 4.2.4. By Lemma 4.2.1 and by the adjacency property, the Lagranglan subspaces will be
L=I1® (9(11) g(Z)) and o =16 (g(l) N g ) for a Lagrangian subspace [ C g ’n 9(2)

We may assume that (4.2.11) holds, namely that s7 € 1 $+Nforall (i,h) € T such that 212 (ih) # 21 (ih),
and moreover that (4.2.9) holds, namely that Ty is obtamed by I'y by moving some of the (semi-integers)

boxes to the right. For the other cases see Remark 4.2.2.
We have

1
(1)09 —{e(lh(jk|81]+k— h—f —Hf—sh h=1}
= {eamum | —51) +s1) = =51 + 17 + } (4.2.15)

By (4.2. 9) Sh =5t 1 81;; = Slg is the only possible solution for (4.2.15). By (4.2.11) we moreover
must have s1} € 1 1 + N, while 512, 5137 513 eN.

Therefore we can rewrite (4.2.15) as

(1) Not” = {eqinr | degr, (ein i) = % degp, (e(i,n) () = L, 81} € %+N}. (4.2.16)
Similarly,
9(1) 1 *{e(zh)(]k)|3h+k*8h h=1, sF"‘Jrkf h——}
= {eamum | =51} +s1i = —s1; + 517 — 5}. (4.2.17)
By (4.2.9), 81] = s% %, 512 = 511 is the only possible solution for (4.2.17). By (4.2.11), we moreover
r,

must have s}, 57/, sip el 5 + N, while s 1; €N
Therefore we can rewrlte (4.2.17) as

1 1
gt N (2 = {eamip | degr, (eanim) =1, degr, (eanim) = 35 51 12es 5 TN} (4.2.18)
Since
(1)7{‘ 1 d R s N o d RN e N
g0:" = {eamp [ degr, (eamim) = 55 518 € 5 T NF & {eamp | degr, (eamim) = 55 516 € N}
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= Apl D Bpl (4219)

and

2 1 1 1
9(%) =le@m.p | degr, (eanim) = 3 , 817 € 5 T NY@ {eanGm | degr, (e mim) = 5 , 517 € N}

= Ar, & Br,,

we can decomp ose

1
05" N0Y ={eqn i | degr, (e ) = degr, (eumn) = 5. 51 = 517 € 5 +N}
1

3 —511 € N}

Ty
Slz

D {eqi,nr | degr, (eqn) k) = degr, (€@ ) (k) =
= (Ar, NAr,)® (Br, N Br,) = A® B,

where s{ = 312 follows from Remark 4.2.1 and from the strict adjacency condition. Namely, these conditions

imply that if 2" (ih) — 2" (jk) = 2"2(ih) — 272 (jk), rows i and j necessarily are one integer and one semi-
integer, it must be 21 (ih) = 272 (ih) and 2™ (jk) = 272 (jk) and therefore s}} = s}2.

By the definition of pyramid, dim Ar, = dim Br, = idim g(ll) and dim Ap, = dim Br, = +dim g(f)

2 2

fact, for each box labeled by (i,h) € T such that s1; € % + N, then must exist (a,b),(¢,d) € T such that

both (i p)(a,b): €(c,d)(i,n) € 9(1)-

. In

By a similar argument, d1m A =dim B = {dim (g} (1) N g( )) Moreover, under the usual bracket product,

A and B are abelian subspaces of g(1 ’n g(2) Therefore both A and B are Lagrangian subspaces of g(1 N 9(2)

with respect to the form w.
Choosing [ := A we get

1
2 312 € - + N}

1 1
@ {eam.r | degr, (emr) = 55 degr, (e mim) = 1, st e 5+ (4.2.20)

= A{eq,n Gk | degr, (e(i,n).x) = degp, (€i,n) (k) =

and

1 1
b = {eqimiip | degr, (e mm) = degr, (eimiip) = 55 517 € 5 +N}

1 1
® {eq,n) G,k | degr, (e (k) = 1, degr, (e k) = «913 €5+ N}, (4.2.21)

which are of the form (4.2.13) since by (4.2.9) and (4.2.11) the following holds:

1 1
{emim | degr, (eimim) = 50 degr, (cm ) =0, s1) € 5+ N} =0

1 1
{e@me | degr, (e mir) =0, degr, (e mim) = 5 512 € 5 TNy =0. (4.2.22)

Remark 4.2.2. Assuming instead (4.2.10) (under the hypothesis (4.2.11)) we would get

1 1
QEI Ng12 = {eanm e | degr, (enir) = 2 degr, (emr) =1, 51} € 5t N}

1 1
o' 091 = {ew,mG.r) | degr, (e nry) = 1, degr, (e(,n)(ik) = 813 €5 +N}

and Equation (4.2.14) holds for [ := B
Assuming (4.2.12) instead, Equation (4.2.14) holds for [ := B under the hypothesis (4.2.9), and Equation
(4.2.13) holds for [ := A under the hypothesis (4.2.10).
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Corollary 4.2.1. Let |; C g(f) be a Lagrangian subspace as in Equation (4.2.13) or (4.2.14), i = 1,2. Then,
2
()

we can choose a complementary subspace [§ to l; in gy’ in a way that it is still an abelian Lagrangian subspace.
2

Moreover, both l; and [§ are g(()i)-modules.
Proof. Suppose that l; = {e¢ 1),k | degr, (€qn (k) = %, si € %—l—N}. By the decomposition (4.2.19), then
we can choose 1

= {ewman | degr, (eimim) = 501 €N}

that by Lemma 4.2.4 is an abelian Lagrangian subspace of gE On the other hand, for [; as in (4.2.14) the
2
same holds with [§ as in (4.2.13).
Moreover, given €(q p)(c,d) € gél), then we must have either s{m slfc € % + N or slfg, s{c € N. As a
consequence, for [; as in (4.2.13) or (4.2.14) we get

la6”. 6] < o6, 6] < €.
Namely, both [; and [ are ggi—modules. O

4.3 An attempt to extend the recursive definition of W (z2)
Here, an attempt to generalize the results of the previous sections to a more arbitrary good %Z—grading T.

Theorem 4.3.1. LetT'; : g = EBZ-G%Z ggl) be a good %Z-gmding for f. Suppose that it is possible to remove the

leftmost (resp. rightmost) column of p and suppose that there exist a choice of generators {W;g(z)}1§i7jgr for
W(g?, f7,T7,0)[z] (resp. {WF (2)}1<ijer for W(g?, f7,T7 ,0)[2])) and {W7,(2) }1<i j<r for W(g, £,T1,0)[2]
such that they are related by the left recursion (3.2.2) (resp. right recursion (3.2.3)). Suppose moreover that
we are given another good %Z-gmding Iy:g= @jeézgf) for f such that, with respect to this grading, it is
still possible to remove the leftmost (resp. rightmost) column.

By [BG05], there exist associative algebra isomorphisms (see Section 4.4.1 below for an explicit descrip-
tion)

(DP:W(g?faFlaO)[Z] %W(g,f,FQ,O)[Z], (431)

O, W(g?, f7,T7,0)[2] = W(g?, f7,T7,0)[2]. .

Then, there exists a choice of generators {‘I)’p(Wi?(Z))}lgi,jgr for W(g?, f?, I‘IQP, 0)[2] and {®,(W}(2)) }1<ij<r
for W(g, f,T'2,0)[z] for which the same recursion relation (3.2.2) holds.

Note that the possibility to extend the recursive relation from a pair of sets of generators of W(g, f,T'1,0)
and W (g?, f/p,F,lp, 0) to the pair of sets of generators of W (g, f,T'2,0) and W (g?, f/p,F%’, 0) obtained under
the action of the isomorphisms ®, and ®, is not obvious, not even for the simple case of the recursion (3.2.2),
since the associative algebra injection o; does not extend to an homomorphism of W-algebras, and therefore
we only know that

or(W(g?. f7.T7.0)) C U(@)/U(@){b — (FIb))equ -

Proof. We will work under the assumption that it is possible to remove the leftmost column of p, the other
case being analogous.

It is sufficient to suppose that I'; and I'y are strictly adjacent %Z—gradings. This statement will be clarified
by the algorithm described in Section 4.4.1.

