
Graphs that are Not Pairwise Compatible:
A New Proof Technique
(Extended Abstract)?

Pierluigi Baiocchi, Tiziana Calamoneri, Angelo Monti, and Rossella Petreschi

Computer Science Department,
“Sapienza” University of Rome, Italy

calamo/monti/petreschi@di.uniroma1.it,

pierluigi.baiocchi@gmail.com

Abstract. A graph G = (V,E) is a pairwise compatibility graph (PCG)
if there exists an edge-weighted tree T and two non-negative real numbers
dmin and dmax, dmin ≤ dmax, such that each node u ∈ V is uniquely
associated to a leaf of T and there is an edge (u, v) ∈ E if and only if
dmin ≤ dT (u, v) ≤ dmax, where dT (u, v) is the sum of the weights of
the edges on the unique path PT (u, v) from u to v in T . Understanding
which graph classes lie inside and which ones outside the PCG class is an
important issue. Despite numerous efforts, a complete characterization
of the PCG class is not known yet. In this paper we propose a new proof
technique that allows us to show that some interesting classes of graphs
have empty intersection with PCG. We demonstrate our technique by
showing many graph classes that do not lie in PCG. As a side effect, we
show a not pairwise compatibility planar graph with 8 nodes (i.e. C2

8 ),
so improving the previously known result concerning the smallest planar
graph known not to be PCG.

Keywords: Phylogenetic Tree Reconstruction Problem, Pairwise Com-
patibility Graphs (PCGs), PCG Recognition Problem.

1 Introduction

Graphs we deal with in this paper are motivated by a fundamental problem in
computational biology, that is the reconstruction of ancestral relationships. It
is known that the evolutionary history of a set of organisms is represented by
a phylogenetic tree, i.e. a tree where leaves represent distinct known taxa while
internal nodes are possible ancestors that might have led through evolution to
this set of taxa. The edges of the tree are weighted in order to represent a kind
of evolutionary distance among species. Given a set of taxa, the phylogenetic
tree reconstruction problem consists in finding the “best” phylogenetic tree that
explains the given data. Since it is not completely clear what “best” means, the
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performance of the reconstruction algorithms is usually evaluated experimen-
tally by comparing the tree produced by the algorithm with those partial sub-
trees that are unanimously recognized as “sure” by biologists. However, the tree
reconstruction problem is proved to be NP-hard under many criteria of optimal-
ity, moreover real phylogenetic trees are usually huge, so testing these heuristics
on real data is in general very difficult. This is the reason why it is common to
exploit sample techniques, extracting relatively small subsets of taxa from large
phylogenetic trees, according to some biologically-motivated constraints, and to
test the reconstruction algorithms only on the smaller subtrees induced by the
sample. The underlying idea is that the behavior of the algorithm on the whole
tree will be more or less the same as on the sample. It has been observed that
using, in the sample, very close or very distant taxa can create problems for
phylogeny reconstruction algorithms [9] so, in selecting a sample from the leaves
of the tree, the constraint of keeping the distance between any two leaves in the
sample between two given positive integers dmin and dmax is used. This moti-
vates the introduction of pairwise compatibility graphs (PCG). Indeed, given a
phylogenetic tree T and integers dmin, dmax, we can associate a graph G, called
the pairwise compatibility graph of T , whose nodes are the leaves of T and for
which there is an edge between two nodes if the corresponding leaves in T are
at a weighted distance within the interval [dmin, dmax].

From a more theoretical point of view, we highlight that the problem of sam-
pling a set of m leaves from a weighted tree T , such that their distance is within
some interval [dmin, dmax], reduces to selecting a clique of size m uniformly at
random from the associated pairwise compatibility graph. As the sampling prob-
lem can be solved in polynomial time on PCGs [10], it follows that the max clique
problem is solved in polynomial time on this class of graphs, if the edge-weighted
tree T and the two values dmin, dmax are known or can be provided in polynomial
time.

The previous reasonings motivate the interest of researchers in the so called
PCG recognition problem, consisting in understanding whether, given a graph G,
it is possible to determine an edge-weighted tree T and two integers dmin, dmax

such that G is the associated pairwise compatibility graph; in this case G can
be briefly denoted as PCG(T, dmin, dmax).

