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Abstract
The order of fractional differential equations (FDEs) has been proved to be
of great importance in an accurate simulation of the system under study.
In this paper, the orders of some classes of linear FDEs are determined
by using the asymptotic behaviour of their solutions. Specifically, it is
demonstrated that the decay rate of the solutions is influenced by the order
of fractional derivatives. Numerical investigations are conducted into the
proven formulas.
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1. Introduction

The practical significance of fractional calculus has been recently dis-
cerned as a vastly superior method of describing the long-memory pro-
cesses and developed remarkably over the last few years [3, 5, 8, 15, 20, 23].
In particular, fractional differential equations (FDEs) have been proven
extremely important for more accurately modelling of many physical phe-
nomena [2, 6, 14,19,22,25].

Inverse problems to FDEs occur in many branches of science. Such
problems have been investigated in, for instance, fractional diffusion equa-
tion [7, 12, 18, 24, 27] and inverse boundary value problem for semi-linear
fractional telegraph equation [17]. In [12], it has been specifically shown
that determination of β, the order of fractional differential operator, is def-
initely crucial to the appropriate simulation of the anomalous diffusion in
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order to specify that the transport phenomenon exhibits sub-diffusion or
super-diffusion (respectively for β < 1 and β > 1). The authors of [12]
have presented a theorem, the idea behind which is the determination of
the order of a fractional diffusion equation. It has been the motivation be-
hind this paper for proving formulas indicating the relationship between the
fractional order and the asymptotic behaviour of the solutions to several
different classes of linear FDEs.

The paper is organized as follows. Section 2 is allocated for recalling
some bases of fractional calculus. In Section 3, a few special cases of linear
FDEs are considered for which the fractional orders are determined. In Sec-
tion 4, two examples are given to illustrate the correctness of the obtained
results.

2. Preliminaries

For the sake of convenience, some basic definitions in fractional calculus
and some useful properties are reviewed.

2.1. Fractional integral and derivatives. the definitions of Riemann-
Liouville integral and derivative, and also the Caputo fractional derivative
are represented in summary [15,21].

Definition 2.1. Let t0 ∈ R and f : (t0,+∞)→ R be continuous and
integrable in every finite interval (t0, t). The Riemann-Liouville fractional
integral of order β ∈ C (< (β) > 0) of the function f is defined by(

Iβt0f
)

(t) =
1

Γ (β)

∫ t

t0

(t− τ)β−1f (τ) dτ , t > t0. (2.1)

Definition 2.2. Let t0 be a real number, β ∈ C (< (β) > 0), n =
[< (β)] + 1, and let the function f : (t0,+∞) → R be continuous and
integrable in every finite interval (t0, t). The Riemann-Liouville fractional
derivative of order β of the function f is defined by(

Dβ
t0
f
)

(t) =
1

Γ (n− β)

(
d

dt

)n ∫ t

t0

(t− τ)n−β−1f (τ) dτ , t > t0. (2.2)

Caputo differential operator plays a major role in physical phenomena
due to the fact that initial conditions for the FDEs with Caputo deriva-
tive are the same as those for integer-order differential equations. Caputo
fractional derivative [4] is defined as follows:

Definition 2.3. Let t0 ∈ R, β ∈ C (< (β) > 0), n − 1 < < (β) <
n (n ∈ N), and let the function f be continuous and have n continuous
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derivatives in the interval (t0,+∞). The Caputo fractional derivative of
order β of the function f is defined by(

Dβ
t f
)

(t) =
1

Γ (n− β)

∫ t

t0

(t− τ)n−β−1f (n) (τ) dτ, t > t0. (2.3)

Sequential fractional derivative (see [15,21]) is defined by

Dnβu (t) = DβDβ . . . Dβu (t)︸ ︷︷ ︸
n

, (2.4)

where Dβ could be Riemann-Liouville, Caputo, or any other type of frac-
tional derivative not considered here.

2.2. Mittag-Leffler function and its derivatives. The two-parameter
function of Mittag-Leffler type, which first appeared in an article by Wiman
[26] and studied by Agarwal and Humbert [1, 13], is defined by

Eα,β (z) =
∞∑
k=0

zk

Γ (kα+ β)
, α, β, z ∈ C, < (α) > 0, (2.5)

where Eα,1 (z) is simply denoted by Eα (z). In the case α and β are real
and positive numbers, the series converges for all values of the argument z,
therefore, the Mittag-Leffler function Eα,β (z) is an entire function of the
order α−1. Detailed information on Mittag-Leffler type functions and their
properties can be found in, for instance, [15].