Remark 4.3.1. The fact that the left recursion holds for a choice of generators {W;g (2)}1< j<r implies

that the leftmost column is the shortest, namely t{ 1< slfl. The adjacency condition, together with the
assumption that even for the grading I's it is possible to remove the leftmost column, imply that t1;2 < s?

and moreover ;' = t12.
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By Lemma 4.2.1 there exist Lagrangian subspaces [ C g(l) and [, C g1 such that W(g, f,T'1,l1) =

W (g, f, T2, 1) and, by Lemma 4.2.3, W (g?, 7, F,f, [/1) (gp fr, I‘p Ip) By Lemma 4.2.4, we can choose
l1, Iz such they are of either one of the forms (4.2.13) or (4.2.14).
Fori=1,2, let

p][;,[i : W(ga f7 Fi7 O)[Z] % W(ga fa Fiy [)[ ]
oy s W(gh f7. T, 0)[2] = W(gh, f7. 17, ()[:]
be the (polynomial extensions of the) isomorphisms as in (4.2.2) induced by the quotient maps
Pl V@O0~ (et = V@U@0~ (ot
Py, 1 U”)/U")(b— (f71b)), g — Ul P)/U(g")(b— (fp|b)>b€[;p@g'§,l<i> :

(4.3.2)

b

We may assume the maps in (4.3.1) to be @, = (pf ,)~' o pjj,, and @y, = (,og’)[z)‘1 o pgill. The situation

is represented by the following diagram

W(Qa f7F170) & W(g/P7 f/p]‘—‘/fVO)

<p§,,1)*f T(p;‘illrl

W(gva F27[2) _ W(gafvrlvll) W(glpvflpvrlfalllp) _ W(glpaflpa]-—‘;pa[g)) (433)
W (g, f,T2,0) < W(g?, f?,17,0)

Recursion 7

Let Wy (2) := @y (WE(2)) = (0 ,) " (b, (WE(2))), and W(2) = @4 (WI(2)) = (pg,) " (0, (WH(2)).
For each i = 1,2, fix PBW bases of U(g?) and U(g) as follows:

e Order the elements of 92% increasingly with respect to the degree: g() g( )1 gé), and denote by
T g1,-.-,T ks, & basisfor g_p, 0 <k <d, s > 1. Same for g,géi);

e Order the elements of [§

¢ in lexicographical order with respect to the order of 7 given by Equation
(2.1.7):

€(ip,hp)(Gp-kp) 22 €(i1,h1)(J1,k1)>
i2,h2)(j2,k2) if eit'her (il,hl) < (’ig,hg) or if (il,hl) = (’ig,hg) and (]1,]{)1) <
(Ja2, k2). We shortly denote by Bf = {Ziz), . ,ZE,?,L} such an ordered basis for [§. Since [§ = O'l(( Pyey,

with a slight abuse of notation, let us choose the same ordered base for ([;p)c;

where €(ir,h)(G1k) < €

e Order the elements of [; in (inverse) lexicographical order with respect to the order of 7 given by
Equation (2.1.7):
€(ipshp) (pskp) 2 ° " 2 E(i1,ha) (1K)
where (i, n)(j1, k) < €(in,ha)(jasko) if €ither (i1, k1) < (ja,j2) or if (j1, k1) = (j2,k2) and (i1, h1) <
(2, ha). We shortly denote by B; = {E(z) e ,67(7’1)} such an ordered basis for [;. Since [; = ol([;p), with
a slight abuse of notation, let us choose the same ordered base for I/P ;

@) ).

e Order the elements of gg increasingly with respect to the degree: g; . Same for g> P8 ;

As in (1.1.13), we shall thus identify the quotients
U(9)/U(8)(b— (1) cqe = Us%)) @ F(al),
U(a”)/U(g?)(b— (f”lb)>begp o = Ul @ Fpt),
U@)/U(0) (b~ (f10) 1,00, = UlaSe) @ F(5).
(

V@)U~ (F710) o giro = Ulaks”) © F(ID)),

(4.3.4)
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where F(g(f)) F(gf (Z)), F(1¢) and F(([;p)c) are the (generalized) Weyl algebras for 91 , gp () , [$ and ([;p)C
2
respectively (cf. Definition 1.1.7).

Analyzing the first column of Diagram 4.3.3, let ij (z) be the unique element in W(g, f,T'1,l;)[z] =
W (g, f, T2, [2)[2] such that X7 (2) := pf ,, (WF;(2)) for all 1 <4,j <.

Therefore we can write W}(z) = (o)~ (X};(2)) = XFi(2) + Yl-p-ﬁl(-l)( ) for every 1 < 4,5 < r, where

ij
vEe! )(z) is a polynomial whose coefficients are sums of monomials Y;, .. “6511) 81(-3), s> 1, with Y;,..;, €

ijvig

U(gl)) ® F(15) and 8V, ..., 6 € B;.
Proceeding downwards the first column, there exists a unique ij (2) = (ph.i,) " (Ph, (Wh(2))), 1 <

i,7 < r, such that

(a.1) (pb.,) " (00, (WE(2)) = X[5(2) + ZJ 02 (2), where Z%.0!?)(2) is a polynomial whose coefficients are

1771g Y REY]

sums of monomials Z“...isﬁz(-lz) . 652)( ), s> 1, with Z;,..;. € U(g<0) ® F(15) and E(Q) ...,fg) € By;

(a.ii) [a, XP(2) + 2063 ()] € Ulg) (b — ( £1)) g 2] for every a € o)

LYY

Similarly, analyzing the second column of Diagram 4.3.3, let Xip( ) be the unique element in W(gp I, Fp [p)[ | =
W (g?, 7,7, (7)[2] such that X;’J’-( )= p0 [I(Wp( z)) for every 1 <i,j <r.
L / _ ’ ’ (1)
Therefore, for every 1 < 4,5 < r, we can write Wlé’( z) = (p5,) 1(X£(z/)) = X5(2) + Ylfﬁz( (2),
where Ympélp’( )(z) is a polynomial whose coefficients are sums of monomials Yif’miséz(-ll) . ~€§:), s > 0, with
Y, e UsY) @ F(7)e) and ¢V, ) € By.

11" s 7,1"’

Therefore, there exists a unique W”(z) = (pglz) (po [I(Wp( z))), 1 <i,j5 <r, such that

(b.9) (pg’b)_l(pg[l(W;( ) = X/p( )+ Z,pﬁlp-’(z)(z), where Z;’;-E;-’;’(Q)(z) is a polynomial whose coefficients are
sums of monomials Zfl’.__i ;) 2) €(2)( ),s>1,withzZP . € U(gg’O@)) F((12)¢) and él(-f), . ,EZ(.SQ) € Bo;

(b.ii) [a, X[2(2) + 22057 ()] € U(a?) (b — (£71b)), . el for every a € g7

1571

Let us first approach the simple case of the recursion. Namely, we would like to prove that

XB(2) + 2003 (2) = Wi (2) = oW (2)) = (X[ (2) + 2507 )(2)) (4.35)

1] )

holds for every j > 1+ 1. By our hypotheses, W} (2) = al(W;p(z)) for all j > r{ + 1, hence we already know

that 1 | 1
XZ(Z) +}/Z€€’EJ)(Z) = Ul(Xi?( 2) + Ypepv( (2))

LYY

Our choice of a PBW basis allows us to conclude that X7;(2) = o1(X 5 (2)). By uniqueness of the generators
P61, (W (2)), for (4.3.5) to hold it is therefore sufficient to show that

X1 (2) + (2505 (2)) € W (g, £,T5,0)[2]. (4.3.6)

By definition, this is the case if and only if condition (a.ii) holds. Since X};(z)+ Zf;ﬂg)( ) e W(g?, 7, F;p, 0)[z],
we already know that condition (b.i¢) holds, namely that

’ / R 2 1 ’
la. X5 () + 25657 (2)] € U@P @) b = (£710) e i)

for every a € gp’@).

Since o (U( (b — (fﬂb)}b€ we) C Ulg){b — (f|b)>b€g<2>, it is sufficient to check what happens for
9>1 >1

the adjoint action of a € gp 1,2 ), which is a complementary subspace to o; (glﬁi ) in g( ) made of all those
=32

>1
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elements e; p(j k) € g(j)l such that z(jk) = —% (and also a complementary subspace to Jl(gﬁlm) in g(fi, as
=32
consequence of the hypothesis that p with respect to the grading I'y exists).
Consider the PBW basis for U(g(fc))) ® F(g(f)) as above. We can decompose each g_i, k > 0 as 0y(g”,) ®
2

gpl’(Z) We obtain a decomposition

U(2) ® F(ay) = (U(Uz(g ) ®F(g(§))) ® (U(gild@)) ®F(g(%)))

where U(U’l(g,gb@))) consists of all monomials whose factors only belong to Jl(gﬁé )) and U(gﬂlo’(2 ) contains

all the other possible monomials. Namely, each monomial in U(g” 1’(2)) contains at least a factor belonging
to a ng,;@), for some k > 0.
We shall split ZZﬁEJ)( ) = Zi(jl)pég)( )+ Zl(f)pﬁ(z)( ) accordingly, where Zi(jl)pég) (2) € U(sigmal(gﬁom)))@
F(gy)[z).
Slmllarly7 we can decompose

U(@®) (0~ (f10)eqr = U@D) 0~ (F710)),, (g @) ® U@ = (F10) g o

= U@ PN~ () o) © U - Mroigs) O VG0~ B,y
Thus, for a € o, (gz’f)) we have

la. X0(2) + 2703 (2)) € Ulor(g? )b = (F710)) e, g 2]

because all terms belong to U (o;(g?(2)))[2]. As a consequence, by uniqueness of the generators (pgj’[Z)_1 (pg’J1 (Wlf( 2))),
we have X7:(2) + ZZ.(].l)pﬂg)(z) = X7i(2) + Ul(ZZ-Z;EZ’(z)(z)). It implies

XP(2) + 2800 (2) = X2, (2) + ou( 2560 P (2)) + 20702 ().