Figure 1.a depicts a graph that is PCG(T, 4, 5), where T is shown in Figure
1.b. In general, T is not unique; here T is a caterpillar, i.e. a tree consisting of
a central path, called spine, and nodes directly connected to that path. Due to
their simple structure, caterpillars are the most used witness trees to show that
a graph is PCG. However, it has been proven that there are some PCGs for
which it is not possible to find a caterpillar as witness tree [5].

Due to the flexibility afforded in the construction of instances (i.e. choice of
tree topology and values for dmin and dmax), when PCGs were introduced, it
was also conjectured that all graphs are PCGs [10]. This conjecture has been
refuted by proving the existence of some graphs not belonging to PCG. Namely,
Yanhaona et al. [13] show a bipartite not PCG with 15 nodes. Mehnaz and
Rahman [11] generalize the technique in [13] to provide a class of bipartite graphs
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Fig. 1. a. A graph G. b. An edge-weighted caterpillar T such that G = PCG(T, 4, 5).
c. G where the PCG-coloring induced by triple T, 4, 5 is highlighted.

that are not PCGs. More recently, Durocher et al. [8] prove that there exists a
not bipartite graph with 8 nodes that is not PCG; this is the smallest not planar
graph that is not pairwise compatibility, since all graphs with at most 7 nodes
are PCGs [5]. The authors of [8] provide also an example of a planar graph with
20 nodes that is not PCG. Moreover, it holds that, if a graph H is not a PCG,
then every graph admitting H as an induced subgraph is also not a PCG [6].
Finally, a graph is not PCG if its complement has two ‘far’ induced subgraphs
which are either a chordless cycle of at least four nodes or the complement of a
cycle of length at least 5; two induced subgraphs are ’far’ if they are both node
disjoint and there is no edge connecting them [15] .

From the other side, many graph classes have been proved to be in PCG,
such as cliques and trees, cycles, single chord cycles, cacti, tree power graphs
[14, 13], interval graphs [3], triangle-free outerplanar 3-graphs [12] and Dilworth
2 graphs [7].

However, despite these results, the exact boundary of the PCG class remains
unclear. In this paper, we move a concrete step in the direction of searching
new graph classes that are not PCGs. To this aim, in Section 2 we introduce a
new proof technique that allows us to show that some interesting classes have
empty intersection with PCG. In particular, in Section 3 we show in detail the
application of this technique on the class of graphs constructed as the square of
a cycle. We prove that, for every n ≥ 8, C2

n is not a PCG. Moreover, we show
that by deleting any node from C2

n we get a PCG, thus proving that it does
not contain any induced subgraph that is not PCG, i.e. we prove that C2

n is a
minimal graph that is not PCG.

As a side effect, we prove that there exists also an 8 node planar graph that is
not PCG, i.e. C2

8 , so improving the known result of a not pairwise compatibility
planar graph with 20 nodes.

Finally, in Section 4, we present two other classes of graphs, obtained by
modifying cycle graph in different ways, and we show that they are not PCGs
through the application of our technique.

Due to the lack of space, for these latter classes, we only state the results
referring the reader to [1] for the proofs’ details.



2 Proof Technique

In this section, after introducing some definitions, we describe our proof tech-
nique, useful to prove that some classes of graphs have empty intersection with
the class of PCGs, formally defined as follows.

Definition 1. [10] A graph G = (V,E) is a pairwise compatibility graph (PCG)
if there exists a tree T , a weight function assigning a positive real value to each
edge of T , and two non-negative real numbers dmin and dmax with dmin ≤ dmax,
such that each node u ∈ V is uniquely associated to a leaf of T and there is an
edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax, where dT (u, v) is the sum
of the weights of the edges on the unique path PT (u, v) from u to v in T .

All trees in this paper are edge-weighted.

Given a graph G = (V,E), we call non-edges of G the edges that do not belong
to the graph. A tri-coloring of G is an edge labeling of the complete graph K|V |
with labels from set { black, red, blue } such that all edges of K|V | that are in
G are labeled black, while all the other edges of K|V | (i.e. the non-edges of G)
are labeled either red or blue. A tri-coloring is called a partial tri-coloring if not
all the non-edges of G are labeled.

