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Università degli studi di Roma Sapienza

Via A. Scarpa 16

00161 Roma, Italy

Alexander Nazarov

St. Petersburg Department of Steklov Mathematical Institute
and St. Petersburg State University

Fontanka 27, and Universitetskii pr. 28

191023 St. Petersburg, Russia and 198504 St. Petersburg, Russia

Paola Vernole∗

Dipartimento di Matematica, Università degli Studi di Roma Sapienza
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Abstract. We establish the regularity results for solutions of nonlocal Venttsel’
problems in polygonal and piecewise smooth two-dimensional domains.

Introduction. In this paper we investigate an elliptic nonlocal Venttsel’ problem
for the Laplace operator in a bounded polygonal domain Ω ⊂ R2.

Lately Venttsel’ problems in irregular domains (for example, in domains with
prefractal or fractal boundary) have been widely investigated, see e.g. [12] and [10]
and the references listed in. In [12] the reader can also find motivations for the
study of such problems.

There is a huge literature on local linear and quasi-linear Venttsel’ problems (see
e.g. [1], [2], [14], [3], [7], [20], [17] and the references listed in). As to the nonlocal
case, among the others we refer to [11], [18], [21] and the references listed in.

Our aim in this paper is to study the regularity in weighted Sobolev spaces of
the weak solution of a nonlocal Venttsel’ problem in a polygonal domain. These
results will be crucial to obtain optimal a priori error estimates for the numerical
approximation of the problem at hand; to this regard, for the local case, see [5] and
[6].

We first point out that a general nonlocal term appears also in the pioneering
original paper by Venttsel’ [19]. Here we consider a nonlocal term which can be
regarded as a version of the fractional Laplace operator (−∆)s, for 0 < s < 1, on the
boundary. The presence of this term could, in principle, deteriorate the regularity
of the solution on the boundary. We prove that this is not the case, and that the
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weak solution of the nonlocal Venttsel’ problem belongs to H2(∂Ω), i.e. it has the
same regularity as in the local case (see [5]).

It is well known that solutions of boundary value problems in piecewise smooth
domains usually belong to weighted Sobolev spaces, where the weight is the distance
from the set of vertices of the boundary, see e.g. [9] and [15]. In our case, the
interplay between the boundary equation and the equation in the domain essentially
influences the range of weight exponents, see (2.2).

We remark that the techniques used in the local case to prove the regularity on
the boundary are very different from the ones used in this paper.

The obtained results are a starting point in studying the regularity of the solution
of nonlocal Venttsel’ problems in the case of domains with fractal boundary (for
example of Koch-type domains).

The paper is organized as follows. In Section 1 we define the domain and the
functional spaces which will appear in this paper and we state the problem. In
Section 2 we prove a key a priori estimate for the solution. In Section 3 we give
an existence and uniqueness result for weak and strong solutions of the nonlocal
Venttsel’ problem.

1. Statement of the problem. Let Ω ⊂ R2 be a polygonal domain. Namely,
we suppose that the boundary ∂Ω is made by N ≥ 3 segments. Denote by αj ,
j = 1, . . . , N , the openings of angles in ∂Ω and put α = max

j
αj , see Figure 1.

Figure 1. A possible example of domain Ω. In this case N = 9
and α = α7.

In the following we denote by L2(Ω) the Lebesgue space with respect to the
Lebesgue measure dx on Ω, and by L2(∂Ω) the Lebesgue space on the boundary
with respect to the arc length d`. By Hs(Ω), for s ∈ N, we denote the standard
Sobolev spaces. By C(∂Ω) we denote the set of continuous functions on ∂Ω.

By Hs(∂Ω), for 0 < s < 1, we denote the Sobolev space on ∂Ω defined by local
Lipschitz charts as in [16]. For s ≥ 1, we define the Sobolev space Hs(∂Ω) by using
the characterization given by Brezzi-Gilardi in [4]:

Hs(∂Ω) = {v ∈ C(∂Ω) | v| ◦
M
∈ Hs(

◦
M)},
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where M denotes a side of ∂Ω and
◦
M denotes the corresponding open segment (for

the general case see Definition 2.27 in [4]).
We denote the trace of u on ∂Ω by γ0u. Sometimes we will use the same symbol

u to denote the function itself and its trace γ0u. The interpretation will be left to
the context.