LYY LV

The identities

(1) [a,ij(z) + Ul(ZZ-?fZ’@)(z)) + ZZ.(J?)PEEJQ_)(Z)] c U(g®)(b— (f|b)>b€9(;f [2] for every a € 01(9522));

(i) [a, X7 () + ou(Z5 052 ()] € Ulai(g™@))(b = (F710)) e, o0 [2] for every a € ou(g24);
also imply
[a, ZZ.(;)PEE?)(z)] e U(g@)(b— (flb)>b€9(;f [z], for every a € al(g;%@)).

We shall now apply Lemma 4.3.1 below to u = ij-z)pﬁg)( ) and [ = 5 to conclude that Z p€(2 (2) =0
in U(g®)/U(a®) (b~ (f16)) e g2 2], proving (4.3.6)

Let us now suppose j < r1. In this case, from the recursion (3.2.2) for W} (2), under the identifications
(4.3.4), we get?

le;( z) = ‘F(UZ(WP( ) =le €(J:p1)(Gp1— l)vgl(W/p(Z))]

— Z Ul(WiZ(Z))((shjZ + é(j,pl)(h,pl)) + Z Ul(WiZ(Z))Ul(WhI;;p,L_J'
h=1 h=r1+1

2Note that under the hypotheses of Theorem 4.3.1 we have €G,p1)Gp1—1) € g( %ﬂg( i and €(j »)(h,p1) € 90 U ﬂg( ) for every

1<j,h <71 (cf. (1.1.8)) and moreover the numeric shifts §;,d(;,,) attached to e; ,,)(n,p,) are the same with respect to both

gradings. Also, [e(j,pl)(hypl),Uz(gf’m)} =0.
2
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With the notation as before, then ij( )= F(ou (Wl (2))) holds if and only if

(08.0,) 1 (0 (F(a(WE ) = Flo(pl ) ok, (WE()))) € Ue2) © F(at?)[2]. (4.3.7)

Let us consider the RHS of Equation (4.3.7). We have (with a slight abuse of notation)

m\»—-

Florl(p2 )" o8, (WE(2)))) = Flon(XE(2) + Zf;ffj ®(2))

/ 2) (2 .
= [eGa) -1 X (=) + ZEE (2 Zaz + 2505 (2)) (Ons2 + &) ()
b alXBe) + 2P Xy + 2 )
h=r1+1
= F(ou(XE(2)) + [eGin) G —1)» 1 (ZELE ) (2 Z" (Z5 5P ()02 + & o o))
Y (X NAZE, i) + (R DX, ) (4.3.8)
h=r1+1

+ o Zh 5P () 2, L)

hjspn—1"hjipp—1

1
7 /. 2 s
= F(@1(X2(2)) + e G 1) o ZEEo (€7D (2) = 37 01(Z8 (2)) 8z + Epy g (57 (2)
h=1
7 s 7 12 R 2 R 2
b Y (RN ) + 2O o2 )
h=ri+1

1

+oz<Z;i<z>>oz(X;fj;ph_nm(f;’i;“)(z)) + ol ZE (o (5D (2)), (X, )]

where the last equality follows from the fact that [e(;,,)(j.pi—1):01(2)] = 0 = [e(j,p1)(h.p)> 01(2)] for each

T € [ Moreover we have

o165 (), o1 (X P, )] = [0 P (), e (W, D] = o5 (), 002, 82 )]
= [0(t5 2 (), (W, )] — (o5 P (), 0 ZE,, _Dlo@h 2 ) — (2, o€ (), (82 ).

The first term clearly lies in U(g)(b — (f|b)>b69(2)’ and the last one vanishes because of Lemma 4.2.4. As
>1

a consequence, after reordering accordingly to the PBW basis chosen above,
Flollpg,) ™ (ol (W) = Flai(X () + 255 (2) € Uey) © (o)),

where Zgéj)(z) is a polynomial with coefficients in U(g(<2())) (g(12))
As far as the LHS of Equation (4.3.7) is concerned, we clearly have

(8.) " (b (F(a(WE ) = o (Flo(WE(2) + 2500 (=),

where ZUZU (z) is a polynomial with coefficients in U(g(<3) ® F(g(f))lg.
2
Expanding f(al(Wi?(z))) as in (4.3.8) we obtain f(al(W’p(z))) = .F(JZ(X;ZJ)-(Z))) + ?szﬁj.)(z), where
?szl(-;—)(z) is a polynomial with coefficients in U(g(<1())) (g(ll))

Since X;Z;( ) is in U(g<0(1)) ® F(([/f)c), when applying f(ol(Xig(z))) we have

o (6" oi(XE(2)] € UL)) ® F(1)[];
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o (15, e(ip)(hp)] =0, for every 1 < j,h <ry;
) [[f,ol(gg)’(l))] C [§, by Corollary 4.2.1.

Therefore, F(oy(X(2))) € U(gly) ® F(5)[2] and

oh (Flo(W2(2) = b (Flor(XE(2)) + VI (2) = Flo(XE(2))).

It is now just sufficient to show that

(08, Flo((p51,) (28, (WD) € Ul@)b = (F10) peqes 2] (43.9)

In fact, if (4.3.9) holds then the following identity holds in U(g)/U(g){b — (f|b)>b€g<2> [2]:
>1

0= oy F(o((pfi,) ™ (o, (WD) = (65 1,) ™ (6,1, (Flor(W 5 (D))
= [0, Flo( X5 () + Z503 (2) = o, (F(aWE () - Z08) ()]
= [0, Flou X5 () + Z505)(2) = Flau (X5 () - Z0,8,; (2)]

3 7t]

e 72 =P 5(2
= [E% aZzpjéij () — Zijéij (2)].

7,] ij

(2) € U(g @ )) ® F(g@))[g, Equation

1
2

Applying Lemma 4.3.1 to [ = [, C g(f) and u = Z{’ﬂf)(z) -
2
(4.3.7) holds.
Given a € g(f) we have
2
2 2
[, [e(ip) -0, 1 (X5 () + ZEED )] = ([0 090 6ma ) 01X () + 2503 (2)
—— —
=0

oG- 100X 5 () + Z50 ()] € U@)D — (FI)e 2]

Goz(U(g"’)<b*(f”’\b)>b€g’p,<z) )[2]
>1

oo, > a(XR (=) + ZHOG) (2)) Onsz + &G pu ()] [a,00(X 2 (2) + Z5 05 (2))] (Onsz + Snidpn))
h=t " eoiwiem) (S, @)l
1
+ 3 [0, 01X 5 (2) + ZHL ()] epynp) + O oKX (2) + ZHET (2)) [0, (o)
— — —_—— ——
Teaw@ -, el e A
l

Ug){b— (f10))veqs, [Z];

12 / 2 / 2
ela, Z Ul(XiI})z(Z) + Ziﬁzgh)(z))al(xi%;phfl + ZZJ;L PR — 1££h)17h 1)]
h>ri+1

€ iU = (10}l € U (@6 = (F18)) g 21

where the last inclusion is due to the fact that al(X;I,’L(z) + Z;"‘;Lﬁgi)( ))o (X;’;L o1 T Zf,’L ph_lﬂgi)p} ) isa

product of elements in W(g/p, fr, F%’, 0)[z]. O
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Corollary 4.3.1. LetT'y and s be a pair of good %Z-gmdings for f asin Theorem 4.3.1, and let | C g(f) be an

2
isotropic subspace with respect to the bilinear form w. By [BG05], we have associative algebra isomorphisms

6}0 : W(g,f,rl,o)[Z] — W(g,f7F27[)[Z] (43 10)
Ty, W(g”, f7.TF,0)[z] — W(gP, f7.T7,17)[c]. -

Let {W;?(z)}lgi,jgr be a choice of generators for W(glp,flp,Flf,O)[z] and {WZ‘('Z)}lSiJST a choice of
generators for W (g, f,T'1,0)[z] such that they are related by the recursive relation (3.2.2). Then, there exist a
choice of generators {6/1,(Wi§(z))}1§i7jgr for W(g?, f?. T2 (P)[z] and {Ep(ij(z))}lgmgT for Wi(g, f,Ta,1)[2]
for which the same recursive relation (3.2.2) holds.

Proof. By Theorem 4.3.1, there exist a choice of generators {WZ(Z)}1§i7,jgr for W(g/p,f/p,Fg),O)[z] and
{ij (2) }1<ij<r for W(g, f,T'2,0)[2] for which the same recursive relation (3.2.2) holds. Therefore we just
need to show how to extend the recursion to a generic isotropic subspace I.