Notice that, if G = PCG(T, dmin, dmax), some of its non-edges do not belong
to G because the weights of the corresponding paths on T are strictly larger
than dmax, while some other edges are not in G because the weights of the
corresponding paths on T are strictly smaller than dmin. This motivates the
following definition.

Definition 2. Given a graph G = PCG(T, dmin, dmax), we call its PCG-coloring
the tri-coloring C of G such that:
- (u, v) is red in C if dT (u, v) < dmin,
- (u, v) is black in C if dmin ≤ dT (u, v) ≤ dmax,
- (u, v) is blue in C if dT (u, v) > dmax.
In such a case, we will say that triple (T, dmin, dmax) induces the PCG-coloring
C.

In order to read the figures even in gray scale, we draw red edges as red-dotted
and blue edges as blue-dashed in all the figures.

In Figure 1.c we highlight the PCG-coloring induced by the triple (T, 4, 5)
where T is the tree in Figure 1.b.

The following definition formalizes that not all tri-colorings are PCG-colorings.

Definition 3. A tri-coloring C (either partial or not) of a graph G is called a
forbidden PCG-coloring if no triple (T, dmin, dmax) inducing C exists.

Observe that a graph is PCG if and only if there exists a tri-coloring C that
is a PCG-coloring for G. Besides, any induced subgraph H of a given G =
PCG(T, dmin, dmax) is also PCG, indeed H = PCG(T ′, dmin, dmax), where T ′

is the subtree induced by the leaves corresponding to the nodes of H. Moreover,



H inherits the PCG-coloring induced by triple (T, dmin, dmax) from G. Thus, if
we were able to prove that H, although PCG, inherits a forbidden PCG-coloring
from a tri-coloring C of G, then we would show that C cannot be a PCG-coloring
for G in any way. This is the core of our proof technique:

Given a graph G that we want to prove not to be PCG:

1. list some forbidden PCG-colorings of particular graphs that are induced sub-
graphs of G;

2. show that each tri-coloring of G induces a forbidden PCG-coloring in at least
an induced subgraph;

3. conclude that G is not PCG, since all its tri-colorings are proved to be for-
bidden.

3 The square of a cycle

In this section we exploit the proof technique just described on a particular class
of graphs, i.e. the square of a cycle; we recall that the square G2 of a graph G is
a new graph whose node set coincides with the node set of G, and an edge (u, v)
is in G2 if either (u, v) is in G or (u,w) and (w, v) are both in G for some node
w.

3.1 Forbidden tri-colorings of some subgraphs of C2
n

In agreement with the proof technique described in Section 2, as a first step, here
we highlight forbidden partial tri-colorings of paths Pn, n ≥ 3 and cycles Cn,
n ≥ 4. Moreover, we prove forbidden colorings and partial forbidden colorings
(for short f-c) for some graphs that are induced subgraphs of C2

n (see Figures 2
and 3).

Given a graph G = (V,E) and a subset S ⊆ V , we denote by G[S] the
subgraph of G induced by nodes in S.

A subtree induced by a set of leaves of T is the minimal subtree of T which
contains those leaves. In particular, we denote by Tuvw the subtree of a tree
induced by three leaves u, v and w.

The following lemma from [13] will be largely used:

Lemma 1. Let T be a tree, and u, v and w be three leaves of T such that
dT (u, v) ≥ max{dT (u,w), dT (v, w)}. Let x be a leaf of T other than u, v, w.
Then, dT (w, x) ≤ max{dT (u, x), dT (v, x)}.

It is known that Pm is a PCG [14]; the following lemma gives some constraints
to the associated PCG-coloring.

Lemma 2. Let Pm, m ≥ 4, be path v1, . . . , vm and let C be one of its PCG-
colorings. If all non-edges (v1, vi), 3 ≤ i ≤ m− 1, and (v2, vm) are colored with
blue in C, then also non-edge (v1, vm) is colored with blue in C.



Proof. Let C be the PCG-coloring of Pm induced by triple (T, dmin, dmax). We
apply Lemma 1 iteratively.