We now recall the Friedrichs inequality, see [13, page 24] for more details.

Proposition 1.1. Let u ∈ H1(Ω). There exists a positive constant C depending
on Ω such that

‖u‖2L2(Ω) ≤ C
(
‖∇u‖2L2(Ω) + ‖u‖2L2(∂Ω)

)
. (1.1)

Let r = r(x) be the distance from a point x ∈ Ω to the set of boundary vertices.
For γ ∈ R and m ∈ N ∪ {0}, we denote by Hm

γ (Ω) the Kondrat’ev (or weighted
Sobolev) space of functions for which the norm

‖u‖Hmγ (Ω) =

 ∑
|k|≤m

∫
Ω

r2(γ−m+|k|)|Dku(x)|2 dx

 1
2

is finite, see [9]. For m = 0, this space evidently coincides with the weighted

Lebesgue space L2
γ(Ω). We also define, for m ∈ N, the space H

m− 1
2

γ (∂Ω) as the
trace space of Hm

γ (Ω) equipped with the norm

‖u‖
H
m− 1

2
γ (∂Ω)

= inf
γ0v=u

‖v‖Hmγ (Ω).

We define the composite spaces

V 1(Ω, ∂Ω) := {u ∈ H1(Ω) : γ0u ∈ H1(∂Ω)}

and

V 2
σ (Ω, ∂Ω) := {u ∈ H1(Ω) : rσD2u ∈ L2(Ω), γ0u ∈ H2(∂Ω)}.

We consider the problem formally stated as

−∆u = f in Ω, (1.2)

−∆`u = −∂u
∂ν
− bu− θs(u) + g on ∂Ω, (1.3)

where f and g are given functions, ∆` =
∂2

∂`2
, ν the unit vector of exterior normal,

b ∈ L∞(∂Ω) and we set θs : Hs(∂Ω)→ H−s(∂Ω) as follows: for every u, v ∈ Hs(∂Ω)

〈θs(u), v〉 =

∫∫
∂Ω×∂Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|1+2s
d`(x) d`(y),

where 〈·, ·〉 denotes the duality pairing between H−s(∂Ω) and Hs(∂Ω). We remark
that the nonlocal term θs(·) can be regarded as an analogue of the fractional Laplace
operator (−∆)s on the boundary.

We now define the bilinear form E(u, v) as follows:

E(u, v) =

∫
Ω

∇u∇v dx+

∫
∂Ω

∇`u∇`v d`+

∫
∂Ω

b u v d`+ 〈θs(u), v〉, (1.4)

for every u, v ∈ V 1(Ω, ∂Ω).
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We consider the weak formulation of problem (1.2)-(1.3):

Given f and g, find u ∈ V 1(Ω, ∂Ω) such that E(u, v) =

∫
Ω

f v dx+

∫
∂Ω

g v d`

for every v ∈ V 1(Ω, ∂Ω).

(1.5)

In what follows we denote by C all positive constants. The dependence of constants
on some parameters is given in parentheses. We do not indicate the dependence of
C on the geometry of Ω.

2. A priori estimates.

Theorem 2.1. Let u ∈ V 2
σ (Ω, ∂Ω) be a solution of problem (1.2)-(1.3). Suppose

that s < 3/4. Then there exists a positive constant C = C(σ) such that

‖u‖2H1(Ω) +‖rσD2u‖2L2(Ω) +‖u‖2H2(∂Ω) ≤ C(σ)(‖u‖2L2(∂Ω) +‖rσf‖2L2(Ω) +‖g‖2L2(∂Ω)),

(2.1)
provided

1− π

α
< σ <

1

2
, σ ≥ −1

2
(2.2)

(recall that α is the opening of the largest angle in ∂Ω).