Let pp : W(g, f,T'2,0) — W(g, f,T'2,[) and p;{[ : W(gl”,f/p,Fg],O) — W(g/p,f/p,Fg), (?) be the asso-
ciative algebra isomorphisms as in (4.2.2). We shall denote

/

Wiz) = pl (Wii(2)),  Wh(z) = pf (Wi;(2)), 1<ij<r.
Choose PBW bases for U(g) and U(g?) as in 4.3.1 (denote by B an ordered basis of I), and use the
identifications as in (4.3.4). Then,
Wii(2) = (0 )" (WE(2)) = Wh(2) + Y ,(2)

ij ]

where Y2¢7,(2) is a polynomial whose coefficients are sums of monomials v} €

Pl s >0, with Y]
U(g®) @ F(1€) and ..., ¢ B. Similarly,

i1l

7’1) ’ _ o~ o~ o
Wii(2) = (pg) T (WE(2) = WE(2) + V.7 (2)
where Yl/félg(z) is a polynomial whose coefficients are sums of monomials Yl/flé;li . -EZ, s > 0, with Yl/fl S
U(a%) ® F((I7)) and £7,...,67 € B.
Let us first suppose that j > 1 4+ 1; in this case by hypothesis we have ij (z) =0y (WZ(Z)) Then
WE(2) + YR (2) = Wi(2) = (Wi (2) = oi(WE(2) + Y;PeE(2))

/

that implies W\Z(z) = al(ﬁ/\i?(z)). Suppose now that j < r1; in this case W7}, (z) = F(01(W;(2))). We have

Wi5(2)) + Y505(2) = G -1 01(Wi5(2) + Y7 65(2))]

17 “1j
T
= > (Wi () + Y5 () Gz + eGpnnpn) + D, or(Wik(2) + Vi lh ())on (Wil
h=1 h>r+1
‘p 'p
+ th;?h_lghjmh_l)

= F(ou(WE(2))) + [eG o)1), 0(Yi £5(2))

- Z o1(Y;t,(2)) (0njz + €(p1)(hpr)) T+ Z Ul(y;géﬁ(z))m(wh%;ph—l + th;';ph—léffj;ph—l)
hel h2>r1+1

+ Z Ul(Wf}z(z))al(Yhz;;ph—lgﬁj;:ﬂh—l) ’
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After reordering according to our choice of a PBW basis we obtain Wp (2) + Y500 (2) =

ijig
F(1°). Moreover, oy(t} (2))or (W}

hypothesis [UZ(E;T;L(Z)), UI(WIP

g 1)) = 0in W(g, f,T,1).

Flo(W () +
ZP1P (), and we can conclude that Wz’;( z) = f(al(wi’p( ))). Note in fact that ]—'(al(Wp( ) €

<g<<23> ®

1) = oWl ot (2) + [ou(eh(2)),0u(WTy,,, )] and by our

O

Remark 4.3.2. An alternative version of Corollary 4.3.1 can be stated, and proved with a similar method,

in the case when we remove the rightmost column of the pyramid.

Lemma 4.3.1. Let [ C g1 be a Lagrangian subspace with respect to the bilinear form w as in (4.2.13) (resp.

(4.2.14) ). By the decomposition (4.2.19) we get I as in (4.2.14) (resp. (4.2.13)).

Let u € U(g<o) ® F(g1) such that [I u] = 0 in the quotient space U(g)/U(g){b— (f[b))segs,- Decompose

u = Z us&l---ﬁis,

s>0
1<, <ig

(4.3.11)

where £;; € 1, us € U(g<o) ® F(I°) and suppose moreover that ug = 0 (namely, all the summands in u have

at least one element of ). Then, u = 0.

Proof. Choose a PBW basis for U(g<g) ® F(g
written as

1
2

u= Z Ca,,(aﬁx"zﬁﬂa = Z Z Z ﬁ7x7£ ot

By M>0 lae|=M B,y

LY Y S P g

M>1|a|=M B~

where for the last equality we have used the hypothesis that ug = 0, and

. x":xti‘f’11~-~x1;?_dd xgoll--wgi;zo, with v = (Y_d1, -+ Vedys_y»---
e P =70 withB=(Bi,...,HBm) ENT,

o L=/ (% witha= (a1,...,qm;,) € N,

o lal=a1+...+apy, fora=(ar,...,q,) € N™,

° Caﬁﬁ, CaﬁweC

For ¢ € I¢, we have®

=3 > Sk (e + 7 ).

M>1|a|=M B~

Moreover,
m

[e%
. gmrn

,’}/71,...

0,60 =S a5 1(Zeh ST TRy e

i=1 h=1

with ST0 (7 0,607 = ([0, 4:]) il ™" in the case when [7, 4] # 0.

) as in Theorem 4.3.1. Then, u € U(g<o) ® F(g

) 70,50) €

1
2

) can be

(4.3.12)

Ns—d"r~~-+50 ,

(4.3.13)

Note that, by Corollary 4.2.1, [(,g<0] C g<o and [(, go] C [°. Tt implies that [¢,27] does not increase the

total amount of factors from [ appearing.

By Remark 2.2.2, the dual of [ with respect to the bilinear form (-|-) is [* = [f,1°]. As a consequence, for

each £ € [ there exists an £ € I° such that (f|[¢,¢]) = 1. We denote this element by ¢*.

3Note that [, (€] = 0 by Corollary 4.2.1.
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Remark 4.3.3. Given ¢ = e(; py,k) € L, (4, 1), (j, k) € T, we can explicitly describe £*. In fact we have

(flleGr=1)Gn)s e6mGry)) = 1
(flleGr) i n+1)s €6n)Gi]) = —1

while (fle(a,p)(c,a)s €,m)(j,k)]) = 0 for any other e, p)(c,q)- By Lemma 4.2.4, both e(; —1)¢i,n) and e k)i h+1)
belong to [°. In the following, we will consider [* = e(; x—1)(i,n) if [ = € n) (k) With k > 1, and [* = e(; x)(i,n41)
otherwise.

First suppose that there exists at least one nonzero coefficient C’é\‘/lﬁ 5 € C with ay, > 1 (. a =€+,

for e,, = (0,...,0,1) and &’ € N™), and consider the bracket with the element £ := £* € [, We may assume
that (f|[¢%,,¢m]) = 1, By Remark 4.3.4 below there exists at most one other element ¢; € [, with ¢ # m, such
that (fl[g:nagz]) 7é 0 (and in this case, (f‘[grn’ez]) = _(fHE:;wEm]) = _1)'

By (4.3.13),

=S S0 Y ek, e, e

M2>1|a|=M B~

am>1
m—1
=B * (7] Qi —1 pog—1 pQig1 QU
+ Z Z Z C'i/{ﬁﬁlﬁf Z O O LT e e Sl W Y o (4.3.14)
M2>1|a|=M B,y i=1

am>1

+ Z Z ZCQ/{B’VmVZ'Bamﬁ‘fl .. 'E;”ialém'l_l —0.

M>1|a|=M By
am>1

Let us suppose that 7 is the unique ¢ # m such that (f|[£},,¢]) # 0. We reorder the terms in [£, u]
according to their [-degree, namely the total amount of factors from [ appearing, and we then proceed by
induction on the [-degree. In degree 0 we get

N Cl a7 =0, (4.3.15)
By

and we can therefore conclude that C’ém g~ =0 for all 3,~. Let us now suppose that the [-degree is M > 1,

and by the induction hypothesis suppose moreover that C’é‘f B
|a’| = M — 1. By (4.3.14) we have

0= CM e e
Z Z a,ﬁ,‘y[m ]

= 0 for every @ = e,, + o', &’ € N™ with

la|=M B,y
am>1
_ M+1 'y*ﬁ _por | pa—1 paz—1pQat1  pouy,

E Caﬂﬁx 0 oty GG Lo (4.3.16)
le|=M+1 B,y -0,
Q7,0 >1

s m— —
fY oM P e,
la|=M+1 B,y
am>1

which we can rewrite, by the induction hypothesis, as

0=3"(- S oMt Pttt 4 S CME P (43.17)

By lp|=M-1 lvl=M
where pp = (p1, ..., i) = (@1, oy 5-1,07 — Lag1, .o oy — 1) and v = (11, ..., vy) = (@1, 0oy — 1)
First, by considering the monomials in the second term when ¢,,, does not appear, we can easily conclude that
051'2167 = 0 for every v such that v,, = 0. In particular, Cﬁ/{:ai+e,,“3,~y = 0 for all g such that u,, = 0.
Since each one of these terms is a monomial of degree 1 in /,,, we get as a consequence that CM+1 =0 for

v+enm,B,y

every v such that v, = 1. By repeating this argument we finally conclude that CM+1 = 0 for every o € N™

By —
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with oy, > 1. Note that this result would directly follow from (4.3.16) in the case when (f|[¢},,¢;]) = 0 for
every i # m.
As a consequence, (4.3.12) becomes

w= Y N SO T
M>1|a|=M B,y
am=0
Iterating one by one for £,,_1,..., £1 (i.e by considering the commutator with £* ;... ¢7 respectively)
we can finally conclude that Ci/{ﬁ,—, = 0 for all a, 3,7, and therefore u = 0.
Note that Remark 4.3.4 holds at every step of the iteration, since at every step we are considering the
commutator with £ when ¢, is the maximal element of B appearing as a factor in u. 0

Remark 4.3.4. Let B = {{1,...,¢,,} be a basis of [ as in the proof of Theorem 4.3.1. Let 1 < g < m be
the largest integer such that ¢, € B appears as a factor in u. As a consequence, ¢, < ¢; for any other ¢; € B
appearing as a factor in u, when ¢ # ¢q. Then, for ¢; € B with i # ¢ the only possible non-zero commutators
[z, ;] are the following:

0 7 [e(j,k—1)(5,h)s €(0,h) (e;d)] = €0 k—1)(esd) » but (flegr—1)(c,a)) = 0 for (¢,d) # (4, k),
0 7 [e(j,k—1)(0,h)s €(ab) Gik—1)] = —€(ab)(ih)» DUt eap)ik—1) < g,
0 7 (e k) (i,h+1)s E(ab) (k)] = —€(ab)(ih+1) s DPut (flegapy@n+1)) = 0 for (a,b) # (i, h),

while

0 7 [e(,k)(i,h41)s €(i,h41) (e,d)] = €(j.k)(ed) » and (fle¢jxy(e,ay) = 1 for (¢,d) = (4, +1).