First consider nodes v1, v2, v3 and v4 as u, w, v and x: PT (v1, v3) is eas-
ily the largest path in Tv1v3v2 ; then dT (v2, v4) ≤ max{dT (v1, v4), dT (v3, v4)} =
dT (v1, v4). This is because (v1, v4) is a blue non-edge by hypothesis while (v3, v4)
is an edge.

Now repeat the reasoning with nodes v1, v2, vi and vi+1, 4 ≤ i < m, as u, w,
v and x, exploiting that at the previous step we have obtained that dT (v2, vi) ≤
dT (v1, vi): in Tv1viv2 , PT (v1, vi) is the largest path and so
dT (v2, vi+1) ≤ max{dT (v1, vi+1), dT (vi, vi+1) = dT (v1, vi+1) since (v1, vi+1) is a
blue non-edge while (vi, vi+1) is an edge.

Posing i = m − 1, we get that dT (v2, vm) ≤ dT (v1, vm); since non-edge
(v2, vm) is blue by hypothesis, (v1, vm) is blue, too. ut

Given a graph, in order to ease the exposition, we call 2-non-edge a non-edge
between nodes that are at distance 2 in the graph.

Lemma 3. Let Pn, n ≥ 3, be a path. Any PCG-coloring of Pn that has at least
one red non-edge but no red 2-non-edges is forbidden.

Proof. If n = 3, there is a unique non-edge and it is a 2-non-edge; so, the claim
trivially follows.

So, let it be n ≥ 4 and consider a triple (T, dmin, dmax) inducing a PCG-
coloring with at least a red non-edge. Among all red non-edges, let (vi, vj) –
i < j– be the one such that j−i is minimum. Assume by contradiction, j−i > 2.
Consider now the subpath P ′ induced by vi, . . . , vj . P

′ has at least 4 nodes and
inherits the PCG-coloring from Pn; in it, there is only a red non-edge (i.e. the
non-edge connecting vi and vj). P

′ satisfies the hypothesis of Lemma 2, hence
(vi, vj) must be blue, against the hypothesis that it is red. ut

Lemma 4. Let Cn, n ≥ 4, be a cycle. Then any PCG-coloring of Cn that does
not have red 2-non-edges is forbidden.

Proof. Let Cn = PCG(T, dmin, dmax), n ≥ 4; from [14], at least a non-edge (u, v)
such that dT (u, v) < dmin. In our setting, this means that every PCG-coloring
of Cn, n ≥ 4, has at least one red non-edge. By contradiction, w.l.o.g. assume
that this non-edge is (v1, vi), with 4 ≤ i < n − 1. We apply Lemma 3 on the
induced Pi and the claim follows. ut

Lemma 5. The tri-colorings in Figure 2 are forbidden PCG-colorings.

Proof. We prove separately that each tri-coloring is forbidden.

Forbidden tri-coloring f-c(2K2)a:
We obtain that the tri-coloring in Figure 2.a is forbidden by rephrasing

Lemma 6 of [8] with our nomenclature.
The other proofs are all by contradiction and proceed as follows: for each

tri-coloring in Figure 2, we assume that it is a feasible PCG-coloring induced by
a triple (T, dmin, dmax) and show that this assumption contradicts Lemma 1.
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Fig. 2. Forbidden tri-colorings of some graphs.

Forbidden tri-coloring f-c(2K2)b:
From the tri-coloring in Figure 2.b we have that

dT (b, c) < dmin ≤ dT (a, b) ≤ dmax < dT (a, c).

Thus PT (a, c) is the largest path in Ta,b,c. By Lemma 1, for leaf d it must be:
dT (b, d) ≤ max {dT (a, d), dT (c, d)} = dT (c, d) while from the tri-coloring it holds
that dT (c, d) ≤ dmax < dT (b, d), a contradiction.

Forbidden tri-coloring f-c(P4):
From the tri-coloring in Figure 2.c we have that

dT (a, b), dT (b, c) ≤ dmax < dT (a, c).

Thus PT (a, c) is the largest path in Ta,b,c. By Lemma 1, for leaf d we have:
dT (b, d) ≤ max {dT (a, d), dT (c, d)} = dT (c, d) while from the tri-coloring it holds
that dT (c, d) ≤ dmax < dT (b, d), a contradiction.