The Mittag-Leffler function satisfies the following differentiation for-
mula [21]:

dn

dzn

(
zβ−1Eα,β (λzα)

)
= zβ−n−1Eα,β−n (λzα) , n ∈ N, λ ∈ R, (2.6)

and the following practical formulas can be directly derived from (2.6):

d

dz
Eα (λzα) =

1

z
Eα,0 (λzα) = λzα−1Eα,α (λzα) , (2.7)

d

dz

(
zβ−1Eα,β (λzα)

)
= zβ−2Eα,β−1 (λzα) , (2.8)

d

dz
(zEα,2 (λzα)) = Eα (λzα) . (2.9)
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2.3. Asymptotic expansion of Mittag-Leffler function. The asymp-
totic behaviour of Mittag-Leffler function Eα,β (z) (|z| → ∞) is complicated
for α > 0 and diverges greatly for 0 < α < 2 and α ≥ 2. This topic can
be perfectly investigated in [21] with scrupulous attention to detail. Here,
the asymptotic behaviour of Mittag-Leffler function is briefly stated for the
case 0 < α < 2.

Let 0 < α < 2, β, z ∈ C and µ be an arbitrary real number such that
π
2α < µ < min (π, πα) then:

Eα,β (z) = −
n∑
k=1

1

Γ (β − kα) zk
+O

(
|z|−n−1

)
,

|z| → ∞, µ ≤ |arg (z)| ≤ π.
(2.10)

Consequently, the following expansions can be obtained from (2.10):

Eα (λzα) = − z−α

λΓ (1− α)
+O

(
1

|λ|2z2α

)
, z →∞, (2.11)

Eα,α (λzα) =
αz−2α

λ2Γ (1− α)
+O

(
1

|λ|3z3α

)
, z →∞. (2.12)

where z is a positive real number, 0 < α < 2, and λ < 0.

3. Main results

In this section the fractional orders of several classes of linear FDEs are
determined by using the asymptotic behaviour of Mittag-Leffler functions.

Theorem 3.1. Let 0 < β ≤ 1 and t0 > 0. Consider the sequential
linear differential equation in the sense of Riemann-Liouville Derivative:

D2β
t0
u+ a1Dβt0u+ a0u = 0, (3.1)

with the initial condition u (t0) = u0 and Dβt0u (t0) = u1, and let a0 and
a1 are reals such that r1 and r2, the roots of the characteristic equation
r2 + a1r + a0 = 0, are distinct and negative real numbers. Then, the
following formula holds

β = −1− lim
t→∞

tu′

u
. (3.2)

P r o o f. The solution of (3.1) is as follows [15]:

u (t) = c1t
β−1Eβ,β

(
r1t

β
)

+ c2t
β−1Eβ,β

(
r2t

β
)
. (3.3)
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where c1 and c2 depend on the initial conditions. The first derivative of
u (t) can be calculated by using (2.8) as below:

u′ (t) = c1t
β−2Eβ,β−1

(
r1t

β
)

+ c2t
β−2Eβ,β−1

(
r2t

β
)
. (3.4)

The asymptotic expansions of u (t) and u′ (t) can be obtained by using
(2.10)

u (t) =
−t−β−1

Γ (−β)

(
c1

r2
1

+
c2

r2
2

)
+c1t

β−1O
(
|r1|−3t−3β

)
+c2t

β−1O
(
|r2|−3t−3β

)
,

(3.5)

u′ (t) =
(β + 1) t−β−2

Γ (−β)

(
c1

r2
1

+
c2

r2
2

)
+ c1t

β−2O
(
|r1|−3t−3β

)
+ c2t

β−2O
(
|r2|−3t−3β

)
.

(3.6)

Thus

− lim
t→∞

tu′

u
= − lim

t→∞

(β+1)t−β−1

Γ(−β)

(
c1
r21

+ c2
r22

)
−t−β−1

Γ(−β)

(
c1
r21

+ c2
r22

) = β + 1. (3.7)

2

Theorem 3.2. Let 0 < β < 1
2 and γ, µ ∈ R such that 0 < γ < µ2, and

let Dβ
t u indicate the Caputo differentiation operator. For the initial value

problem

D2β
t u (t) + 2µDβ

t u (t) + γu (t) = 0, (3.8)

with the initial condition u (0) = 1, and also for sequential linear differential
equation of fractional order

D2β
t u+ 2µDβt u+ γu = 0, (3.9)

with the initial condition Dβt u (0) = 0 and u (0) = 1, the following formula
holds

β = − lim
t→∞

tu′

u
. (3.10)

Remark 3.1. If Dβt u (0) = 0, then c1r1 + c2r2 = 0 and D2β
t u = D2β

t u.