4.4 Extension to a generic good %Z-grading

In the case when it is possible to remove the leftmost (resp. rightmost) column of the pyramid p, Theorem 4.3.1
allows to construct a particular choice of generators for the W-algebras W (g, f,T",0) and W(g/p fP ,Flp,())
(resp. W(g?, f7',T%",0)) such that they are related by a recursion like (3.2.2) (resp. (3.2.3)). From Remark
4.1.1 it is possible to extend Theorem 4.1.1 in the case of an even but not necessarily aligned good %Z—
grading. Together, these results almost prove Conjecture 3.1.1 in the case of an even %Z—grading. Unluckily,
Proposition 3.3.1 still shows some limitations in the case p is not aligned.

However, this is anyway not sufficient to solve Conjecture 3.1.1 in all generality: the case of an arbitrary
odd %Z—grading is still missing. In fact, even in the case it is possible to remove either the leftmost or
rightmost column for the pyramid associated to such a grading (and therefore apply Theorem 4.3.1), we are
still not allowed to perform arbitrary removal of columns on either side, as we have seen it is necessary for
many results.

The search for an alternative method that would allow us to prove Conjecture 3.1.1 in this most general
case eventually brought to the development of a powerful machinery.

Definition 4.4.1. Let I' be a good %Z—grading for f, not necessarily even. Let

a := max{i | s1, € N},
(4.4.1)
. 1
b:=max{i| s1; € i—i—N}.

We set b =0 if s1; € N for every 1 < i < r. Then we define the right distance of I', namely the distance of
the pyramid with grading I' from the right-aligned pyramid I'p associated with the same partition of N, as

distg(T) := 531a>0(281a + 55;&0) + 531(“055750251[, , (4.4.2)

and the left distance of I', namely the distance of the pyramid with grading I' from the left-aligned pyramid
I';, associated with the same partition of IV, as

diStL(F) = 5sa1>0(23a1 + 51,750) + 5sa1,05b;£025b1 . (443)
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We also denote by distance of T' the minimum between its left and right distance:
dist(T") = min(distr,(T'), distg(T)) . (4.4.4)

Remark 4.4.1. Note that distg(T'g) = 0 and distz,(I'r) = 0. Moreover, b = 0 if and only if T is odd and,
by (4.4.2) and (4.4.3), it is clear that both distg(T"), distz,(T") are odd if T is odd and even if T" is even.

Example 4.4.1. Consider the following pyramids:

(61)
(52)|(51)
(12)|(41)
(33)[(32)((31)
(21) (23)|(22)[(21)
132y asfas|az]a
Figure 4.3: T'; Figure 4.4: 'y
Then,
disty, (I'1) = 3, distr(T'1) =1, disty, (I'2) = 3, distr(T'2) = 3.

4.4.1 Algorithm for a chain of adjacent gradings

Let T be a good %Z—grading for f, and let [ C g1 be an isotropic subspace with respect to the bilinear form
w. Suppose that dist(I") = distg(I') = m > 0. By [BGO05] there exists an associative algebra isomorphism

O W(g, f.I,1) — W(g, f,Tr,0). (4.4.5)
This isomorphism is obtained by the composition of a chain of associative algebras isomorphisms
W(ga f7 Fa [1) ; W(ga fa F; [2) 5

as in (4.2.3), where [ and [y are a pair of isotropic subspaces of gL, whereas Lemmas 4.2.1 and 4.2.2 regulate

the relationship between W-algebras associated with different but adjacent good %Z—gradings.
We will now explicitly describe how to construct a choice for such a chain of good %Z—gradings for f that
is particularly advantageous. The strategy will be to construct a chain of good %Z—gradings for f

To=T,T,T,...

such that distr(T;) = distg(T;—1) — 1 for each 0 < i < m (0 < i < m+1if m is even) and T, = T'p
(Tymy1 =Tg if m is even).
First consider the pair (T'g, lp) := (T, I):

Step 1 If [ =0, go to Step 2. If [y # 0, then apply the associative algebra isomorphism (pgﬂo)’l,

(po5,) "+ W (g, £.To,lo) = W (g, £.T0,0), (4.4.6)
to move from the pair (I'g, [p) to the pair (I'g,0).

Step 2 If T’y is even, let I'; := 'y and go to Step 3. Otherwise, move all semi-integers rows of % to the right.

We obtain a new good %Z—grading T'y such that

Ly Jato(in), if 510 € N
@ (ih) =3 1y 1 e To o1
x 0(ih) + 5, ifs) € 5 +N.
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Step 3

Step 4

Step 5

and consequently

To .0 T

M 517, if 577 €N

1 = Y. To 1 ¢ To -1
51{ — 5, ifs;e€s+N.

By construction, I'y and I'; are strictly adjacent good %Z—gradings for f (cf. Definition 4.2.2 and

Theorem 1.1.1) and distg(I'1) = distg(I'g) — 1. Moreover, the grading I'; is even.
By Lemma 4.2.1 there exists a Lagrangian subspace [; C g(o) such that [ & gg = (Zli, and as a

1
consequence W (g, f,To, 1) = W (g, f,I'1,0), and let ’
p(r)‘,oll : W(gv fv F070) — W(gv fa Fo, [1) )

be the associative algebra isomorphism as in (4.2.2) corresponding to the choices of isotropic subspaces

0 C 1. Since the grading I'; is even we moreover know that [; = ggl) N g(lo).
2

Combining the results of Step 1 and Step 2 we have the following associative algebra isomorphism:
(I)O . W(g7 f7 F07 [0) L> W(ga f’ Fl; O) .

where
g = 6Fo,odd (Pg,o[l © (Pg,o[o)_l) + §Fo,even]lW(g,f,FO,O):W(g,f,Fl,0) .

Note that (pg?[o)_l = lw(g,f,ro,0) in the case when [y = 0 (cf. (4.2.2)). If distg(I'1) = 0, namely if
I'; =g, stop (go to Step 5). If distg(I';) > 1, then let i be the lowest i € {1,...,r} such that 511;1 # 0.
Then move row 4, for all i > i of 3 to the right.
We obtain an odd good %Z—grading Iy which is strictly adjacent to I'; and such that distg(I's) =
distg(T'y) — 1. For T'a:
Fl . . -

272 (ih) = x 1 (ih), 1 1fh<f

" (ih) + 5, ifh>i.

and consequently

T . =
Ts 312‘17 if h<i
510 = -
12 I' 1 . -
S5 — 5, ifh>id.

By Lemma 4.2.1 there exists a Lagrangian subspace [5 € g(f) such that Iy & ggi = gg, and as a con-
l > >

sequence W (g, f,I'1,0) = W(g, f, T2, Iz). In particular, we have ®q : W (g, f,To,lo) — W(g, f, T2, ).

Repeat Steps 1 - 3, starting with (I'y,[5). More generally, for m > 1 repeat Steps 1 - 2 for all pairs

(T, ;) with ¢ € {2,...,m} N2N. For each such i, at the end of Step 3 we have an associative algebra

isomorphism

(bi = p(r)‘j[prl © (pg,ilb)il : W(97 f7 Fi7 [z) ; W(g7 f7 Fiv [i+1) = W(ga fa Fi+17 O) = W(ga fa Fi+2; [i+2) 3

(4.4.7)
where the last equality only appears in the case I';11 # ['g.
Composing the isomorphisms ®; we obtain
o ®
W(g7 f7 F07 [0) —0> W(gv f7 F27 [2) —2> W(ga f7 F47 [4) — (4 4 8)
"I’WL—l i
e W(ga f’ ]-—‘mflv [mfl) — W(ga fa mela [m) = W(g, f, ]-—‘mvo) = W(ga fa FRvo)
in the case when m is odd, or
P
W(g7 f7 F07 0) EO W(ga f7 Fla 0) = W(g7 f7 P27 [2) &} W(g7 f7 F47 [4) — (4 A 9)
& 4.

> W(g7f7 Fm7 [’rn) — W(g7f7 F’ma [m+1) = W(gu f; Fm+1a0) = W(g7f7 FR>O)
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in the case when m is even. Therefore,
O : W(g, f.I,1) — W(g, f,Tr,0) (4.4.10)
is given by the composition & = &, 1 0...0 Py if m is odd, and &y = &,,, 0... 0 Dy if m is even.

Remark 4.4.2. (i) As a consequence of this algorithm, given any odd good %Z—grading I" it is possible
to construct an even good %Z—grading IV such that I" and I are strictly adjacent, and therefore there
exists a Lagrangian subspace [ C g} for which W (g, f,T,1) = W (g, f,I’,0).