Forbidden tri-coloring f-c(K3 ∪K1):
From the tri-coloring in Figure 2.d we have that

dT (a, d), dT (a, c) < dmin ≤ dT (c, d).

Thus PT (c, d) is the largest path in Ta,c,d. By Lemma 1, for leaf b it must
be: dT (a, b) ≤ max {dT (c, b), dT (d, b)} while from the tri-coloring it holds that
dT (c, b), dT (d, b) < dmax ≤ dT (a, b), a contradiction. ut

Lemma 6. The partial tri-coloring in Figure 3 is a forbidden PCG-coloring.

Proof. Using the result of Lemma 5, we again prove that each tri-coloring is
forbidden by contradiction.

From the the tri-coloring in Figure 3, extract the inherited PCG-colorings
for the two subgraphs G[a, c, d, e] and G[b, c, d, f ]. To avoid f-c(K3 ∪ K1), the
non-edges (a, e) and (b, f) are both blue. Now we distinguish the two possible
cases for the color of the non-edge (a, f):

(a, f) is a red non-edge: consider the PCG-coloring for subgraph G[a, b, e, f ].
To avoid f-c(2K2)b, non-edge (b, e) has to be blue. This implies that the
PCG-coloring for path G[a, b, d, e, f ] has all the 2-non-edges with color blue
while the non-edge (a, f) is red. This is in contradiction with Lemma 3.

(a, f) is a blue non-edge: in this case consider Lemma 1 applied to tree Ta,d,f .
We distinguish the three cases for the largest path among PT (a, d), PT (a, f)
and PT (d, f):
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Fig. 3. A forbidden coloring of a graph that is an induced subgraph of C2
n, with n ≥ 10.

the largest path is PT (a, d) : for leaf b it must be:

dT (f, b) ≤ max {dT (a, b), dT (d, b)}

while from the tri-coloring dT (a, b), dT (d, b) ≤ dmax < dT (f, b).
the largest path is PT (a, f) : for leaf c it must be:

dT (d, c) ≤ max {dT (a, c), dT (f, c)}

while from the tri-coloring dT (a, c), dT (f, c) < dmin ≤ dT (d, c).
the largest path is PT (d, f) : for leaf e it must be:

dT (a, c) ≤ max {dT (d, c), dT (f, c)}

while from the tri-coloring dT (d, c), dT (f, c) ≤ dmax < dT (a, c).
In all the three cases, a contradiction arises. ut

3.2 Graph C2
n, n ≥ 8, is not PCG

We recall that all graphs with at most 7 nodes are PCG [5] and that cycles are
PCGs [13], so we focus on n ≥ 8.

For easing the proofs, the nodes of C2
n will be indexed with values in the

finite group Zn of the integers modulo n, i.e. V (C2
n) = {v0, v1, . . . , vn−1}. As a

consequence, for each pair vi, vj , the edge (vi, vj) belongs to C2
n if and only if

j − i ∈ {1, 2, n− 1, n− 2}.
Before proving that C2

n is not PCG, we need some ad-hoc forbidden PCG-
colorings for C2

n. Due to the lack of space, we omit the proof, that can be found
in [1].

Given a PCG-coloring of C2
n, we call red-node a node v of C2

n if all the non-
edges incident on v are of red color.

Lemma 7. Let C2
n, n ≥ 8, be a square cycle. Then:

1. Any PCG-coloring of C2
n where all the 2-non-edges are blue is forbidden.

2. Any PCG-coloring of C2
n having two red non-edges from a common non red-

node to two adjacent nodes is forbidden.
3. Any PCG-coloring of C2

n having two adjacent red-nodes is forbidden.



Now we show other two ad-hoc forbidden PCG-colorings that hold only for
n ≥ 10 because in the proof we exploit f − c(C). Hence the two cases n = 8 and
n = 9 have to be handled separately. Due to the lack of space, their proof are
omitted in this extended abstract and can be found in [1].