Proof. We use the so-called Munchhausen trick. We consider the right-hand side in
(1.3) as known function. Then we easily have

‖u‖2H2(∂Ω) ≤ C

(∥∥∥∥∂u∂ν
∥∥∥∥2

L2(∂Ω)

+ ‖u‖2L2(∂Ω) + ‖θs(u)‖2L2(∂Ω) + ‖g‖2L2(∂Ω)

)
. (2.3)

First we estimate ‖θs(u)‖2L2(∂Ω). Since u ∈ H2(∂Ω), it is sufficient to consider the

local behavior of u near the vertices. Without loss of generality, we can assume that
the vertex is located at the origin. We introduce a smooth cutoff function η and
rectify ∂Ω near the origin. It is easy to see that uη|∂Ω becomes a function on R which
is the sum of a smooth function and a term c|t|η̃(t) (here η̃ is a one-dimensional
cutoff function near the origin).

It is well known that c|t|η̃(t) ∈ Hβ(R) for every β < 3/2. This implies that
θs(u) ∈ Hβ−2s(∂Ω) and

‖θs(u)‖2Hβ−2s(∂Ω) ≤ C‖u‖
2
H2(∂Ω),

where C depends on β and s.
We fix β ∈ (2s, 3/2). From the compact embedding of Hβ−2s(∂Ω) in L2(∂Ω) we

deduce that for every ε > 0 there exists a constant C(ε) such that

‖θs(u)‖2L2(∂Ω) ≤ ε‖θs(u)‖2Hβ−2s(∂Ω) + C(ε)‖θs(u)‖2H−s(∂Ω),

see Lemma 6.1, Chapter 2 in [16]. Similarly, we have

‖θs(u)‖2H−s(∂Ω) ≤ C‖u‖
2
Hs(∂Ω) ≤ ε‖u‖

2
H2(∂Ω) + C(ε)‖u‖2L2(∂Ω).

Therefore we obtain the following estimate using (2.3):

‖u‖2H2(∂Ω) ≤ C

(∥∥∥∥∂u∂ν
∥∥∥∥2

L2(∂Ω)

+ ‖g‖2L2(∂Ω) + ε‖u‖2H2(∂Ω) + C(ε)‖u‖2L2(∂Ω)

)
.
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By choosing ε sufficiently small we obtain

‖u‖2H2(∂Ω) ≤ C

(∥∥∥∥∂u∂ν
∥∥∥∥2

L2(∂Ω)

+ ‖u‖2L2(∂Ω) + ‖g‖2L2(∂Ω)

)
. (2.4)

We now estimate
∥∥∂u
∂ν

∥∥2

L2(∂Ω)
. We consider a smooth function U on Ω which

is linear in a neighborhood of the vertices of ∂Ω and such that (u − U)(P ) =
∇`(u− U)(P ) = 0 in every vertex P of ∂Ω. Since D2U vanishes in neighborhoods
of vertices, without loss of generality we can assume that for every γ ∈ R

‖U‖2H1(Ω) + ‖rγD2U‖2L2(Ω) + ‖U‖2H2(∂Ω) ≤ C(γ)‖u‖2H2(∂Ω). (2.5)

If we consider the function v = u − U , from Hardy inequality applied on each
segment of ∂Ω (see [8, Sec. 9.8]) we obtain that v ∈ H2

γ=0(∂Ω). By rescaling we

deduce v ∈ H
3
2

− 1
2

(∂Ω), and

‖v‖
H

3
2

− 1
2

(∂Ω)
≤ C‖u‖H2(∂Ω). (2.6)

Now we consider v as the solution of the Dirichlet problem

−∆v = f + ∆U ∈ L2
σ(Ω); v|∂Ω ∈ H

3
2
σ (∂Ω) (2.7)

(here we used the last restriction in (2.2)). From Theorem 3.1, Chapter 2 in [15]
(with l = 0) it follows that v ∈ H2

σ(Ω) if |σ − 1| < π/α (we recall that α is the
opening of the largest angle in ∂Ω).