2

(i) If dist(I') = dist,, (T') instead, in Step 2 move the blocks of each semi-integer row of 3 to the left. As a

consequence,
Fo . M 1—\0
. z' o (ih if 579 €N
IFI(Zh) _ - ( )7 ) ] %‘z L
' o(ih) — 5, if s € 5+ N.
and
r .o T
51;1 sy if 570 €N
;i =\ .r 1 . T 1
! s10 45, ifs;? e +N.

Similarly, in Step 3 move all blocks of row j for j > j of % to the left, where j is the minimum
j €{1,...,r} such that s;; # 0. We also get

Fl . .f -
fTa(in) = W) i<
v i(ih) -5, ifh>7,

and )
U if h < j
Sli = Ty 1 . =
si +35, ifh>j.
(iii) Given a pair I'; and I'y of good %Z—gradings for f, and a choice of Lagrangian subspaces [; C 9(11) and
2
o C g(f), we can obtain an isomorphism
2
@ :W(g, f,T1,h) = W(g, f, T2, 1o) (4.4.11)

as a composition of isomorphisms ® = (®r,)~! o ®r, where
(I)Fl : W(g7 f7 F17 [1) ; W(gv f7 FRa 0)

and
(I)Fz : W(g, f, F27 [2) — W(ga fa FR? 0)

are as in (4.4.10). Alternatively, it is also possible to describe a different algorithm moving from the
pyramid associated with I'; to the pyramid associated with I'y directly.

4.4.2 Proof of Conjecture 3.1.1 in the general case

Let ' : g = @je%z g; be a good %Z—grading for f, and let [ C g1 be an isotropic subspace with respect
to the bilinear form w. Suppose moreover that dist(I') = distg(I"). Note that the treatment of the case
dist(I") = dist, (T") is analogous. Let

&r: Wi(g, f,I,0) = W(g, f,Tr,0) (4.4.12)

be the associative algebra isomorphism as in (4.4.5), which we constructed explicitly in (4.4.10).
Let {W;;(2)}1<i j<r be the set of polynomials defined through (3.2.2), whose coefficients provide a finite
set of generators {Wij. | 1 <1i,5 <r, 0 <k <min(p;,p;) — 1} for W(g, f,T'r,0). Let

min(p;,p;)—1

{Wﬁ(z) = (Pr) T (Wii(2) = =6i(—2)" + > (‘I’r)_l(Wij;k)(—Z)k} (4.4.13)

pors 1<ij<r
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be the corresponding set of polynomials through the isomorphism ®r. The coefficients (®r) ! (W;;.;) provide
a finite set of generators for W(g, f,T,1). Let W®(2) € Mat,«,W (g, f,T,)[z] be the r x r matrix whose
(i, 7)-entry is W2 (z). The following result generalizes Theorem 4.1.1.

Theorem 4.4.1. For the matriz W®(2) € Mat,«, W (g, f,T,1)[z] the quasideterminant |W¢(Z)|ITT1 . CTiSES
and the following identity holds:
‘W‘I)(z) 17-7'1 J7'17' = LFJ(Z) € Ma’t”‘l ><T1W(g7 fJ F7 [)((Z_l)) ’ (4414)

where Iy, Jr» are defined as in (2.2.6), and
LY(z) = [21x + F + 7, B+ Dr 1, Ir, € Maty, xr, W(g, £,T,0((=71),
is as in (2.2.3).

Here and further, since we will need to consider different good 2 5-gradings and isotropic subspaces at the
same time, we use the notation L'!(z) for the operator L(z) as in (2.2.3) with respect to the good 3-grading
I' and the isotropic subspace [ C g1 (with respect to the grading T').

Proof. The existence of the quasideterminant |[W?(z)| Ippy Jry, fOllows from (4.4.13) and the existence of
the quasideterminant [W(z)]y,,, s, ,, and we have ((®p)~""(Wz,, <7, ,<(2)))"" = (Pr) " (Wz,, 7, ,(2))7")
since the inverse of Wz, 7,  <(z) can be computed by geometric series expansion (cf. Theorem 4.1.1).

By definition of quasideterminant we have

(WH a0 s = WEE = 30 WEGHVE, g () Das W (2)
a,B=r1+1
= (@) (W) = Y0 (@) Wial@) (@) W,y e7,,5(2)) ™ (@) ™ (Wi (2)
a,B=r1+1
= @) (Wig2) = Y0 Wial) (W, e,,2(2) Wi (2))
a,f=r1+1

= (@r) " ((IW ()1, J1y i)
= (®r) N(Li%(2),
where
Lo ( ) |Z]lN + F+7T< E+DFR|11J1 1FR o€ Matﬁxm (gvfa FRao)((Zil))a

is the quasideterminant defined by Equation (2.2.3) with respect to the grading I'r and the choice of the
isotropic subspace 0. The last equality is given by Theorem 4.1.1. We also remark that by Theorem
2.2.3, LI'®0(2) € Mat,, xr, W(g, f,Tr,0)((271)), therefore we can apply the isomorphism (®r)~! and get
(®r) " Y(Li°(2)) € W(g, f,T,0((z71)). On the other hand, still in view of Theorem 2.2.3, LT'!(z) €
Mat, s, W(g, f, T, 1)((71)).

We are therefore left to prove that

LMY(2) = (®p) N (L""0(2)). (4.4.15)
This will be a consequence of Theorem 4.4.2, that follows. O

Theorem 4.4.2. LetT' : g = Gaieéz g; be a good %Z—gmding for f, and let 13,15 C g1 be a pair of isotropic
subspaces with respect to the bilinear form w. Let

® = 0,15 © (p07[1)_1 : W(Qv f7Fa [1) L> W(g7 fvra [2) (4416)

be the induced associative algebra isomorphism as in (4.2.3). Let

LF,[l(z) = IZILV +F+7rp1E+D[1|\I/¢ S TF,ll s
. g (4.4.17)
L ’2(’2) = |Z]1V +F+7TP2E+D[2|‘I’1 rlnfi 1 1F7[2v
2 2
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be the (images of the) quasideterminants defined by Equation (2.2.17) with respect to the same grading T' but
different isotropic subspaces Iy, ly. Then,

®(LT(2)) = LTE(2) € Maty,r, RW (g, £, 12). (4.4.18)

Example 4.4.2. Before proving Theorem 4.4.2 we will show why Equation (4.4.18) holds in the case of N = 4
with partition (3,1) and a good %Z—grading I" as in Figure 4.5. We choose Lagrangian subspaces [; = 0, and
l2 = Ce(2,1)(1,2)- For this choice of [ := Iz, we can easily check that [® g>1 = g5, where I : g = G%’E%Zg;
is the even good %Z—grading as in Figure 4.6, that is strictly adjacent to the grading I'. As a consequence,
W(g7 f7 F’ [) = W(g? f? Fl? O)

(21) (21)
(13)[(12)](11) (13)[(12)](11)
Figure 4.5: T Figure 4.6: T’

The shift matrices corresponding to the gradings I' and I are Dy = diag(0,—1,0,—3) and D; =
diag(0, —2, 0, —3). We can compute the quasideterminants L™'(z), LT0(z) € U(g)((2~!)) (note that r; = 1 in
both cases). Let Mr,c = U(g)/U(g)(b = (f1b))veieq>, = U(9)/U(8){b—(f|b))veg., and Mr,o = U(g)/U(8)(b—
(f1b))beg-, be the corresponding quotient modules; we obtain:

Z+e@,1)1,1) €(1,2)(1,1) €(1,3)(1,1) €(2,1)(1,1)
1 z+e -2 €. 0 -
0 2) = (1,2)(1,2) (1,3)(1,2) 1
( ) 0 1 z+ €(1,3)(1,3) — 3 0 XL
6(1,1)(2,1) 6(172)(271) 6(173)(271) z+ 6(271)(271) 13
-1
B 1 z+ 6(172)(172) -2 0
= €(1,3)(1,1) Ir— (Z +emr1)a1) €1,2)(,1) 6(2,1)(1,1)) 0 1 0
€(1,1)(2,1) €(1,2)(2,1) zZ+ei2,1)(2,1)
€(1,3)(1,2) B
X | 2+ €(1,3)(1,3) — 3 lr)[ € MF7[((Z_1)) s
€(1,3)(2,1)
(4.4.19)
while
z+e@,1)(1,1) €(1,2)(1,1) €(1,3)(1,1) €(2,1)(1,1)
1 z+e —1 e e -
b0 _ (1,2)(1,2) (1,3)(1,2) (2,1)(1,2) 1
(Z> 0 1 z+ €(1,3)(1,3) — 3 0 .0
€(1,1)(2,1) €(1,2)(2,1) €(1,3)(2,1) zZ+€(2,1)(2,1) 13
-1
7 1 z+e@2)a,2 —1 €(2,1)(1,2)
=easa,nlro— (Z+eanay €12 €@in1)) 0 1 0
€(1,1)(2,1) €(1,2)(2,1) zZ+e@2,1)(2,1)
€(1,3)(1,2) B
X | z+ €(1,3)(1,3) — 3 11“,0 S MF7Q((2’71)) .
€(1,3)(2,1)
(4.4.20)

By (4.4.10), we have an associative algebra isomorphism
® = pp: Wi(g f.1,0) = W(g, [.T,)) = W(g, /,I",0).