Lemma 8. Let C2
n, n ≥ 10, be a square cycle. Then:

1. Any PCG-coloring of C2
n with a triple of nodes (vi, vi+4, vi+8), 0 ≤ i < n,

such that vi+8 is the only non red-node (in this triple) is forbidden.
2. Any PCG-coloring of C2

n with a triple of nodes (vi−6, vi−3, vi), 0 ≤ i < n,
such that vi−6 is the only non red-node (in this triple) is forbidden.

We are now ready to prove that C2
n is not PCG.

Theorem 1. Graph C2
n, n ≥ 10, is not a PCG.

Proof. The proof is by contradiction. Let (vi, vi+4) be a red 2-non-edge in C2
n

(such a non-edge must exist by Lemma 7.1). Consider now the induced path
G[vi, vi+1, vi+3, vi+4]. In this path we have the red non-edge (vi, vi+4) thus, due
to f − c(P4), one of the non-edges (vi, vi+3) and (vi+1, vi+4) is red, too and
at least one of the nodes vi and vi+4 is the end-point of two red non-edges
toward adjacent nodes. Hence one of these nodes is a red-node (see Lemma 7.2).
Reindexing the nodes of C2

n, this red-node is node v0.
Consider now the induced subgraph G[vn−3, vn−1, v0, v1, v2, v4]. In this subgraph
the non-edges (vn−3, v0) and (v0, v4) are red and, due to f − c(C), at least one
of the non-edges (vn−3, v1) and (v1, v4) is red. We consider two cases:

non-edge (v1, v4) is red
The two non-edges (v0, v4) and (v1, v4) are red so, by Lemma 7.2, node v4 is

a red-node. Considering the triple of nodes (v0, v4, v8), by Lemma 8.1, node v8
is a red-node, too. We can iterate this reasoning on the triple (v4, v8, v12) and so
on, and finally obtaining that V ∗ = {vi | i ≡ 0 (mod 4)} is a set of red-nodes
in the PCG-coloring. Moreover each node vi, with i 6≡ 0 (mod 4), is adjacent
to some node in V ∗ thus, by Lemma 7.3, n is a multiple of 4 (and n ≥ 12) and
set V ∗ contains all the red-nodes of the PCG-coloring. Consider now the cycle
induced by all the nodes having an odd index, i.e. G[v1, v3, v5, . . . , vn−1]. This
cycle is n

2 ≥ 6 long thus, by Lemma 4, it contains at least a red non-edge. Let
(vi, vj) be one of these red non-edges. Node vj is necessarily adjacent to a node
in V ∗, hence there are two red non-edges from adjacent nodes incident toward
vi in C2

n implying that vi is a red-node (by Lemma 7.2). This contradicts the
fact that vi 6∈ V ∗.

non-edge (vn−3, v1) is red
The proof is analogous to the previous one: due to the two red non-edges

(vn−3, v0) and (vn−3, v1), by Lemma 7.2, node vn−3 is a red-node. Considering
the triple of nodes (vn−6, vn−3, v0) in Lemma 8.2, node vn−6 is a red-node, too.
We can iterate this reasoning on the triple (vn−9, vn−6, vn−3) and so on finally
obtaining that V ∗ = {vi | i ≡ 0 (mod 3)} is a set of red-nodes in the PCG-
coloring. Moreover, each node vi, with i 6≡ 0 (mod 3), is adjacent to some node



in V ∗ so, due to Lemma 7.3, n is a multiple of 3 (and n ≥ 12) and set V ∗ contains
all the red-nodes of the PCG-coloring. Consider now the cycle induced by all the
nodes that are not in V ∗, i.e. G[1, 2, 4, . . . , n− 2, n− 1]. This cycle has length at
least 8 and, by Lemma 4, there is at least a red non-edge connecting two nodes
of the cycle. Let (vi, vj) be one of these red non-edges. Node vj is adjacent to a
node in V ∗, so vi is the end-point of two red non-edges toward adjacent nodes
in C2

n as a consequence vi is a red-node (by Lemma 7.2). This contradicts the
fact that vi 6∈ V ∗. ut

Theorem 2. Graph C2
8 is not a PCG.

Corollary 1. Graph C2
8 is the smallest planar graph that is not PCG.

Theorem 3. Graph C2
9 is not a PCG.