With regard to (2.5) and (2.6), this implies

‖u‖2H1(Ω) + ‖rσD2u‖2L2(Ω) ≤ C(σ)(‖rσf‖2L2(Ω) + ‖u‖2H2(∂Ω)) (2.8)

(to estimate the first term, we also take into account that (2.2) implies σ ≤ 1).
By rescaling, we deduce that ∇u ∈ L2

σ−1/2(∂Ω) and

‖∇u‖2L2
σ−1/2

(∂Ω) ≤ ‖u‖
2
H1(Ω) + ‖rσD2u‖2L2(Ω). (2.9)

We define a cutoff function ηδ such that

ηδ(r) = 1 for r > δ, ηδ(r) = 0 for r < δ/2.

Now we introduce the following trace operator:

u −→ ∂u

∂ν

∣∣∣
∂Ω

= ηδ
∂u

∂ν

∣∣∣
∂Ω

+ (1− ηδ)
∂u

∂ν

∣∣∣
∂Ω

=: K1(δ)u+K2(δ)u.

The operator K1(δ) : H2
σ(Ω)→ L2(∂Ω) is evidently compact. Using (2.8), we obtain

for arbitrary ε > 0

‖K1(δ)u‖2L2(∂Ω) ≤
ε

2
(‖rσf‖2L2(Ω) + ‖u‖2H2(∂Ω)) + C(ε, σ, δ)‖u‖2L2(∂Ω).

From (2.8) and (2.9) we deduce

‖K2(δ)u‖2L2(∂Ω) ≤ C(σ)δ
1
2−σ(‖rσf‖2L2(Ω) + ‖u‖2H2(∂Ω)).

By choosing δ(σ, ε) sufficiently small we get∥∥∥∥∂u∂ν
∥∥∥∥2

L2(∂Ω)

≤ ε(‖rσf‖2L2(Ω) + ‖u‖2H2(∂Ω)) + C(ε, σ)‖u‖2L2(∂Ω).

Substituting the above inequality into (2.4) we have

‖u‖2H2(∂Ω) ≤ C
(
ε(‖rσf‖2L2(Ω) + ‖u‖2H2(∂Ω)) + C(ε, σ)‖u‖2L2(∂Ω) + ‖g‖2L2(∂Ω)

)
.
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By choosing ε sufficiently small we obtain

‖u‖2H2(∂Ω) ≤ C
(
‖rσf‖2L2(Ω) + C(σ)‖u‖2L2(∂Ω) + ‖g‖2L2(∂Ω)

)
.

Taking into account (2.8), we get (2.1).

3. Solvability of the Venttsel’ problem. We begin with the existence and
uniqueness of the weak solution.

By the Friedrichs inequality (see (1.1)), we equip V 1(Ω, ∂Ω) with the equivalent
Hilbertian norm

‖u‖V 1(Ω,∂Ω) =
(
‖∇u‖2L2(Ω) + ‖∇`u‖2L2(∂Ω) + ‖u‖2L2(∂Ω)

) 1
2

.

Lemma 3.1. Let b ≥ 0 and b 6≡ 0. Then the energy form E[u] = E(u, u) generates
an equivalent norm in V 1(Ω, ∂Ω).

Proof. Since b ∈ L∞(∂Ω) and

〈θs(u), u〉 ≤ C‖u‖2Hs(∂Ω) ≤ C‖u‖2H1(∂Ω),

we obtain that E[u] ≤ C‖u‖2V 1(Ω,∂Ω). Then, since 〈θs(u), u〉 ≥ 0, we have

E[u] ≥ ‖∇u‖2L2(Ω) + ‖∇`u‖2L2(∂Ω).

By the Poincaré inequality, E[u] generates an equivalent norm on the subspace of
functions in V 1(Ω, ∂Ω) orthogonal to constants. Since the term

∫
∂Ω
bu2 d` does not

degenerate on constants, the statement follows.

The following existence and uniqueness result holds.

Corollary 3.2. Let f ∈ L2(Ω), g ∈ L2(∂Ω) and let b be as in Lemma 3.1. Then
there exists a unique weak solution in V 1(Ω, ∂Ω) of problem (1.5). Moreover

‖u‖V 1(Ω,∂Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(∂Ω)), (3.1)

where C depends only on the coercivity constant of E.

We finally prove the desired regularity for the weak solution of the nonlocal
Venttsel’ problem.