The case of Dβt u (0) 6= 0 leads to c1r1 + c2r2 6= 0. Thus, the coefficients c1

and c2 are not the same as those represented in the proof of Theorem 3.2
and therefore must be calculated.

P r o o f. The solutions of (3.8) and (3.9) are represented by [9]

u (t) = c1Eβ

(
r1t

β
)

+ c2Eβ

(
r2t

β
)
, (3.11)
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where the coefficients c1 and c2 are respectively equal to 1
2

(
1 + µ√

µ2−γ

)
and 1

2

(
1− µ√

µ2−γ

)
, and the parameters r1 and r2 are equal to −µ +√

µ2 − γ < 0 and −µ−
√
µ2 − γ < 0 respectively. Equation (3.11) can be

rewritten in the following form by using (2.11)

u (t) = − t−β

Γ (1− β)

(
c1

r1
+
c2

r2

)
+ c1O

(
r−2

1 t−2β
)

+ c2O
(
r−2

2 t−2β
)
. (3.12)

The first derivative of (3.11) can be obtained by referring to (2.7)

u′ (t) = c1r1t
β−1Eβ,β

(
r1t

β
)

+ c2r2t
β−1Eβ,β

(
r2t

β
)
. (3.13)

Equation (2.12) is used for applying the asymptotic behaviour of Mittag-
Leffler function to (3.13):

u′ (t) =
βt−β−1

Γ (1− β)

(
c1

r1
+
c2

r2

)
+ tβ−1

(
c1r1O

(
r−3

1 t−3β
)

+ c2r2O
(
r−3

2 t−3β
))

.

(3.14)

Therefore,

− lim
t→∞

tu′

u
= − lim

t→∞
t

βt−β−1

Γ(1−β)

(
c1
r1

+ c2
r2

)
− t−β

Γ(1−β)

(
c1
r1

+ c2
r2

) = β. (3.15)

2

Theorem 3.3. Let 1 < β < 2, and r be a negative real number. For
the fractional differential equation with Caputo derivative

Dβ
t u− ru = 0, (3.16)

with the initial condition u (0) = 1 and u′ (0) = 1, the following relationship
is held true:

β = 1− lim
t→∞

tu′

u
. (3.17)

P r o o f. The solution to (3.16) is

u (t) = Eβ

(
rtβ
)

+ tEβ,2

(
rtβ
)
. (3.18)

The first derivative of u (t) could be calculated by referring to (2.7) and
(2.9)

u′ (t) = rtβ−1Eβ,β

(
rtβ
)

+ Eβ

(
rtβ
)
. (3.19)
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The asymptotic expansions of u (t) and u′ (t) are respectively

u (t) = − t−β

rΓ (1− β)

(
1 +

t

1− β

)
+O

(
|r|−2t−2β

)
+ tO

(
|r|−2t−2β

)
,

(3.20)
and

u′ (t) =
t−β

rΓ (1− β)

(
β

t
− 1

)
+rtβ−1O

(
|r|−3t−3β

)
+O

(
|r|−2t−2β

)
, (3.21)

therefore,

lim
t→∞

tu′

u
= lim

t→∞

t−β

rΓ(1−β) (β − t)

− t−β

rΓ(1−β)

(
1 + t

1−β

) = 1− β. (3.22)

2

Theorem 3.4. Let 0 < β < 1, and r be a negative real number. For
(3.16) with the initial condition u (0) = 1, the following is held true

β = − lim
t→∞

tu′

u
. (3.23)

P r o o f. The solution to (3.16) is as follows:

u (t) = Eβ

(
rtβ
)
, (3.24)

where 0 < β < 1 [16]. The first derivative of u (t) could be calculated by
referring to (2.7):

u′ (t) = rtβ−1Eβ,β

(
rtβ
)
. (3.25)

The asymptotic expansions of u (t) and u′ (t) are respectively

u (t) = − t−β

rΓ (1− β)
+O

(
|r|−2t−2β

)
, (3.26)

and

u′ (t) =
βt−β−1

rΓ (1− β)
+ rtβ−1O

(
|r|−3t−3β

)
, (3.27)

then

lim
t→∞

tu′

u
= lim

t→∞

βt−β

rΓ(1−β)

− t−β

rΓ(1−β)

= −β. (3.28)

2
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4. Numerical investigation

Example 4.1. Consider the initial value problem

D2β
t u+ 2Dβ

t u+ 0.7u = 0, t ≥ 0, 0 < β <
1

2
, (4.1)

with the initial condition u (0) = 1. The solution to (4.1) is the following:

u (t) = c1Eβ

(
r1t

β
)