3.3 Graph C2
n, n ≥ 8, is a minimal graph that is not PCG

Recall that if a graph contains as induced subgraph a not PCG, then it is not
PCG, too. We call minimal not PCG a graph that is not PCG and it does not
contain any induced proper subgraph that is not PCG. (It is worth to be noted
that PCG is closed under taking induced subgraphs.)

In this subsection we prove that C2
n is a minimal not PCG. The proof is

constructive and it provides an edge-weighted tree T and two values dmin and
dmax such that PCG(T, dmin, dmax) = C2

n \ {x} for any node x of C2
n.

Theorem 4. C2
n, n ≥ 8, is a minimal not PCG.

Proof. Consider the graph C2
n, n ≥ 8. To prove the theorem we remove from

the graph a node x and prove that the new graph G′ is PCG. Without loss of
generality assume that x = vn. We construct a tree T such that G′ = PCG(T ,
2n− 2, 2n + 4). We consider the following two cases depending on whether n is
an even or an odd number.

– n is an odd number. Tree T is a caterpillar with n − 1 internal nodes we
denote as x1, x2, . . . , xn−1

2 −1
, y, xn−1

2
, . . . , xn−2. The internal nodes induce

a path from x1 to xn−2 and edges (xi, xi+1), 1 ≤ i < (n − 1)/2 − 1 and
(n− 1)/2 ≤ i < n− 2, have weight 2. Edges (xn−1

2 −1
, y) and (y, xn−1

2
) have

weight 1. Leaves vi, 1 ≤ i ≤ n− 2, are connected to xi with edges of weight
n. Finally leaf vn−1 is connected to the node y with an edge of weight 3. See
Figure 4.a

– n is an even number. Tree T is a caterpillar with n − 1 internal nodes we
denote as x1, x2, . . . , xn−1. The internal nodes x1, . . . , xn−1 induce a path
and edges (xi, xi+1), 1 ≤ i < n− 1, have weight 2.

Leaves vi, 1 ≤ i < n, are connected to xi with edges of weight n. Finally vn−1 is
connected to xn−2

2
with an edge of weight 3. See Figure 4.b. ut
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Fig. 4. Caterpillars for the proof of Theorem 4: a. n odd; b. n even.

4 Other results due to the application of our technique

In this section we get two further results applying again the technique introduced
in Section 2. Due to the lack of space, we omit the proofs, that can although
be found in [1]. The graph classes we consider are obtained by operating in
different ways on cycles and are very interesting in this context because both
are connected to some open problems.

4.1 The wheel

Wheels Wn+1 are n length cycles Cn whose nodes are all connected with a
universal node.

Wheel W6+1 is PCG and it is the only graph with 7 nodes whose witness tree
is not a caterpillar [5]. Moreover, it has been proven in [4] that also the larger
wheels up to W10+1 do not have a caterpillar as a witness tree but, up to now,
no other witness trees are known for these graphs and, in general, it has been
left open to understand whether wheels with at least 8 nodes are PCGs or not.

Using our technique, we prove the following theorem.

Theorem 5. Wheel W7+1 is a PCG while wheels Wn+1, n ≥ 8, are minimal
not PCGs.

4.2 The strong product of a cycle and P2

Given two graphs G and H, their strong product G�H is a graph whose node
set is the cartesian product of the node sets of the two graphs, and there is an
edge between nodes (u, v) and (u′, v′) if and only if either u = u′ and (v, v′) is
an edge of H or v = v′ and (u, u′) is an edge of G.

We recall that C4�P2 has already been proved not to be PCG [8] but nothing
is known for n > 4. Recalling that all graphs with 7 nodes or less are PCGs, our
result is the following.

Theorem 6. The graphs obtained as strong product Cn�P2, n ≥ 4 are minimal
not PCGs.



5 Conclusions

In this paper we proposed a new proof technique to show that graphs are not
PCGs. As an example, we applied it to the square of cycles, to wheels and to
Cn�P2. As a side effect, we show that the smallest planar graph not to be PCG
has not 20 nodes, as previously known, but only 8.

Even if all these classes are obtained by operating on cycles, we think that
this technique can be potentially used to position outside PCG many other graph
classes no related to cycles. This represents an important step toward the solution
of the very general open problem consisting in demarcating the boundary of the
PCG class.
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