Theorem 3.3. Let σ be subject to condition (2.2). Suppose that b satisfies the
assumptions of Lemma 3.1, f ∈ L2

σ(Ω), g ∈ L2(∂Ω). Then the problem (1.2)-(1.3)
has a unique solution u ∈ V 2

σ (Ω, ∂Ω), and the following inequality holds

‖u‖2H1(Ω) + ‖rσD2u‖2L2(Ω) + ‖u‖2H2(∂Ω) ≤ C(‖rσf‖2L2(Ω) + ‖g‖2L2(∂Ω)), (3.2)

where C depends on σ and the coercivity constant of E.

Proof. We introduce the set of operators Lµ : V 2
σ (Ω, ∂Ω)→ L2

σ(Ω)×L2(∂Ω) by the
formula

Lµu :=

(
−∆u,

(
−∆`u+ bu+ µ

(
∂u

∂ν
+ θs(u)

)) ∣∣∣
∂Ω

)
.

We claim that the operator L0 is invertible. Indeed, it corresponds to the bound-
ary value problem

−∆u = f in Ω, −∆`u+ bu = g on ∂Ω.

Here the equation in Ω and the boundary condition are decoupled. So we can first
solve the boundary equation and then use its solution as the Dirichlet datum for
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the equation in the domain. The estimates similar to Theorem 2.1 show that the
solution belongs to V 2

σ (Ω, ∂Ω) and inequality (3.2) holds. So the claim follows.
The estimates in Theorem 2.1 show that the operator

Lµ − L0 : V 2
σ (Ω, ∂Ω)→ L2

σ(Ω)× L2(∂Ω); Lµu− L0u = µ

(
0,
∂u

∂ν
+ θs(u)

)
is compact. Since Ker(L1) is trivial by Corollary 3.2, the operator L1 is also invert-
ible, and the proof is complete.

If Ω is a convex polygon, then α < π. So we can put σ = 0 and obtain the
following result.

Corollary 3.4. Let Ω be a convex polygon. Suppose that b satisfies the assumptions
of Lemma 3.1, f ∈ L2(Ω), g ∈ L2(∂Ω). Then the problem (1.2)-(1.3) has a unique
solution u ∈ H2(Ω) ∩H2(∂Ω), and the following inequality holds

‖u‖2H2(Ω) + ‖u‖2H2(∂Ω) ≤ C(‖f‖2L2(Ω) + ‖g‖2L2(∂Ω)),

where C depends on the coercivity constant of E.

If Ω is not convex, then π < α < 2π. In this case we obtain the following result.

Theorem 3.5. Let Ω be a non-convex polygon. Suppose that b satisfies the as-
sumptions of Lemma 3.1, f ∈ L2(Ω), g ∈ L2(∂Ω). Then a unique solution of the
problem (1.2)-(1.3) admits the following decomposition:

u(x) =
∑

j :αj>π

cjχ(rj)r
π
αj sin(πωjα

−1
j ) + w(x). (3.3)

Here (rj , ωj) are local polar coordinates in a neighborhood of the angle with opening
αj, χ is a cutoff function near the origin, and w ∈ H2(Ω)∩H2(∂Ω). Moreover, the
following inequality holds

‖w‖2H2(Ω) + ‖w‖2H2(∂Ω) +
∑

j :αj>π

|cj |2 ≤ C(‖f‖2L2(Ω) + ‖g‖2L2(∂Ω)),

where C depends on the coercivity constant of E.

Proof. Following the lines of the proof of Theorem 2.1, we obtain the Dirichlet
problem for v = u− U

−∆v ∈ L2(Ω); v|∂Ω ∈ H
3
2 (∂Ω)

instead of (2.7). Theorem 3.4, Chapter 2 in [15] gives the representation (3.3) for
v. Since U is smooth, the statement follows.

Remark 3.6. Without any sign condition on the coefficient b, the problem (1.2)-
(1.3) is not necessarily solvable, but it has the Fredholm property.

Remark 3.7. All our results easily hold for an arbitrary piecewise smooth domain
Ω ⊂ R2 without cusps.

Acknowledgments. S. C., M. R. L. and P. V. have been supported by the Gruppo
Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)
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