By Theorem 2.2.3, L''°(z) € W (g, f,[',0)((27 1)), therefore we have ®(L'°(2)) c W (g, f,[,0)((z71)).
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Comparing (4.4.19) and (4.4.20), in order to prove ®(L!'0(z)) = LI"!(2) it is sufficient to show that

-1

1 zteaa —1  eena €(1,3)(1,2) N
P 0 1 0 z+ €(1,3)(1,3) — 3 11",0
€(1,1)(2,1) €(1,2)(2,1) Z+€e(2,1)(2,1) €(1,3)(2,1)
(4.4.21)
1 z+e(1,2)(1,2) — 2 0 N €(1,3)(1,2) _
= 0 1 0 z+ €(1,3)(1,3) — 3 11“,[ .
€(1,1)(2,1) €(1,2)(2,1) z+ €(2,1)(2,1) €(1,3)(2,1)
To simplify the notation, let us denote
1 z+ew2)a2) — 2 0 0 1 e@unaz
A= 0 1 0 ., B={0 0 0 ,
€(1,1)(2,1) €(1,2)(2,1) zZ+e@2,1)(2,1) 0 0 0
and
€(1,3)(1,2)
v=|z+eqsas —3
€(1,3)(2,1)
Then, Equation (4.4.21) becomes
®((A+B) loTrg) = A 0 Try. (4.4.22)

Note that

(A+B) " = ((1a+BA™YA) =47 (14 + BATY) T =Y (-1)rAT(BATY",

n>0
by expanding (]l4 + BA_I)_1 in geometric power series. Then,

B((A+B) " vro) = (A7 + S (1" A7 (BAT) YoTrg)

n>1

and Equation (4.4.22) follows if ®( Y _(~1)"A™"(BA™")"v1r o) =0.
n>1
By definition of the map ®, for each n > 1 we have ® (A~ (BA™!)"v 1) = A'®(BAT'®((BA™ )" 1v1ry)),
therefore it is sufficient to show that ®(A"'BA " v1py) = A7'®(BA v1r) = 0.

‘We have
1 (A_l)lg 0
A7l = 0 1 0 ,
(A3 (A7Ys2 (A7 1)ss
with

(A71)31 =—(z+ e(2,1)(2,1))716(1,1)(2,1) )
(A D32 = (z +enyen) Heanen(z +eana —2) —eaen)
(A Y33 = (2 + 6(2,1)(2,1))71 .

Note that (2 + €(2,1)(2,1)) is invertible and (2 + e(2,1)(2,1)) ™ = 2,50(=1)"27" te(2,1)(2,1)" by geometric
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power series expansion. Hence,

A_l(I)(BA_l’U Tno)

eenw)(A aeana + (1 +eenandn )z +easns —3) +eena (A Dseasen)
— A 1® 0 1ro
0

q’(6(2,1)(1,2)(A71)31€(1,3)(1,2) +(1+ 6(2,1)(1,2)/1521)(2 +easy,3) —3) + 6(2,1)(1,2)(A71)33€(1,3)(2,1)>
= 0 Iro-

(A_1)31‘1’(€(2,1)(1,2) (A Ys1e1,3)1,2) + (L4 ey, A5 ) (2 + ez —3) + 6(2,1)(1,2)(A_1)33€(1,3)(2,1))

In view of Lemma 2.2.1, we compute

(13(6(271)(172)(A71)31€(1,3)(1,2) T1“,0) = _q)([e(2,1)(1,2)a (Z + 6(271)(271))71]6(1,1)(2,1)6(1,3)(1,2) T1“,0
- (Z + 6(2,1)(2,1))71[6(2,1)(1,2), 6(1,1)(2,1)6(1,3)(1,2)] T1“,0)
—(z+ 6(2,1)(2,1))_1‘1’(6(2,1)(1,2)(Z + 6(2,1)(2,1))_16(1,1)(2,1)6(1,3)(1,2) T1“,0) +(z+ 6(2,1)(2,1))_16(1,3)(1,2) Ir,,

and therefore

D (e2,1)(1,2) (A Ds1e sy Iro) = (—1+ (1 = (2 + e@1)21) ") e,s)a,2) I - (4.4.23)
Then,

D((1+e@1).2)(A s2)(z + 3,3 — 3) Iro))

= (z+easa,s —3) Ir

+ 2 (leenna (2 + cenen) eanenE +easae —2) — caaen)= + cass —3) Iro
+ (z+eenen) eena (canen (= +eaas —2) — eaaen) (= +easas — 3)] Tr,o)
Ir.,

(
= (2 +ews),3 —3))
+ (z+ewsya3) —3)(z+eeen) 1@(6(2,1)(1,2)7 (z+ 6(2,1)(2,1))71(6(1,1)(2,1)(Z +em,2)(1,2) —2) — €@,2)21)) IF,o)
(z+en3)a3) —3)(z+eei)e1))” Y2+ e1)21) — 1) I,

and therefore
@(6(2,1)(1’2) (A71)32 Tno) = (Z + 6(1,3)(1,3) — 3))Tr7[ — (Z + 6(173)(173) — 3)) Tp,[ =0. (4.4.24)

Finally,

¢(6(271)(1,2)(A71)336(1 3)(2,1) 1Ir 0) = 2(lee 1(1,2), (2 + 6(2,1)(2,1))71}6(173)(271) Iryo

€(2,
+ (2 +e@iyey)” [6(2 1(1,2), €(1,3)(2,1)] 11, )
= (z+eenen)” 1‘I)(f3(2,1)(1,2)(2 + 6(2,1)(2,1))_16(1,3)(2,1) Iro) — (24 6(2,1)(2,1))_16(1,3)(1,2) Iry,

and therefore

(2,11, (A7 sseaa) 20 Iro) = (eapaz — (1= (2 +eenen) ™) easa) Ir. (4.4.25)
Combining (4.4.23), (4.4.24) and (4.4.25) we get
o ((6(2,1)(1,2)(A_1)31€(1,3)(1,2) + (L4 e@uya,2A45 ) (2 + e 0,3 —3) +e@iya,z (A )sseq s @) TF,o) =0,

as desired.
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We shall now proceed with the proof of Theorem 4.4.2.

Proof of Theorem 4.4.2. By Lemma 2.2.6, the following identities hold in Mat,, «,,, RM|, and Mat,., «,, RMj,
respectively: 3 3
Z_d_1|2]lN + F + 7Tp1E + D[l |[1J1 1F,[1 = |]1N + Z_AE|]1J1 11",[1 3 (4426)

and
Zid71|ZﬂN + F + 7Tp2E + D[2|]1J1 TF7[2 = |11N + ZiAE|]1J1 Tn[z . (4427)

Combining (4.4.26) and (4.4.27), we obtain

LF,lz(z) = |Z]1V +F+7Tp2E+ D[Zl‘l’i rln—i o Tp’[z
3 3

= zl+d|]lv + ZiAEh,i rln—i TF,[Q

3 3

1

:(P(|Z]lv+F+7TplE+D[l|\pl rln—i TF,[l)
2 2

T1

- (p(LF’ll (Z)) € MatTl XTlRW(ga LT, [2) :
For the third equality we have used the fact that the map ® : W (g, f,T', ;) — W(g, f,T, ) is induced by
the map between the corresponding quotient spaces U(g)/I;, and U(g)/I,, as in (4.2.1). O

Conclusion of the proof of Theorem 4.4.1. Using the algorithm of Section 4.4.1, supposing that dist(T") =
distgr(I") = m > 0, we can decompose

q)l—‘ : W(g7 f7F7[) L> W(g7f7FRaO)

as or = &,,_10...0 Dy for m odd, or as br = ®,, o... 0 P for m even where, for each i > 0, ®; is an
associative algebra isomorphism of the form

D, : nglHl ° (ng[irl :W(g, f,T5,G) — W(g, f,Ts, lix1) = W(g, f,Ti11,0) = W(g, f,Tiy2, lizo), (4.4.28)

where Ty =T,T,...,I;y =g (or T'yp1 = g, if m is even) is a chain of adjacent good %Z—gradings, iy G
are Lagrangian subspaces of g1 (with respect to the grading T';) and [;1o is a Lagrangian subspace of g1
(with respect to the grading I';12). Note that the algorithm of Section 4.4.1 allows to choose [y = [ to be just
isotropic.

We shall now proceed by induction on m. For m = 0, I' = I'r and [ = 0, and the claim is obvious.
Without loss of generality we may assume that m is odd. Then, for m = 1 we have

(I)F :(I)O : W(g7fvra[) %W(gvfarvll) =W(g7f,1"1,0) :W(gvf7FR70)7

and by 4.4.2 we can conclude that ®p(L"!(2)) = LI'#0(2).
Let us now assume m > 1, and that (4.4.15) holds for any I'" such that distg(I') < m. We can decompose
Sr=d,,_10 (<I>m,3 0...0 <I>0), where for each 4, ®; is as in (4.4.28). By the induction hypothesis we have

(®r_z0...0®0) (LN (2)) = LEm-tm=2(z) = LTm-20(z) = LTm-vlmo1(2).