+ c2Eβ

(
r2t

β
)
, (4.2)

where r1 = −0.4523, r2 = −1.5477, c1 = 1.4129, c2 = −0.4129. The graph
of − tu′

u , which has been evaluated for several different values of β, is shown

in Fig. 4.1. It is obvious that − tu′

u tends asymptotically to β, as t goes to

infinity. The term − tu′

u is numerically evaluated by means of the MATLAB
code “ml.m” [10] which is based on the numerical inversion of the Laplace
transform of Mittag-Leffler function [11]. Numerical results are in good
agreement with the formula introduced in Theorem 3.2 and the rate of the
convergence of − tu′

u is greatly influenced by the value of β.

t

0 1000 2000 3000 4000 5000

-t
 d

u
/u

0

0.1

0.2

0.3

0.4

Beta = 0.35

t

0 1000 2000 3000 4000 5000

-t
 d

u
/u

0

0.1

0.2

0.3

0.4

Beta = 0.40

t

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-t
 d

u
/u

0

0.1

0.2

0.3

0.4

0.5

Beta = 0.45

Fig. 4.1. Graph of − tu′

u for β = 0.35, β = 0.40, and β = 0.45.
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Example 4.2. Consider the fractional differential equation
Dβ
t u+ 2u = 0,

u (0) = 1,

u′ (0) = 1,

(4.3)

where 1 < β < 2 and Dβ
t u is in the sense of Caputo derivative. The solution

is in the form of

u (t) = Eβ

(
−2tβ

)
+ tEβ,2

(
−2tβ

)
. (4.4)

According to Theorem 3.3, the term 1 − tu′

u tends to β as t goes to the

infinity. The numerical evaluation of 1 − tu′

u has been conducted by using
(4.4) and its derivative. The results are shown in Fig. 4.2. As it can be

observed, 1− tu′

u converges to β with a rate affected by the value of β, i.e.
the convergence will be faster if the fractional order β tends to 2.

t

2000 4000 6000 800010000

1
-t

 d
u
/u

1.1995

1.2

1.2005

Beta = 1.2

t

2000 4000 6000 800010000

1
-t

 d
u
/u

1.494

1.496

1.498

1.5

1.502

Beta = 1.5

t

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1
-t

 d
u

/u

1.79

1.795

1.8

Beta = 1.7

Fig. 4.2. Graph of 1− tu′

u for β = 1.2, β = 1.5, and β = 1.7.
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5. Conclusion

Inverse problems occur in many branches of science and have been also
examined in the models described by FDEs. For instance, determination
of the order of fractional systems has been indicated to be of such crucial
importance that it could influence how anomalous diffusion equations must
be appropriately simulated. Thus, in this paper, the solutions to several
classes of linear FDEs represented, for which the order determination has
been demonstrated by using asymptotic behaviour of Mittag-Leffler type
functions. The formulas in Theorems 3.1-3.4 have been numerically exam-
ined for different values of β. The results show the accuracy of the obtained
formulas.
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[3] D. Baleanu, Z.B. Güvenç, J.T. Machado, New trends in nanotechnology
and fractional calculus applications. Springer, New York (2010).

[4] M. Caputo, Linear models of dissipation whose Q is almost frequency
independent–II. Geophys. J. Int. 13, No 5 (1967), 529–539.

[5] M. Caputo, M. Fabrizio, A new definition of fractional derivative with-
out singular kernel. Progr. Fract. Differ. Appl. 1, No 2 (2015), 1–13.

[6] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in contin-
uum mechanics. Springer, New York (1997).

[7] J. Cheng, J. Nakagawa, M. Yamamoto, T. Yamazaki, Uniqueness in
an inverse problem for a one-dimensional fractional diffusion equation.
Inverse probl. 25, No 11 (2009), 115002.

[8] K. Diethelm, The analysis of fractional differential equations: an
application-oriented exposition using differential operators of Caputo
type. Springer, Heidelberg (2010).

[9] M. D’Ovidio, E. Orsingher, B. Toaldo, Time-changed processes gov-
erned by space-time fractional telegraph equations. Stoch. Anal. Appl.
32, No 6 (2014), 1009–1045.



DETERMINATION OF ORDER IN LINEAR FRACTIONAL . . . 11

[10] R. Garrappa, The Mittag-Leffler function, MATLAB Central File Ex-
change. (2014).

[11] R. Garrappa, Numerical evaluation of two and three parameter Mittag-
Leffler functions. SIAM J. Numer. Anal. 53, No 3 (2015), 1350–1369.

[12] Y. Hatano, J. Nakagawa, S. Wang, M. Yamamoto, Determination of
order in fractional diffusion equation. J. Math-for-Ind. 5A (2013), 51–
57.

[13] P. Humbert, Quelques résultats relatifs à la fonction de Mittag-Leffler.
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