For the last equalities recall that we chose the Lagrangian subspaces ;41 C g', l;;o C gl+2 such that

it & 91;1 =gl =1 @ g?f’z, and therefore (by the very definition (2.2.3)), the corresponding operators

LVali+r(z), LV+10(2) and LVi+2"+2(2) coincide. By Theorem 4.4.2, we moreover have ®,,, _; (LIm-1'm-1(2)) =
LUm=vlm(z) = LV'#9(z). Composing, we get

Or(L"Y(2)) = (Pt 0 (Br_z 0...0 Do) ) (L!(2)) = L'™0(2),
as claimed in (4.4.15). O

As a corollary of Theorem 4.4.1, we obtain the following:
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Corollary 4.4.1. As we did in Remark 4.1.2 in the case of an even good %Z—gmdmg whose corresponding
pyramid is either left or right aligned, we can write W®(z) in block form

oy _ [(—(=2)P L, + WP(2) W3 (2)
W®(z) = ( Wf(z) —(=2) Ty, + Wf(z)) ) (4.4.29)

where W (2), Wi (z), W(2), W(2) are block matrices of sizes r1 X 71, 71 X (r —711), (r —r1) X r1 and
(r—mr1) X (r —ry) respectively, and —(—z)91,_,, is as in (4.1.4).
Thus, as a consequence of Theorem 4.4.1, we have

Z) = M(z)] Walz) = —(—2)™ z) — 2)(—(—2)? N Wa(z
L(z) <W3(Z) W4(Z)> (=2)P' Ly, + Wi(2) = Wa(z)(—(—2) Loy, + Walz)) ' Wa(2),  (4.4.30)

which agrees with Congecture [DSKV16¢, Conjecture 8.2/.
Moreover, since for each 1 <1i,5 <ry we have

LZ’I(Z):WE?(Z)_ Z W () (WP o,

rry STy r€
a,f>r1+1

) NasWg) (4.4.31)

it 1s possible to deduce the commutation relations for Wl‘f(z) e Wi(g, f,T,1) from the Yangian identity (1.5.10)
for LVY(2).

Recall the basis {f;;.x} of the centarlizer g given in (3.1.8). We can finally summarize our results with
the following theorem:

Theorem 4.4.3. LetT' : g = @iE%Z g; be a good %Z—gmdz’ng for the nilpotent element f € g, associated with
the partition (p1 > ... > p) of N, and let [ C g1 be an isotropic subspace with respect to the bilinear form w.

There exists a set of generators Wi, = w(fjix), 1 <4,j <7, and 0 < k < min(p;,p;)—1, of W(g, f,T,1),
for which the following identity holds

L(Z) = ‘Z]lN + F +7TPE + D[|]1J11[ = |W(Z)‘[ (4432)

rry ey
1 1

min(p;,p;j)—1

W) = Wi2)iciger,  Wig(z) = =65(=2)P + > Wyn(=2)" € W(g, f,T,D[z], (4.4.33)
k=0

and Lop,, Jryr are as in (2.2.6) corresponding to the subsets T =J = {1,...,r1}. In this case, the linear map
w: gf — W(97 f7F7 [)a fji;k: — Wij;k (4434)
satisfies all the conditions of Premet’s Theorem 3.1.1.

Proof. In the case of I' an even grading whose corresponding pyramid is either left or right aligned, use
Definition 3.2.1 to build the polynomials W;;(z). By Theorems 3.3.1 and 3.3.2, W;;(2) € W(g, f,T',0)[=].
Then, the statement is a consequence of Proposition 3.3.1 and Theorem 4.1.1.

For a generic good %Z—grading, let

®p: W(g, f,T,1) = W(g, f,Tr,0)

be the associative algebra isomorphism constructed explicitly in (4.4.10), and let W®(2) be the r x 7 matrix
whose entries are the polynomials W (z) defined in (4.4.13). By definition, W*(z) € Mat,..,,W (g, f,T,1)[z].
By Theorem 4.4.1, Equation (4.4.32) holds. We are therefore left to prove that the conditions of Premet’s
Theorem 3.1.1 hold for these generators.

First, we define the linear map w' : g/ — W(g, f,T,l) as the composition w' = ®;* o wl'®, where
w'r 2 gf — W (g, f,I'g,0) is the linear map described in Section 3.3.2. We now want to check that w"
satisfies the conditions of Theorem 3.1.1.
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As in the proof of Theorem 4.4.1, we can decompose
dr =d,,_10...0Pq, if m odd, Or=d,,0...0P,, if m even (4.4.35)
where, for each s > 0, ®, is an associative algebra isomorphism of the form

d, ngrs“ © (p(l;,s[s)il : W(ga f, Ly, [s) o W(g, f, I, [s+1) = W(ga fv Ps+1a 0) = W(gv fv Fs+27 [s+2) :

Without loss of generality we may assume that m is odd. In this case we have
Wik = (2r) " (Wijn) = (@) o0 (®pe1) ") (Wijik) - (4.4.36)

We can now proceed inductively on m. First, when m = 1 we have & = &g, given by the following chain
of isomorphisms

(P [)1

(g f’r [) W(g7farvo>mW(gafara[l):W(gaferao)a

where [; C g} is an isotropic subspace such that [; ® gL, = gl;’f In this case,
1 > >

Wik = (®0) ™ (Wizir) = po.c o (p0.0,) " (Wijsk) »
where W;;.;, is a set of generators for W (g, f,I',11) = W(g, f,T'r,0) as in Definition 3.2.1. For every 1 <4, j <
rand 0 < k < min(p;.p;) — 1, let Aij;k,A;j,k € %Z such that fijx € g1 A . ﬂg{_ﬂA_, .- By (3.3.13), then
; ijik ij;
Wi € fiin + FA}M’gW(g,f,l", [;). Moreover, since by [GG02, Section 5.5], ,057[, pall are filtered algebra
isomorphisms, we have pg o (pg )~ (Wijk) € Far W(g, f,T,1), and and

gras (Wi) =grar ((@r) 7 (Wigw)) = (@F) ™ (grar,, (Wij)) -

where we denote by ®F = P ’fgr (pg [gr) I the same map between the corresponding graded algebras

grW(g, f,T,11) — grW (g, f,T,[). Let us now consider the projections

. S(a) /e I — S(gf), o S(a)/er" T — S(g”)

(4.4.37)
by, S(e) /e Iy - S@ef), k.o S(a)/er" T - S(gf)

induced by the surjective algebra homomorphism S(g) — S(gf) as in (3.1.3), with respect to the different
gradings for g and the different isotropic subspaces. By definition of the isomorphisms pg’[ &' and pO’gr nd

since [, [; C g§ C Ker n{: o then
1 .

o niopyt =nly:S() e’ I S(ef), (£4.38)
o nloolpo ) =nly, S/ e’ I, - S(g).
Therefore,
nta(erhs (W) = i (oo o (oo ) (erhy,  (Wigin))) = . (8rhr (Wigir) - (4.4.39)

The result then follows from Proposition 3.3.1 once we show that nF L (grA, (WZJ k) = 771“R olgr 2“  Wijir)).

This is clear because by constructlon the ideal Iy, (with respect to the gradlng I') and I (with respect to the
grading I'r) coincide, hence Ker 77FR,0 = Ker 771]:’[1.

Let us now assume m > 1, and that the conditions of Premet’s Theorem hold for any I such that
distp(I") < m. We can decompose

Wi?;k = (‘I)F)_l(Wij;k) = ((I)O)_l o ((@2)_1 0...0 ((Dm_l)_l)(Wij;k) ,
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where A;i;k € %Z is such that fj;x € g{*Aij;k’ and Wi‘?;k € FA_/ji;kW(g7 f,T, 1) for every 14,4, k. Let moreover
' (Wijk) = (P2) L o...0(Py—1) 1 (Wijk) be a finite set of generators for W (g, f,T's,12), and we assume
that ®(Wij) € Far, W(g, f, T2, l2), where A, € 37 is such that fj; € g{iA§f7;k' By the inductive

hypothesis we have
b, (808 (@ (Wig)) = ik

Next, let (®¢)~! = p&[ o (pall)’1 :Wi(g, f,Ta,l) — W(g, f,T, ) be the map given by
(Pg,l)_l Pg,[
W(g7 f7F7 [) — W(gv f7F7 0) 4% W(g’ f7F7 [1) = W(ga fa F27 [2) )

and let 77;7[: 771):,0, 77{:7[1 and 77{:1%0 be the corresponding projections, as in (4.4.37). Clearly, the equalities
(4.4.38) still hold in this case. Thus,

np(erh, (W) = nf((erhs (@) (W) = nf (ks ((@0) (@' (W)
=t ((®0) ™" (erhs, (@' (Wis)))) = nf.y, (erhs, (¥ (Wijn))) -

For the third equality we have used the fact that (®0)~!: W (g, f,T,l;) — W(g, f,T,[) is an isomorphism
of filtered algebras, and for for the last equality we have used (4.4.38). By construction,

nb g (8ris,, (@' Wia))) = i, o, (8 (2 (Wig))

and moreover 771sz o ( gri"’,, ) (®'(Wij))) = fjize by the induction hypothesis. The claim then follows.
’ Ji;
O
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